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Statistical Performance Analysis of MDL Source
Enumeration in Array Processing

and deterministic signal models. This is a natural compleaarg
result for the known fact that the performance of the DOA €biion
of Arrival) estimation methods in array processing is theesainder
stochastic and deterministic signal models [9].

From a sensor array df elementsy observations; € CI*! i =
1,...,n is made, which is a linear transformation &f< L source
signalss; € C%**, plus noiser; € C2*!

F. Haddadi*, M. Malek Mohammadi, M. M. Nayebi,
and M. R. Aref

Abstract— In this correspondence, we focus on the performance analy-
sis of the widely-used minimum description length (MDL) souce enumer-

ation technique in array processing. Unfortunately, avaidble theoretical zi = A(6)s; + v @
analysis exhibit deviation from the simulation results. We present an Lxd ; e ;

accurate and insightful performance analysis for the probéility of missed yvhereA € C™, the steering matrix, is composed dflinearly
detection. We also show that the statistical performance ofhe MDL is  independent column vectors of array respongé ),k = 1,...,d.

Let X £ [z1,...,2,]) and S and V be defined in the same way.
Signal and noise are assumed to be iid and uncorrelated mando
variables. A compact form for the model will be

approximately the same under both deterministic and stochstic signal
models. Simulation results show the superiority of the propsed analysis
over available results.

Index Terms— Minimum description length (MDL), source enumera-

tion, performance analysis, deterministic signal. X=A0)S+V.

)

Noise is assumed to be circular Gaussian. Signal can be heddel
either as a zero-mean circular Gaussian random sequence or a
unknown deterministic sequence. The distributionaofwill be as
N(0, APA" 4 5°I) where P = E(ss") in the stochasticsignal

MDL [1], is one of the most successful methods for deterngninmodel, and as\'(As, o2I) in the deterministicsignal model.
the number of present signals in array processing and channery estimate the number of present signals eigenvalues of
order detection [2]. MDL is a low complexity information ®@tic the correlation matrixR = n~'E(XX") are used. Note that
criteria which does not need any subjective thresholdrgettsual in - g, — ;-1 A8§SHA" + 52T and R.,, = APA" + o2I. The
detection theoretic criteria. Other statistical propestispecially its gjgendecomposition of the correlation matrix is
asymptotic consistency [1], makes it a favorable choicesfaurce
enumeration. Unfortunately, only few approximate finitenple per-
formance analysis are available on the MDL method [3]-[8].3], a
simple asymptotic statistical model for the eigenvaluethefsample
correlation matrix was used. Unfortunately, the theoadtiesults
showed persistent bias from the simulation results [4].

The next work [5], gives a computational approach for catah
of the probability of false alarmps,. In calculating the probability
of missed detectiop.,,, the same inaccurate statistical model is used . R
as in [3]. In [6], instead of exact performance estimatitigoretical Eigendecomposition oR is defined asRw; = l;w; in whichl; >
bounds for performance were presented. A qualitative pedace l2 > --- > Ir. The MDL estimator ofd is the minimizer of the
evaluation in terms of gap between noise and signal eigeesal following criterion
and also the dispersion of each group is given in [7]. In antce

EDICS Category: SAM-PERF, SAM-SDET

I. INTRODUCTION AND PRELIMINARIES

R’UZ' = )\ivi (3)

and we have\; > --- > A\g > A\gp1 = -+ = A = o2. Source
enumeration methods are based on a spherity test on the esampl
correlation matrix defined as

1 n
R=1Ywal

i=1

(4)

work [8], a significantly different approach was used. Ounidiation A(d,L,n) =n(L —d)log <%) + % d(2L — d)log(n)  (5)
results show improved results of [8] in comparison with [Zhe 9¢
performance analysis was generalized to the non-Gausgiaals Wwhere .
while it was shown that the results reduce to the results Jof¢$ in ag 2 1 Z L ©)
Gaussian signals. We will show that the same modelling gare L—-d S !
degraded the analysis in [8] as in [3]-[6].
In this correspondence, we use an approach very similaf+¢g]J3 N L \/(L—d)
to estimatep,,, including in the analysis the finite sampte(n ") 94 = H l; (7)
i=d+1

biases of the eigenvalues. The noise subspace eigenvaleadsis
taken into account which prevents the signal subspace \&ilyEs The first term in[(b) is the generalized likelihood ratio foettest of
to approacho?, the noise variance. The bias of the noise powedpherity and the second term is a penalty function preverdirer-
estimator in MDL is calculated to get excellent match betweemodelling.
theoretical and simulation results. We will not calculate, which
is negligible.

