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Abstract

We develop a Bayesian nonparametric approach to a general family of latent class problems in which individuals

can belong simultaneously to multiple classes and where each class can be exhibited multiple times by an individual.

We introduce a combinatorial stochastic process known as the negative binomial process (NBP) as an infinite-

dimensional prior appropriate for such problems. We show that the NBP is conjugate to the beta process, and we

characterize the posterior distribution under the beta-negative binomial process (BNBP) and hierarchical models

based on the BNBP (the HBNBP). We study the asymptotic properties of the BNBP and develop a three-parameter

extension of the BNBP that exhibits power-law behavior. We derive MCMC algorithms for posterior inference under

the HBNBP, and we present experiments using these algorithms in the domains of image segmentation, object

recognition, and document analysis.

✦

1 INTRODUCTION

In traditional clustering problems the goal is to induce a set of latent classes and to assign each data point

to one and only one class. This problem has been approached within a model-based framework via the use

of finite mixture models, where the mixture components characterize the distributions associated with the

classes, and the mixing proportions capture the mutual exclusivity of the classes (Fraley and Raftery, 2002;

McLachlan and Basford, 1988). In many domains in which the notion of latent classes is natural, however, it

is unrealistic to assign each individual to a single class. For example, in genetics, while it may be reasonable

to assume the existence of underlying ancestral populations that define distributions on observed alleles,

each individual in an existing population is likely to be a blend of the patterns associated with the ancestral

populations. Such a genetic blend is known as an admixture (Pritchard et al., 2000). A significant literature

on model-based approaches to admixture has arisen in recent years (Blei et al., 2003; Erosheva and Fienberg,

2005; Pritchard et al., 2000), with applications to a wide variety of domains in genetics and beyond, including

document modeling and image analysis.1

• T. Broderick, L. Mackey, J. Paisley, and M. Jordan are with the Department of Electrical Engineering and Computer Sciences and the Department
of Statistics, University of California, Berkeley, CA 94705.

1. While we refer to such models generically as “admixture models,” we note that they are also often referred to as topic models or
mixed membership models.
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Model-based approaches to admixture are generally built on the foundation of mixture modeling. The basic

idea is to treat each individual as a collection of data, with an exchangeability assumption imposed for the data

within an individual but not between individuals. For example, in the genetics domain the intra-individual

data might be a set of genetic markers, with marker probabilities varying across ancestral populations. In

the document domain the intra-individual data might be the set of words in a given document, with each

document (the individual) obtained as a blend across a set of underlying “topics” that encode probabilities for

the words. In the image domain, the intra-individual data might be visual characteristics like edges, hue, and

location extracted from image patches. Each image is then a blend of object classes (e.g., grass, sky, or car), each

defining a distinct distribution over visual characteristics. In general, this blending is achieved by making use

of the probabilistic structure of a finite mixture but using a different sampling pattern. In particular, mixing

proportions are treated as random effects that are drawn once per individual, and the data associated with that

individual are obtained by repeated draws from a mixture model having that fixed set of mixing proportions.

The overall model is a hierarchical model, in which mixture components are shared among individuals and

mixing proportions are treated as random effects.

Although the literature has focused on using finite mixture models in this context, there has also been

a growing literature on Bayesian nonparametric approaches to admixture models, notably the hierarchical

Dirichlet process (HDP) (Teh et al., 2006), where the number of shared mixture components is infinite. Our

focus in the current paper is also on nonparametric methods, given the open-ended nature of the inferential

objects with which real-world admixture modeling is generally concerned.

Although viewing an admixture as a set of repeated draws from a mixture model is natural in many

situations, it is also natural to take a different perspective, akin to latent trait modeling, in which the individual

(e.g., a document or a genotype) is characterized by the set of “traits” or “features” that it possesses, and

where there is no assumption of mutual exclusivity. Here the focus is on the individual and not on the “data”

associated with an individual. Indeed, under the exchangeability assumption alluded to above it is natural

to reduce the repeated draws from a mixture model to the counts of the numbers of times that each mixture

component is selected, and we may wish to model these counts directly. We may further wish to consider

hierarchical models in which there is a linkage among the counts for different individuals.

This idea has been made explicit in a recent line of work based on the beta process. Originally developed

for survival analysis, where an integrated form of the beta process was used as a model for random hazard

functions (Hjort, 1990), more recently it has been observed that the beta process also provides a natural

framework for latent feature modeling (Thibaux and Jordan, 2007). In particular, as we discuss in detail in

Section 2, a draw from the beta process yields an infinite collection of coin-tossing probabilities. Tossing

these coins—a draw from a Bernoulli process—one obtains a set of binary features that can be viewed as a

description of an admixed individual. A key advantage of this approach is the conjugacy between the beta

and Bernoulli processes: this property allows for tractable inference, despite the countable infinitude of coin-
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tossing probabilities. A limitation of this approach, however, is its restriction to binary features; indeed, one

of the virtues of the mixture-model-based approach is that a given mixture component can be selected more

than once, with the total number of selections being random.

To develop a more generally useful tool for modeling admixture within a feature-based approach, we note

that in the setting of classical random variables, beta-Bernoulli conjugacy is not the only form of conjugacy

involving the beta distribution—the negative binomial distribution is also conjugate to the beta. Anticipating

the value of conjugacy in the setting of nonparametric models, we are motivated to develop a stochastic process

analogue of the negative binomial distribution, a stochastic process that is conjugate to the beta process. It is

one of the contributions of the current paper to define this process, which we refer to as the negative binomial

process (NBP),2 and to provide a rigorous proof of its conjugacy to the beta process. We then derive a new

nonparametric mixture model based on the beta process and the NBP and a new model of admixture based

on the NBP and the hierarchical beta process (Thibaux and Jordan, 2007). Unlike admixture models based on

the HDP, our models allow for a random total number of features (e.g., words or traits) per individual (e.g., a

document or genotype). We justify these modeling choices theoretically, by characterizing the prior behavior

of the beta-negative binomial process hierarchy, and empirically on learning tasks from document analysis

and computer vision.

The beta process and the NBP are not the only way to generate infinite vectors of counts, and indeed

there has been previous work on nonparametric count models based on the gamma process and the Poisson

likelihood process (Thibaux, 2008; Titsias, 2008). A second contribution of the current paper is to explore the

connections between these stochastic processes and the beta process and NBP. Indeed, although some of the

connections among the stochastic processes used in Bayesian nonparametrics are well known (e.g., that the

Dirichlet process can be obtained from the gamma process by normalization), in general there is a far less

clear view of the linkages between these processes than there is of the linkages between the corresponding

classical random variables. We are able to establish several novel connections, including a new connection

between the beta process and the gamma process.

The remainder of the paper is organized as follows. In Section 2 we present the framework of completely

random measures that provides the formal underpinnings for our work. We discuss the Bernoulli process, the

NBP, and their conjugacy to the beta process in Section 3. Section 4 focuses on the problem of modeling

admixture and on general hierarchical modeling based on the negative binomial process. Section 5 and

Section 6 are devoted to a study of the asymptotic behavior of the NBP with a beta process prior, which we

call the beta-negative binomial process (BNBP). We describe algorithms for posterior inference in Section 7.

Finally, we present experimental results. First, we use the BNBP to define a generative model for summaries of

terrorist incidents with the goal of identifying the perpetrator of a given terrorist attack in Section 8. Second, we

2. Zhou et al. (2012) have independently investigated negative binomial processes in the context of integer matrix factorization. We
discuss their concurrent contributions in more detail in Section 4.
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demonstrate the utility of a finite approximation to the BNBP in the domain of automatic image segmentation

in Section 9. Section 10 presents our conclusions.

2 COMPLETELY RANDOM MEASURES

In this section we review the notion of a completely random measure (CRM), a general construction that

yields random measures that are closely tied to classical constructions involving sets of independent random

variables. We present CRM-based constructions of several of the stochastic processes used in Bayesian non-

parametrics, including the beta process, gamma process, and Dirichlet process. In the following section we

build on the foundations presented here to consider additional stochastic processes.

Consider a probability space (Ψ,F ,P). A random measure is a random element µ such that µ(A) is a non-

negative random variable for any A in the sigma algebra F . A completely random measure (CRM) µ is a random

measure such that, for any disjoint, measurable sets A,A′ ∈ F , we have that µ(A) and µ(A′) are independent

random variables (Kingman, 1967). Completely random measures can be shown to be composed of at most

three components:

1) A deterministic measure. For deterministic µdet, it is trivially the case that µdet(A) and µdet(A
′) are inde-

pendent for disjoint A,A′.

2) A set of fixed atoms. Let (u1, . . . , uL) ∈ ΨL be a collection of deterministic locations, and let (η1, . . . , ηL) ∈

RL+ be a collection of independent random weights for the atoms. The collection may be countably

infinite, in which case we say L = ∞. Then let µfix =
∑L
l=1 ηlδul

. The independence of the ηl implies

the complete randomness of the measure.

3) An ordinary component. Let νPP be a Poisson process intensity on the space Ψ×R+. Let {(v1, ξ1), (v2, ξ2), . . .}

be a draw from the Poisson process with intensity νPP. Then the ordinary component is the measure

µord =
∑∞
j=1 ξjδvj . Here, the complete randomness follows from properties of the Poisson process.

One observation from this componentwise breakdown of CRMs is that we can obtain a countably infinite

collection of random variables, the ξj , from the Poisson process component if νPP has infinite total mass (but

is still sigma-finite). Consider again the criterion that a CRM µ yield independent random variables when

applied to disjoint sets. In light of the observation about the collection {ξj}, this criterion may now be seen as

an extension of an independence assumption in the case of a finite set of random variables. We cover specific

examples next.

2.1 Beta process

We have seen that CRMs have three components. Therefore, in order to describe any CRM, it is enough to

specify the deterministic measure, fixed atoms, and ordinary component. The beta process (Hjort, 1990; Kim,

1999; Thibaux and Jordan, 2007) is an example of a CRM. It has the following parameters: a mass parameter

γ > 0, a concentration parameter θ > 0, a purely atomic measure Hfix =
∑

l ρlδul
with γρl ∈ (0, 1) for all l a.s.,
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and a purely continuous probability measure Hord on Ψ. Note that we have explicitly separated out the mass

parameter γ so that, e.g., Hord is a probability measure; in Thibaux and Jordan (2007), these two parameters are

expressed as a single measure with total mass equal to γ. Typically, though, the normalized measure Hord is

used separately from the mass parameter γ (as we will see below), so the notational separation is convenient.

Often the final two measure parameters are abbreviated as their sum: H = Hfix +Hord.

Given these parameters, the beta process has the following description as a CRM:

1) The deterministic measure is uniformly zero.

2) The fixed atoms have locations (u1, . . . , uL) ∈ ΨL, where L is potentially infinite though typically finite.

Atom weight ηl has distribution

ηl
ind
∼ Beta (θγρl, θ(1− γρl)) , (1)

where the ρl parameters are the weights in the purely atomic measure Hfix.

3) The ordinary component has Poisson process intensity Hord × ν, where ν is the measure

ν(db) = γθb−1(1− b)θ−1 db, (2)

which is sigma-finite with finite mean. It follows that the number of atoms in this component will be

countably infinite with finite sum.

As in the original specification of Hjort (1990) and Kim (1999), Eq. (2) can be generalized by allowing θ

to depend on the Ψ coordinate. The homogeneous intensity in Eq. (2) seems to be used predominantly in

practice (Thibaux and Jordan, 2007; Fox et al., 2009) though, and we focus on it here for ease of exposition.

Nonetheless, we note that our results below extend easily to the non-homogeneous case.

The CRM is the sum of its components. Therefore, we may write a draw from the beta process as

B =

∞
∑

k=1

bkδψk
,

L
∑

l=1

ηlδul
+

∞
∑

j=1

ξjδvj , (3)

with atom locations equal to the union of the fixed atom and ordinary component atom locations {ψk}k =

{ul}
L
l=1 ∪ {vj}

∞
j=1. Notably, B is a.s. discrete. We denote a draw from the beta process as B ∼ BP(θ, γ,H).

