
ar
X

iv
:0

90
1.

31
96

v2
  [

cs
.IT

]  
23

 A
pr

 2
00

9
1

Statistical Performance Analysis of MDL Source
Enumeration in Array Processing

F. Haddadi*, M. Malek Mohammadi, M. M. Nayebi,
and M. R. Aref

Abstract— In this correspondence, we focus on the performance analy-
sis of the widely-used minimum description length (MDL) source enumer-
ation technique in array processing. Unfortunately, available theoretical
analysis exhibit deviation from the simulation results. We present an
accurate and insightful performance analysis for the probability of missed
detection. We also show that the statistical performance ofthe MDL is
approximately the same under both deterministic and stochastic signal
models. Simulation results show the superiority of the proposed analysis
over available results.

Index Terms— Minimum description length (MDL), source enumera-
tion, performance analysis, deterministic signal.

EDICS Category: SAM-PERF, SAM-SDET

I. I NTRODUCTION AND PRELIMINARIES

MDL [1], is one of the most successful methods for determining
the number of present signals in array processing and channel
order detection [2]. MDL is a low complexity information theoretic
criteria which does not need any subjective threshold setting usual in
detection theoretic criteria. Other statistical properties, specially its
asymptotic consistency [1], makes it a favorable choice forsource
enumeration. Unfortunately, only few approximate finite-sample per-
formance analysis are available on the MDL method [3]–[8]. In [3], a
simple asymptotic statistical model for the eigenvalues ofthe sample
correlation matrix was used. Unfortunately, the theoretical results
showed persistent bias from the simulation results [4].

The next work [5], gives a computational approach for calculation
of the probability of false alarmpfa. In calculating the probability
of missed detectionpm, the same inaccurate statistical model is used
as in [3]. In [6], instead of exact performance estimation, theoretical
bounds for performance were presented. A qualitative performance
evaluation in terms of gap between noise and signal eigenvalues
and also the dispersion of each group is given in [7]. In a recent
work [8], a significantly different approach was used. Our simulation
results show improved results of [8] in comparison with [3].The
performance analysis was generalized to the non-Gaussian signals
while it was shown that the results reduce to the results of [5], [6] in
Gaussian signals. We will show that the same modelling errors have
degraded the analysis in [8] as in [3]–[6].

In this correspondence, we use an approach very similar to [3]–[5]
to estimatepm, including in the analysis the finite sampleO(n−1)
biases of the eigenvalues. The noise subspace eigenvalue spread is
taken into account which prevents the signal subspace eigenvalues
to approachσ2, the noise variance. The bias of the noise power
estimator in MDL is calculated to get excellent match between
theoretical and simulation results. We will not calculatepfa which
is negligible.

In the previous works, only the case of stochastic signal has
been considered. Here, we use a perturbation analysis to calculate
biases and variances of the eigenvalues under deterministic signal,
too. Using these results, we show that the performance of source
enumeration methods are approximately the same in both stochastic
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and deterministic signal models. This is a natural complementary
result for the known fact that the performance of the DOA (Direction
of Arrival) estimation methods in array processing is the same under
stochastic and deterministic signal models [9].

From a sensor array ofL elements,n observationsxi ∈ C
L×1, i =

1, . . . , n is made, which is a linear transformation ofd < L source
signalssi ∈ C

d×1, plus noiseν i ∈ C
L×1

xi = A(θ)si + ν i (1)

whereA ∈ C
L×d, the steering matrix, is composed ofd linearly

independent column vectors of array responsea(θk), k = 1, . . . , d.
Let X , [x1, . . . ,xn] andS andV be defined in the same way.
Signal and noise are assumed to be iid and uncorrelated random
variables. A compact form for the model will be

X = A(θ)S + V . (2)

Noise is assumed to be circular Gaussian. Signal can be modelled
either as a zero-mean circular Gaussian random sequence or an
unknown deterministic sequence. The distribution ofx will be as
N (0,APAH + σ2I) whereP = E(ssH) in the stochasticsignal
model, and asN (As , σ2I) in the deterministicsignal model.

