
HKUST SPD - INSTITUTIONAL REPOSITORY

Title Accessible or Not? An Empirical Investigation of Android App Accessibility

Authors Chen, Sen; Chen, Chunyang; Fan, Lingling; Fan, Mingming; Zhan, Xian; Liu, Yang

Source IEEE Transactions on Software Engineering, 30 August 2021

Version Accepted Version

DOI 10.1109/TSE.2021.3108162

Publisher IEEE

Copyright © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

This version is available at HKUST SPD - Institutional Repository (https://repository.hkust.edu.hk)

If it is the author's pre-published version, changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a definitive version of this work,
please refer to the published version.

https://doi.org/10.1109/TSE.2021.3108162
https://repository.hkust.edu.hk


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 1

Accessible or Not? An Empirical Investigation of
Android App Accessibility

Sen Chen, Chunyang Chen, Lingling Fan, Mingming Fan, Xian Zhan, and Yang Liu

Abstract—Mobile apps provide new opportunities to people with disabilities to act independently in the world. Following the law of the

US, EU, mobile OS vendors such as Google and Apple have included accessibility features in their mobile systems and provide a set of

guidelines and toolsets for ensuring mobile app accessibility. Motivated by this trend, researchers have conducted empirical studies by

using the inaccessibility issue rate of each page (i.e., screen level) to represent the characteristics of mobile app accessibility. However,

there still lacks an empirical investigation directly focusing on the issues themselves (i.e., issue level) to unveil more fine-grained

findings, due to the lack of an effective issue detection method and a relatively comprehensive dataset of issues.

To fill in this literature gap, we first propose an automated app page exploration tool, named Xbot, to facilitate app accessibility testing

and automatically collect accessibility issues by leveraging the instrumentation technique and static program analysis. Owing to the

relatively high activity coverage (around 80%) achieved by Xbot when exploring apps, Xbot achieves better performance on

accessibility issue collection than existing testing tools such as Google Monkey. With Xbot, we are able to collect a relatively

comprehensive accessibility issue dataset and finally collect 86,767 issues from 2,270 unique apps including both closed-source and

open-source apps, based on which we further carry out an empirical study from the perspective of accessibility issues themselves to

investigate novel characteristics of accessibility issues. Specifically, we extensively investigate these issues by checking 1) the overall

severity of issues with multiple criteria, 2) the in-depth relation between issue types and app categories, GUI component types, 3) the

frequent issue patterns quantitatively, and 4) the fixing status of accessibility issues. Finally, we highlight some insights to the

community and hope to raise the attention to maintaining mobile app accessibility for users especially the elderly and disabled.

Index Terms—Mobile Accessibility, Empirical Study, Automated Accessibility Testing, Android App, Xbot

✦

1 INTRODUCTION

A S mobile applications (apps) are increasingly embed-
ded into people’s daily lives, ensuring their accessi-

bility to a broader range of users has gained increasing
attention from both industry and governments. For exam-
ple, leading IT companies (e.g, Apple, Google, IBM, and
Microsoft) have established their accessibility teams [1], [2],
[3], [4] and governments have established laws to help
eliminate barriers in electronic and information technology
for people with disabilities [5], [6]. Although there are many
accessibility guidelines for mobile app development (e.g.,
[7], [8]), it is challenging for mobile apps designers and
developers who often neither have disabilities themselves
nor have training in user experience (UX) and accessibility,
to figure out how to discover potential accessibility issues1

for a wide range of disabilities, and apply accessibility
guidelines to effectively address the issues [9], [10]. Further-
more, in practice, many small start-up companies often have
limited, if any, professional user interface (UI)/UX designers
with expertise to address accessibility related issues [11].

• Sen Chen is with College of Intelligence and Computing, Tianjin Univer-
sity, China. Email: senchen@tju.edu.cn. Chunyang Chen is with Monash
University, Australia. Email: chunyang.chen@monash.edu. Lingling Fan
is with College of Cyber Science, Nankai University, China. Email:
linglingfan@nankai.edu.cn. Mingming Fan is with The Hong Kong Uni-
versity of Science and Technology. Email: mingmingfan@ust.hk. Xian
Zhan is with The Hong Kong Polytechnic University. Email: chichox-
ian@gmail.com. Yang Liu is with School of Computer Science and Engi-
neering, Nanyang Technological University. Email: yangliu@ntu.edu.sg.

• Chunyang Chen and Lingling Fan are the corresponding authors.

1. Accessibility issue refers to issues that make apps less accessible to
people with disabilities such as blind users when they are using mobile
phones. Fig. 1 shows some examples of accessibility issues.

x

(b) Item type label

Read Phone Button Button

(a) Item label

Empty spoken description

(c) Editable item label

Read “edit_text” rather
than “Enter destination”

(d) Unsupported item type

TextInputLayout is not
resolvable by access service

(e) Clickable item

Item has same on-screen
location

(f) Item descriptions

Read same “checked” for 3 item(s)

(g) Touch target

Small item

(h) Text contrast

Low text contrast

(i) Image contrast

Low image contrast

(j) Link

URLSpan uses a relative URL

Fig. 1. Examples of accessibility issues with brief descriptions

For example, Fig. 1 shows some accessibility issues that
frequently occur in mobile apps, which cause problems to
the elderly and disabled (e.g., item label missing [12], [13]
causing spoken errors when using TalkBack [14] for blind
users in Fig. 1(a)), some issues are even inaccessible to
users without disabilities, e.g., low text contrast in Fig. 1(h)
(details in § 2.2).

To improve app accessibility, some researchers from the



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 2

academia and industry both paid more attention to un-
derstanding the status of app accessibility and mining the
characteristics of introduced issues [15], [16], [17], [18], [19]
to reduce accessibility issues. However, the existing static
rule-based checking methods (e.g., Lint [20], Espresso [21],
Robolectric [22]) have been demonstrated to be ineffective
and time-consuming for detecting mobile accessibility is-
sues [23], [24], [19], [25], [17], [16]. On the other hand, some
big companies such as Google provide some accessibility
testing tools (e.g., Google Accessibility Scanner [26] and IBM
AbilityLab Mobile Accessibility Checker [3]) for detecting
accessibility issues on each UI page of apps, which requires
human intervention. To make app accessibility testing tools
fully automated, researchers [17], [19] adopt dynamic app
testing tools (e.g., Google Monkey [27]) to dynamically
explore the app and feed the explored UI pages to the
accessibility testing tools for detecting accessibility issues.
Based on the collected accessibility issues, they carry out
empirical studies in terms of the prevalence of accessibility
issues. However, the latest related work [19] acknowledged
that existing testing tool (i.e., Google Monkey) can only
achieve a low activity coverage (around 40%), and they can
only obtain a limited number of issues for each app. Their
analysis is based on a limited dataset for each app, which
is enough for the study at the screen level (i.e., using and
measuring the inaccessibility issue rate of each screen), but
hard to reveal more fine-grained findings at the issue level
(i.e., directly focusing on the issues themselves). Therefore,
to empirically investigate accessibility issues directly, first
of all, it is necessary to simulate user interactions to explore
as many app pages as possible and further collect a large-
scale and relatively comprehensive dataset of app accessi-
bility issues. With such a dataset, we aim to conduct an
empirical study to reveal more fine-grained insights from
the perspective of issues themselves.

To achieve this goal, two challenges need to be overcome:
(1) Firstly, there lacks an effective tool to automatically
explore app UI pages with high activity coverage. High
activity coverage can help simulate various user interac-
tions. To conduct an empirical investigation of accessibility
issues, it is essential to check as many activities as possi-
ble to collect accessibility issues. (2) Secondly, there lacks
a large-scale and relatively comprehensive dataset about
real-world app accessibility issues for the further empirical
study and investigation. Enabling app accessibility analysis
requires a comprehensive set of issues including the user
interface screenshots, the detailed accessibility descriptions,
the buggy front-end source code, and issue patches (if any).

To this end, we propose a novel tool named Xbot, to
automatically and effectively explore UI pages to facilitate
accessibility testing and collect accessibility issues in apps.
It leverages instrumentation and static program analysis
techniques. Xbot is demonstrated to achieve better per-
formance than the existing data collection methods based
on manual exploration and random testing exploration
with Monkey in recent work [19]. By leveraging Xbot,
we automatically assess 17,417 app pages from 2,270 apps
and finally collect 86,767 accessibility issues, which is the
largest dataset for app accessibility until now. We have
released it along with the source code of Xbot on Github:
https://github.com/tjusenchen/Xbot. We then carry out an

empirical investigation of these accessibility issues from
different dimensions by answering the following research
questions:

• RQ1: Can Xbot outperform the existing methods
on app page exploration and issue collection when
conducting accessibility testing?

• RQ2: What is the overall severity status of app acces-
sibility at the issue level for both closed-source and
open-source apps?

• RQ3: What are the in-depth relations between the
accessibility issue types and app category, GUI com-
ponent?

• RQ4: What are the quantitative characteristics of
specific issues such as text or image contrast issues?

• RQ5: How many accessibility issues have been fixed
during app version updates?

According to the investigation of app accessibility, we
find that (1) 89% apps are overall suffering from severe ac-
cessibility problems for both open-source and closed-source
apps, with 43 issues for each app and 6.5 issues for each
page on average; (2) most of the accessibility issues remain
unfixed (96%) according to the investigation on the multiple
history versions, which is inconsistent with the previous
study (47% high fixing rate in the previous study vs. 4%
low fixing rate in our study), mainly due to the unsteady
activity coverage of the underlying testing tools used by
them. (3) Touch target, Text contrast, Item label are the top 3
issue types ranked by the number of issues. 5 types of GUI
components (i.e., TextView, ImageView, Button, EditText, and
ImageButton) are often associated with accessibility issues;
and (4) different issue types may have different frequency
across different app categories such as the small size of
touchable components in shopping apps, thus, app devel-
opers should take this feature into consideration to maintain
their own apps’ accessibility. More fine-grained findings can
be found in Section 5.