The provenance of the name “beta process” is now clear; each atom weight in the fixed atomic component is

beta-distributed, and the Poisson process intensity generating the ordinary component is that of an improper

beta distribution.

From the above description, the beta process provides a prior on a potentially infinite vector of weights,

each in (0, 1) and each associated with a corresponding parameter ψ ∈ Ψ. The potential countable infinity

comes from the Poisson process component. The weights in (0, 1) may be interpreted as probabilities, though

not as a distribution across the indices as we note that they need not sum to one. We will see in Section 4 that

the beta process is appropriate for feature modeling (Thibaux and Jordan, 2007; Griffiths and Ghahramani,

2006). In this context, each atom, indexed by k, of B corresponds to a feature. The atom weights {bk}, which

are each in [0, 1] a.s., can be viewed as representing the frequency with which each feature occurs in the data
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set. The atom locations {ψk} represent parameters associated with the features that can be used in forming a

likelihood.

In Section 5, we will show that an extension to the beta process called the three-parameter beta process has

certain desirable properties beyond the classic beta process, in particular its ability to generate power-law

behavior (Teh and Görür, 2009; Broderick et al., 2012), which roughly says that the number of features grows

as a power of the number of data points. In the three-parameter case, we introduce a discount parameter

α ∈ (0, 1) with θ > −α and γ > 0 such that:

1) There is again no deterministic component.

2) The fixed atoms have locations (u1, . . . , uL) ∈ ΨL, with L potentially infinite but typically finite. Atom

weight ηl has distribution ηl
ind
∼ Beta (θγρl − α, θ(1− γρl) + α), where the ρl parameters are the weights

in the purely atomic measure Hfix and we now have the constraints θγρl − α, θ(1 − γρl) + α ≥ 0.

3) The ordinary component has Poisson process intensity Hord × ν, where ν is the measure:

ν(db) = γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)
b−1−α(1− b)θ+α−1 db.

Again, we focus on the homogeneous intensity ν as in the beta process case though it is straightforward to

allow θ to depend on coordinates in Ψ.

In this case, we again have the full process draw B as in Eq. (3), and we say B ∼ 3BP(α, θ, γ,H).

2.2 Reparameterized beta process

The specification that the atom parameters in the beta process be of the form θγρl and θ(1 − γρl) can be

unnecessarily constraining. Indeed, the classical beta distribution has two free parameters. Yet, in the beta

process as described above, θ and γ are determined as part of the Poisson process intensity, so there is

essentially one free parameter for each of the beta-distributed weights associated with the atoms (Eq. (1)). A

related problematic issue is that the beta process forces the two parameters in the beta distribution associated

with each atom to sum to θ, which is constant across all of the atoms.

One way to remove these restrictions is to allow θ = θ(ψ), a function of the position ψ ∈ Ψ as mentioned

above. However, we demonstrate in Appendix A that there are reasons to prefer a fixed concentration

parameter θ for the ordinary component; there is a fundamental relation between this parameter and similar

parameters in other common CRMs (e.g., the Dirichlet process, which we describe in Section 2.4). Moreover,

the concern here is entirely centered on the behavior of the fixed atoms of the process, and letting θ depend on

ψ retains the unusual—from a classical parametric perspective—form of the beta distribution in Eq. (1). As an

alternative, we provide a specification of the beta process that more closely aligns with the classical perspective

in which we allow two general beta parameters for each atom. As we will see, this reparameterization is

natural, and indeed necessary, in considering conjugacy.

We thus define the reparameterized beta process (RBP) as having the following parameterization: a mass

parameter γ > 0, a concentration parameter θ > 0, a number of fixed atoms L ∈ {0, 1, 2, . . .}∪ {∞} with locations
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(u1, . . . , uL) ∈ ΨL, two sets of strictly positive atom weight parameters {ρl}
L
l=1 and {σl}

L
l=1, and a purely

continuous measure Hord on Ψ. In this case, the atom weight parameters satisfy the simple condition ρl, σl > 0

for all l ∈ {1, . . . , L}. This specification is the same as the beta process specification introduced above with the

sole exception of a more general parameterization for the fixed atoms. We obtain the following CRM:

1) There is no deterministic measure.

2) There are L fixed atoms with locations (u1, . . . , uL) ∈ ΨL and corresponding weights ηl
ind
∼ Beta (ρl, σl) .

3) The ordinary component has Poisson process intensity Hord×ν, where ν is the measure ν(db) = γθb−1(1−

b)θ−1 db.

As discussed above, we favor the homogeneous intensity ν in exposition but note the straightforward extension

to allow θ to depend on Ψ location.

We denote this CRM by B ∼ RBP(θ, γ,u,ρ,σ, Hord).

2.3 Gamma process

While the beta process provides a countably infinite vector of frequencies in (0, 1] with associated parameters

ψk, it is sometimes useful to have a countably infinite vector of positive, real-valued quantities that can be

used as rates rather than frequencies for features. We can obtain such a prior with the gamma process (Ferguson,

1973), a CRM with the following parameters: a concentration parameter θ > 0, a scale parameter c > 0, a purely

atomic measure Hfix =
∑

l ρlδul
with ∀l, ρl > 0, and a purely continuous measure Hord with support on Ψ.

Its description as a CRM is as follows (Thibaux, 2008):

1) There is no deterministic measure.

2) The fixed atoms have locations (u1, . . . , uL) ∈ ΨL, where L is potentially infinite but typically finite. Atom

weight ηl has distribution ηl
ind
∼ Gamma(θρl, c), where we use the shape-inverse-scale parameterization

of the gamma distribution and where the ρl parameters are the weights in the purely atomic measure

Hfix.

3) The ordinary component has Poisson process intensity Hord × ν, where ν is the measure:

ν(dg̃) = θg̃−1 exp (−cg̃) dg̃. (4)

As in the case of the beta process, the gamma process can be expressed as the sum of its components:

G̃ =
∑

k g̃kδψk
,
∑L
l=1 ηlδul

+
∑

j ξjδvj . We denote this CRM as G̃ ∼ ΓP(θ, c,H), for H = Hfix +Hord.

2.4 Dirichlet process

While the beta process has been used as a prior in featural models, the Dirichlet process is the classic Bayesian

nonparametric prior for clustering models (Ferguson, 1973; MacEachern and Müller, 1998; McCloskey, 1965;

Neal, 2000; West, 1992). The Dirichlet process itself is not a CRM; its atom weights, which represent cluster

frequencies, must sum to one and are therefore correlated. But it can be obtained by normalizing the gamma

process (Ferguson, 1973).
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In particular, using facts about the Poisson process (Kingman, 1993), one can check that, when there are

finitely many fixed atoms, we have G̃(Ψ) < ∞ a.s.; that is, the total mass of the gamma process is almost

surely finite despite having infinitely many atoms from the ordinary component. Therefore, normalizing the

process by dividing its weights by its total mass is well-defined. We thus can define a Dirichlet process as

G =
∑

k

gkδψk
, G̃/G̃(Ψ),

where G̃ ∼ ΓP(θ, 1, H), and where there are two parameters: a concentration parameter θ and a base measure H

with finitely many fixed atoms. Note that while we have chosen the scale parameter c = 1 in this construction,

the choice is in fact arbitrary for c > 0 and does not affect the G distribution (Eq. (4.15) and p. 83 of Pitman

(2006)).

From this construction, we see immediately that the Dirichlet process is almost surely atomic, a property

inherited from the gamma process. Moreover, not only are the weights of the Dirichlet process all contained

in (0, 1) but they further sum to one. Thus, the Dirichlet process may be seen as providing a probability

distribution on a countable set. In particular, this countable set is often viewed as a countable number of

clusters, with cluster parameters ψk.

3 CONJUGACY AND COMBINATORIAL CLUSTERING

In Section 2, we introduced CRMs and showed how a number of classical Bayesian nonparametric priors

can be derived from CRMs. These priors provide infinite-dimensional vectors of real values, which can be

interpreted as feature frequencies, feature rates, or cluster frequencies. To flesh out such interpretations we

need to couple these real-valued processes with discrete-valued processes that capture combinatorial structure.

In particular, viewing the weights of the beta process as feature frequencies, it is natural to consider binomial

and negative binomial models that transform these frequencies into binary values or nonnegative integer

counts. In this section we describe stochastic processes that achieve such transformations, again relying on

the CRM framework.

The use of a Bernoulli likelihood whose frequency parameter is obtained from the weights of the beta process

has been explored in the context of survival models by Hjort (1990) and Kim (1999) and in the context of

feature modeling by Thibaux and Jordan (2007). After reviewing the latter construction, we discuss a similar

construction based on the negative binomial process. Moreover, recalling that Thibaux and Jordan (2007),

building on work of Hjort (1990) and Kim (1999), have shown that the Bernoulli likelihood is conjugate to the

beta process, we demonstrate an analogous conjugacy result for the negative binomial process.

3.1 Bernoulli process

One way to make use of the beta process is to couple it to a Bernoulli process (Thibaux and Jordan, 2007). The

Bernoulli process, denoted BeP(H̃), has a single parameter, a base measure H̃; H̃ is any discrete measure with
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atom weights in (0, 1]. Although our focus will be on models in which H̃ is a draw from a beta process, as

a matter of the general definition of the Bernoulli process the base measure H̃ need not be a CRM or even

random—just as the Poisson distribution is defined relative to a parameter that may or may not be random

in general but which is sometimes given a gamma distribution prior. Since H̃ is discrete by assumption, we

may write

H̃ =

∞
∑

k=1

bkδψk
(5)

with bk ∈ (0, 1]. We say that the random measure I is drawn from a Bernoulli process, I ∼ BeP(H̃), if

I =
∑∞
k=1 ikδψk

with ik
ind
∼ Bern(bk) for k = 1, 2, . . .. That is, to form the Bernoulli process, we simply make a

Bernoulli random variable draw for every one of the (potentially countable) atoms of the base measure. This

definition of the Bernoulli process was proposed by Thibaux and Jordan (2007); it differs from a precursor

introduced by Hjort (1990) in the context of survival analysis.

One interpretation for this construction is that the atoms of the base measure H̃ represent potential features

of an individual, with feature frequencies equal to the atom weights and feature characteristics defined by

the atom locations. The Bernoulli process draw can be viewed as characterizing the individual by the set

of features that have weights equal to one. Suppose H̃ is derived from a Poisson process as the ordinary

component of a completely random measure and has finite mass; then the number of features exhibited by

the Bernoulli process, i.e. the total mass of the Bernoulli process draw, is a.s. finite. Thus the Bernoulli process

can be viewed as providing a Bayesian nonparametric model of sparse binary feature vectors.

Now suppose that the base measure parameter is a draw from a beta process with parameters θ > 0, γ > 0,

and base measure H . That is, B ∼ BP(θ, γ,H) and I ∼ BeP(B). We refer to the overall process as the beta-

Bernoulli process (BBeP). Suppose that the beta process B has a finite number of fixed atoms. Then we note

that the finite mass of the ordinary component of B implies that I has support on a finite set. That is, even

though B has a countable infinity of atoms, I has only a finite number of atoms. This observation is important

since, in any practical model, we will want an individual to exhibit only finitely many features.

Hjort (1990) and Kim (1999) originally established that the posterior distribution of B under a constrained

form of the BBeP was also a beta process with known parameters. Thibaux and Jordan (2007) went on to

extend this analysis to the full BBeP. We cite the result by Thibaux and Jordan (2007) here, using the completely

random measure notation established above.

Theorem 1.

Summary: The beta process prior is conjugate to the Bernoulli process likelihood.

Detailed: Let H be a measure with atomic component Hfix =
∑L
l=1 ρlδul

and continuous component Hord. Let

θ and γ be strictly positive scalars. Consider N conditionally-independent draws from the Bernoulli process: In =
∑L

l=1 ifix,n,lδul
+
∑J
j=1 iord,n,jδvj

iid
∼ BeP(B), for n = 1, . . . , N with B ∼ BP(θ, γ,H). That is, the Bernoulli process

draws have J atoms that are not located at the atoms of Hfix. Then, B|I1, . . . , IN ∼ BP(θpost, γpost, Hpost) with
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θpost = θ +N , γpost = γ θ
θ+N , and Hpost,ord = Hord. Further, Hpost,fix =

∑L
l=1 ρpost,lδul

+
∑J
j=1 ξpost,jδvj , where

ρpost,l = ρl + (θpostγpost)
−1
∑N
n=1 ifix,n,l and ξpost,j = (θpostγpost)

−1
∑N

n=1 iord,n,j.