In the previous works, only the case of stochastic signal has
been considered. Here, we use a perturbation analysis ¢talem A- Signal Eigenvalues
biases and variances of the eigenvalues under deterrimsisfnal, First of all, we derive a result useful for statistical claeaization
too. Using these results, we show that the performance afceouof the signal eigenvalues in the deterministic signal modet z; €
enumeration methods are approximately the same in bothagtic C*! ;=1 ... n be ii.d. observations and; ~ A'(0,X). Note
that ved X) ~ N (0,1, ® X), where® is the Kronecker product

Il. STATISTICAL PROPERTIES OFEIGENVALUES
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and ve¢X) is the vectorizing operator stacking columnsaofin a
single column vector. Lety, 3,v,¢ € C! be constant vectors.
The Brillinger result states that [10, p. 114]:

Cov(a"RB,4"R¢) =n"'(a"E~) (" B). (8)


http://arxiv.org/abs/0901.3196v2

We generalize the Brillinger result to the nonzero-meare cas the
best of our knowledge the following result is new to the htere.
Lemma 1:Let vedY) ~ N (vedu),I, ® ), where p =
[1,..., ] @Y 2 [y,,...,y,]. Then forR = n~'YY"
and constant vectors, 8, v, ¢ € C*1, we will have
c2Cova"RB "R =n" ! (a"Sy)(("EB)
+n (e ppy) ("2 B)
+n ("2 ) (¢Mpp" B) ©
Proof: See AppendiX]l. O
We first briefly state useful available results.
Theorem 1:Let vec(X) ~ N(0,I, ® ¥). Then the signal

eigenvalues ofR in the asymptotic region of. > 1 has limiting
Gaussian distribution and we have [10], [15]

)\)\ _
J#L

Cov(li,l;) = 5Z~jn*1Ai + O(n*).

(10

(11
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Fig. 1. Limiting densities of the noise subspace eigenwloe~y = 1 and
~ = 4 cases. The spread of the eigenvalues around 1 is evident.

where d;; is the Kronecker delta function. Now we generalize

Theoren{l to the non-central case.
Theorem 2:Letveq X) ~ N (vedp), In® o*I). Then asymp-
totically for the signal eigenvalues @@ we will have

()\i + )\j)0'2 — 0'4

) — . -2
E(l) = i + ; oS w O(n?) (12)
COV(ZZ‘7 lj) = (52J n71(2)\i02 — 0'4) + O(TL72) (13)
Proof: See Appendix]l. O

B. Noise Eigenvalues

The eigenvalues associated with the noise subspace comme fr%'

a spherical subspace. Therefore, they are not sufficieafharated,
but placed tight together around the noise powér Then, the
perturbation analysis in Appendix] Il is no longer true, sirtbeir
eigenvectors change dramatically with a small perturbatio R.
The distribution of the noise eigenvalues is identical te tioise-

(18)

1/3
HnL 1 1 )
OnL = + .

Let's see a numerical example. Assume= 100 and L = 10, then
E(l1) ~ 1.55 and Stdl;) ~ 0.09 which implies that/; > 1.3 with
high probability. We conclude that the signal eigenvaluesutd be
well larger thano2.