To estimate the number of present signalsd, eigenvalues of
the correlation matrixR = n−1E(XXH) are used. Note that
Rdet = n−1ASS HAH + σ2I and Rsto = APAH + σ2I. The
eigendecomposition of the correlation matrix is

Rvi = λivi (3)

and we haveλ1 > · · · > λd > λd+1 = · · · = λL = σ2. Source
enumeration methods are based on a spherity test on the sample
correlation matrix defined as

R̂ =
1

n

n
X

i=1

xix
H
i . (4)

Eigendecomposition of̂R is defined asR̂wi = liwi in which l1 >
l2 > · · · > lL. The MDL estimator ofd is the minimizer of the
following criterion

Λ(d, L, n) = n(L− d ) log

„

ad

gd

«

+
1

2
d(2L− d) log(n) (5)

where

ad ,
1

L− d

L
X

i=d+1

li (6)

gd ,

L
Y

i=d+1

l
1/(L−d)
i (7)

The first term in (5) is the generalized likelihood ratio for the test of
spherity and the second term is a penalty function preventing over-
modelling.

II. STATISTICAL PROPERTIES OFEIGENVALUES

A. Signal Eigenvalues

First of all, we derive a result useful for statistical characterization
of the signal eigenvalues in the deterministic signal model. Let xi ∈
C

L×1 , i = 1, . . . , n be i.i.d. observations andxi ∼ N (0,Σ ). Note
that vec(X) ∼ N (0 , In ⊗Σ ), where⊗ is the Kronecker product
and vec(X) is the vectorizing operator stacking columns ofx in a
single column vector. Letα,β,γ, ζ ∈ C

L×1 be constant vectors.
The Brillinger result states that [10, p. 114]:

Cov(αH
R̂ β ,γH

R̂ ζ) = n−1(αH
Σγ)(ζH

Σβ). (8)
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We generalize the Brillinger result to the nonzero-mean case. To the
best of our knowledge the following result is new to the literature.

Lemma 1:Let vec(Y ) ∼ N (vec(µ) , In ⊗ Σ ), where µ ,

[µ1, . . . ,µn] and Y , [y1, . . . ,yn]. Then for R̂ = n−1Y Y H

and constant vectorsα,β,γ, ζ ∈ C
L×1, we will have

c , Cov(αH
R̂ β ,γH

R̂ ζ) = n−1(αH
Σγ)(ζH

Σβ)

+ n−2(αH
µµ

H
γ)(ζH

Σβ)

+ n−2(αH
Σγ)(ζH

µµ
H
β) (9)

Proof: See Appendix I.
We first briefly state useful available results.
Theorem 1:Let vec(X) ∼ N (0 , In ⊗ Σ ). Then the signal

eigenvalues ofR̂ in the asymptotic region ofn ≫ 1 has limiting
Gaussian distribution and we have [10], [15]

E(li) = λi +
X

j 6=i

λiλj

n(λi − λj)
+O(n−2) (10)

Cov(li, lj) = δijn
−1λ2

i +O(n−2). (11)
where δij is the Kronecker delta function. Now we generalize
Theorem 1 to the non-central case.

Theorem 2:Let vec(X) ∼ N (vec(µ) , In⊗ σ2IL). Then asymp-
totically for the signal eigenvalues of̂R we will have

E(li) = λi +
X

j 6=i

(λi + λj) σ
2 − σ4

n(λi − λj)
+O(n−2) (12)

Cov(li, lj) = δij n
−1(2λiσ

2 − σ4) +O(n−2) (13)
Proof: See Appendix II.