In summary, we make the following contributions:

• A fully automated and effective app UI exploration
tool2 for dynamically scanning mobile app accessibil-
ity issues and collecting a relatively comprehensive
dataset of issues for further studies.

• A comparative study to demonstrate the better per-
formance on accessibility issue collection of our tool
with others such as manual exploration and the exist-
ing dynamic methods by leveraging Google Monkey.

• An in-depth and empirical study of accessibility
issues based on our collected large-scale dataset,
which unveils insights for the community to better
understand the characteristics of issues and further
improve mobile apps’ accessibility.

• A large-scale and reusable dataset [28] including
86,767 issues from 2,270 apps and their metadata
(e.g., issue descriptions), which enables the com-
munity to further advance mobile app accessibility
research. Meanwhile, the source code of Xbot is also
released for the community.

2. https://github.com/tjusenchen/Xbot



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 3

2 PRELIMINARY

Apart from the 15% population with disabilities who were
born blind, or lost fine motor skills in an accident, most peo-
ple may also have a short-term disability at some time that
makes it difficult to use their mobile devices. For example,
someone cannot use their hands because they are carrying a
wiggly child, have experienced difficulties using the phone
while wearing gloves when it is cold outside, or maybe have
a hard time distinguishing items on the screen when it is
bright outside. With so much of the population experiencing
decreased vision, hearing, mobility, and cognitive function,
developers should do their best to give everyone the best
experience in their apps. The UN Convention on the Rights
of Persons with Disabilities recognizes access to information
and communications technologies, including the mobile
apps, as a basic human right [29] and social justice [30].

In this section, we briefly introduce the definition of ac-
cessibility and the app accessibility issue types that detected
by Google Accessibility Test Framework [31] and Google
Accessibility Scanner [26].

2.1 Accessibility Guidelines

W3C (World Wide Web Consortium), the main international
standards organization for the World Wide Web has very
clear web content accessibility guidelines (WCAG) [32] for
developing accessible websites which can be accessed by
users with disabilities. Based on the web accessibility, they
further develop the accessibility standards for mobile ap-
plications [33] by considering mobile characteristics such as
touch screens, small screen size, usages in different settings
like bright sunlight, etc. In addition to general accessibility
guidelines, researchers have proposed accessibility guide-
lines for special populations, such as people with visual
impairments [34], people with hearing impairments [35],
people with Aphasia [36], or older adults [37].

At the same time, as the primary organizations that fa-
cilitate mobile technology and the app marketplace, Google
and Apple also release their accessibility guidelines [38],
SDKs [31], and testing suites [39] for mobile apps on An-
droid and iOS platforms. Despite the importance of these
guidelines, the guidelines are difficult for app designers
or developers to comprehend and implement into app
design [40]. As a result, there is a need to facilitate the
evaluation of accessibility issues of mobile apps using the
guidelines.

2.2 App Accessibility Issues

Following the accessibility guidelines provided by Google,
we identify 10 kinds of accessibility issues. We briefly de-
scribe each issue type and provide real examples in Fig. 1
to illustrate what real accessibility issues are like in user
interface pages.

• Item label in Fig. 1(a) means views that a screen
reader could focus and that have an empty spoken
description.

• Item type label in Fig. 1(b) means Views with a redun-
dant description.

• Editable item label in Fig. 1(c) means EditTexts and
editable TextViews that have a non-empty content-
Description, thus a screen reader may read this at-
tribute instead of the editable content when the user
is navigating.

• Unsupported item type in Fig. 1(d) means item types
that are not supported by accessibility services.

• Clickable item in Fig. 1(e) means more than one item
share the same on-screen location.

• Item description in Fig. 1(f) means more than one item
share the same speakable text.

• Touch target in Fig. 1(g) means clickable and long-
clickable Views that are smaller than 48dp x 48dp in
either dimension.

• Text contrast in Fig. 1(h) means texts with a contrast
ratio lower than 3.0 between the text color and back-
ground color.

• Image contrast in Fig. 1(i) means images with a con-
trast ratio lower than 3.0 between the foreground and
background color.

• Link in Fig. 1(j) means URLSpan does not use an
absolute URL.

3 RELATED WORK

In this section, we introduce related work on app accessi-
bility testing and existing empirical studies on mobile app
accessibility.

3.1 Mobile Accessibility Testing

Mobile apps have become a vital part of our day-to-day
lives and are facing fierce competition. If the app is not easy
to use (inaccessible), then users would probably abandon it
and look for another app with similar functionality. On the
other hand, for people with disabilities, the phenomenon
is even more severe. Therefore, the accessibility testing to
reduce accessibility problems in mobile apps is necessary
and important. Although there has been research work
investigating mobile apps testing methods [27], [41], [42],
mobile app accessibility testing is studied to a lesser ex-
tent. Informed by a recent survey study that provides an
overview of available tools for detecting accessibility issues
[43] and other related studies on accessibility testing [44],
[20], we categorize accessibility testing related methods into
two categories (i.e., static and dynamic mobile accessibility
testing).

3.1.1 Static Accessibility Testing

Android Lint [20] is a static code analyzer which is a part
of Android Studio IDE [45]. It can report the errors such
as missing translation, layout performance problems, and
also accessibility problems like missing content descriptions.
However, this method has been demonstrated to be ineffective for
detecting mobile accessibility issues [23], [24], [19], [25]. Other
testing tools such as Espresso [21] and Robolectric [22] can
be used to detect accessibility issues. But these tools require
developers to manually specify the testing cases and also
embed the specific APIs into their apps which significantly
increase developers’ workload. Developers can also check
the properties of GUI components after obtaining the layout



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 4

of the user interface pages, or requires developers to interact
with the accessibility tool to get the results. For example, the
developers can use the screen reader (e.g., TalkBack [14] for
Android, VoiceOver [46] for iOS) to read the screen content
and interact with their apps by certain gestures to check
the app accessibility for users with vision impairment. They
may also ask users with motor issues to check if they can
easily reach all functionalities within the app. Although such
manual exploration can mimic the real user experience, it is time-
consuming and labor-intensive. Apart from these static testing
tools, some work focused on detecting specific types of
accessibility issues (e.g., item label missing) by leveraging
deep learning algorithms [12].

3.1.2 Dynamic Accessibility Testing

Some tools are also released for assisting developers with
accessibility testing via manual exploration of screens/UIs.
Android UI Automator Viewer [47] provides a convenient
GUI to scan and analyze the user interface components
currently displayed on an Android device. Accessibility
Scanner [26] is another tool released by Google for identi-
fying accessibility issues within the current screen. However,
the problem of these tools is that developers must activate the tool
on the device in each screen of the app to get the results [19].
It means that it still requires manual exploration of the
app, which is time-consuming and may also miss some
functionalities of the apps (low activity coverage). That is
also why few apps adopt these tools when developing their
apps [18].

To overcome the limitations of testing tools, Eler et
al. [23] developed a model to automatically generate testing
cases specifically for accessibility testing. Similarly, to carry
out a study of accessibility issues, Alshayban et al. lever-
aged the Android app testing tool, Google Monkey [27], to
explore the app screen to collect the accessibility issues. Dif-
ferent from their work, our tool actually does not require test
cases, inherits the results provided by Google Accessibility
Test Framework for Android in which checking rules are
developed by accessibility experts.

3.2 Empirical Studies of Mobile Accessibility

Previous research investigating accessibility issues mainly
focus on web applications [48], [49], [50], [51]. Recently,
researchers have begun to investigate the accessibility
issues of mobile apps in different domains, such as
health [44], public transportation [52], smart homes [53],
smart cities [54], and government engagement [55]. Kane
et al. [56] carried out a study of mobile device adoption and
accessibility for people with visual and motor disabilities.
Ross et al. [16] examined the image-based button labeling
in a relatively larger number of android apps, and they
specify some common labeling issues within the apps. In
their further study [13], they conducted their study from
the perspective of accessibility issue types. They measured
the prevalence of each accessibility issue across all relevant
element classes (UI components) and apps. In other words,
they focused on each issue type independently, which is
a different research aspect compared with ours. Yan and
Ramachandran [17] adopt the IBM Mobile Accessibility
Checker to explore if 479 Android apps violate the acces-
sibility guidelines and calculate the degree of violation.

Vendome et al. [18] observed the fact that developers rarely
used accessibility APIs or assistive descriptions. They fur-
ther create a taxonomy regarding the aspects of accessibility
issues discussed by developers’ posts on Stack Overflow.
However, these works were based on the analysis of a
relatively small number of mobile apps (no more than a few
hundreds) instead of a large-scale dataset.

In the latest work, Alshaybana et al. [19] conducted an
empirical study on accessibility issues by leveraging the
ability of Google Accessibility Test Framework [31] and
Google Monkey. For abbreviation, we call their study as
Accessibility Testing with Monkey (AT_Monkey) through-
out the paper. From the apps perspective, they carried out a
study at the screen level by using the criteria: inaccessibility
issue rate for each page, and only investigated the distri-
butions of inaccessibility issue rate for each app, each issue
type, and app categories due to the limited issues (for each
app) they collected using Monkey, such limitation is also
acknowledged by them. Remarkably, the limited number of
issues is enough for the prevalence of accessibility issues
at the screen level, but difficult to carry out a more in-
depth study at the issue level. As for the analysis from
the apps perspective, they actually paid more attention to
the analysis from the perspectives of developers and users
instead of the accessibility issues themselves. In this paper,
we aim to conduct an empirical investigation from the per-
spective of accessibility issues themselves and reveal more
fine-grained findings compared with the existing studies.
To this end, different from the previous works, we propose
a fully automated and effective accessibility testing and
issue collection tool with relatively high activity coverage
to collect a large-scale and relatively comprehensive dataset
of issues for this empirical investigation.