1.
Method of Calculation

PROBABILITY OF MISSEDDETECTION

In this subsection, using the statistical tools developedthe
previous section, we calculagg, for MDL method.p;, is negligible
in moderate values af and L. For example, in. = 3 andn = 30,
pra ~ 0.003 and decays rapidly when and L increase.p,, can
be used to estimate the minimum energy level of a source to be

only observations in ar. — d dimensional noise subspace withdetectable by the system. It can also be used to determirsystem

a small negative bias introduced by signal eigenvalues. [H&}e,
we introduce two statistical distributions to show that sonvise

capability for resolving very close sources. Then, we cotrege on
the pm1 2 pm(d = 1) andpme £ pm(d = 2), although our method

eigenvalues are considerably larger thah This invalidates the can be used for the general scenario. et denote the situation in

approximations used in [3] for calculating... In low SNRs, the
weakest signal eigenvalue approaches the largest noiseveige

but cannot pass it due to the ordering of the eigenvalueshim t

subsection, we assume = 1.
1) The Mar€enko-Pastur distributiorfor sufficiently largen and

L, with v = n/L and in the null case, the distribution of unordered

noise eigenvalues is [11]

g() = b=l —-a) a<l<b (14)

2 27l

wherea = (1 — v~V b = (1 4+ vy~ /?)2, as depicted in Fig.
[@. Note thatg(l) is a univariate distribution since it expresses the

bulk distribution [11] of the eigenvalues, i.e., in the null catfee

which only one source is present

eigenvalues of the covariance matrix ateindependent samples of Similarly, for the geometric mean usingl (7) we have

this distribution.

2) The Tracy-Widom distributionThe largest eigenvalue of a com-

plex correlation matrix in the null case has a bell-shapstritiution
called F» with moments [11]

E(l) = pinr — 1.8 0nr (15)
Stdl4) ~ 0.9 oz, (16)

in which 2
s = (14 VE ) an

Pm1 =D (A(O7 L,n) < A(1,L,n) | H1). (29)
Using [B) and rearranging the terms [n}(19) we get
Pm1 =P (Llog <ﬂ> —(L—-1)log (ﬂ)
go g1
1
< %(QL —1)log(n)) (20)
By the definition ofa in @ we can write
L—-1
= Z i+ ——— T ay (21)
g =hg (22)
Substituting [[211) and(22) in (20), we get [3]
pm1 = p (log Qi () < Tr) (23)
where | N
N _
Qui@) £ ~(1+5—) (24)
and 1
T = —n(QL —1)log(n) (25)



In [3], The functionlog(Q..1(x)) is approximated by its second E(l1) + (L — 1)E(a1) = E(Tr(R)) = Tr(R) = A1 + (L — 1)o.
order Taylor series near = 1. This is one source of avoidable This besides[(10) gives [16]:
error in the method. The smallest eigenvalue of the signagsace 2
is greater than the largest eigenvalue of the noise subspdieh is, H : a~oc’— T
from subsectiofi =B, larger thaa®. Also recall thata; ~ o2, we n(A —o?)
conclude thate > 1. It is evident that the functiotog(Qm1(x)) is  Using [31) and[(32), the distribution efis determined as a Gaussian
uniformly increasing in the regiom > 1, therefore we can translate random variable with known megm, and variances2. Then,pm1

(32

the inequality in[(2B) to a simpler one can be calculated as

pmt = p (@ < Ti2) (26) ot =1 Q<T07‘“) (39)
where . . ’

log(Qmi(Thz)) =T (27) in which o 12
Using [28), two steps are required for calculationpgf, computing Q) = /t \/27re : du. (349

Ty . from (27) and determining the statistics of2 11 /a1 in (26).
Unfortunately, [[2F) cannot be solved analytically fbr., then we
find an approximate solution in the first step. Rearrafgé (@ Qet

The same procedure can be used to calculate. The following
approximation is widely used and justified in the literat{iBe eq.
(24)], [5, eq. (11.3a)]:

Ti. —1\"
<1 + = 17 ) =Ty, e (28) pm2 ~p (A(1,L,n) < A(2,L,n)| Hz) (35)

Expanding the left-hand-side df {28) to the second ordesuragng It basically states that the probability of missing one & #ources
L is sufficiently large and solving the resulting quadraticiaipn, is very larger than missing both of them. We drop the detaild a

gives a first approximation fdr, just give some of the points important in the calculatiorpgf:

Tl(i) =1++ver —1 (29) pm2 = p (log Q’"Q(%) < Tz) (36)
Now since the function in L.H.S. of (27) is smooth, we can use ia which the threshold: and the functionQ,,» are defined as
first order Taylor series around the solution [in](29) to geset to 1
the exact solution T = %(QL — 3) log(n) (37)

; ; T 41
Tf”l) _ Tlu) + (T1 _ Tl(z)) iz (30) 1 ( r—1\L-1
) _ Qma(z) = — {1+ +— (38)

whereT” depends o) through [2¥). Application of[{30) for a A
few times gives a very accurate solution. Note that comjmrtabf r= s (39)

Ti.. is done after setting and L, but is not dependent on the SNR
The next step in calculating,,1 is determining the statistics af.
From [10) and[{1l1), we can see thatis distributed as

(L-1\io® A}
n(A1 —o?) ' n

‘The recursive equation to estimate the threshiigld will be

€T

(L —2)(T52) - 1)

T = 1) + (T — T4Y) Ty (L=2+Ty,) (40)
i~ N <)\1 + (31)
The distribution ofl, will be

In [3]-[5], [8], the bias term ot; is not considered, while a numerical 5 5
example can clarify the point. Assume that= 100, L = 10, and Iy ~ /\/()\2 + (L —2)A20 ik , ﬁ) (41)
0% = 1. In the SNR in whichp,,,1 starts to become large,; = 1.5, n(Az —o?)  n(A—A2) " on
E(l) = 2.2, and Stdl:) = 0.15. Therefore, overlooking the bias ¢, will have a negligible variance and can be estimated by itarme
term (0.7) introduces large error to the analysis. Since in the @liticyalye:
SNRs, the signal eigenvalue get closer to the noise eigeewathe 2y 2y
denominator in[{T0) reduces and the bias term gets large. Hy : E(a2)= P ~ = g 22 5

In the null case,E(a0) = +E(Tr(R)) = o = 1, which n(h — o) n(k —o?)
recommends thaf(a1|H:) = o2. But a signal eigenvalue can Now, using [41) and{42), the distribution ofin (39) can be found
cause a negative bias @n, numerically about 2%. Then, althoughandp,,> is achieved as if(33). The same procedure can be used for
we neglect the variance afi which is very small compared to the determiningp.,, in any number of sources.
variance ofl;, we should take into account the bias to achieve an
exact performance evaluation. In fact, the variances oétenvalues
(regardless of being a noise eigenvalue or a signal oneyases with
the mean of the eigenvalue. This can be seen in the simutaiind Although the first- and second-order statistical propsrié the
can be justified for the noise eigenvalues with noticing theay of signal subspace eigenvalues are different under stochast de-
the Marcenko-Pastur distribution in Fig. 1 which resulténicreasing terministic signal models, the performance of the MDL is fagne
variance of its order statistics. The variance of any ordatistic of under two models. As explained in section 1ll-A,. depends on
a distribution is inversely proportional to the squaredueabf the the statistics of the weakest signal eigenvdluéNe show that these
distribution in the vicinity of the mean value of that ordéatsstics. statistics grow similar under two models whigrapproaches the noise
A classical example of this fact is the variance of the medfor eigenvalues. Note that, for a fair comparison of the twoaigmodels,
the signal eigenvalues, this is already shown[id (11) &nd. (I8is the signal second-order characteristics should be the ¢seeee.g.
fact, along with the averaging in the calculationaaf shows that its [9, sec. V]). Therefore, we havém,, oo SderSihy/n = E(Ssto850),
variance is negligible in the analysis. To calculate thes biete that which results inRget = Rsto and hence\; get = Aisto, ¢ = 1,..., L.