B. Noise Eigenvalues

The eigenvalues associated with the noise subspace come from
a spherical subspace. Therefore, they are not sufficiently separated,
but placed tight together around the noise powerσ2. Then, the
perturbation analysis in Appendix II is no longer true, since their
eigenvectors change dramatically with a small perturbation in R.
The distribution of the noise eigenvalues is identical to the noise-
only observations in anL − d dimensional noise subspace with
a small negative bias introduced by signal eigenvalues [11]. Here,
we introduce two statistical distributions to show that some noise
eigenvalues are considerably larger thanσ2. This invalidates the
approximations used in [3] for calculatingpm. In low SNRs, the
weakest signal eigenvalue approaches the largest noise eigenvalue
but cannot pass it due to the ordering of the eigenvalues. In this
subsection, we assumeσ2 = 1.

1) The Marčenko-Pastur distribution:For sufficiently largen and
L, with γ = n/L and in the null case, the distribution of unordered
noise eigenvalues is [11]

g(l) =
γ

2πl

p

(b− l)(l − a) : a ≤ l ≤ b (14)

where a = (1 − γ−1/2)2, b = (1 + γ−1/2)2, as depicted in Fig.
1. Note thatg(l) is a univariate distribution since it expresses the
bulk distribution [11] of the eigenvalues, i.e., in the null case, the
eigenvalues of the covariance matrix areL independent samples of
this distribution.

2) The Tracy-Widom distribution:The largest eigenvalue of a com-
plex correlation matrix in the null case has a bell-shaped distribution
calledF2 with moments [11]

E(l1) ≃ µnL − 1.8 σnL (15)

Std(l1) ≃ 0.9 σnL (16)

in which

µnL =

„

1 +

r

L

n

«2

(17)
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Fig. 1. Limiting densities of the noise subspace eigenvalues for γ = 1 and
γ = 4 cases. The spread of the eigenvalues around 1 is evident.

σnL =

r

µnL

n

„

1√
n
+

1√
L

«1/3

. (18)

Let’s see a numerical example. Assumen = 100 andL = 10, then
E(l1) ≃ 1.55 and Std(l1) ≃ 0.09 which implies thatl1 > 1.3 with
high probability. We conclude that the signal eigenvalues should be
well larger thanσ2.

III. PROBABILITY OF M ISSEDDETECTION

A. Method of Calculation

In this subsection, using the statistical tools developed in the
previous section, we calculatepm for MDL method.pfa is negligible
in moderate values ofn andL. For example, inL = 3 andn = 30,
pfa ≃ 0.003 and decays rapidly whenn and L increase.pm can
be used to estimate the minimum energy level of a source to be
detectable by the system. It can also be used to determine thesystem
capability for resolving very close sources. Then, we concentrate on
the pm1 , pm(d = 1) andpm2 , pm(d = 2), although our method
can be used for the general scenario. LetH1 denote the situation in
which only one source is present

pm1 = p
`

Λ(0, L, n) < Λ(1, L, n) |H1

´

. (19)

Using (5) and rearranging the terms in (19) we get

pm1 = p
`

L log

„

a0

g0

«

− (L− 1) log

„

a1

g1

«

<
1

2n
(2L− 1) log(n)

´

(20)

By the definition ofad in (6), we can write

a0 =
1

L
l1 +

L− 1

L
a1 (21)

Similarly, for the geometric mean using (7) we have

gL0 = l1 g
L−1
1 (22)

Substituting (21) and (22) in (20), we get [3]

pm1 = p
`

logQm1

`

l1
a1

´

< T1

´

(23)

where
Qm1(x) ,

1

x

“

1 +
x− 1

L

”L

(24)

and
T1 =

1

2n
(2L− 1) log(n) (25)
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In [3], The functionlog(Qm1(x)) is approximated by its second
order Taylor series nearx = 1. This is one source of avoidable
error in the method. The smallest eigenvalue of the signal subspace
is greater than the largest eigenvalue of the noise subspace, which is,
from subsection II-B, larger thanσ2. Also recall thata1 ≃ σ2, we
conclude thatx > 1. It is evident that the functionlog(Qm1(x)) is
uniformly increasing in the regionx > 1, therefore we can translate
the inequality in (23) to a simpler one

pm1 = p (x < T1 x) (26)

where
log(Qm1(T1x)) = T1 (27)

Using (26), two steps are required for calculation ofpm, computing
T1 x from (27) and determining the statistics ofx , l1/a1 in (26).