Note that the posterior beta-distributed fixed atoms are well-defined since ξpost,j > 0 follows from
∑N

n=1 iord,n,j >

0, which holds by construction. As shown by Thibaux and Jordan (2007), if the underlying beta process is

integrated out in the BBeP, we recover the Indian buffet process of Griffiths and Ghahramani (2006).

An easy consequence of Theorem 1 is the following.

Corollary 2.

Summary: The RBP prior is conjugate to the Bernoulli process likelihood.

Detailed: Assume the conditions of Theorem 1, and consider N conditionally-independent Bernoulli process draws:

In =
∑L

l=1 ifix,n,lδul
+
∑J

j=1 iord,n,jδvj
iid
∼ BeP(B), for n = 1, . . . , N with B ∼ RBP(θ, γ,u,ρ,σ, Hord) and

{ρl}
L
l=1 and {σl}

L
l=1 strictly positive scalars. Then, B|I1, . . . , IN ∼ RBP(θpost, γpost,upost,ρpost,σpost, Hpost,ord), for

θpost = θ + N , γpost = γ θ
θ+N , Hpost,ord = Hord, and L + J fixed atoms, {upost,l′} = {ul}

L
l=1 ∪ {vj}

J
j=1. The ρpost

and σpost parameters satisfy ρpost,l = ρl +
∑N

n=1 ifix,n,l and σpost,l = σl +N −
∑N
n=1 ifix,n,l for l ∈ {1, . . . , L} and

ρpost,L+j =
∑N

n=1 iord,n,j and σpost,L+j = θ +N −
∑N

n=1 iord,n,j for j ∈ {1, . . . , J}.

The usefulness of the RBP becomes apparent in the posterior parameterization; the distributions associated

with the fixed atoms more closely mirror the classical parametric conjugacy between the Bernoulli distribution

and the beta distribution. This is an issue of convenience in the case of the BBeP, but it is more significant in

the case of the negative binomial process, as we show in the following section, where conjugacy is preserved

only in the RBP case (and not for the traditional BP).

3.2 Negative binomial process

The Bernoulli distribution is not the only distribution that yields conjugacy when coupled to the beta distri-

bution in the classical parametric setting; conjugacy holds for the negative binomial distribution as well. As

we show in this section, this result can be extended to stochastic processes via the CRM framework.

We define the negative binomial process as a CRM with two parameters: a shape parameter r > 0 and a

discrete base measure H̃ =
∑

k bkδψk
whose weights bk take values in (0, 1]. As in the case of the Bernoulli

process, H̃ need not be random at this point. Since H̃ is discrete, we again have a representation for H̃ as in

Eq. (5), and we say that the random measure I is drawn from a negative binomial process, I ∼ NBP(r, H̃),

if I =
∑∞
k=1 ikδψk

with ik
ind
∼ NB(r, bk) for k = 1, 2, . . .. That is, the negative binomial process is formed

by simply making a single draw from a negative binomial distribution at each of the (potentially countably

infinite) atoms of H̃ . This construction generalizes the geometric process studied by Thibaux (2008).

As a Bernoulli process draw can be interpreted as assigning a set of features to a data point, so can we

interpret a draw from the negative binomial process as assigning a set of feature counts to a data point. In

particular, as for the Bernoulli process, we assume that each data point has its own draw from the negative
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binomial process. Every atom with strictly positive mass in the this draw corresponds to a feature that is

exhibited by this data point. Moreover, the size of the atom, which is a positive integer by construction, dictates

how many times the feature is exhibited by the data point. For example, if the data point is a document, and

each feature represents a particular word, then the negative binomial process draw would tell us how many

occurrences of each word there are in the document.

If the base measure for a negative binomial process is a beta process, we say that the combined process

is a beta-negative binomial process (BNBP). If the base measure is a three-parameter beta process, we say that

the combined process is a three-parameter beta-negative binomial process (3BNBP). When either the BP or 3BP

has a finite number of fixed atoms, the ordinary component of the BP or 3BP still has an infinite number of

atoms, but the number of atoms in the negative binomial process is a.s. finite. We prove this fact and more

in Section 5.

We now suppose that the base measure for the negative binomial process is a draw B from an RBP with pa-

rameters θ > 0, γ > 0, {ul}
L
l=1, {ρl}

L
l=1, {σl}

L
l=1, and Hord. The overall specification is B ∼ RBP(θ, γ,u,ρ,σ, Hord)

and I ∼ NBP(r, B). The following theorem characterizes the posterior distribution for this model. The proof

is given in Appendix E.

Theorem 3.

Summary: The RBP prior is conjugate to the negative binomial process likelihood.

Detailed: Let θ and γ be strictly positive scalars. Let (u1, . . . , uL) ∈ ΨL. Let the members of {ρl}
L
l=1 and {σl}

L
l=1

be strictly positive scalars. Let Hord be continuous measure on Ψ. Consider the following model for N draws from

a negative binomial process: In =
∑L
l=1 ifix,n,lδul

+
∑J
j=1 iord,n,jδvj

iid
∼ NBP(B), for n = 1, . . . , N with B ∼

RBP(θ, γ,u,ρ,σ, Hord). That is, the negative binomial process draws have J atoms that are not located at the atoms

of Hfix. Then, B|I1, . . . , IN ∼ RBP(θpost, γpost,upost,ρpost,σpost, Hpost,ord) for θpost = θ + Nr, γpost = γ θ
θ+Nr ,

Hpost,ord = Hord, and L + J fixed atoms, {upost,l} = {ul}
L
l=1 ∪ {vj}

J
j=1. The ρpost and σpost parameters satisfy

ρpost,l = ρl +
∑N

n=1 ifix,n,l and σpost,l = σl + rN for l ∈ {1, . . . , L} and ρpost,L+j =
∑N
n=1 iord,n,j and σpost,L+j =

θ + rN for j ∈ {1, . . . , J}.

4 MIXTURES AND ADMIXTURES

We now assemble the pieces that we have introduced and consider Bayesian nonparametric models of ad-

mixture. Recall that the basic idea of an admixture is that an individual (e.g., an organism, a document, or an

image) can belong simultaneously to multiple classes. This can be represented by associating a binary-valued

vector with each individual; the vector has value one in components corresponding to classes to which the

individual belongs and zero in components corresponding to classes to which the individual does not belong.

More generally, we wish to remove the restriction to binary values and consider a general notion of admixture

in which an individual is represented by a nonnegative, integer-valued vector. We refer to such vectors as

feature vectors, and view the components of such vectors as counts representing the number of times the



12

corresponding feature is exhibited by a given individual. For example, a document may exhibit a given word

zero or more times.

As we discussed in Section 1, the standard approach to modeling an admixture is to assume that there is

an exchangeable set of data associated with each individual and to assume that these data are drawn from a

finite mixture model with individual-specific mixing proportions. There is another way to view this process,

however, that opens the door to a variety of extensions. Note that to draw a set of data from a mixture, we can

first choose the number of data points to be associated with each mixture component (a vector of counts) and

then draw the data point values independently from each selected mixture component. That is, we randomly

draw nonnegative integers ik for each mixture component (or cluster) k. Then, for each k and each n = 1, . . . , ik,

we draw a data point xk,n ∼ F (ψk), where ψk is the parameter associated with mixture component k. The

overall collection of data for this individual is {xk,n}k,n, with N =
∑

k ik total points. One way to generate

data according to this decomposition is to make use of the NBP. We draw I =
∑

k ikδψk
∼ NBP(r, B), where

B is drawn from a beta process, B ∼ BP(θ, γ,H). The overall model is a BNBP mixture model for the counts,

coupled to a conditionally independent set of draws for the individual’s data points {xk,n}k,n.

An alternative approach in the same spirit is to make use of a gamma process (to obtain a set of rates)

that is coupled to a Poisson likelihood process (PLP)3 to convert the rates into counts (Titsias, 2008). In

particular, given a base measure G̃ =
∑

k g̃kδψk
, let I ∼ PLP(G̃) denote I =

∑

k ikδψk
, with ik ∼ Pois(g̃k).

We then consider a gamma Poisson process (ΓPLP) as follows: G̃ ∼ ΓP(θ, c,H), I =
∑

k ikδψk
∼ PLP(G̃), and

xk,n ∼ F (ψk), for n = 1, . . . , ik and each k.

Both the BNBP approach and the ΓPLP approach deliver a random measure, I =
∑

k ikδψk
, as a repre-

sentation of an admixed individual. While the atom locations, (ψk), are subsequently used to generate data

points, the pattern of admixture inheres in the vector of weights (ik). It is thus natural to view this vector as

the representation of an admixed individual. Indeed, in some problems such a weight vector might itself be

the observed data. In other problems, the weights may be used to generate data in some more complex way

that does not simply involve conditionally i.i.d. draws.

This perspective on admixture—focusing on the vector of weights (ik) rather than the data associated with

an individual—is also natural when we consider multiple individuals. The main issue becomes that of linking

these vectors among multiple individuals, and this can readily be achieved in the Bayesian formalism via a

hierarchical model. In the remainder of this section we consider examples of such hierarchies in the Bayesian

nonparametric setting.

Let us first consider the standard approach to admixture in which an individual is represented by a set of

draws from a mixture model. For each individual we need to draw a set of mixing proportions, and these

mixing proportions need to be coupled among the individuals. This can be achieved via a prior known as the

3. We use the terminology “Poisson likelihood process” to distinguish a particular process with Poisson distributions affixed to each
atom of some base distribution from the more general Poisson point process of Kingman (1993).
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hierarchical Dirichlet process (HDP) (Teh et al., 2006):

G0 ∼ DP(θ,H)

Gd =
∑

k

gd,kδψk

ind
∼ DP(θd, G0), d = 1, 2, . . . ,

where the index d ranges over the individuals. Note that the global measure G0 is a discrete random probability

measure, given that it is drawn from a Dirichlet process. In drawing the individual-specific random measure

Gd at the second level, we therefore resample from among the atoms of G0 and do so according to the weights

of these atoms in G0. This shares atoms among the individuals and couples the individual-specific mixing

proportions gd,k. We complete the model specification as follows:

zd,n
iid
∼ (gd,k)k for n = 1, . . . , Nd

xd,n
ind
∼ F (ψzd,n),

which draws an index zd,n from the discrete distribution (gd,k)k and then draws a data point xd,n from a

distribution indexed by zd,n. For instance, (gd,k) might represent topic proportions in document d; ψzd,n might

represent a topic, i.e. a distribution over words; and xd,n might represent the nth word in the dth document.

As before, an alternative view of this process is that we draw an individual-specific set of counts from an

appropriate stochastic process and then generate the appropriate number of data points for each individual.

We also need to couple the counts across individuals. This can be achieved by constructing hierarchical models

involving the NBP. One way to proceed is the following conditional independence hierarchy:

B0 ∼ BP(θ, γ,H) (6)

Id =
∑

k

id,kδψk

ind
∼ NBP(rd, B0),

where we first draw a random measure B0 from the beta process and then draw multiple times from an NBP

with base measure given by B0. Although this conditional independence hierarchy does couple count vectors

across multiple individuals, it does not have the flexibility of the HDP, which draws individual-specific mixing

proportions from an underlying set of population-wide mixing proportions and then converts these mixing

proportions into counts. We can capture this flexibility within an NBP-based framework by simply extending

the hierarchy by one level:

B0 ∼ BP(θ, γ,H) (7)

Bd
ind
∼ BP(θd, γd, B0/B0(Ψ))

Id =
∑

k

id,kδψk

ind
∼ NBP(rd, Bd).

Since B0 is almost surely an atomic measure, the atoms of each Bd will coincide with those of B0 almost surely.