4 APP UI EXPLORATION TOOL

To overcome the limitations of accessibility issue collection
in the previous studies such as AT_Monkey, as shown in
Fig. 2, we propose a novel app UI exploration tool (named
Xbot) that can facilitate app accessibility testing and be
used to collect issues effectively and efficiently. It leverages
the instrumentation technique and static data-flow analysis
based on Activity intent parameter extraction to explore UI
pages. Additionally, Xbot integrates Google Accessibility
Test Framework [31] by feeding the explored app UI pages
to it.

4.1 Xbot

To capture the accessibility issues in app pages, we aim
to automatically explore as many app screens as possible.
Basically, dynamic app testing tools of Android apps such
as Google Monkey [27], Sapienz [41], and Stoat [42] are one
choice to do this task, and Eler et al. [23] and Alshayban et
al. [19] did it in this way. However, these tools are not suit-
able enough for accessibility testing of the app ecosystem
due to the following aspects. (1) These app testing tools can
only achieve around 40% activity coverage (§ 4.2.2), which
is not satisfactory to check accessibility issues for apps. It
would introduce data bias and it is difficult to show the real
status of accessibility of apps. (2) It takes much more time



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 5

Decompilation

Activity Attribute
Manipulation

Repackage

Instrumentation

Android App

Repackaged App

Intent Parameter
Extraction

Dynamic Issue Collection

Install & run Accessibility
Issues

Activity
Launching

Issue
Detection

Intent
ParametersManifest Para.

Extraction

Source Code
Para. Extraction

Fig. 2. Accessibility testing and issue collection with Xbot

Activity 1 Activity 2

Intent

action, category, data, type, Extras

Bundle Bundle

putString(key, value) putExtras() getExtras() getString(key)

putExtra(key, value) getStringExtra(key)

Extraction target

of our tool

Fig. 3. Data transfer between activities via Intent

for these testing tools to run each app. Such a task is time-
consuming and labor-intensive.

In fact, the core problem is to render or explore as
many UI pages as possible. To our knowledge, two kinds of
methods can be used to render UI pages: (1) Static page ren-
dering, which can render the pages by using the static layout
files (i.e., xml files) in the apk. However, according to a
recent study [57], there are 62.3% apps using dynamic layout
method. Although Chen et al. [57] proposed to transfer the
dynamic layout types to static layout, the user interface dif-
ferences between the generated pages and the original pages
make accessibility analysis inaccurate. Therefore, we aim to
render and explore app pages by dynamically loading the
UI pages. (2) Dynamic page rendering, which can launch
the pages by using Android adb [58], however, launching
activities that require special fields (e.g., Intent parameters
such as “action”, “category”, and Bundle data) would cause
a crash with “NullPointerException”. Such situation affects
the accessibility testing and issue collection process.

Specifically, as shown in Fig. 2, Xbot contains three main
phases: (1) app instrumentation, which instruments the apk
files to enable launching by other third-party components;
(2) activity intent parameter extraction, which extracts the
required Activity Intent parameters for launching each ac-
tivity; (3) accessibility issue collection, which dynamically
launches pages and uses Google Accessibility Test Frame-
work for further issue checking.

4.1.1 Instrumentation and Intent Parameter Extraction

To enable activity launching from other entries, we instru-
ment each apk by manipulating the Android Manifest file
(Activity Attribute Manipulation in Fig. 2) and repackage
it to a new one. Specifically, Xbot first decompiles the app
(Decompilation in Fig. 2), extracts each activity together
with its required fields such as “action”, and sets the

TABLE 1
Types of Intent parameters

Type Sub-Type

Extracted Intent Parameters
From Manifest File

Action
Category
Data
Type

Extracted Intent Parameters
From Source Code

Extras

String
Integer
Long
Float
Boolean

“exported=true” in order to enable the launching process
from other components. We then repack it to a new apk
(Repackage in Fig. 2) and sign it to ensure the usability.
Note that the repackaged apps are only used for experi-
mental purpose, and all the experiments are conducted in
a controlled environment. The repackaged apps will not be
released for commercial use.

The second part (i.e., Activity Intent parameter extrac-
tion) is the core step of Xbot, we leverage data-flow analysis
to extract the Intent parameters required to launch the target
activities. Fig. 3 shows the mechanism of activity launching,
where Activity 1 puts data into the Intent object and sends
it to Activity 2, and Activity 2 extracts the data out to
render the UI pages. The parameters of Intent for launching
Activity 2 are the extraction target of Xbot, without them,
Activity 2 may not be successfully launched. Xbot is able
to parse two categories of Intent parameters. As shown in
Table 1,

• a) Manifest Para. Extraction. For the basic parame-
ters such as action, category, data, and type, we parse
them from the Android Manifest file and record the
mapping relations between activities and these basic
parameters.

• b) Source Code Para. Extraction. For the Intent
extras parameters, we extract them from source code
through data-flow analysis. We consider extracting
two types of Intent data described as follows.

One data type is transferred from “Activity1”
to “Activity2” by using Intent directly. The data
passing step is “create an Intent object”→“call
intent.putExtra”→“call StartActivity(intent) to pass the
Intent”→“call intent.getStringExtra” to get the transferred
data (the blue flow demonstrated in Fig. 3). The other data
type uses Bundle mechanism to transfer a bundle of data
from “Activity1” to “Activity2”. The data passing step is



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 6

Algorithm 1: Intent Parameters Extraction

Input: apk
Output: paras_intent

1 all_acts← getAllActivities(all_classes)
2 cg ← getCallGraph(apk)
3 paras_basic← getBasicIntentParameters(manifest)
4 foreach act ∈ all_acts do
5 meths← getLifeCycleCallBacks(act)
6 foreach m ∈ meths do
7 if hasExtrasParameters(m) then
8 para_extras←

backwardDataFlowAnalysis(m)

9 else
10 m_callee← getCallerMethod(m, cg)
11 para_extras←

getExtrasParameters(m_callee)

12 return paras_intent← paras_basic
⋃

paras_extras

“create Intent and Bundle objects”→“call bundle.putString
and intent.putExtras(bundle)”→“call StartActivity(intent)
to pass the Intent”→“call getIntent().getExtras and
bundle.getString” to get the transferred data (the red
flow demonstrated in Fig. 3). As shown in Algorithm 1,
for the Intent parameters extraction, we first obtain the
basic parameters from manifest file (Line 3). We then filter
the methods related to activity life cycle (Line 5), called
meths. These life cycle methods like onCreate() and onStart()
contain Intent extras parameters for rendering app pages.
For each meths, if it calls specific APIs like getStringExtra
and getExtras (Line 7), we trace the parameters’ key through
backward data-flow analysis (Line 8). Note that, the value
type of each parameter is based on the corresponding API.
The Intent extras parameters may not be obtained in life
cycle method. For these cases, we trace the callee method
(Line 10) by parsing the call graph and then extract the
parameters through the same way for life cycle method
(Line 11). After that, we can obtain the Intent extras
parameters paras_extras for further accessibility testing of
rendered pages.

4.1.2 Accessibility Testing with Xbot and Issue Collection

To dynamically launch each activity, as shown in Fig. 2, we
install the new repackaged apk on the Android emulator,
and attach the Intent parameters extracted by our tool
to the current activity. When it is launched successfully
(Activity Launching in Fig. 2), we take screenshots of each
app page and then feed it to Google Accessibility Test
Framework [31]. Meanwhile, for activities that fail to launch
due to app crashes or permission required, we dump the
layout hierarchy of the current activity and analyze it to
check whether it contains keywords (e.g., “has stopped” and
“keeps stopping” for app crash, “ALLOW” and “DENY” for
permission required), and grant the permission required to
proceed. When the app crashes, we stop the app and set it
to the original state (i.e., a fresh state for another activity
to launch). We collect the detected accessibility issues (Issue
Detection in Fig. 2) and the corresponding layout hierarchy
of each page that contains accessibility issues.

TABLE 2
Effectiveness and Efficiency Evaluation of Xbot

Metrics
Manual

Exploration
Xbot Monkey Xbot

Avg Time (min) 10 2.65 30 5.67
Avg launched
Activity Ratio

40.80% 91.84% 43.09% 79.81%

#Collected Issues 79 142 851 3,063

The number of apps for manual testing and testing with Monkey are 4 and
100, respectively.

Fig. 4. Comparison on activity coverage of Monkey and Xbot for acces-
sibility testing

4.2 RQ1: Evaluation of Xbot

In this section, we evaluate the effectiveness and efficiency
of Xbot by comparing it with manual exploration and Mon-
key. We mainly compare the explored activities coverage
and the time cost since both tools rely on the same accessi-
bility test framework to check accessibility issues, the main
difference comes from the number of explored activities.