Unfortunately, (27) cannot be solved analytically forT1 x, then we
find an approximate solution in the first step. Rearrange (27)to get

„

1 +
T1x − 1

L

«L

= T1x e
T1 (28)

Expanding the left-hand-side of (28) to the second order, assuming
L is sufficiently large and solving the resulting quadratic equation,
gives a first approximation forT1x

T
(1)
1x = 1 +

p

e2T1 − 1 (29)

Now since the function in L.H.S. of (27) is smooth, we can use a
first order Taylor series around the solution in (29) to get closer to
the exact solution

T
(i+1)
1x = T

(i)
1x +

`

T1 − T
(i)
1

´T
(i)
1x + 1

T
(i)
1x − 1

(30)

whereT (i)
1 depends onT (i)

1x through (27). Application of (30) for a
few times gives a very accurate solution. Note that computation of
T1x is done after settingn andL, but is not dependent on the SNR.

The next step in calculatingpm1 is determining the statistics ofx.
From (10) and (11), we can see thatl1 is distributed as

l1 ∼ N
„

λ1 +
(L− 1)λ1σ

2

n(λ1 − σ2)
,
λ2
1

n

«

(31)

In [3]–[5], [8], the bias term ofl1 is not considered, while a numerical
example can clarify the point. Assume thatn = 100, L = 10, and
σ2 = 1. In the SNR in whichpm1 starts to become large,λ1 = 1.5,
E(l1) = 2.2, and Std(l1) = 0.15. Therefore, overlooking the bias
term (0.7) introduces large error to the analysis. Since in the critical
SNRs, the signal eigenvalue get closer to the noise eigenvalues, the
denominator in (10) reduces and the bias term gets large.

In the null case,E(a0) = 1
L
E(Tr(R̂)) = σ2 = 1, which

recommends thatE(a1|H1) = σ2. But a signal eigenvalue can
cause a negative bias ona1, numerically about 2%. Then, although
we neglect the variance ofa1 which is very small compared to the
variance ofl1, we should take into account the bias to achieve an
exact performance evaluation. In fact, the variances of theeigenvalues
(regardless of being a noise eigenvalue or a signal one) increases with
the mean of the eigenvalue. This can be seen in the simulations and
can be justified for the noise eigenvalues with noticing the decay of
the Marcenko-Pastur distribution in Fig. 1 which results inincreasing
variance of its order statistics. The variance of any order statistic of
a distribution is inversely proportional to the squared value of the
distribution in the vicinity of the mean value of that order statistics.
A classical example of this fact is the variance of the median. For
the signal eigenvalues, this is already shown in (11) and (13). This
fact, along with the averaging in the calculation ofa1 shows that its
variance is negligible in the analysis. To calculate the bias, note that

E(l1) + (L − 1)E(a1) = E(Tr(R̂)) = Tr(R) = λ1 + (L − 1)σ2.
This besides (10) gives [16]:

H1 : a1 ≃ σ2 − σ2λ1

n(λ1 − σ2)
(32)

Using (31) and (32), the distribution ofx is determined as a Gaussian
random variable with known meanµx and varianceσ2

x. Then,pm1

can be calculated as

pm1 = 1−Q

„

T1x − µx

σx

«

(33)

in which

Q(t) =

Z ∞

t

1√
2π

e−
u
2

2 du. (34)

The same procedure can be used to calculatepm2. The following
approximation is widely used and justified in the literature[3, eq.
(24)], [5, eq. (II.3a)]:

pm2 ≃ p
`

Λ(1, L, n) < Λ(2, L, n) |H2

´

(35)