The weights associated with these atoms can be viewed as individual-specific feature probability vectors. We

refer to this prior as the hierarchical beta-negative binomial process (HBNBP).
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We also note that it is possible to consider additional levels of structure in which a population is decomposed

into subpopulations and further decomposed into subsubpopulations and so on, bottoming out in a set of

individuals. This tree structure can be captured by repeated draws from a set of beta processes at each level

of the tree, conditioning on the beta process at the next highest level of the tree. Hierarchies of this form have

previously been explored for beta-Bernoulli processes by Thibaux and Jordan (2007).

Comparison with Zhou et al. (2012). Zhou et al. (2012) have independently proposed a (non-hierarchical)

beta-negative binomial process prior

B0 =
∑

k

bkδrk,ψk
∼ BP(θ, γ, R×H)

Id =
∑

k

id,kδψk
where id,k

ind
∼ NB(rk, bk),

where R is a continuous finite measure over R+ used to associate a distinct failure parameter rk with each

beta process atom. Note that each individual is restricted to use the same failure parameters and the same beta

process weights under this model. In contrast, our BNBP formulation (6) offers the flexibility of differentiating

individuals by assigning each its own failure parameter rd. Our HBNBP formulation (7) further introduces

heterogeneity in the individual-specific beta process weights by leveraging the hierarchical beta process. We

will see that these modeling choices are particularly well-suited for admixture modeling in the coming sections.

Zhou et al. (2012) use their prior to develop a Poisson factor analysis model for integer matrix factorization,

while our primary motivation is mixture and admixture modeling. Our differing models and motivating

applications have led to different challenges and algorithms for posterior inference. While Zhou et al. (2012)

develop an inexact inference scheme based on a finite approximation to the beta process, we develop both an

exact Markov chain Monte Carlo sampler and a finite approximation sampler for posterior inference under

the HBNBP (see Section 7). Finally, unlike Zhou et al. (2012), we provide an extensive theoretical analysis of

our priors including a proof of the conjugacy of the beta process and the NBP (given in Section 3) and an

asymptotic analysis of the BNBP (see Section 5).

5 ASYMPTOTICS

An important component of choosing a Bayesian prior is verifying that its behavior aligns with our beliefs

about the behavior of the data-generating mechanism. In models of clustering, a particular measure of interest

is the diversity—the dependence of the number of clusters on the number of data points. In speaking of the

diversity, we typically assume a finite number of fixed atoms in a process derived from a CRM, so that

asymptotic behavior is dominated by the ordinary component.

It has been observed in a variety of different contexts that the number of clusters in a data set grows as a

power law of the size of the data; that is, the number of clusters is asymptotically proportional to the number

of data points raised to some positive power (Gnedin et al., 2007). Real-world examples of such behavior are

provided by Newman (2005) and Mitzenmacher (2004).
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The diversity has been characterized for the Dirichlet process (DP) and a two-parameter extension to the

Dirichlet process known as the Pitman-Yor process (PYP) (Pitman and Yor, 1997), with extra parameter α ∈ (0, 1)

and concentration parameter θ > −α. We will see that while the number of clusters generated according to a

DP grows as a logarithm of the size of the data, the number of clusters generated according to a PYP grows

as a power of the size of the data. Indeed, the popularity of the Pitman-Yor process—as an alternative prior

to the Dirichlet process in the clustering domain—can be attributed to this power-law growth (Goldwater

et al., 2006; Teh, 2006; Wood et al., 2009). In this section, we derive analogous asymptotic results for the BNBP

treated as a clustering model.

We first highlight a subtle difference between our model and the Dirichlet process. For a Dirichlet process,

the number of data points N is known a priori and fixed. An advantage of our model is that it models

the number of data points N as a random variable and therefore has potentially more predictive power in

modeling multiple populations. We note that a similar effect can be achieved for the Dirichlet process by using

the gamma process for feature modeling as described in Section 4 rather than normalizing away the mass that

determines the number of observations. However, there is no such unnormalized completely random measure

for the PYP (Pitman and Yor, 1997). We thus treat N as fixed for the DP and PYP, in which case the number

of clusters K(N) is a function of N . On the other hand, the number of data points N(r) depends on r in the

case of the BNBP, and the number of clusters K(r) does as well. We also define Kj(N) to be the number of

clusters with exactly j elements in the case of the DP and PYP, and we define Kj(r) to be the number of

clusters with exactly j elements in the BNBP case.

For the DP and PYP, K(N) and Kj(N) are random even though N is fixed, so it will be useful to also

define their expectations:

Φ(N) , E[K(N)], Φj(N) , E[Kj(N)]. (8)

In the BNBP and 3BNBP cases, all of K(r), Kj(r), and N(r) are random. So we further define

Φ(r) , E[K(r)], Φj(r) , E[Kj(r)], ξ(r) , E[N(r)]. (9)

We summarize the results that we establish in this section in Table 1, where we also include comparisons

to existing results for the DP and PYP.4 The full statements of our results, from which the table is derived,

can be found in Appendix C, and proofs are given in Appendix D.

The table shows, for example, that for the DP, Φ(N) ∼ θ log(N) as N → ∞, and, for the BNBP, Φj(r) ∼ γθj−1

as r → ∞ (i.e., constant in r). The result for the expected number of clusters for the DP can be found in Korwar

and Hollander (1973); results for expected number of clusters for both the DP and PYP can be found in Pitman

(2006, Eq. (3.24) on p. 69 and Eq. (3.47) on p. 73). Note that in all cases the expected counts of clusters of size

j are asymptotic expansions in terms of r for fixed j and should not be interpreted as asymptotic expansions

4. The reader interested in power laws may also note that the generalized gamma process is a completely random measure that, when
normalized, provides a probability measure for clusters that has asymptotic behavior similar to the PYP; in particular, the expected
number of clusters grows almost surely as a power of the size of the data (Lijoi et al., 2007).
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TABLE 1: Let N be the number of data points when this number is fixed and ξ(r) be the expected number of
data points when N is random. Let Φ(N), Φj(N), Φ(r), and Φj(r) be the expected number of clusters under
various scenarios and defined as in Eqs. (8) and (9). The upper part of the table gives the asymptotic behavior
of Φ up to a multiplicative constant, and the bottom part of the table gives the multiplicative constants. For
the DP, θ > 0. For the PYP, α ∈ (0, 1) and θ > −α. For the BNBP, θ > 1. For the 3BNBP, α ∈ (0, 1) and
θ > 1− α.

Process Expected number of clusters Expected number of clusters of size j
Function of N or ξ(r)

DP log(N) 1
PYP Nα Nα

BNBP log(ξ(r)) 1
3BNBP (ξ(r))α (ξ(r))α

Constants
DP θ θj−1

PYP Γ(θ+1)
αΓ(θ+α)

Γ(θ+1)
Γ(1−α)Γ(θ+α)

Γ(j−α)
Γ(j+1)

BNBP γθ γθj−1

3BNBP γ1−α

α
Γ(θ+1)
Γ(θ+α)

(

θ+α−1
θ

)α
γ1−α Γ(θ+1)

Γ(1−α)Γ(θ+α)
Γ(j−α)
Γ(j+1)

(

θ+α−1
θ

)α

in terms of j.

We conclude that, just as for the Dirichlet process, the BNBP can achieve both logarithmic cluster number

growth in the basic model and power law cluster number growth in the expanded, three-parameter model.

6 SIMULATION

Our theoretical results in Section 5 are supported by simulation results, summarized in Figure 1; in particular,

our simulation corroborated the existence of power laws in the three-parameter beta process case examined in

Section 5. The simulation was performed as follows. For values of the negative binomial parameter r evenly

spaced between 1 and 1,001, we generated beta process weights according to a beta process (or three-parameter

beta process) using a stick-breaking representation (Paisley et al., 2010; Broderick et al., 2012). For each of the

resulting atoms, we simulated negative binomial draws to arrive at a sample from a BNBP. For each such

BNBP, we can count the resulting total number of data points N and total number of clusters K . Thus, each

r gives us an (r,N,K) triple.

In the simulation, we set the mass parameter γ = 3. We set the concentration parameter θ = 3; in particular,

we note that the analysis in Section 5 implies that we should always have θ > 1. Finally, we ran the simulation

for both the α = 0 case, where we expect no power law behavior, and the α = 0.5 case, where we do expect

power law behavior. The results are shown in Figure 1. Is this figure, we scatter plot the (r,K) tuples from

the generated (r,N,K) triples on the left and plot the (N,K) tuples on the right.

In the left plot, the upper black points represent the simulation with α = 0.5, and the lower blue data

points represent the α = 0 case. The lower red line illustrates the theoretical result corresponding to the α = 0

case (Lemma 12 in Appendix C), and we can see that the anticipated logarithmic growth behavior agrees

with our simulation. The upper red line illustrates the theoretical result for the α = 0.5 case (Lemma 13 in

Appendix C). The agreement between simulation and theory here demonstrates that, in contrast to the α = 0
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Fig. 1: For each r evenly spaced between 1 and 1,001, we simulate (random) values of the number of data
points N and number of clusters K from the BNBP and 3BNBP. In both plots, we have mass parameter
γ = 3 and concentration parameter θ = 3. On the left, we see the number of clusters K as a function of the
negative binomial parameter r (see Lemma 12 and Lemma 13 in Appendix C); on the right, we see the number
of clusters K as a function of the (random) number of data points N (see Theorem 16 and Theorem 17 in
Appendix C). In both plots, the upper black points show simulation results for the case α = 0.5, and the
lower blue points show α = 0. Red lines indicate the theoretical asymptotic mean behavior we expect from
Section 5.

case, the α = 0.5 case exhibits power law growth in the number of clusters K as a function of the negative

binomial parameter r.

Our simulations also bear out that the expectation of the random number of data points N increases linearly

with r (Lemmas 10 and 11 in Appendix C). We see, then, on the right side of Figure 1 the behavior of the

number of clusters K now plotted as a function of N . As expected given the asymptotics of the expected

value of N , the behavior in the right plot largely mirrors the behavior in the left plot. Just as in the left plot,

the lower red line (Theorem 16 in Appendix C) shows the anticipated logarithmic growth of K and N when

α = 0. And the upper red line (Theorem 17 in Appendix C) shows the anticipated power law growth of K

and N when α = 0.5.

We can see the parallels with the DP and PYP here. Clusters generated from the Dirichlet process (i.e.,

Pitman-Yor process with α = 0) exhibit logarithmic growth of the expected number of clusters K as the

(deterministic) number of data points N grows. And clusters generated from the Pitman-Yor process with

α ∈ (0, 1) exhibit power law behavior in the expectation of K as a function of (fixed) N . So too do we see

that the BNBP, when applied to clustering problems, yields asymptotic growth similar to the DP and that

the 3BNBP yields asymptotic growth similar to the PYP.

7 POSTERIOR INFERENCE

In this section we present posterior inference algorithms for the HBNBP. We focus on the setting in which,

for each individual d, there is an associated exchangeable sequence of observations (xd,n)
Nd

n=1. We seek to
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infer both the admixture component responsible for each observation and the parameter ψk associated with

each component. Hereafter, we let zd,n denote the unknown component index associated with xd,n, so that

xd,n ∼ F (ψzd,n).

Under the HBNBP admixture model introduced in Section 4, the posterior over component indices and

parameters has the form

p(z·,·,ψ· | x·,·,Θ) ∝ p(z·,·,ψ·,b0,·,b·,· | x·,·,Θ),

where Θ , (F,H, γ0, θ0,γ·, θ·, r·) is the collection of all fixed hyperparameters. As is the case with HDP

admixtures (Teh et al., 2006) and earlier hierarchical beta process featural models (Thibaux and Jordan, 2007),

the posterior of the HBNBP admixture cannot be obtained in analytical form due to complex couplings in

the marginal p(x·,· | Θ). We therefore develop Gibbs sampling algorithms (Geman and Geman, 1984) to draw

samples of the relevant latent variables from their joint posterior.

A challenging aspect of inference in the nonparametric setting is the countable infinitude of component

parameters and the countably infinite support of the component indices. We develop two sampling algorithms

that cope with this issue in different ways. In Section 7.1, we use slice sampling to control the number of

components that need be considered on a given round of sampling and thereby derive an exact Gibbs sampler

for posterior inference under the HBNBP admixture model. In Section 7.2, we describe an efficient alternative

sampler that makes use of a finite approximation to the beta process. Throughout we assume that the base

measure H is continuous. We note that neither procedure requires conjugacy between the base distribution

H and the data-generating distribution F .