4.2.1 Manual exploration with Google Scanner vs. Xbot

We conduct a user study to compare Xbot with manual
exploration. We recruit 10 participants from our university,
including Ph.D students, post doctorates, and undergradu-
ate students. We randomly select four apps (i.e., Bitcoin [59],
Bankdroid [60], ConnectBot [61], and Vespucci [62]) from
Google Play Store, and ask them to use Accessibility Scanner
to detect accessibility issues on these four apps in a fixed
time (i.e., 10 minutes per app), trying to explore as many
pages as possible, meanwhile, we record the number of
collected issues. In contrast, we use Xbot on these four
apps to detect accessibility issues, and record the time and
the number of detected issues. As shown in Table 2, the
result shows that the participants can only explore 40.80%
user interface pages for each app on average, collecting 79
accessibility issues. While Xbot explores 91.84% pages per
app on average, and collects 142 accessibility issues in total.
Moreover, it only takes 2.65 minutes for Xbot to test one
app, and it is about 4 times (10 mins) faster than that of
manual exploration. To understand the significance of the
differences between manual exploration and with Xbot, we
carry out the Mann-Whitney U test [63], which is designed
for small samples. Table 2 shows that our result is significant
with p-value < 0.01. Obviously, Xbot is significantly more
effective and efficient in collecting accessibility issues, and
can help developers explore more pages, increasing the
possibility of detecting more potential accessibility issues.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 7

TABLE 3
Comparison between Xbot and AT_Monkey on issue collection

Method #Collected Issues

AT_Monkey [19] 9,462
Xbot 63,734

The comparison is based on the dataset in AT_Monkey [19].

4.2.2 Accessibility testing with Google Monkey vs. Xbot

Besides the manual exploration method with Accessibility
Scanner, using dynamic Android app testing tools such as
Google Monkey is another method for automated accessi-
bility testing in previous work [23], [19]. To demonstrate the
better performance of Xbot, we choose the most represen-
tative Android app testing tool, Monkey [27], which is also
the official testing tool of Google and widely-used in both
academy and industry. Specifically, we randomly collect 50
commercial apps from Google Play and 50 open-source apps
from F-Droid [64] as the experiment subjects. For the dy-
namic exploration with Monkey, we configure the execution
parameter as “–ignore-crashes –ignore-timeouts –throttle
250 -v -v -v 50000”. The parameter configuration means that
Monkey will ignore crashes and timeouts and the time inter-
val between two events is 250 ms. The execution time is set
by 30 minutes and the experiment environment is the same
as Xbot mentioned in § 4.1. Fig. 4 shows the comparison
result, the average launched activity ratios of 100 Android
apps are 43.09% vs. 79.81% for the two methods. In terms of
the difference of collected accessibility issues between Xbot
and the collection method by using Monkey, Xbot is able
to collect 3 more times (3,063 vs. 851) accessibility issues.
The results unveil that Xbot outperforms Monkey when
checking and collecting accessibility issues dynamically. As
shown in Fig. 4, we can see that the launched activity ratio
of testing with Monkey ranges from 15% to 65%. Xbot
performs better and the average launched activity ratio of
testing is about 80%. We also conduct a statistic analysis
for their ability of activity launching in mobile accessibility
testing, the p-value < 0.01, which means that the results of
these two methods are significantly different.

Besides the above basic evaluation, to conduct a fair
comparison, we also evaluate the performance of Xbot by
comparing it with AT_Monkey’s method [19] in terms of
issue collection on their released dataset [65]. We run Xbot
and their tool [65] on their dataset individually to explore
the app UI pages and then collect the corresponding acces-
sibility issues. As shown in Table 3, in terms of the number
of collected accessibility issues, we are able to collect more
issues obviously (63,734 vs. 9,462 on AT_Monkey’s dataset),
owing to the effectiveness of Xbot. The result is consistent
with the result in the above evaluation on 100 Android apps.

Answer to RQ1. Xbot outperforms existing methods
when conducting accessibility testing for Android apps.
With the ability of app UI exploration with relatively
high activity coverage (about 80%), Xbot is able to collect
a relatively comprehensive and large-scale dataset of
accessibility issues effectively and efficiently for further
empirical investigation at the issue level.

TABLE 4
Accessibility issues collected by Xbot and the corresponding features.

(W.: With; Lau.: Launched)

Source #Apps
#Apps W.
Issue(s)

#Acts
#Lau.
Acts

#Acts W.
Issue(s)

#Issues

Google
Play

1,172
1,082

(92.32%)
17,926

12,685
(70.76%)

10,298
(81.18%)

66,687

F-Droid 1,098
938

(85.42%)
5,995

4,732
(78.93%)

3,079
(65.07%)

20,080

Total 2,270
2,020

(88.99%)
23,921

17,417
(72.81%)

13,377
(76.80%)

86,767

5 EMPIRICAL INVESTIGATION OF APP ACCESSI-

BILITY

In this section, we aim to conduct an empirical study on the
large-scale dataset collected by Xbot to mine the accessibility
issue characteristics. Therefore, we pay more attention to
the analysis from the perspective of accessibility issues
themselves in this paper. (1) We first investigate the current
status quo of the accessibility issues in apps including both
the prevalence and severity situation at the issue level. (2)
Then, we mine the in-depth relation between issue types
and app categories, GUI component types. (3) Thirdly, as
we conducted quantitative analysis on specific issue types
while [19], [13] do not, we can provide more quantitative
issue details and more fine-grained findings for app devel-
opers. (4) Last, we further analyze the fixing status using
our collected dataset and discussed the tracking result in
AT_Monkey [19].

Table 4 summarizes all related data that we use to
quantitatively analyze the app accessibility issues, including
the accessibility issues collected by Xbot. We execute 2,270
unique Android apps by Xbot, including 1,172 closed-source
apps from Google Play Store and 1,098 open-source apps
from F-Droid. Since some apps may be available on both
Google Play and F-Droid, we consider such apps as open-
source apps to ensure there is no overlap and avoid biased
results on closed-source vs. open-source apps. These apps
contain 23,921 activities, and the activity coverage of Xbot
is 72.81% (i.e., #Launched acts

#Acts
), which is lower than the

result of the average coverage for each app (i.e., 79.81%)
in § 4.2.2. Because some apps contain hundreds of activities,
which largely affects #Launched acts. Overall, Xbot achieves
a higher activity coverage on F-Droid apps than Google Play
apps (i.e., 78.93% vs. 70.76%).

5.1 RQ2: Overall Status of Mobile App Accessibility

Among the 2,270 apps, we finally collect 86,767 real acces-
sibility issues in total, which is the largest dataset so far
in this research area.3 2,020 (88.99%) Android apps in our
dataset contain at least one accessibility issue. This result
demonstrates that accessibility issues are prevalent across
all apps (prevalence situation), which is consistent with the
conclusion drawn by Alshayban et al. [19]. However, they
only revealed the prevalence of issues at the screen level due
to the limited number of issues collected for each app, while
we further provide an empirical investigation of the overall

3. Besides the 86,767 accessibility issues, we also obtain other 63,734
issues collected from the evaluation of Xbot (RQ1). Therefore, we
actually have over 100k accessibility issues in total.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 8

status of app accessibility at the issue level to show the
severity situation as follows. We use the number of issues
on each UI page and in each app to reflect the severity
situation. Specifically, on average, there are 43 accessibility
issues for each app (i.e., #Issues

#Appswith issue(s) ). Among the

17,417 launched activities, there are 6.5 accessibility issues
on average for each flawed page (i.e., #Issues

#Actswith issue(s) ).

We further investigate the differences of app accessibility
between the closed-source and open-source apps, which is
not investigated in the previous studies. Out of our expec-
tation, compared with open-source apps, the commercial

apps have a higher ratio (i.e.,
#Actswith issue(s)
#Launched acts

) (65.07% vs.
81.18%) of accessibility issues. It identifies that the devel-
opers and the corresponding commercial companies do not
pay sufficient attention to the accessibility issues in practice.
On the other hand, although it seems that open-source apps
are more accessible, that is because the open-source apps
may have fewer features, i.e., fewer components in each
page, leading to fewer accessibility issues. Specifically, each
F-Droid app contains 5.5 activities, and each Google Play
app contains 15.3 activities on average (i.e., #Acts

#Unique apps
).

Answer to RQ2. 89% apps in our dataset are suffering
from accessibility issues, with 43 issues for each app and
6.5 issues for each page on average. Overall, open-source
apps have a better status than closed-source apps in our
dataset. The app accessibility deserves more attention
from the development team.

5.2 RQ3: In-depth Relation between Issue Type and

App Category, GUI Component

5.2.1 Accessibility issue types

In this section, we conduct cross analysis of issue types vs.
app category and GUI component (i.e., how frequently do
issue types occur in various app categories, and in various
GUI components), which has never been investigated in the
previous studies [19], [13].

Specifically, to analyze the common accessibility issue
types regarding app categories and GUI component types
at the issue level, we firstly investigate the issue type
distribution ranked by the number of accessibility issues.
As shown in Fig. 5, item label, item descriptions, touch target,
text contrast, and image contrast are much more frequent
compared with other accessibility issue types, accounting
for 93.1% of all issues. They pose a serious challenge to
the accessibility of user experience in apps and developers
should pay more attention to them. Among them, touch
target, text contrast, and item label are the top 3 issue types
ranked by the number of accessibility issues. These three
issue types all contain over 20,000 issues. Compared with
our study, Alshayban et al. [19] only focused on the relations
between issue types and apps, app categories based on the
metric of inaccessibility issue rate at the screen level, while
the in-depth relation between issue type and app category,
GUI component at the screen level is not investigated in
their study.

5.2.2 Different issue types in each app category

To explore what types of accessibility issues often cause in
different app categories, we compute the relative frequency

Fig. 5. Issue type distribution ranked by #issues

Fig. 6. Different accessibility issues in different app categories (Issues
in each app category are normalized to 1)

of different types of issues within each app category. We
draw a heat map in Fig. 6, and the degree of the color in
each cell represents the proportion of all issue types in each
app categories. Within each column, the total number of 10
issue types add up to 1 and the darker color indicates the
more issues of that type in this app category. We can see that
some issues widely appear in most categories such as item
label, touch target, and text contrast, while some issues like
editable item label, link rarely appear.