(42)

B. Deterministic Signal Model



In the situations where,,, starts to grow largel, is barely larger
than the noise eigenvalues, ~ o2, then from [I2) we have
2
g )\i
E(lddel) = )\d + Z m (43)
i#£d
which is the same ad _{110) in stochastic signal model. For tl
variances, we assume that has approached the upper limit of the

noise eigenvalues
L 2
Ad =~ 0'2 (1 —+ — )
n

which is the upper limit of the Marcenko-pastur distributim (14).
Note that, as signal power reduces, its eigenvalue appesatie
noise eigenvalues roughly abowt. But A; cannot be smaller than
the largest noise eigenvalue due to the sorting of the eijees.
Then as the SNR reduces; approaches the upper limit of the noise
eigenvalues aboul (#4). In fact, we are using a better appgation
for Ay in calculating the variance if_(#4) rather than in calcuigti
the expectation i (43). Assuming < n, a first order expansion of

(@4) can be used il (11) to give

(44)

Vargo (Ia) = ~ A2 ~ L <1 +ay/L ) (45)
n n n
and in [I3) to give
Varge (1) = (2Xq0” — o)
n
2104{2<1+2\/£)—1} (46)
n n

which reduces to the result i _(45) and we can conclude that t
variance ofl; is the same under two models in low SNRs. Hence
pm IS approximately the same under two signal models. This is
harmony with the same result in the DOA estimation problefmens
the performance of the estimators are the same under twalsig
model [9].

IV. SIMULATION RESULTS

In this section, simulation results are presented to supfie
theoretical derivations. We consider,, in different conditions of
number of snapshots, and number of sensofsin a Uniform Linear
Array with half-wavelength inter-element distance. Outireate is
compared with [3] and [8]. Results are presented for two etjos
spaced sources ip,2, and one source ip,,1. When the sources
get closer to each other, the weaker signal eigenvalue apipes the
noise eigenvalues and possibly miss will occur. Therefiarea fixed
angular distance of the sources, a minimum SNR is requirethfo
array to be able to detect both sources.

Two equally powered uncorrelated signal sources+i® are
assumed. The SNR is defined as the ratio of each signal varia
to noise variance (i.e. sensor SNR). FigsP, 3, Bhd 4 show t
corresponding results far,,2 different situations in terms of and
L. Fig.[3 presents the results foy,1 in the worst case of parameters.
The superiority of our method in estimating the simulati@sults
is evident. In Fig.[R, simulation results are presented fothb
deterministic and stochastic signals, which confirms the@pmate
equality of p,,, under two models. This equality improves as th
number of observations increases. Note that our method is use:
to estimatep,,, under stochastic signal model in Fig. 2. The analysi
in [3] under-estimateg,, with a horizontal distance of about 0.5-2
dB. In fact, this method improves when gets larger since in this
situation, the neglected biases reduce. The estimate df [Bgtter

than [3], with over-estimation op,, equivalent with a horizontal Fig- 4. pmz2 of MDL method when number of sensafs= 32, and number

distance about 0.5-1 dB. Note that in the extreme cade 6f32 and
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Fig. 5. pm1 of MDL method when number of sensaks= 32, and number
of snapshots: = 64.

n = 64 of Fig.[4, our analysis starts to degrade since the asynspto
assumption is no longer valid. Though, in most cases, oumatt
exhibits horizontal distance of about 0.03 dB.

We have seen that the analysis in [3]-[5] lacks the inclugibn
biases of the eigenvalues and also suffers from some iretecur
approximations. But the analysis in [8] requires more soygince as
we have seen in the simulation results, this analysis gigagptetely
different results from [3]. Authors in [8] use asymptoticnciitions
to show thatA(d — 1) — A(d) converges in distribution to a Gaussiar
random variable with mean and variance-®. Simulations show that
although the formula derived far? in [8] is a very good estimate
of the empirical value, the same is not true for the mgarwhich
in fact shows considerable deviation. This disagreememrésent
in smalln as well as large: conditions. The derived result for the
mean of the Gaussian distribution in [8, eq. (19)] is

1

—aril *)}Ldﬂ)

+ 0.5(2d — 9L - 1) log(n)

on

Ad

Ad

,u:nlog< {1—&- p

(47)

which we can see that islog Qq(z) plus some nonrandom term
in the notation of our analysis. Now, it is evident tHatl (4§ derived
assumingE(l;) = \; for signal subspace anfl(ay) = o2, thus
every biases in the distribution &f anda, is ignored. Additionally,
Although we can assume the distribution ofto be Gaussian, it
is not easy to assume normality for the functidgd — 1) — A(d)
since it is a highly nonlinear function af. Simulations show that the
normality assumption is approximately valid only for langsdues of

n, sayn ~ 1000. Another issue is that nonlinearity of the func:tionC

log(Qma(z)) move the mean of the distribution which is not taken

into account.