7.1 Exact Gibbs slice sampler

Slice sampling (Damien et al., 1999; Neal, 2003) has been successfully employed in several Bayesian nonpara-

metric contexts, including Dirichlet process mixture modeling (Walker, 2007; Papaspiliopoulos, 2008; Kalli

et al., 2011) and beta process feature modeling (Teh et al., 2007). The key to its success lies in the introduction

of one or more auxiliary variables that serve as adaptive truncation levels for an infinite sum representation

of the stochastic process.

This adaptive truncation procedure proceeds as follows. For each observation associated with individual d,

we introduce an auxiliary variable ud,n with conditional distribution

ud,n ∼ Unif(0, ζd,zd,n),

where (ζd,k)
∞
k=1 is a fixed positive sequence with limk→∞ ζd,k = 0. To sample the component indices, we recall

that a negative binomial draw id,k ∼ NB(rd, bd,k) may be represented as a gamma-Poisson mixture:

λd,k ∼ Gamma

(

rd,
1− bd,k
bd,k

)

id,k ∼ Pois(λd,k).
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We first sample λd,k from its full conditional. By gamma-Poisson conjugacy, this has the simple form

λd,k ∼ Gamma (rd + id,k, 1/bd,k) .

We next note that, given λd,· and the total number of observations associated with individual d, the

cluster sizes id,k may be constructed by sampling each zd,n independently from λd,·/
∑

k λd,k and setting

id,k =
∑

n I(zd,n = k). Hence, conditioned on the number of data points Nd, the component parameters ψk,

the auxiliary variables λd,k, and the slice-sampling variable ud,n, we sample the index zd,n from a discrete

distribution with

P(zd,n = k) ∝ F (dxd,n | ψk)
I(ud,n ≤ ζd,k)

ζd,k
λd,k

so that only the finite set of component indices {k : ζd,k ≥ ud,n} need be considered when sampling zd,n.

Let Kd , max{k : ∃n s.t. ζd,k ≥ ud,n} and K , maxdKd. Then, on a given round of sampling, we need only

explicitly represent λd,k and bd,k for k ≤ Kd and ψk and b0,k for k ≤ K . The simple Gibbs conditionals for

bd,k and ψk can be found in Appendix F.1. To sample the shared beta process weights b0,k, we leverage the

size-biased construction of the beta process introduced by Thibaux and Jordan (2007):

B0 =

∞
∑

m=0

Cm
∑

i=1

b0,m,iδψm,i,·
,

where

Cm
ind
∼ Pois

(

θ0γ0
θ0 +m

)

, b0,m,i
ind
∼ Beta(1, θ0 +m), and ψm,i,·

iid
∼ H,

and we develop a Gibbs slice sampler for generating samples from its posterior. The details are deferred to

Appendix F.1.

7.2 Finite approximation Gibbs sampler

An alternative to the size-biased construction of B0 is a finite approximation to the beta process with a fixed

number of components, K :

b0,k
iid
∼ Beta(θ0γ0/K, θ0(1 − γ0/K)), ψk

iid
∼ H, k ∈ {1, . . . ,K}. (10)

It is known that, when H is continuous, the distribution of
∑K

k=1 b0,kδψk
converges to BP(θ0, γ0, H) as the

number of components K → ∞ (see the proof of Theorem 3.1 by Hjort (1990) with the choice A0(t) = γ). Hence,

we may leverage the beta process approximation (10) to develop an approximate posterior sampler for the

HBNBP admixture model with an approximation level K that trades off between computational efficiency and

fidelity to the true posterior. We defer the detailed conditionals of the resulting Gibbs sampler to Appendix F.3

and briefly compare the behavior of the finite and exact samplers on a toy data set in Figure 2. We note finally

that the beta process approximation in Eq. (10) also gives rise to a new finite admixture model that may be

of interest in its own right; we explore the utility of this HBNBP approximation in Section 9.
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Fig. 2: Number of admixture components used by the finite approximation sampler with K = 100 (left) and
the exact Gibbs slice sampler (right) on each iteration of HBNBP admixture model posterior inference. We use
a standard “toy bars” data set with ten underlying admixture components (cf. Griffiths and Steyvers (2004)).
We declare a component to be used by a sample if the sampled beta process weight, b0,k, exceeds a small
threshold. Both the exact and the finite approximation sampler find the correct underlying structure, while
the finite sampler attempts to innovate more because of the larger number of proposal components available
to the data in each iteration.

8 DOCUMENT TOPIC MODELING

In the next two sections, we will show how the HBNBP admixture model and its finite approximation can

be used as practical building blocks for more complex supervised and unsupervised inferential tasks.

We first consider the unsupervised task of document topic modeling, in which each individual d is a document

containing Nd observations (words) and each word xd,n belongs to a vocabulary of size V . The topic modeling

framework is an instance of admixture modeling in which we assume that each word of each document is

generated from a latent admixture component or topic, and our goal is to infer the topic underlying each word.

In our experiments, we let Hord, the Ψ dimension of the ordinary component intensity measure, be a

Dirichlet distribution with parameter η1 for η = 0.1 and 1 a V -dimensional vector of ones and let F (ψk)

be Mult(1, ψk). We use the setting (γ0, θ0, γd, θd) = (3, 3, 1, 10) for the global and document-specific mass and

concentration parameters and set the document-specific negative binomial shape parameter according to the

heuristic rd = Nd(θ0 − 1)/(θ0γ0). We arrive at this heuristic by matching Nd to its expectation under a non-

hierarchical BNBP model and solving for rd:

E[Nd] = rdE
[

∑∞

k=1
bd,k/(1− bd,k)

]

= γ0θ0/(θ0 − 1).

When applying the exact Gibbs slice sampler, we let the slice sampling decay sequence follow the same pattern

across all documents: ζd,k = 1.5−k.

8.1 Worldwide Incidents Tracking System

We report results on the Worldwide Incidents Tracking System (WITS) data set.5 This data set consists of reports

on 79,754 terrorist attacks from the years 2004 through 2010. Each event contains a written summary of the

5. https://wits.nctc.gov

https://wits.nctc.gov
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TABLE 2: The number of incidents claimed by each organization in the WITS perpetrator identification
experiment.

Group ID Perpetrator # Claimed Incidents
1 taliban 2647
2 al-aqsa 417
3 farc 76
4 izz al-din al-qassam 478
5 hizballah 89
6 al-shabaab al-islamiya 426
7 al-quds 505
8 abu ali mustafa 249
9 al-nasser salah al-din 212

10 communist party of nepal (maoist) 291

incident, location information, victim statistics, and various binary fields such as “assassination,” “IED,” and

“suicide.” We transformed each incident into a text document by concatenating the summary and location

fields and then adding further words to account for other, categorical fields: e.g., an incident with seven

hostages would have the word “hostage” added to the document seven times. We used a vocabulary size of

V = 1,048 words.

Perpetrator Identification. Our experiment assesses the ability of the HBNBP admixture model to discrim-

inate among incidents perpetrated by different organizations. We first grouped documents according to the

organization claiming responsibility for the reported incident. We considered 5,390 claimed documents in

total distributed across the ten organizations listed in Table 2. We removed all organization identifiers from all

documents and randomly set aside 10% of the documents in each group as test data. Next, for each group, we

trained an independent, organization-specific HBNBP model on the remaining documents in that group by

drawing 10,000 MCMC samples. We proceeded to classify each test document by measuring the likelihood of

the document under each trained HBNBP model and assigning the label associated with the largest likelihood.

The resulting confusion matrix across the ten candidate organizations is displayed in Table 3a. Results are

reported for the exact Gibbs slice sampler; performance under the finite approximation sampler is nearly

identical.

For comparison, we carried out the same experiment using the more standard HDP admixture model in

place of the HBNBP. For posterior inference, we used the HDP block sampler code of Yee Whye Teh6 and

initialized the sampler with 100 topics and topic hyperparameter η = 0.1 (all remaining parameters were set

to their default values). For each organization, we drew 250,000 MCMC samples and kept every twenty-fifth

sample for evaluation. The confusion matrix obtained through HDP modeling is displayed in Table 3b. We see

that, overall, HBNBP modeling leads to more accurate identification of perpetrators than its HDP counterpart.

Most notably, the HDP wrongly attributes more than half of all documents from group 1 (taliban) to group

3 (farc) or group 6 (al-shabaab al-islamiya). We hypothesize that the HBNBP’s superior discriminative power

6. http://www.gatsby.ucl.ac.uk/∼ywteh/research/npbayes/npbayes-r1.tgz

http://www.gatsby.ucl.ac.uk/~ywteh/research/npbayes/npbayes-r1.tgz
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TABLE 3: Confusion matrices for WITS perpetrator identification. See Table 2 for the organization names
matching each group ID.

(a) HBNBP Confusion Matrix

Predicted Groups
1 2 3 4 5 6 7 8 9 10

A
ct

u
al

G
ro

u
p

s
1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.38 0.00 0.02 0.00 0.00 0.29 0.29 0.02 0.00
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.54 0.00 0.00 0.15 0.27 0.04 0.00
5 0.11 0.33 0.00 0.11 0.44 0.00 0.00 0.00 0.00 0.00
6 0.02 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00
7 0.00 0.10 0.00 0.06 0.02 0.00 0.48 0.30 0.04 0.00
8 0.00 0.04 0.00 0.00 0.00 0.00 0.16 0.76 0.04 0.00
9 0.00 0.10 0.00 0.05 0.10 0.00 0.29 0.43 0.05 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(b) HDP Confusion Matrix

Predicted Groups
1 2 3 4 5 6 7 8 9 10

A
ct

u
al

G
ro

u
p

s

1 0.46 0.00 0.26 0.00 0.03 0.23 0.00 0.00 0.00 0.01
2 0.00 0.31 0.02 0.02 0.00 0.00 0.29 0.36 0.00 0.00
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.52 0.04 0.00 0.06 0.31 0.06 0.00
5 0.11 0.00 0.00 0.00 0.44 0.00 0.11 0.11 0.11 0.11
6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
7 0.00 0.10 0.00 0.04 0.00 0.00 0.38 0.42 0.06 0.00
8 0.00 0.04 0.00 0.00 0.00 0.00 0.08 0.84 0.04 0.00
9 0.00 0.05 0.00 0.10 0.00 0.00 0.24 0.62 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

stems from its ability to distinguish between documents both on the basis of word frequency and on the basis

of document length.

We would expect the HBNBP to have greatest difficulty discriminating among perpetrators when both word

usage frequencies and document length distributions are similar across groups. To evaluate the extent to which

this occurs in our perpetrator identification experiment, for each organization, we plotted the density histogram

of document lengths in Figure 3a and the heat map displaying word usage frequency across all associated

documents in Figure 3b. We find that the word frequency patterns are nearly identical across groups 2, 7, 8,

and 9 (al-aqsa, al-quds, abu ali mustafa, and al-nasser salah al-din, respectively) and that the document length

distributions of these four groups are all well aligned. As expected, the majority of classification errors made

by our HBNBP models result from misattribution among these same four groups. The same group similarity

structure is evidenced in a display of the ten most probable words from the most probable HBNBP topic

for each group, Table 4. There, we also find an intuitive summary of the salient regional and methodological

vocabulary associated with each organization.

9 IMAGE SEGMENTATION AND OBJECT RECOGNITION

Two problems of enduring interest in the computer vision community are image segmentation, dividing an

image into its distinct, semantically meaningful regions, and object recognition, labeling the regions of images

according to their semantic object classes. Solutions to these problems are at the core of applications such as

content-based image retrieval, video surveying, and object tracking. Here we will take an admixture modeling
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TABLE 4: The ten most probable words from the most probable topic in the final MCMC sample of each group
in the WITS perpetrator identification experiment. The topic probability is given in parentheses. See Table 2
for the organization names matching each group ID.