It basically states that the probability of missing one of the sources
is very larger than missing both of them. We drop the details and
just give some of the points important in the calculation ofpm2:

pm2 = p
`

logQm2

`

l2
a2

´

< T2

´

(36)

in which the thresholdT2 and the functionQm2 are defined as

T2 =
1

2n
(2L− 3) log(n) (37)

Qm2(x) =
1

x

“

1 +
x− 1

L− 1

”L−1

(38)

x ,
l2
a2

(39)

The recursive equation to estimate the thresholdT2x will be

T
(i+1)
2x = T

(i)
2x +

`

T2 − T
(i)
2

´ T
(i)
2x (L− 2 + T

(i)
2x )

(L− 2)(T
(i)
2x − 1)

(40)

The distribution ofl2 will be

l2 ∼ N
„

λ2 +
(L− 2)λ2σ

2

n(λ2 − σ2)
− λ1λ2

n(λ1 − λ2)
,
λ2
2

n

«

(41)

a2 will have a negligible variance and can be estimated by its mean
value:

H2 : E(a2) = σ2 − σ2λ1

n(λ1 − σ2)
− σ2λ2

n(λ2 − σ2)
(42)

Now, using (41) and (42), the distribution ofx in (39) can be found
andpm2 is achieved as in (33). The same procedure can be used for
determiningpm in any number of sources.

B. Deterministic Signal Model

Although the first- and second-order statistical properties of the
signal subspace eigenvalues are different under stochastic and de-
terministic signal models, the performance of the MDL is thesame
under two models. As explained in section III-A,pm depends on
the statistics of the weakest signal eigenvalueld. We show that these
statistics grow similar under two models whenld approaches the noise
eigenvalues. Note that, for a fair comparison of the two signal models,
the signal second-order characteristics should be the same(see e.g.
[9, sec. V]). Therefore, we havelimn→∞ SdetS

H
det/n = E(sstos

H
sto),

which results inRdet = Rsto and henceλi det = λi sto, i = 1, . . . , L.
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In the situations wherepm starts to grow large,ld is barely larger
than the noise eigenvalues,λd ≃ σ2, then from (12) we have

E(ld det) ≃ λd +
X

i6=d

σ2λi

n(σ2 − λi)
(43)

which is the same as (10) in stochastic signal model. For the
variances, we assume thatλd has approached the upper limit of the
noise eigenvalues

λd ≃ σ2

„

1 +

r

L

n

«2

(44)

which is the upper limit of the Marcenko-pastur distribution in (14).
Note that, as signal power reduces, its eigenvalue approaches the
noise eigenvalues roughly aboutσ2. But λd cannot be smaller than
the largest noise eigenvalue due to the sorting of the eigenvalues.
Then as the SNR reduces,λd approaches the upper limit of the noise
eigenvalues about (44). In fact, we are using a better approximation
for λd in calculating the variance in (44) rather than in calculating
the expectation in (43). AssumingL ≪ n, a first order expansion of
(44) can be used in (11) to give

Varsto (ld) =
1

n
λ2
d ≃ 1

n
σ4

„

1 + 4

r

L

n

«

(45)

and in (13) to give

Vardet(ld) =
1

n

`

2λdσ
2 − σ4´

≃ 1

n
σ4

»

2

„

1 + 2

r

L

n

«

− 1

–

(46)

which reduces to the result in (45) and we can conclude that the
variance ofld is the same under two models in low SNRs. Hence,
pm is approximately the same under two signal models. This is in
harmony with the same result in the DOA estimation problem, where
the performance of the estimators are the same under two signal
model [9].