Here, we will give further simulation results that companer o
analysis with the one presented in [8]. We assume the santitioms
as in [8, Fig. 1] which is» = 900, L = 7, and two Gaussian sources
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Fig. 6. pm2 of MDL method when number of sensofs= 7, and number
of snapshots: = 900. The performance prediction method in [8] works well

in this set of parameters.
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Fig. 7. pm2 of MDL method when number of sensofs= 7, and number
of snapshots: = 900. The performance prediction method in [8] does not
work well in this set of parameters.

experimental results and theoretical predictions whemcasuare in
0 = [—5° 20°]. It is evident that the method of [8] does not work
well anymore while our method is still accurate. Note that vewe
investigated its performance when sources are very closadio other
in our previous simulation results where the method in [8leth
to predict the performance accurately. Therefore, the otkth [8]
annot be a reliable method of analytical performance &aiom.

V. CONCLUSION

An accurate performance analysis for the probability of smis
detection of the MDL source enumeration method was predente

in @ = [-5° + 10°]. The results are shown in Fifl 6, where theStatistical characterization of the principal componeotsthe co-
experimental performance of MDL method is accurately mtedi variance matrix helped to take good assumptions and appatixin
by both our method and the method presented in [8]. Althougimf which resulted in improved estimations of,. It is proved that

a theoretical point of view, the method of [8] is not compresiee
enough, in this special case of parameters it works well elfcivange

the performance is approximately identical under stodhasnd
deterministic signal models using a perturbation analich gives

the sources DOAs and keep every other parameters unchargyedtive statistical properties of eigenvalues in the detestinisignal

will see that the predictions of [8] degrades. Figlite 7 shoknes

model. Simulation results show the superiority of the pemub



analysis compared with the previous results.

APPENDIXI
PrROOF OFLEMMA[

Let X £ Y — p and rearrange the covariance i (9) as

n’c=Cov(a"XX"B + a"uX"B+ "X "B

ATX XN+ A XN+ A X ). (48)

Circularity of the distribution and zero odd moments of zerean
Gaussian distribution reducds[48) to

n’c= COV(aHXXH,B , ’yHXXHC)
+Cov(a"pX"B, 4" uX")

+Cov(a" X p"'B, 4" X p"¢). (49)

The first term in[(4D) is given by{18). The fact that L =; : i # j
reduces the second term as

d"wE(X"B¢"X) My =
apdiag E(zf'B (M) ply =

("up ) (" B). (50)

The third term in[(4B) can be derived in the same way. Note dHat [10]

the three terms in the right-hand-side of (9) @én ") sincep is
of dimensionZ x n and henceuu' is O(n).

[12]

APPENDIXII
PROOF OFTHEOREM[Z

In the asymptotic region of, > 1, R is a slightly perturbed
version of R, described as

R=R+pA (51)

where p < 1 is the perturbation factor. Small perturbations if16]

R result in small changes in its eigenvectors if the assatiate
eigenvalues are sufficiently separated [12]. It means tatdilowing
results are true for signal eigenvalues. Remember the tiefindf
the eigendecompositions &w; = A;v; and Rw; = l;w;. The first
order perturbation in eigenvectors is

w; ~v; + Ztijpvj
JF#i

(52)

wheret;;s are the perturbation coefficients. Straightforward dalcu
tions will give [13, eq. (A.9)] [14]:

li=MXi+ pU';A v; + Z tijpzv?A vVj (53)
J#i
H
o v; Av;

tij = N N (54)

Under the conditions of Theorelm 2, we will have

) 2 4
COV( tik, tjr-) = (52J (51“M (55)

np?(Ai — Ak)?

which is shown using[{34) and replacingu™ = n(R — ¢2I) in
©). Now, [12) is proved using_(53) and (9).[13) can be shogingi
(B3) to the first order and(9). Note that the limiting distriion of
the eigenvalues is Gaussian [9].
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