HBNBP: Top topic per organization

group 1 (0.29) afghanistan, assailants, claimed, responsibility, armedattack, fired, police, victims, armed, upon
group 2 (0.77) israel, assailants, armedattack, responsibility, fired, claimed, district, causing, southern, damage
group 3 (0.95) colombia, victims, facility, wounded, armed, claimed, forces, revolutionary, responsibility, assailants
group 4 (0.87) israel, fired, responsibility, claimed, armedattack, causing, injuries, district, southern, assailants
group 5 (0.95) victims, wounded, facility, israel, responsibility, claimed, armedattack, fired, rockets, katyusha
group 6 (0.54) wounded, victims, somalia, civilians, wounding, facility, killing, mortars, armedattack, several
group 7 (0.83) israel, district, southern, responsibility, claimed, fired, armedattack, assailants, causing, injuries
group 8 (0.94) israel, district, southern, armedattack, claimed, fired, responsibility, assailants, causing, injuries
group 9 (0.88) israel, district, southern, fired, responsibility, claimed, armedattack, assailants, causing, injuries
group 10 (0.80) nepal, victims, hostage, assailants, party, communist, claimed, front, maoist/united, responsibility
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(a) Density histograms of document lengths.
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(b) Heat map of word frequencies for the 200 most common words across all documents (best viewed in color).

Fig. 3: Document length distributions and word frequencies for each organization in the WITS perpertrator
identification experiment.

approach to jointly recognizing and localizing objects within images (Cao and Li, 2007; Russell et al., 2006;

Sivic et al., 2005; Verbeek and Triggs, 2007). Each individual d is an image comprised of Nd image patches

(observations), and each patch xd,n is assumed to be generated by an unknown object class (a latent component

of the admixture). Given a series of training images with image patches labeled, the problem of recognizing

and localizing objects in a new image reduces to inferring the latent class associated with each new image

patch. Since the number of object classes is typically known a priori, we will tackle this inferential task with

the finite approximation to the HBNBP admixture model given in Section 7.2 and compare its performance
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with that of a more standard model of admixture, Latent Dirichlet Allocation (LDA) (Blei et al., 2003).

9.1 Representing an Image Patch

We will represent each image patch as a vector of visual descriptors drawn from multiple modalities. Verbeek

and Triggs (2007) suggest three complementary modalities: texture, hue, and location. Here, we introduce a

fourth: opponent angle. To describe hue, we use the robust hue descriptor of Van De Weijer and Schmid (2006),

which grants invariance to illuminant variations, lighting geometry, and specularities. For texture description

we use “dense SIFT” features (Lowe, 2004; Dalal and Triggs, 2005), histograms of oriented gradients computed

not at local keypoints but rather at a single scale over each patch. To describe coarse location, we cover each

image with a regular c x c grid of cells (for a total of V loc = c2 cells) and assign each patch the index of

the covering cell. The opponent angle descriptor of Van De Weijer and Schmid (2006) captures a second

characterization of image patch color. These features are invariant to specularities, illuminant variations, and

diffuse lighting conditions.

To build a discrete visual vocabulary from these raw descriptors, we vector quantize the dense SIFT, hue,

and opponent angle descriptors using k-means, producing V sift, V hue, and V opp clusters respectively. Finally,

we form the observation associated with a patch by concatenating the four modality components into a single

vector, xd,n = (xsiftd,n, x
hue
d,n , x

loc
d,n, x

opp
d,n ). As in Verbeek and Triggs (2007), we assume that the descriptors from

disparate modalities are conditionally independent given the latent object class of the patch. Hence, we define

our data generating distribution and our base distribution over parameters ψk = (ψsift
k , ψhue

k , ψloc
k , ψopp

k ) via

ψmk
ind
∼ Dirichlet(η1Vm) for m ∈ {sift, hue, loc, opp}

xmd,n | zd,n,ψ·
ind
∼ Mult(1, ψmzd,n) for m ∈ {sift, hue, loc, opp}

for a hyperparameter η ∈ R and 1Vm a V m-dimensional vector of ones.

9.2 Experimental Setup

We use the Microsoft Research Cambridge pixel-wise labeled image database v1 in our experiments.7 The data

set consists of 240 images, each of size 213 x 320 pixels. Each image has an associated pixel-wise ground truth

labeling, with each pixel labeled as belonging to one of 13 semantic classes or to the void class. Pixels have a

ground truth label of void when they do not belong to any semantic class or when they lie on the boundaries

between classes in an image. The dataset provider notes that there are insufficiently many instances of horse,

mountain, sheep, or water to learn these classes, so, as in Verbeek and Triggs (2007), we treat these ground

truth labels as void as well. Thus, our general task is to learn and segment the remaining nine semantic object

classes.

From each image, we extract 20 x 20 pixel patches spaced at 10 pixel intervals across the image. We choose

the visual vocabulary sizes (V sift, V hue, V loc, V opp) = (1000, 100, 100, 100) and fix the hyperparameter η = 0.1.

7. http://research.microsoft.com/vision/cambridge/recognition/
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Fig. 4: MSRC-v1 test image segmentations inferred by the HBNBP admixture model (best viewed in color).

As in Verbeek and Triggs (2007), we assign each patch a ground truth label zd,n representing the most frequent

pixel label within the patch. When performing posterior inference, we divide the dataset into training and test

images. We allow the inference algorithm to observe the labels of the training image patches, and we evaluate

the algorithm’s ability to correctly infer the label associated with each test image patch.

Since the number of object classes is known a priori, we employ the HBNBP finite approximation Gibbs

sampler of Section 7.2 to conduct posterior inference. We again use the hyperparameters (γ0, θ0, γd, θd) =

(3, 3, 1, 10) for all documents d and set rd according to the heuristic rd = Nd(θ0 − 1)/(θ0γ0). We draw 10,000

samples and, for each test patch, predict the label with the highest posterior probability across the samples.

We compare HBNBP performance with that of LDA using the standard variational inference algorithm of Blei

et al. (2003) and maximum a posteriori prediction of patch labels. For each model, we set K = 10, allowing for

the nine semantic classes plus void, and, following Verbeek and Triggs (2007), we ensure that the void class

remains generic by fixing ψm10 = ( 1
Vm , · · · ,

1
Vm ) for each modality m.

9.3 Results

Figure 4 displays sample test image segmentations obtained using the HBNBP admixture model. Each pixel

is given the predicted label of its closest patch center. Test patch classification accuracies for the HBNBP

admixture model and LDA are reported in Tables 5a and 5b respectively. All results are averaged over twenty

randomly generated 90% training / 10% test divisions of the data set. The two methods perform comparably,

with the HBNBP admixture model outperforming LDA in the prediction of every object class save building.

Indeed, the mean object class accuracy is 0.79 for the HBNBP model versus 0.76 for LDA, showing that the

HBNBP provides a viable alternative to more classical approaches to admixture.

9.4 Parameter Sensitivity

To test the sensitivity of the HBNBP admixture model to misspecification of the mass, concentration, and

likelihood hyperparameters, we measure the fluctuation in test set performance as each hyperparameter

deviates from its default value (with the remainder held fixed). The results of this study are summarized
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TABLE 5: Confusion matrices for patch-level image segmentation and object recognition on the MSRC-v1
database. We report test image patch inference accuracy averaged over twenty randomly generated 90%
training / 10% test divisions.

(a) HBNBP Confusion Matrix

Predicted Class Label
building grass tree cow sky aeroplane face car bicycle

A
ct

u
al

C
la

ss
L

ab
el

building 0.66 0.01 0.05 0.00 0.03 0.09 0.01 0.03 0.09
grass 0.00 0.89 0.06 0.02 0.00 0.01 0.00 0.00 0.00
tree 0.01 0.08 0.75 0.01 0.04 0.03 0.00 0.00 0.07
cow 0.00 0.10 0.04 0.72 0.00 0.00 0.05 0.01 0.01
sky 0.04 0.00 0.01 0.00 0.93 0.01 0.00 0.00 0.00

aeroplane 0.10 0.04 0.01 0.00 0.02 0.81 0.00 0.02 0.00
face 0.04 0.00 0.01 0.04 0.00 0.00 0.84 0.00 0.00
car 0.20 0.00 0.01 0.00 0.01 0.01 0.00 0.73 0.02

bicycle 0.16 0.00 0.04 0.00 0.00 0.00 0.00 0.02 0.73

(b) LDA Confusion Matrix

Predicted Groups
building grass tree cow sky aeroplane face car bicycle

A
ct

u
al

G
ro

u
p

s

building 0.69 0.01 0.04 0.01 0.03 0.07 0.01 0.03 0.08
grass 0.00 0.88 0.05 0.02 0.00 0.01 0.00 0.00 0.00
tree 0.02 0.08 0.75 0.01 0.04 0.02 0.00 0.00 0.05
cow 0.00 0.10 0.03 0.70 0.00 0.00 0.05 0.01 0.01
sky 0.05 0.00 0.02 0.00 0.91 0.01 0.00 0.00 0.00

aeroplane 0.12 0.04 0.01 0.00 0.02 0.75 0.00 0.03 0.00
face 0.04 0.00 0.01 0.05 0.00 0.00 0.80 0.00 0.00
car 0.19 0.00 0.01 0.00 0.01 0.01 0.00 0.71 0.03

bicycle 0.19 0.00 0.04 0.01 0.00 0.00 0.00 0.02 0.68

TABLE 6: Sensitivity of HBNBP admixture model to hyperparameter specification for joint image segmentation
and object recognition on the MSRC-v1 database. Each hyperparameter is varied across the specified range
while the remaining parameters are held fixed to the default values reported in Section 9.2. We report test
patch inference accuracy averaged across object classes and over twenty randomly generated 90% training /
10% test divisions. For each test patch, we predict the label with the highest posterior probability across 2,000
samples.

Hyperparameter Parameter range Minimum accuracy Maximum accuracy
γ0 [0.3, 30] 0.786 0.787
θ0 [1.5, 30] 0.786 0.786
η [2× 10−16, 1] 0.778 0.788

in Table 6. We find that the HBNBP model is rather robust to changes in the hyperparameters and maintains

nearly constant predictive performance, even as the parameters vary over several orders of magnitude.

10 CONCLUSIONS

Motivated by problems of admixture, in which individuals are represented multiple times in multiple latent

classes, we introduced the negative binomial process, an infinite-dimensional prior for vectors of counts. We

developed new nonparametric admixture models based on the NBP and its conjugate prior, the beta process,

and characterized the relationship between the BNBP and preexisting models for admixture. We also analyzed

the asymptotics of our new priors, derived MCMC procedures for posterior inference, and demonstrated the

effectiveness of our models in the domains of image segmentation and document analysis.

There are many other problem domains in which latent vectors of counts provide a natural modeling

framework and where we believe that the HBNBP can prove useful. These include the computer vision task
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of multiple object recognition, where one aims to discover which and how many objects are present in a given

image (Titsias, 2008), and the problem of modeling copy number variation in genomic regions, where one seeks

to infer the underlying events responsible for large repetitions or deletions in segments of DNA (Chen et al.,

2011).
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TABLE 7: A comparison of two Bayesian nonparametric constructions of clusterings such that the clusters
have conditionally independent, random sizes; hence the data set size itself is random. PP indicates a Poisson
point process draw with the given intensity.

Beta negative binomial process Gamma Poisson likelihood process
ν(db, dψ) = γθb−1(1 − b)θ−1 db H(dψ) ν(dg̃, dψ) = θg̃−1e−cg̃ dg̃ H(dψ)
(bk, ψk) ∼ PP(ν(db, dψ)) (g̃k, ψk) ∼ PP(ν(dg̃, dψ))

B =
∑

k bkδψk
G̃ =

∑

k g̃kδψk

λk
ind
∼ Gamma(r, 1−bkbk

)

ik
ind
∼ Pois(λk) ik

ind
∼ Pois(g̃k)

APPENDIX A

CONNECTIONS

In Section 4 we noted that both the beta-negative binomial process (BNBP) and the gamma Poisson process

(ΓPLP) provide nonparametric models for the count vectors arising in admixture models. In this section,

we will elucidate some of the deeper connections between these two stochastic processes. We will see that

understanding these connections can not only inspire new stochastic process constructions but also lead to

novel inference algorithms.