IV. SIMULATION RESULTS

In this section, simulation results are presented to support the
theoretical derivations. We considerpm in different conditions of
number of snapshotsn, and number of sensorsL in a Uniform Linear
Array with half-wavelength inter-element distance. Our estimate is
compared with [3] and [8]. Results are presented for two closely
spaced sources inpm2, and one source inpm1. When the sources
get closer to each other, the weaker signal eigenvalue approaches the
noise eigenvalues and possibly miss will occur. Therefore,for a fixed
angular distance of the sources, a minimum SNR is required for the
array to be able to detect both sources.

Two equally powered uncorrelated signal sources in±2o are
assumed. The SNR is defined as the ratio of each signal variance
to noise variance (i.e. sensor SNR). Figs 2, 3, and 4 show the
corresponding results forpm2 different situations in terms ofn and
L. Fig. 5 presents the results forpm1 in the worst case of parameters.
The superiority of our method in estimating the simulation results
is evident. In Fig. 2, simulation results are presented for both
deterministic and stochastic signals, which confirms the approximate
equality of pm under two models. This equality improves as the
number of observationsn increases. Note that our method is used
to estimatepm under stochastic signal model in Fig. 2. The analysis
in [3] under-estimatespm with a horizontal distance of about 0.5-2
dB. In fact, this method improves whenn gets larger since in this
situation, the neglected biases reduce. The estimate of [8]is better
than [3], with over-estimation ofpm equivalent with a horizontal
distance about 0.5-1 dB. Note that in the extreme case ofL = 32 and
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Fig. 2. pm2 of MDL method when number of sensorsL = 10, and number
of snapshotsn = 100.
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Fig. 3. pm2 of MDL method when number of sensorsL = 10, and number
of snapshotsn = 900.
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Fig. 4. pm2 of MDL method when number of sensorsL = 32, and number
of snapshotsn = 64.
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Fig. 5. pm1 of MDL method when number of sensorsL = 32, and number
of snapshotsn = 64.

n = 64 of Fig. 4, our analysis starts to degrade since the asymptotic
assumption is no longer valid. Though, in most cases, our estimate
exhibits horizontal distance of about 0.03 dB.

We have seen that the analysis in [3]–[5] lacks the inclusionof
biases of the eigenvalues and also suffers from some inaccurate
approximations. But the analysis in [8] requires more scrutiny since as
we have seen in the simulation results, this analysis gives completely
different results from [3]. Authors in [8] use asymptotic conditions
to show thatΛ(d−1)−Λ(d) converges in distribution to a Gaussian
random variable with meanµ and varianceσ2. Simulations show that
although the formula derived forσ2 in [8] is a very good estimate
of the empirical value, the same is not true for the meanµ, which
in fact shows considerable deviation. This disagreement ispresent
in small n as well as largen conditions. The derived result for the
mean of the Gaussian distribution in [8, eq. (19)] is

µ = n log

„

σ2
n

λd

»

1 +
1

L− d+ 1

“ λd

σ2
n

− 1
”

–L−d+1 «

+ 0.5
“

2d− 2L− 1
”

log(n) (47)

which we can see that isn logQmd(x) plus some nonrandom term
in the notation of our analysis. Now, it is evident that (47) is derived
assumingE(li) = λi for signal subspace andE(ad) = σ2

n, thus
every biases in the distribution ofli andad is ignored. Additionally,
Although we can assume the distribution ofx to be Gaussian, it
is not easy to assume normality for the functionΛ(d − 1) − Λ(d)
since it is a highly nonlinear function ofx. Simulations show that the
normality assumption is approximately valid only for largevalues of
n, sayn ≃ 1000. Another issue is that nonlinearity of the function
log(Qmd(x)) move the mean of the distribution which is not taken
into account.