On the other hand, some issues are rather severe in
some categories than others. In other words, some specific
app categories are more likely to have specific types of
issues according to the relation between issue type and
app category. For example, touch target is a common issue
for most app categories, but it is particularly serious for
shopping apps. Shopping apps often offer their users a list of
products to choose from per screen page. To accommodate
so many elements within each page, they make the buttons
too small which may cause difficulty for users to click them
especially for the elderly. Similarly, Item descriptions often
occurs in sports app. Most sports apps are providing sports
news, match living for users. To give users an overview
of the team ranking, or broadcast list, they need to put
many items in one page. Adding descriptions to each item
is always difficult, especially that most lists are dynamically
updated. For saving efforts, many developers just put the
same content description (similar to alt text of the picture
in the image [66]) to all of these items like “game”, “video”.
However, these identical descriptions for different items will
confuse blind users who rely on the screen reader to read the
content in the app.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 9

Fig. 7. Different accessibility issues in different components (Issues in
each component type are normalized to 1)

5.2.3 Issue types related to GUI component types

Within each flawed screen, the existence of issues is also
highly related to the GUI components types such as
TextView, ImageView, and Button. 93.1% accessibility issues
belong to 5 components (i.e., TextView, ImageView, Button,
EditText, and ImageButton). Although some types of compo-
nents such as TextInputLayout and RadioButton are not used
frequently in apps, the issue percentage is very high (i.e.,
65.8% and 47.5%). It means that designers and developers
are more likely to make mistakes about accessibility when
developing these specific components. These components
deserve more attention from the development team.

Some types of issues are also specifically related to cer-
tain components. To investigate their relation, we compute
the percentage of different types of accessibility issues for
each component type, and draw a heat map in Fig. 7. The
issue touch target frequently appears in clickable components
such as Checkbox, RadioButton, Spinner, and Switch, as these
components may be too small to be clicked by the users, es-
pecially for users with motion disability. 38.8% accessibility
issues of TextView are about text contrast issues which makes
the content difficult to be read by users. For image-related
components like ImageView and ImageButton, the biggest
issue is the item label, i.e., missing the content description
of the image for users who cannot see the screen.

Answer to RQ3. 5 types (e.g., touch target, text contrast,
and item label) of issues occur frequently. Some issue
types are highly related to app categories such as the
small size of touchable components in shopping apps
and duplicate content descriptions of different items in
sports apps. Similar patterns also apply to different com-
ponent types such as the low text contrast in TextView
and missing labels for image based GUI components.

5.3 RQ4: Quantitative Analysis of Specific Issue Types

Based on the results in § 5.2, we find that some issue types
are more frequent and common than others such as text
contrast, image contrast which are about the color contrast,
and touch target which is about the size of the component.
In this section, we further provide an in-depth analysis on
these three most frequent issue types.

The text contrast is the difference between the fore-
ground text and the background color. Fig. 8 (a) shows that

Fig. 8. Distribution of the specific issue types (i.e., contrast ratio and
component size of touch target issues)

the overall results of the wrong text contrast ratio between
Google Play and F-Droid are similar, ranging from 1 to 4.5
roughly. Most wrong instances are located between 2 to
4 contrast ratio, though the best practice of text contrast
ratio is over 4.5 (including 4.5). We list the top-10 most
frequent wrong pairs of foreground text and background
color in Table 5 including gray text in white background,
white text in gray background, blue text in red background
(i.e., #B05656). These color pairs will negatively influence the
readability of the text, resulting in bad user experience. As
shown in Fig. 9, the user named “Kfir Shlomo” complained
“The comment section has a white font so I cannot see
anything.” which is due to the accessibility issue of text
contrast. It is hard even for users without disabilities to
discriminate the text from the background color, let alone
the users with vision impairment or color blind [67]. More
examples can be seen in the first two sub-figures in Fig. 11
(a) and (b).

Compared with the results on text contrast issues, the
results of image contrast also have a similar presentation
for these two markets. Specifically, compared with Google
Play apps, F-Droid apps have a wide range contrast ratio
from 1 to 3. There are several cases that have a significant
effect on a lower image contrast (i.e., around 1) for both two
markets, which are also far away from the best practice of
image contrast ratio. In addition, the contrast range between
2 and 3 accounts for the most image contrast issues for both
two markets. As shown in Fig. 11 (c), the item size is too
small to see clearly for end-users, even for users without
any disability. Some of small-size buttons are created inten-
tionally regardless of the app accessibility. For example, the
“close button” in the left figure in Fig. 11 (c) is so small that
users have a great chance of clicking the “CATCH NOW!”
button i.e., the advertisement.

Fig. 8 (b) summarizes the distribution of concrete com-
ponent size in detected touch target issues. The distribu-
tions of component width in terms of Google Play and F-
Droid are different obviously. Specifically, the component
width distribution of Google Play is mainly ranging from
20dp to 40dp, however, the distribution of F-Droid is very
concentrated on 20dp. While the best practice of the height
and width is larger than 48 dp. In other words, there are
strong commonalities for such issues in F-Droid apps, mean-
while, their touch target components in many instances
are extremely small. We further examine these cases and
find that most of the components are concentrated on the
types of CheckBox, RadioButton, Spinner, and Switch. For the
component height distribution, Google Play apps present



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 10

TABLE 5
Demo of the top 10 contrast issues

Contrast Demo Foreground Background #Issues

Text #999999 #FFFFFF 458

Text #FFFFFF #AAAAAA 388

Text #B2B2B2 #FFFFFF 357

Text #878787 #FFFFFF 239

Text #9E9E9E #FFFFFF 230

Text #E8E8E8 #FFFFFF 222

Text #DE8F94 #EFEFEF 217

Text #9D797E #C88886 217

Text #008CCA #B05656 212

Text #C46A9E #7755CD 196

Fig. 9. A real review complaining about text contrast

a concentration performance compared with F-Droid apps.
40dp is the most frequent height in commercial apps. The
distribution range is relatively wide for F-Droid apps (i.e.,
concentrating between 30dp and 45dp). Also, similar to the
width issues, several cases use 20dp height in F-Droid apps
with serious touch target issues.

Answer to RQ4. We analyze the error patterns of the
most frequent issues, and find (1) the low text and
image contrast are caused by the wrong selection of
color schema such as the foreground gray text on white
background, and white image button above colorful
background picture. (2) The small size of clickable com-
ponents hinders users’ usage and those issues are more
serious in F-Droid apps than that of Google Play apps.
But some touch target issues are intentionally created for
directing users to click the advertisements.

5.4 RQ5: Issue Fixing Analysis

Due to the competitive market, the mobile development
team frequently update their apps to gain the market share
by releasing new features [57], fixing reported bugs [25],
[24], [68], [69], patching security bugs [70], [71], etc. How-
ever, using Alshayban et al.’s method cannot analyze the
issue fixing status effectively and accurately due to the
unsteady activity coverage of Monkey (flaky tests [72], [73],
[74], [75]). Meanwhile, their fixing results are not manu-
ally validated, thus cannot conclude whether the previous
detected issues are truly fixed. They found that 47% of
app updates improve the overall accessibility, 28% of the
updates impacted the overall accessibility negatively, and
for the remaining 25% overall accessibility levels remained
the same [19].

70 apps

57

13

3

10

“Unchanged”

Less issues

More issues

1

2

“Fixed”

“Feature reduction”

“Feature addition”Changed

Fig. 10. Issue fixing analysis in 70 apps with 210 versions. The number
inside the box represents the number of apps.

In this section, we aim to analyze the issue fixing status
during app evolution by leveraging Xbot. We randomly
selected app package names crawled from Google Play,
and collected the history versions of these apps from AP-
KMonk [76] because Google Play only maintains the latest
version. To minimize the side-effect caused by functionality
addition and deletion when investigating the issue number
changes during app evolution, we select the 3 latest versions
of each app as the experimental subjects to observe whether
the issues have been fixed from the aspect of accessibility
improvement. To this end, we collected 70 apps with 210
different versions, including some popular ones such as
Booking [77] and Amazon Assistant [78]. We do not investigate
a large-scale dataset of apps because we need to manually
cross-validate the issues on each page of each version. Based
on Xbot, we collect the accessibility issue results for each
version under the same experimental environment. After
that, we manually compare the results among different ver-
sions for each app, including the number of issues detected
in each version, the details about the issues, together with
the reasons of issue number changing.

Fig. 10 shows the number of apps with different status.
Among the 70 apps, we find that the number of issues across
different versions is unchanged in 57 apps (81.43%, marked
blue in Fig. 10). The reasons for the ignorance is that either
the development team do not locate these issue, or they are
not motivated or knowledgeable enough to fix these issues.
The number of issues changes in 13, and 10 (14.19%, marked
orange in Fig. 10) of them are detected with more issues
during app updates. That is because of the new feature
release accompanied with more screens, resulting in more
issues. For example, an app description page (Fig. 12(a) (3))
is added into this app, introducing 2 additional accessibility
issues. Finally, there are only 3 apps (4.29%) detected with
less issues during their life-cycles. By observing their issue
evolution, we find that the reason for the issue number de-
cline in one app Battery Saver-Bataria Energy Saver is that they
delete some features (i.e., functionality module), hence two
issues attached are removed. Fig. 12(a) (1) shows two touch
target issues, and the corresponding “fixing” page deletes
the functionality of “More Apps from MHC” [79] leading to
the disappearance of the issues (Fig. 12(a) (2)). The real issue
fixing only occurs in an app named Torchie-Volume Button
Torch [80]. In detail, one page in the old version (2016-05-
18) contains 13 accessibility issues such as touch target, item
descriptions, and text contrast as seen in Fig. 12(b) (1) and
Fig. 12(b) (2). By re-designing and re-implementing the UI in
the new release version (i.e., version 2017-08-24), all of these
issues are fixed by removing low-contrast text, adjusting the



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 11

image color schema and adding a content description to the
UI components in Fig. 12(b) (3).