We are motivated by Table 7, which indicates a strong parallel between the BNBP and ΓPLP constructions

for clusterings where the size of each cluster is independent and random conditioned on some underlying

process. The former requires an additional random stage consisting of a draw from a gamma distribution. Here,

we use the representation of the negative binomial distribution, i ∼ NB(r, b), as a gamma mixture of Poisson

distributions: b̃ ∼ Gamma(r, (1 − b)/b) and i ∼ Pois(b̃). However, this table mostly highlights the parallel on

the level of the likelihood process and therefore on the level of classic, one-dimensional distributions. The

relations between such distributions are well-studied.

Noting that many classic, one-dimensional distributions are easily obtained from each other by a simple

change of variables, we aim to find new, analogous transformations in the stochastic process setting. In

particular, all of our results in this section, which apply to nonparametric Bayesian priors derived from Poisson

point processes, have direct analogues in the setting of one-dimensional distributions. We start by reviewing

these known distributional relations. First, consider a beta distributed random variable x ∼ Beta(a, b). Then

the variable x/(1 − x) has a beta prime distribution with parameters a and b; specifically, β′(a, b) denotes the

beta prime distribution with density

β′(z | a, b) =
Γ(a+ b)

Γ(a)Γ(b)
za−1(1 + z)−a−b.

The beta prime distribution can alternatively be derived from a gamma distribution. Namely, if x ∼ Gamma(a, c)

and y ∼ Gamma(b, c) are independent, then x/y ∼ β′(a, b). This connection is not the only one between the

beta and gamma distributions though. Let

x ∼ Gamma(a, c), y ∼ Gamma(b, c). (11)
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Then

x/(x+ y) ∼ Beta(a, b). (12)

In the rest of this section, we present similar results but now for the process case—the beta process, gamma

process and a new process we call the beta prime process. The proofs of these results appear in Appendix B.

We start by defining a new completely random measure with nonnegative, real-valued feature weights.

First, we note that, as for the processes defined in Section 2, there is no deterministic measure. Second, we

specify that the fixed atoms have distribution

ηl
ind
∼ β′(θγρl, θ(1− γρl))

at locations (ul). Here, θ > 0, γ > 0, (ρl)
∞
l=1, and (ul) are parameters. As usual, while the number of fixed

atoms L may be countably infinite, it is typically finite. Finally, the ordinary component has Poisson process

intensity Hord × ν, where

ν(db̃) = γθb̃−1(1 + b̃)−θ db̃, (13)

which we note is sigma-finite with finite mean, guaranteeing that the number of atoms generated from the

ordinary component will be countably infinite with finite sum.

We abbreviate by defining H =
∑L
l=1 ρlδul

+Hord and say that the resulting CRM B̃ ,
∑

k b̃kδψk
is a draw

from a beta prime process (BPP) with base distribution H : B̃ ∼ BPP(θ, γ,H). The name “beta prime process”

reflects the fact that the underlying intensity is an improper beta prime distribution as well as the beta prime

distribution of the fixed atoms.

With this definition in hand, we can find the stochastic process analogues of the distributional results above

(with proofs in Appendix B). Just as a beta prime distribution can be derived from a beta random variable,

we have the following result that a similar transformation of the atom weights of a beta process yields a beta

prime process.

Proposition 4. Suppose B =
∑

k bkδψk
∼ BP(θ, γ,H). Then

∑

k
bk

1−bk
δψk

∼ BPP(θ, γ,H).

Just as a beta prime random variable can be derived as the ratio of gamma random variables, we find that

the atoms of the beta prime process can be constructed as by taking ratios of gamma random variables and

the atoms of a gamma process.

Proposition 5. Suppose G̃ =
∑

k g̃kδψk
∼ ΓP(γθ, c,H) and τk ∼ Gamma(θ(1 − γH({ψk})), c) independently for

each k. Then
∑

k
g̃k
τk
δψk

∼ BPP(θ, γ,H).

And, finally, the analogue to constructing a beta random variable from two gamma random variables is the

construction of a beta process from a gamma process and an infinite vector of independent gamma random

variables.
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Proposition 6. Suppose G̃ =
∑

k g̃kδψk
∼ ΓP(γθ, c,H) and τk ∼ Gamma(θ(1 − γH({ψk})), c) independently for

each k. Then
∑

k
g̃k

τk+g̃k
δψk

∼ BP(θ, γ,H).

The key to the manipulations above was the Poisson process framework of the ordinary component. In

particular, we see that BP itself can be derived from ΓP, and therefore the connection between the BNBP and

ΓPLP is not restricted to just the negative binomial and Poisson likelihood. Moreover, besides introducing a

further stochastic process in the form of the beta prime process, we emphasize that these relations potentially

allow us to perform inference for a new stochastic process when inference for another, related stochastic process

is already known—or to have available alternative, potentially faster or better mixing, inference algorithms.

APPENDIX B

PROOFS FOR APPENDIX A

Proof of Proposition 4: First, consider the ordinary component of a beta process. The Mapping Theorem of

Kingman (1993) tells us that if the collection of tuples (ψk, bk) come from a Poisson process with intensity

Hord × νbeta, where νbeta is the beta process intensity of Eq. (2), then the collection of tuples (ψk, bk/(1− bk))

are draws from a Poisson process with intensity Hord × ν, where we apply a change of variables to find:

ν(db̃) = γθ

(

b̃

1 + b̃

)−1(

1−
b̃

1 + b̃

)θ−1
1

(1 + b̃)2
db̃

ν(db̃) = γθb̃−1(1 + b̃)−θ db̃,

which matches Eq. (13).

For any particular atom where bk ∼ Beta(θγρk, θ(1 − γρk)) and ρk = H({ψk}) > 0, we simply quote the

well-known, one-dimensional change of variables bk/(1− bk) ∼ β′(θγρk, θ(1− γρk)).

Since there is no deterministic component, we have considered all components of the completely random

measure.

Proof of Proposition 5: We again start with the ordinary component of a completely random measure. In

particular, we assume the collection of tuples (ψk, g̃k) is generated according to a Poisson process with intensity

Hord × νgamma, where νgamma is the gamma process intensity of Eq. (4).

Consider a random variable τk ∼ Gamma(θ, c) associated with each such tuple. Then 1/τk ∼ IG(θ, c).

We consider a marked Poisson process with mark b̃k , g̃k/τk at tuple (ψk, g̃k) of the original process. By

the scaling property of the inverse gamma distribution, we note b̃k ∼ IG(θ, cg̃k) given g̃k. So the Marking

Theorem (Kingman, 1993) implies that the collection of tuples (ψk, b̃k) is itself a draw from a Poisson point

process with intensity Hord × ν, where

ν(db̃) =

∫

p(b̃ | θ, c, g̃) ν(dg̃) dg̃ db̃
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= db̃

∫

1

Γ(θ)
(cg̃)θ b̃−θ−1 exp(−cg̃/b̃) · γθg̃−1 exp(−cg̃) dg̃

= γθcθ
1

Γ(θ)
b̃−θ−1db̃

∫

g̃θ−1 exp(−g̃c(1 + b̃)/b̃) dg̃

= γθcθ
1

Γ(θ)
b̃−θ−1Γ(θ)

(

b̃

c(1 + b̃)

)θ

db̃

= γθb̃−1
(

1 + b̃
)−θ

db̃,

which matches the beta prime process ordinary component intensity of Eq. (13).

For any particular atom of the gamma process, g̃k ∼ Gamma(θγρk, c) with ρk = H({ψk}) > 0, it is well

known that g̃k/τk has the β′(θγρk, θ(1 − γρk)) distribution, as desired.

There is no deterministic component of the gamma process.

Proof of Proposition 6: Before proceeding to prove Proposition 6 in the manner of the proofs of Propositions 4

and 5 above, we first note that Proposition 6 can be derived from Proposition 5 and an inverse change of

variables from that in Proposition 4.

Taking the same direct route of proof as above, though, we begin with the ordinary component of the

gamma process so that the collection of tuples (ψk, g̃k) is generated according to a Poisson process with

intensity Hord × νgamma, where νgamma is the gamma process intensity of Eq. (4). The Marking Theorem

(Kingman, 1993) tells us that the marked Poisson process with points (ψk, g̃k, τk) has intensity Hord×ν, where

ν(dg̃, dτ) = γθg̃−1e−cg̃ · (Γ(θ))−1τθ−1 exp(−cτ) cθ dg̃ dτ.

Now consider the change of variables u = g̃/(g̃+τ), v = g̃+τ . The reverse transformation is g̃ = uv, τ = (1−u)v

with Jacobian v. Then the Poisson point process with points (ψk, uk, vk) has intensity Hord × ν, where

ν(dψ, du, dv) = (Γ(θ))−1γθcθu−1v−1(1− u)θ−1vθ−1e−cv · v du dv.

So the Poisson point process with points (ψk, uk) has intensity Hord × ν, with

ν(dψ, du) =

∫

v

µ(dψ, du, dv)

=

∫

v

(Γ(θ))−1γθcθu−1(1− u)θ−1vθ−1e−cv du dv

= (Γ(θ))−1γθcθu−1(1 − u)θ−1Γ(θ)c−θ du

= γθu−1(1 − u)θ−1 du,

which is the known beta process intensity.

In the discrete case with H({ψk}) = ρk > 0, we have by construction

g̃k ∼ Gamma(θγρk, c)
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and

τk ∼ Gamma(θ(1 − γρk), c).

From classic finite distributional results, we have

g̃k
τk + g̃k

∼ Beta(θγρk, θ(1 − γρk)),

exactly as in the case of the beta process.

As the gamma process and beta process each have no deterministic components, this completes the proof.

APPENDIX C

FULL RESULTS FOR SECTION 5

In order to fill in Table 1, we start by briefly establishing the results for expected number of clusters of size j

for the DP and PYP; the results for the expected total number of clusters are cited in the main text. We then

move on to full results for the BNBP and 3BNBP. Proofs for all results in this section appear in Appendix D.

Theorem 7. Assume that the concentration parameter for the DP satisfies θ > 0. Then the expected number of data

clusters of size j, Φj(N), has asymptotic growth

Φj(N) ∼ θj−1, N → ∞.

Theorem 8. Assume that the discount parameter for the PYP satisfies α ∈ (0, 1), and the concentration parameter

satisfies θ > 1− α. Then the expected number of data clusters of size j, Φj(N), has asymptotic growth

Φj(N) ∼
Γ(θ + 1)

Γ(1 − α)Γ(θ + α)

Γ(j − α)

Γ(j + 1)
Nα, N → ∞.

Next we establish how the expected number of data points, ξ(r), grows asymptotically with r in the BNBP

case (in Lemma 10) and the 3BNBP case (in Lemma 11). We begin by showing that the expected number of

data points is infinite for the concentration parameter range θ ≤ 1− α in both the BNBP (α = 0) and 3BNBP

models.

Lemma 9. Assume that the discount parameter for three-parameter beta process satisfies α ∈ [0, 1) (the beta process is

the special case when α = 0), the concentration parameter satisfies θ ≤ 1− α, and the mass parameter satisfies γ > 0.

Then the expected number of data points, ξ(r) = E[
∑

k ik], from a BNBP or 3BNBP , as appropriate, is infinite.

Lemma 10. Assume that the concentration parameter for the beta process satisfies θ > 1 and the mass parameter

satisifies γ > 0. Then the expected number of data points ξ(r) = E[
∑

k ik] from a BNBP has asymptotic growth

ξ(r) ∼ γ
θ

θ − 1
r, r → ∞.
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Lemma 11. Assume that a three-parameter beta process has discount parameter α ∈ (0, 1) and concentration parameter

θ > 1− α. Then the expected number of data points ξ(r) = E[
∑

k ik] from a 3BNBP has asymptotic growth

ξ(r) ∼ γ
θ

θ + α− 1
r, r → ∞.

Next, we establish how the expected number of clusters, Φ(r), grows asymptotically as r → ∞ in the BNBP

case (in Lemma 12) and in the 3BNBP case (in Lemma 13).

Lemma 12. Let θ > 0. Then the expected number of clusters Φ(r) = E[
∑

k 1{ik > 0}] from a BNBP has asymptotic

growth

Φ(r) ∼ γθ log r, r → ∞.