Here, we will give further simulation results that compare our
analysis with the one presented in [8]. We assume the same conditions
as in [8, Fig. 1] which isn = 900, L = 7, and two Gaussian sources
in θ = [−5o + 10o]. The results are shown in Fig. 6, where the
experimental performance of MDL method is accurately predicted
by both our method and the method presented in [8]. Although from
a theoretical point of view, the method of [8] is not comprehensive
enough, in this special case of parameters it works well. If we change
the sources DOAs and keep every other parameters unchanged we
will see that the predictions of [8] degrades. Figure 7 showsthe
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Fig. 6. pm2 of MDL method when number of sensorsL = 7, and number
of snapshotsn = 900. The performance prediction method in [8] works well
in this set of parameters.
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Fig. 7. pm2 of MDL method when number of sensorsL = 7, and number
of snapshotsn = 900. The performance prediction method in [8] does not
work well in this set of parameters.

experimental results and theoretical predictions when sources are in
θ = [−5o 20o]. It is evident that the method of [8] does not work
well anymore while our method is still accurate. Note that wehave
investigated its performance when sources are very close toeach other
in our previous simulation results where the method in [8] failed
to predict the performance accurately. Therefore, the method in [8]
cannot be a reliable method of analytical performance calculation.

V. CONCLUSION

An accurate performance analysis for the probability of missed
detection of the MDL source enumeration method was presented.
Statistical characterization of the principal componentsof the co-
variance matrix helped to take good assumptions and approximation
which resulted in improved estimations ofpm. It is proved that
the performance is approximately identical under stochastic and
deterministic signal models using a perturbation analysiswhich gives
the statistical properties of eigenvalues in the deterministic signal
model. Simulation results show the superiority of the proposed
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analysis compared with the previous results.

APPENDIX I
PROOF OFLEMMA 1

Let X , Y − µ and rearrange the covariance in (9) as

n2c = Cov(αH
XX

H
β + α

H
µX

H
β + α

H
Xµ

H
β

,γH
XX

H
ζ + γ

H
µX

H
ζ + γ

H
Xµ

H
ζ). (48)

Circularity of the distribution and zero odd moments of zero-mean
Gaussian distribution reduces (48) to

n2c = Cov(αH
XX

H
β ,γH

XX
H
ζ)

+ Cov(αH
µX

H
β ,γH

µX
H
ζ)

+ Cov(αH
Xµ

H
β ,γH

Xµ
H
ζ). (49)

The first term in (49) is given by (8). The fact thatxi ⊥ xj : i 6= j
reduces the second term as

α
H
µE(XH

β ζ
H
X)µH

γ =

α
H
µ diag(E(xH

i β ζ
H
xi))µ

H
γ =

(αH
µµ

H
γ)(ζH

Σβ). (50)

The third term in (49) can be derived in the same way. Note thatall
the three terms in the right-hand-side of (9) areO(n−1) sinceµ is
of dimensionL× n and henceµµH is O(n).

APPENDIX II
PROOF OFTHEOREM 2

In the asymptotic region ofn ≫ 1, R̂ is a slightly perturbed
version ofR, described as

R̂ = R + p∆ (51)

where p ≪ 1 is the perturbation factor. Small perturbations in
R result in small changes in its eigenvectors if the associated
eigenvalues are sufficiently separated [12]. It means that the following
results are true for signal eigenvalues. Remember the definition of
the eigendecompositions asRvi = λivi andR̂wi = liwi. The first
order perturbation in eigenvectors is

wi ≃ vi +
X

j 6=i

tijpvj (52)

wheretijs are the perturbation coefficients. Straightforward calcula-
tions will give [13, eq. (A.9)] [14]:

li = λi + pvH
i∆ vi +

X

j 6=i

tijp
2
v

H
i ∆ vj (53)

tij =
vH
j∆ vi

λi − λj
. (54)

Under the conditions of Theorem 2, we will have

Cov
`

tik, tjr
´

= δij δkr
(λi + λk) σ

2 − σ4

np2(λi − λk)2
(55)

which is shown using (54) and replacingµµH = n(R − σ2I) in
(9). Now, (12) is proved using (53) and (9). (13) can be shown using
(53) to the first order and (9). Note that the limiting distribution of
the eigenvalues is Gaussian [9].