To conduct a fair comparison, we also conduct exper-
iments on the dataset used in AT_Monkey [19] for the
multi-version experiment. We requested for the dataset
from the authors and obtained 37 apps with 92 ver-
sions, based on which we run Xbot to observe the is-
sue fixing status and compare the results obtained from
AT_Monkey. After manually analyzing the results, we
find that most of the accessibility issues are remained
in the multiple app versions to investigate the fixing
status. The number of issues is unchanged in 21 apps
(56.76%). 10 of them (27.03%) are detected with more
issues due to adding new features along with version
updates. Taking the app named Word Cloud (package
name: ice.lenor.nicewordplacer.app) as an example, for its
UI page (ice.lenor.nicewordplacer.app.MainActivity) of ver-
sion 2.2.3, Xbot detects three more accessibility issues
(i.e., Text contrast and Touch target) compared with the
version 2.2.2. The reason is that the version 2.2.3 in-
volves an advertisement on the top of screen. Another
example is Hairstyles step by step (package name:
com.piupiuapps.hairstyles), whose new version introduces
more issues (i.e., Touch target issue) due to adding the text
of “Privacy Policy”. Only 6 apps (16.22%) have less issues
during version updates, where the developers delete some
features instead of really fixing issues to improve the app
accessibility. The overall result is consistent with the results
on our dataset of 70 apps with 210 different versions.

Answer to RQ5. Analyzing the version history of se-
lected apps indicates that the accessibility issues are
rarely fixed by the development team. With the increase
of app features, more issues are usually introduced. Some
accessibility issues are fixed due to the reduction of
features and only a few issues are intentionally fixed. Our
results are different from the findings in [19], where they
claimed apps become more accessible over time, with
nearly half of app updates improving the overall acces-
sibility, however without in-depth analysis on whether
previous issues are truly fixed.

6 DISCUSSION

The fine-grained and insightful findings demonstrate the
great importance of issue collection for such an empirical
study. These findings unveiled in Section 5 may not be
derived from the previous empirical studies due to the
dataset with limited accessibility issues for each app. Last
but not least, due to the low activity coverage of Monkey,
issue fixing evolution cannot be accurately evaluated due
to the flakiness nature of dynamic testing. Therefore, the
47% fixing rate in [19] might not be well validated. Such
similar results would mislead the researchers, users, and
developers in app accessibility. Finally, we, here, highlight
that our study are from the perspective of accessibility issues
themselves (i.e., issue level) and actually different and more
in-depth compared with the previous studies at the screen
level.

In the following, we first discuss implications of our
study based on Xbot and limitations of Xbot, and motivates
some future work.

6.1 Design Implications

6.1.1 For mobile app designers and developers

Despite having access to the accessibility guideline released
by Android [81] and iOS [82], designers and developers
may not understand them very well due to too abstract
concepts and the lack of real examples. For example, it is
not an easy task for designers to select color schema for
not only highlighting the text, but also improving visual
comfort, or increasing the size of the button. It is also
difficult for developers to identify the views that a screen
reader can focus and what descriptions should be added for
supporting blind users. To help the development team better
understand the accessibility issues, we are constructing a
large-scale gallery [28] including both good GUI examples
and “negative” GUIs with accessibility issues. Viewing these
examples may help developers and designers who are not in
the shoes of the disabled to learn both the good practice and
also failure lessons about app accessibility. This gallery can
complement with the accessibility guideline for elaborating
the accessibility principles.

6.1.2 For mobile app release platform designers

Current mainstream app release platforms, such as Google
Play [83], support the app search by keywords and rat-
ings, etc. However, as apps are more likely to be rated
by users without disabilities, accessibility concerns from
limited users tend to be diluted by other comments from
users. Markets do not offer a mechanism to search apps
based on their accessibility levels. Our tool can be used
to assess the accessibility status of an app inferring an
accessibility score for it, similar to user ratings, which can
be further used to rank the apps to facilitate people with
disabilities to find more accessibility-friendly apps. More-
over, as our framework is capable of testing and evaluating
the accessibility issues of a large number of apps efficiently,
the app release platforms can leverage our framework to
constantly evaluate the large volume of available apps and
update the ranking of apps based on their accessibility as
often as needed. Similar to previous Google’s new mobile-
friendly ranking algorithm that’s designed to give a boost to
mobile-friendly pages in Google’s mobile search results [84],
the app store can boost the accessibility-friendly apps in the
app searching.

6.2 Limitations and Future Work

First, accessibility issues can happen even if all the GUI
components are accessible. For example, a menu button
may have good color contrast, the right size, and be po-
sitioned appropriately. However, the associated alternative
text information can be inappropriate which can confuse
a user with visual impairments [85]. To detect such acces-
sibility problems, the tool needs to be able to understand
the appropriateness of the alternative text. Future work
should examine how to integrate human judgments into
the automated accessibility issue detection process. Second,
our tool integrated the ability of Google Accessibility Test
Framework [31], it detects accessibility issues based on a set
of general accessibility rules, which are designed to cater
for a set of common issues encountered by users with a
wide range of disabilities. As a result, accessibility issues



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 12

(a) Text contrast (b) Image contrast (c) Touch target

Fig. 11. Real examples of accessibility issues of text contrast, image contrast, touch target, item label, and item descriptions

(2) Functionality

deletion
(3) Functionality

addition

(1) Original

page

(a) Example of accessibility issue number changes due to
functionality deletion or addition

(1) Old page (2) Marked issues (3) New page

(b) Example of accessibility issue fixed

Fig. 12. Real examples of accessibility issue number changes

detected by our tool may be more than the issues that an
individual user who only has a particular type of disability
cares about. For example, a user with hearing impairments
could care less about the accuracy of alternative texts, while
a user with visual impairments would depend heavily on
accurate alternative texts. Therefore, when using our tool to
rate and rank the accessibility of mobile apps for users with
disabilities, it is also important to consider the particular
type of disability that users have and adapt the accessibility
rating or ranking of mobile apps accordingly. Future work
should examine more about how to dynamically customize
mobile apps accessibility evaluation based on the particular
types of disabilities that users have. Third, our research,
however, has not yet explored ways to recommend solutions
to fix the detected accessibility issues or automatically fix
these issues. Since this research has also created a large
dataset of mobile apps with good and “negative” accessi-

bility experience, future work could also examine ways to
leverage the data, such as by training a deep learning model
to provide app designers and developers with suggestions
and examples to fix accessibility issues. Last, although the
launched activity coverage (about 80%) is much better than
Monkey, it still does not achieve 100%. The reasons are as
follows. (1) Although we provide the Intent parameters,
some activities still need to load other required data from
local storage such as SQLite database and remote server. Our
tool cannot provide such types of data, which would cause
errors. (2) Some apps require valid authentication, which
means that they will check whether the app has been logged
in successfully before launching pages.

7 CONCLUSION

In this paper, we first highlight the challenges caused by
the collected issue dataset in the previous empirical studies
on app accessibility. We then propose an effective app ex-
ploration tool for automated accessibility testing of Android
apps to mitigate the problem of issue data collection. Our
tool achieves better performance when conducting accessi-
bility testing. Based on our tool, we carry out a large-scale,
in-depth investigation on 86,767 real accessibility issues and
find that 88.99% apps suffer from accessibility issues. We
further unveil useful findings for app developers, designers,
and research communities according to the results of the
empirical study. Based on our findings, we further provide
mobile app accessibility design implications for different
stakeholders, such as app designers or developers, mobile
app release platforms, and the mobile accessibility research
community. Lastly, we highlight potential future research
directions, including investigating methods to detect acces-
sibility issues that still need human perception/intelligence
to detect, to provide customized accessibility issues ratings
based on users’ specific disabilities, and to provide sugges-
tions for fixing accessibility issues. Meanwhile, we released
the dataset and the code of Xbot to facilitate the following
works.

ACKNOWLEDGMENTS

This work was partially supported by the National Nat-
ural Science Foundation of China (Grant No. 62102284,
62102197).

REFERENCES

[1] Apple-Accessibility. (2019) Accessibility - Apple. [Online].
Available: https://www.apple.com/accessibility/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 13

[2] Microsoft-Accessibility. (2019) Microsoft accessibility. [Online].
Available: https://www.microsoft.com/en-us/accessibility

[3] IBM-Accessibility. (2019) Accessibility Research | IBM. [Online].
Available: https://www.ibm.com/able/

[4] Facebook-Accessibility. (2019) Facebook Accessibility - Home.
[Online]. Available: https://www.facebook.com/accessibility

[5] GSA. (2018) European accessibility act - Employment, Social
Affairs, Inclusion. [Online]. Available: https://www.section508.
gov/manage/laws-and-policies

[6] ——. (2018) IT Accessibility Laws and Policies. [Online]. Available:
https://www.section508.gov/manage/laws-and-policies

[7] WCAG. (2019) Web Content Accessibility Guidelines (WCAG)
2.1. [Online]. Available: https://www.w3.org/TR/WCAG21/

[8] BBC. (2019) BBC Mobile Accessibility Prototype :
Home. [Online]. Available: https://www.bbc.co.uk/guidelines/
futuremedia/accessibility/mobile

[9] S. Trewin, B. Cragun, C. Swart, J. Brezin, and J. Richards,
“Accessibility challenges and tool features: An ibm web
developer perspective,” in Proceedings of the 2010 International
Cross Disciplinary Conference on Web Accessibility (W4A), ser. W4A
’10. New York, NY, USA: ACM, 2010, pp. 32:1–32:10. [Online].
Available: http://doi.acm.org/10.1145/1805986.1806029

[10] J. P. Bigham, J. T. Brudvik, and B. Zhang, “Accessibility by
demonstration: Enabling end users to guide developers to web
accessibility solutions,” in Proceedings of the 12th International ACM
SIGACCESS Conference on Computers and Accessibility, ser. ASSETS
’10. New York, NY, USA: ACM, 2010, pp. 35–42. [Online].
Available: http://doi.acm.org/10.1145/1878803.1878812

[11] L. Hokkanen and K. Väänänen-Vainio-Mattila, “Ux work in star-
tups: current practices and future needs,” in International Confer-
ence on Agile Software Development. Springer, 2015, pp. 81–92.