REFERENCES

[1] M. Wax and T. Kailath, ”Detection of signals by information theoretic
criteria,” IEEE Trans. Acoustic Speech Signal Process., vol. ASSP-33,
pp. 387-392, Apr. 1985.

[2] A.P. Liavas, P.A. Regalia, and J.P. Delmas, “Blind channel approx-
imation: Effective channel order determination,”IEEE Trans. Signal
Process., vol. 47, pp. 3336-3344, Dec. 1999.

[3] H. Wang and M. Kaveh, ”On the performance of signal-subspace
processing - part I: narrow-band systems,”IEEE Trans. Acoust. Speech,
Signal Process., vol. ASSP-34, pp. 1201-1209, Oct. 1986.

[4] M. Kaveh, H. Wang, and H. Hung, ”On the theoretical performance
of a class of estimators of the number of narrow-band sources,” IEEE
Trans. Acoust. Speech, Signal Process., vol. ASSP-35, pp. 1350-1352,
Sep. 1987.

[5] Q. Zhang, K. M. Wong, P. C. Yip, and J. P. Reilly, ”Statistical analysis
of the performance of information theoretic criteria in thedetection of
the number of signals in array processing,”IEEE Trans. Acoustic Speech
Signal Process., vol. 37, pp. 1557-1567, Oct. 1989.

[6] W. Xu and M. Kaveh, ”Analysis of the performance and sensitivity of
eigendecomposition-based detectors,”IEEE Trans. Signal Process., vol.
43, pp. 1413-1426, June 1995.

[7] A.P. Liavas, P.A. Regalia, ”On the behavior of information theoretic
criteria for model order selection”IEEE Trans. Signal Process., vol. 49,
pp. 1689-1695, August 2001.

[8] E. Fishler, M. Grossmann, and H. Messer, ”Detection of signals by
information theoretic criteria: general asymptotic performance analysis,”
IEEE Trans. Signal Process., vol. 50, pp. 1027-1036, May 2002.

[9] B. Ottersten, M. Viberg, and T. Kailath, ”Analysis of subspace fitting
and ML techniques for parameter estimation from sensor array data”,
IEEE Trans. Signal Process., vol. 40, pp. 590-599, March 1992.

[10] D. R. Brillinger, Time Series: Data Analysis and Theory. New York:
Holt, Rinehart, and Winston, 1975.

[11] I. M. Johnstone, ”On the distribution of the largest eigenvalue in
principal component analysis,”Annals of Statistics, vol. 29, No. 2, pp.
295-327, 2001.

[12] G. H. Golub and C. F. Van Loan,Matrix Computations, The Johns
Hopkins University Press, 1989.

[13] M. Kaveh and A. J. Barabell, “The statistical performance of the MUSIC
and the minimum-norm algorithms in resolving plane waves innoise,”
IEEE Trans. Acoust. Speech, Signal Process., vol. ASSP-34, pp. 331-
341, April 1986.

[14] J. H. Wilkinson,The Algebraic Eigenvalue Problem. New York: Oxford
University Press, 1965.

[15] D. Lawley, ”Tests of significance for the latent roots ofcovariance and
correlation matrices,”Biometrika. vol. 43, pp. 128-136, 1956.

[16] K. M. Wong, Q. Zhang, J. P. Reilly, and P. C. Yip, ”On information
theoretic criteria for determining the number of signals inhigh resolution
array processing,”IEEE Trans. Acoust. Speech, Signal Process., vol. 38,
pp. 1959-1971, Nov. 1990.


	Introduction and Preliminaries
	Statistical Properties of Eigenvalues
	Signal Eigenvalues
	Noise Eigenvalues
	The Marcenko-Pastur distribution
	The Tracy-Widom distribution


	Probability of Missed Detection
	Method of Calculation
	Deterministic Signal Model

	Simulation Results
	Conclusion
	Appendix I: Proof of Lemma ??
	Appendix II: Proof of Theorem ??
	References