[12] J. Chen, C. Chen, Z. Xing, X. Xu, L. Zhu, G. Li, and J. Wang, “Un-
blind your apps: Predicting natural-language labels for mobile gui
components by deep learning,” arXiv preprint arXiv:2003.00380,
2020.

[13] A. S. Ross, X. Zhang, J. Fogarty, and J. O. Wobbrock, “An
epidemiology-inspired large-scale analysis of Android app ac-
cessibility,” ACM Transactions on Accessible Computing (TACCESS),
vol. 13, no. 1, pp. 1–36, 2020.

[14] Wiki-TalkBack. (2019) Google TalkBack. [Online]. Available:
https://en.wikipedia.org/wiki/Google_TalkBack

[15] L. C. Serra, L. P. Carvalho, L. P. Ferreira, J. B. S. Vaz, and A. P.
Freire, “Accessibility evaluation of e-government mobile applica-
tions in brazil,” Procedia Computer Science, vol. 67, pp. 348–357,
2015.

[16] A. S. Ross, X. Zhang, J. Fogarty, and J. O. Wobbrock, “Examining
image-based button labeling for accessibility in Android apps
through large-scale analysis,” in Proceedings of the 20th International
ACM SIGACCESS Conference on Computers and Accessibility. ACM,
2018, pp. 119–130.

[17] S. Yan and P. Ramachandran, “The current status of accessibility
in mobile apps,” ACM Transactions on Accessible Computing (TAC-
CESS), vol. 12, no. 1, p. 3, 2019.

[18] C. Vendome, D. Solano, S. Liñán, and M. Linares-Vásquez, “Can
everyone use my app? an empirical study on accessibility in
android apps,” in 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2019, pp. 41–52.

[19] A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in
Android apps: State of affairs, sentiments, and ways forward,” in
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE), 2020.

[20] Google-Lint. (2018) Android Lint. [Online]. Available: https:
//developer.android.com/studio/write/lint.html

[21] Google-Espresso. (2018) Espresso | Android Developers.
[Online]. Available: https://developer.android.com/training/
testing/espresso

[22] Google-Robolectric. (2018) Robolectric. [Online]. Available: http:
//robolectric.org/

[23] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser, “Automated acces-
sibility testing of mobile apps,” in 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation (ICST).
IEEE, 2018, pp. 116–126.

[24] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu, “Effi-
ciently manifesting asynchronous programming errors in android
apps,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, 2018, pp. 486–497.

[25] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su,
“Large-scale analysis of framework-specific exceptions in android
apps,” in 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 2018, pp. 408–419.

[26] Google-Accessibility-Scanner. (2019) Accessibility Scanner.
[Online]. Available: https://play.google.com/store/apps/details?
id=com.google.android.apps.accessibility.auditor&hl=en_SG

[27] Google-Monkey. (2019) Google Monkey. [Online]. Available:
https://developer.android.com/studio/test/monkey

[28] S. Chen, C. Chen, L. Fan, M. Fan, X. Zhan, and Y. Liu.
(2019) Mobile accessibility study. [Online]. Available: https:
//sites.google.com/view/mobile-accessibility/

[29] United-Nations. (2018) Article 9 – Accessibility
| United Nations Enable. [Online]. Available:
https://www.un.org/development/desa/disabilities/
convention-on-the-rights-of-persons-with-disabilities/
article-9-accessibility.html

[30] R. E. Ladner, “Design for user empowerment,” interactions, vol. 22,
no. 2, pp. 24–29, 2015.

[31] Google-Accessibility-Test-Framework. (2019) Accessibility-test-
framework-for-android. [Online]. Available: https://github.com/
google/Accessibility-Test-Framework-for-Android

[32] W3C-Web-Accessibility. (2018) Web Content Accessibility
Guidelines (WCAG). [Online]. Available: https://www.w3.
org/WAI/standards-guidelines/wcag/

[33] W3C-Mobile-Accessibility. (2018) Mobile Accessibility at
W3C. [Online]. Available: https://www.w3.org/WAI/
standards-guidelines/mobile/

[34] K. Park, T. Goh, and H.-J. So, “Toward accessible mobile
application design: Developing mobile application accessibility
guidelines for people with visual impairment,” in Proceedings
of HCI Korea, ser. HCIK ’15. South Korea: Hanbit Media, Inc.,
2014, pp. 31–38. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2729485.2729491

[35] A. Jaramillo-Alcázar and S. Luján-Mora, “An approach to mobile
serious games accessibility assessment for people with hearing
impairments,” in International Conference on Information Theoretic
Security. Springer, 2018, pp. 552–562.

[36] B. Grellmann, T. Neate, A. Roper, S. Wilson, and J. Marshall,
“Investigating mobile accessibility guidance for people with
aphasia,” in Proceedings of the 20th International ACM SIGACCESS
Conference on Computers and Accessibility, ser. ASSETS ’18. New
York, NY, USA: ACM, 2018, pp. 410–413. [Online]. Available:
http://doi.acm.org/10.1145/3234695.3241011

[37] J.-M. Díaz-Bossini and L. Moreno, “Accessibility to mobile inter-
faces for older people,” Procedia Computer Science, vol. 27, pp. 57–
66, 2014.

[38] Google-Accessibility. (2019) Google accessibility overview. [On-
line]. Available: https://developer.android.com/guide/topics/
ui/accessibility

[39] Google-Accessibility-Suite. (2019) Android accessibility suite.
[Online]. Available: https://play.google.com/store/apps/details?
id=com.google.android.marvin.talkback

[40] R. Clegg-Vinell, C. Bailey, and V. Gkatzidou, “Investigating
the appropriateness and relevance of mobile web accessibility
guidelines,” in Proceedings of the 11th Web for All Conference,
ser. W4A ’14. New York, NY, USA: ACM, 2014, pp. 38:1–38:4.
[Online]. Available: http://doi.acm.org/10.1145/2596695.2596717

[41] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective auto-
mated testing for android applications,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM,
2016, pp. 94–105.

[42] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu,
and Z. Su, “Guided, stochastic model-based gui testing of android
apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ACM, 2017, pp. 245–256.

[43] C. Silva, M. M. Eler, and G. Fraser, “A survey on the tool support
for the automatic evaluation of mobile accessibility,” in Proceedings
of the 8th International Conference on Software Development and Tech-
nologies for Enhancing Accessibility and Fighting Info-exclusion, 2018,
pp. 286–293.

[44] X. Y. Daihua, B. Parmanto, B. E. Dicianno, and G. Pramana,
“Accessibility of mhealth self-care apps for individuals with spina
bifida,” Perspectives in health information management, vol. 12, no.
Spring, 2015.

[45] Google-Android-Studio. (2019) Android Studio IDE. [Online].
Available: https://developer.android.com/studio



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 14

[46] Apple-VoiceOver. (2019) VoiceOver on iPhone. [On-
line]. Available: https://support.apple.com/en-sg/guide/
iphone/iph3e2e415f/ios

[47] Android-UIAutomatorViewer. (2019) Android UIAutoma-
torViewer. [Online]. Available: https://www.guru99.com/
uiautomatorviewer-tutorial.html

[48] S. Hackett, B. Parmanto, and X. Zeng, “A retrospective look at
website accessibility over time,” Behaviour & Information Technol-
ogy, vol. 24, no. 6, pp. 407–417, 2005.

[49] C. Espadinha, L. M. Pereira, F. M. Da Silva, and J. B. Lopes,
“Accessibility of portuguese public universities’ sites,” Disability
and rehabilitation, vol. 33, no. 6, pp. 475–485, 2011.

[50] T. D. Gilbertson and C. H. C. Machin, “Guidelines, icons
and marketable skills: An accessibility evaluation of 100
web development company homepages,” in Proceedings of the
International Cross-Disciplinary Conference on Web Accessibility, ser.
W4A ’12. New York, NY, USA: ACM, 2012, pp. 17:1–17:4.
[Online]. Available: http://doi.acm.org/10.1145/2207016.2207024

[51] L. Billingham, “Improving academic library website accessibility
for people with disabilities,” Library Management, vol. 35, no. 8/9,
pp. 565–581, 2014.

[52] J. Sánchez, M. d. B. Campos, M. Espinoza, and L. B. Merabet,
“Accessibility for people who are blind in public transportation
systems,” in Proceedings of the 2013 ACM Conference on Pervasive
and Ubiquitous Computing Adjunct Publication, ser. UbiComp ’13
Adjunct. New York, NY, USA: ACM, 2013, pp. 753–756. [Online].
Available: http://doi.acm.org/10.1145/2494091.2496002

[53] G. A. A. De Oliveira, R. W. de Bettio, and A. P. Freire,
“Accessibility of the smart home for users with visual disabilities:
An evaluation of open source mobile applications for home
automation,” in Proceedings of the 15th Brazilian Symposium
on Human Factors in Computing Systems, ser. IHC ’16. New
York, NY, USA: ACM, 2016, pp. 29:1–29:10. [Online]. Available:
http://doi.acm.org/10.1145/3033701.3033730

[54] Atlantic. (2018) A smart city is an accessible city.
[Online]. Available: https://www.theatlantic.com/technology/
archive/2018/11/city-apps-help-and-hinder-disability/574963/

[55] IBM. (2016) How mobile apps are improving government
engagement. [Online]. Available: https://www.ibm.com/blogs/
think/2016/01/mobile-app-government/

[56] S. K. Kane, C. Jayant, J. O. Wobbrock, and R. E. Ladner, “Freedom
to roam: a study of mobile device adoption and accessibility for
people with visual and motor disabilities,” in Proceedings of the
11th international ACM SIGACCESS conference on Computers and
accessibility. ACM, 2009, pp. 115–122.

[57] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu,
“Storydroid: Automated generation of storyboard for android
apps,” in Proceedings of the 41st International Conference on Software
Engineering. IEEE Press, 2019, pp. 596–607.

[58] B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie,
“Uiref: analysis of sensitive user inputs in android applications,”
in Proceedings of the 10th ACM Conference on Security and Privacy in
Wireless and Mobile Networks. ACM, 2017, pp. 23–34.

[59] Google-Play-Store-Bitcoin. (2019) Bitcoin. [Online].
Available: https://play.google.com/store/apps/details?id=de.
schildbach.wallet

[60] Google-Play-Store-Bankdroid. (2019) Bankdroid. [Online]. Avail-
able: https://f-droid.org/en/packages/com.liato.bankdroid/

[61] Google-Play-Store-ConnectBot. (2019) ConnectBot. [Online].
Available: https://play.google.com/store/apps/details?id=org.
connectbot&hl=en_SG

[62] Google-Play-Store-Vespucci. (2019) Vespucci. [Online]. Avail-
able: https://play.google.com/store/apps/details?id=de.blau.
android&hl=en_SG

[63] M.-W. U. test. (2019) Mann-whitney u test. [Online]. Available:
https://www.socscistatistics.com/tests/mannwhitney/

[64] F-Droid. (2019) F-Droid. [Online]. Available: https://f-droid.org
[65] A. Alshayban, I. Ahmed, and S. Malek. (2021) Accessibility

Issues in Android Apps: State of Affairs, Sentiments, and Ways
Forward. [Online]. Available: https://github.com/Abdulaziz89/
accessibility_eval

[66] w3schools. (2019) alt Attribute in HTML. [Online]. Available:
https://www.w3schools.com/tags/att_img_alt.asp

[67] L. Rello and R. Baeza-Yates, “Optimal colors to improve readabil-
ity for people with dyslexia,” in Text Customization for Readability
Online Symposium, 2012.

[68] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting
performance bugs for smartphone applications,” in Proceedings of
the 36th International Conference on Software Engineering. ACM,
2014, pp. 1013–1024.

[69] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation:
Characterizing and detecting compatibility issues for android
apps,” in 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2016, pp. 226–237.

[70] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu,
“Are mobile banking apps secure? what can be improved?” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2018, pp. 797–802.

[71] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and
L. Xu, “An empirical assessment of security risks of global android
banking apps,” in Proceedings of the 42st International Conference on
Software Engineering. IEEE Press, 2020, pp. 596–607.

[72] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky
tests in Android apps,” in 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2018, pp. 534–
538.

[73] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk, “Continuous,
evolutionary and large-scale: A new perspective for automated
mobile app testing,” in 2017 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME). IEEE, 2017, pp. 399–410.

[74] F. Pecorelli, G. Catolino, F. Ferrucci, A. De Lucia, and F. Palomba,
“Testing of mobile applications in the wild: A large-scale empirical
study on android apps,” 2020.

[75] K. Rubinov and L. Baresi, “What are we missing when testing our
android apps?” Computer, vol. 51, no. 4, pp. 60–68, 2018.

[76] Apkmonk. (2019) Apkmonk. [Online]. Available: https://www.
apkmonk.com

[77] Booking. (2019) Booking. [Online]. Available: https://play.google.
com/store/apps/details?id=com.booking&hl=en_SG

[78] Amazon. (2019) Amazon Assistant. [Online]. Available: https:
//play.google.com/store/apps/details?id=com.amazon.aa

[79] Google-Play-Store-Battery. (2019) Battery Saver - Bataria Energy
Saver. [Online]. Available: https://play.google.com/store/apps/
details?id=com.jappka.bataria&hl=en

[80] Anselm. (2019) Torchie - Volume Button Torch. [On-
line]. Available: https://play.google.com/store/apps/details?id=
in.blogspot.anselmbros.torchie&hl=en

[81] Google-Accessibility-Guideline. (2019) Accessibility Guideline for
Android apps. [Online]. Available: https://support.google.com/
accessibility/android/answer/6376559

[82] Apple-Accessibility-Guideline. (2019) Accessibility
Guideline for iOS apps. [Online]. Available: https:
//developer.apple.com/design/human-interface-guidelines/
accessibility/overview/introduction/

[83] Google-Play-Store. (2019) Google Play Store. [Online]. Available:
https://play.google.com/store?hl=en_US

[84] Google-Mobile-First-Indexing. (2019) Mobile First Indexing.
[Online]. Available: https://developers.google.com/search/
mobile-sites/mobile-first-indexing

[85] X. Zhang, A. S. Ross, A. Caspi, J. Fogarty, and J. O. Wobbrock,
“Interaction proxies for runtime repair and enhancement of
mobile application accessibility,” in Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, ser. CHI
’17. New York, NY, USA: ACM, 2017, pp. 6024–6037. [Online].
Available: http://doi.acm.org/10.1145/3025453.3025846



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2021 15

Sen Chen (Member, IEEE) is an Associate Pro-
fessor in the College of Intelligence and Com-
puting (School of Cybersecurity), Tianjin Uni-
versity, China. Before that, he was a Research
Assistant Professor in the School of Computer
Science and Engineering, Nanyang Technolog-
ical University, Singapore. Previously, he was a
Research Assistant of NTU from 2016 to 2019
and a Research Fellow from 2019-2020. He re-
ceived his Ph.D. degree in Computer Science
from School of Computer Science and Software

Engineering, East China Normal University, China, in June 2019. His
research focuses on Security and Software Engineering such as mobile
security, AI security, open-source security, and intelligent development
and testing. He has published broadly in top-tier security (IEEE S&P,
USENIX Security, CCS, IEEE TIFS, and IEEE TDSC) and software
engineering venues including ICSE, FSE, ASE, ACM TOSEM, and IEEE
TSE. More information is available on https://sen-chen.github.io/.

Chen Chunyang obtained his Ph.D. degree
from School of Computer Science and Engineer-
ing, Nanyang Technological University (NTU),
Singapore, and bachelor’s degree from Bei-
jing University of Posts and Telecommunications
(BUPT), China, June 2014. He is a lecturer
(a.k.a. Assistant Professor) in Faculty of Informa-
tion Technology, Monash University, Australia.
His research focuses on Mining Software Repos-
itories, Text Mining, Deep Learning, and Human
Computer Interaction.

Lingling Fan is an Associate Professor in Col-
lege of Cyber Science, Nankai University, China.
She received her Ph.D and BEng degrees in
computer science from East China Normal Uni-
versity, Shanghai, China in June 2019 and June
2014, respectively. In 2017, she joined Nanyang
Technological University (NTU), Singapore as a
Research Assistant and then had been as a
Research Fellow of NTU since 2019. Her re-
search focuses on program analysis and testing,
software security, and Android and application

analysis and testing. She got two ACM SIGSOFT Distinguished Paper
Awards at ICSE 2018 and ICSE 2021. More information is available
on https://lingling-fan.github.io/

Mingming Fan is an Assistant Professor in the
Computational Media and Arts Thrust and an
Affiliated Assistant Professor in the Department
of Computer Science and Engineering at The
Hong Kong University of Science and Technol-
ogy (HKUST) in Guangzhou and Clear Water
Bay campuses respectively. He was an Assistant
Professor at Rochester Institute of Technology
from 2019 to 2021 and received a Ph.D. from the
Department of Computer Science at the Univer-
sity of Toronto in 2019.

Dr. Fan leads the Accessible & Pervasive User EXperience (APEX)
Group to research in the field of Human-Computer Interaction and Ac-
cessibility. Specifically, his group applies user-centered design (UCD),
AI, ML, VR/AR, visualization, sensing, and qualitative methods to 1)
innovate User Experience (UX) Methodologies, 2) tackle Aging and
Accessibility Challenges, and 3) Create Novel VR/AR Experience and
Sensing Techniques. His research won Best Paper Award, Best Paper
Honorable Mention Award, and Best Artifact Award from top-tier venues
in HCI and Accessibility, such as ACM CHI, UbiComp, and ASSETS.
More Info can be found at https://www.mingmingfan.com

Xian Zhan received her BEng degree in Com-
puter Science from Wuhan University, Hubei,
China. Currently, she is a Ph.D candidate in the
Department of Computing, the Hong Kong Poly-
technic University. Her research interests include
program analysis, mobile privacy and security,
NLP and machine learning.

Liu Yang graduated in 2005 with a Bachelor of
Computing (Honours) in the National University
of Singapore (NUS). In 2010, he obtained his
PhD and started his post doctoral work in NUS,
MIT and SUTD. In 2011, Dr. Liu is awarded the
Temasek Research Fellowship at NUS to be the
Principal Investigator in the area of Cyber Se-
curity. In 2012 fall, he joined Nanyang Techno-
logical University (NTU) as a Nanyang Assistant
Professor. He is currently a full professor and the
director of the cybersecurity lab in NTU.

He specializes in software verification, security and software engi-
neering. His research has bridged the gap between the theory and
practical usage of formal methods and program analysis to evaluate
the design and implementation of software for high assurance and
security. His work led to the development of a state-of-the-art model
checker, Process Analysis Toolkit (PAT). By now, he has more than
300 publications and 6 best paper awards in top tier conferences and
journals. With more than 20 million Singapore dollar funding support, he
is leading a large research team working on the state-of-the-art software
engineering and cybersecurity problems.