Lemma 13. Consider a three-parameter beta process. Let the discount parameter satisfy α > 0 and the concentration

parameter satisfy θ > −α. Then the number of clusters K(r)
∑

k 1{ik > 0} from a 3BNBP has almost sure asymptotic

growth

K(r)
a.s.
∼

γ

α

Γ(θ + 1)

Γ(θ + α)
rα, r → ∞.

We are also interested in how the expected number of clusters of size j, Φj(r), grows as r → ∞. To that

end, we establish this asymptotic growth in the BNBP case in Lemma 14 and in the 3BNBP case in Lemma 15

below.

Lemma 14. Let θ > 0. Then the expected number of clusters of size j, Φj(r) = E[
∑

k 1{ik = j}], from a BNBP has

asymptotic growth

Φj(r) ∼ γθj−1, r → ∞.

That is, the number is asymptotically constant in r.

Lemma 15. Let θ > −α and α ∈ (0, 1). Then the expected number of clusters of size j, Φj(r) = E[
∑

k 1{ik = j}],

from a 3BNBP has asymptotic growth

Φj(r) ∼ γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)

Γ(j − α)

Γ(j + 1)
rα, r → ∞.

Finally, we wish to combine these results to establish asymptotic results for the diversity, i.e., the expected

number of clusters (or clusters of size j) as the expected number of data points varies. We find the asymptotic

growth in the number of clusters for the BNBP in Theorem 16 and for the 3BNBP in Theorem 17. We find

the asymptotic growth in the number of clusters of size j for the BNBP (in fact, the result has already been

shown in Lemma 14) and for the 3BNBP in Theorem 18.

Theorem 16. Let θ > 1. Then the expected number of clusters Φ grows asymptotically as the log of the expected number

of data points ξ:

Φ(r) ∼ γθ log(ξ(r)), r → ∞.
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Theorem 17. Let θ + α > 1 and α ∈ (0, 1). Then the number of clusters K grows asymptotically as a power of the

expected number of data points ξ:

K(r)
a.s.
∼

γ1−α

α

Γ(θ + 1)

Γ(θ + α)

(

θ + α− 1

θ

)α

(ξ(r))α, r → ∞.

Theorem 18. Let θ + α > 1 and α ∈ (0, 1). Then the expected number of clusters of size j, Φj , grows asymptotically

as a power of the expected number of data points ξ:

Φj(r) ∼ γ1−α
Γ(θ + 1)

Γ(1− α)Γ(θ + α)

Γ(j − α)

Γ(j + 1)

(

θ + α− 1

θ

)α

(ξ(r))α, r → ∞.

APPENDIX D

PROOFS FOR APPENDIX C

Proof of Theorem 7: When cluster proportions are generated according to a Dirichlet process and clustering

belonging is generated according to draws from the resulting random measure, the joint distribution of

(K1(N), . . . ,KN(N)) is described by the Ewens sampling formula, which appears as Eq. (2.9) in (Watterson,

1974). It follows that Eq. (2.22) in (Watterson, 1974) gives Φj(N) = E[Kj(N)]:

Φj(N) =
θ

j

(

θ +N − j − 1

N − j

)

·

(

θ +N − 1

N

)−1

.

Therefore,

Φj(N) =
θ

j

Γ(θ +N − j)

Γ(N − j + 1)Γ(θ)
·
Γ(N + 1)Γ(θ)

Γ(N + θ)

=
θ

j
·
Γ(N + θ − j)

Γ(N + θ)
·

Γ(N + 1)

Γ(N + 1− j)

∼
θ

j
· (N + θ)−j · (N + 1)j , N → ∞

∼
θ

j
, N → ∞,

where the asymptotics for the ratios of gamma functions follow from Tricomi and Erdélyi (1951).

Proof of Theorem 8: Pitman (2006) establishes that, for the PYP with parameters θ and α given in the result

statement, we have Φ(N) ∼ Γ(θ+1)
αΓ(θ+α)N

α as N → ∞.

Note that Φ(N) is in the form of Eq. (48) on p. 167 of (Gnedin et al., 2007). The desired result follows by

applying Eq. (51) on p. 167 of (Gnedin et al., 2007).

Proof of Lemma 9: In this case, we have

E[
∑

k

ik] = E

[

E[
∑

k

ik|b·]

]

by the tower property
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= E

[

∑

k

E[ik|b·]

]

by monotonicity

= E

[

∑

k

bkr

(1− bk)

]

using the mean of the negative binomial distribution

=

∫ 1

0

br

(1− b)
ν(db)

by Campbell’s Theorem (Kingman, 1993)

= r
Γ(1 + θ)

Γ(1 − α)Γ(θ + α)

∫ 1

0

b−α(1− b)θ+α−2 db.

The final line is finite iff

1− α > 0, and θ + α− 1 > 0.

Equivalently, the final line is finite iff

α < 1 and θ > 1− α.

Proof of Lemma 10: Let B =
∑

k bkψk be beta process distributed. Let ik
iid
∼ NB(r, bk). By the Marking

theorem (Kingman, 1993), the Poisson process {bk, ψk, ik} has intensity

ν(db, dψ, i) = γθb−1(1− b)θ−1

(

i+ r − 1

i

)

(1 − b)rbi db Hord(dψ). (14)

So the Poisson process {ik} has intensity

ν(i) = γθ
Γ(i+ r)

Γ(i+ 1)Γ(r)

Γ(i)Γ(r + θ)

Γ(i + r + θ)
.

Thus, by Campbell’s theorem (Kingman, 1993),

E[
∑

k

ik] =
∞
∑

i=1

iν(i) = γθ
Γ(r + θ)

Γ(r)

∞
∑

i=1

Γ(i + r)

Γ(i+ r + θ)
.

To evaluate the sum
∑∞

i=1
Γ(i+r)

Γ(i+r+θ) , we appeal to a result from Tricomi and Erdélyi (1951):

Γ(x+ a)

Γ(x + b)
= xa−b

[

1 +
(a− b)(a+ b− 1)

2x
+O(x−2)

]

, x→ ∞. (15)

In particular,

Γ(i + r)

Γ(i+ r + θ)
≤ (i+ r)−θ

[

1−
θ(θ − 1)

2(i+ r)
+ C(i+ r)−2

]

for some constant C

and

Γ(i+ r)

Γ(i+ r + θ)
≥ (i + r)−θ

[

1−
θ(θ − 1)

2(i+ r)
− C′(i+ r)−2

]

for some constant C′.
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Before proceeding, we establish for a > 1,

∞
∑

i=1

(i+ r)−a ≤

∫ ∞

x=0

(x+ r)−a dx = (a− 1)−1r1−a

and

∞
∑

i=1

(i+ r)−a ≥

∫ ∞

x=1

(x+ r)−a dx = (α− 1)−1(r + 1)1−a.

So

∞
∑

i=1

Γ(i+ r)

Γ(i+ r + θ)
≤ (θ − 1)−1r1−θ −

θ − 1

2
(r + 1)−θ + C(θ + 1)−1r−θ−1

and

∞
∑

i=1

Γ(i+ r)

Γ(i+ r + θ)
≥ (θ − 1)−1(r + 1)1−θ −

θ − 1

2
r−θ − C(θ + 1)−1(r + 1)−θ−1.

Since, for θ > 1, we have

r1−θ

(r + 1)1−θ
→ 1, r → ∞, (16)

it follows that
∞
∑

i=1

Γ(i+ r)

Γ(i+ r + θ)
∼ (θ − 1)−1r1−θ . (17)

From Eq. (15), we also have Γ(r+θ)
Γ(r) ∼ rθ as r → ∞. So we conclude that

E[
∑

k

ik] ∼ γ
θ

θ − 1
r, r → ∞,

as desired.

Proof of Lemma 11: The proof proceeds as above. In this case, we have that the Poisson process {bk, ψk, ik}

has intensity

ν(db, dψ, i) = γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)
b−1−α(1 − b)θ+α−1 Γ(i+ r)

Γ(i+ 1)Γ(r)
(1 − b)rbi db H(dψ).

So the Poisson process {ik} has intensity

ν(i) = γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)

Γ(i + r)

Γ(i + 1)Γ(r)

Γ(i− α)Γ(r + θ + α)

Γ(i+ r + θ)
.

By Campbell’s theorem,

E[
∑

k

ik] =
∞
∑

i=1

iν(i) = γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)

Γ(r + θ + α)

Γ(r)

∞
∑

i=1

Γ(i+ r)

Γ(i + r + θ)

Γ(i − α)

Γ(i)
.

We will find the following inequalities, with i ≥ 1 and α ∈ (0, 1), useful (cf. Eq. (2.8) in Qi and Losonczi,

2010):

(i− α)−α ≤
Γ(i− α)

Γ(i)
≤ (i − 1)−α. (18)
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We will also find the following integrals useful. Let a > 1.

∞
∑

i=2

(i+ r)−a(i− α)−α ≤

∞
∑

i=2

(i+ r)−a(i − 1)−α

≤

∫ ∞

x=0

(x+ r)−ax−α dx

= r−a−α+1

∫ ∞

y=0

(y + 1)−ay−α dy

= r−a−α+1Γ(1− α)Γ(a+ α− 1)

Γ(a)
. (19)

Similarly,

∞
∑

i=2

(i+ r)−a(i − 1)−α ≥

∞
∑

i=2

(i + r)−a(i− α)−α

≥

∫ ∞

x=2

(x + r)−ax−α dx

=

∫ ∞

x=0

(x + r)−ax−α dx −

∫ 2

0

(x+ r)−ax−α dx

≥ r−a−α+1Γ(1− α)Γ(a+ α− 1)

Γ(a)
− r−a(1− α)−121−α. (20)

First, we consider an upper bound. To that end,

∞
∑

i=2

Γ(i+ r)

Γ(i + r + θ)

Γ(i − α)

Γ(i)
≤

∞
∑

i=2

(i+ r)−θ
(

1−
θ(θ + 1)

2(i+ r)
+ C(i + r)−2

)

(i− 1)−α

for some constant C

≤ r−θ−α+1Γ(1− α)Γ(θ + α− 1)

Γ(θ)

−
θ(θ + 1)

2
r−θ−α

Γ(1− α)Γ(θ + 1 + α− 1)

Γ(θ + 1)
− r−θ−1(1− α)−121−α

+ Cr−θ−α−1Γ(1− α)Γ(θ + α+ 1)

Γ(θ + 2)
.

For the lower bound,

∞
∑

i=2

Γ(i+ r)

Γ(i+ r + θ)

Γ(i− α)

Γ(i)
≥

∞
∑

i=2

(i+ r)−θ
(

1−
θ(θ + 1)

2(i+ r)
− C′(i+ r)−2

)

(i− α)−α

for some constant C′

≥ r−θ−α+1Γ(1− α)Γ(θ + α− 1)

Γ(θ)
− r−θ(1− α)−121−α

− r−θ−α
Γ(1− α)Γ(θ + α)

Γ(θ + 1)

− C′r−θ−α−1Γ(1− α)Γ(θ + α+ 1)

Γ(θ + 2)
.

It follows from the two bounds above that

∞
∑

i=2

Γ(i+ r)

Γ(i+ r + θ)

Γ(i − α)

Γ(i)
∼

Γ(1− α)Γ(θ + α− 1)

Γ(θ)
r−θ−α+1.

Since

Γ(r + θ + α)

Γ(r)
∼ rθ+α,
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it follows that

E[
∑

k

ik] ∼ γ
Γ(1 + θ)

Γ(1− α)Γ(θ + α)

Γ(1− α)Γ(θ + α− 1)

Γ(θ)
r = γ

θ

θ + α− 1
r,

as was to be shown.

Proof of Lemma 12: Given an atom bk of the beta process, the probability that the associated negative binomial

count ik is non-zero is 1− (1− bk)
r. It follows that

E[
∑

k

1{ik > 0}] = E[E[
∑

k

1{ik > 0}|bk]] = E[
∑

k

1− (1− bk)
r] =

∫

b

(1− (1 − b)r)νBP(db),

where νBP is the intensity of beta process atoms {bk}. For integer r, this integral was calculated by Broderick

et al. (2012) to be ∼ γθ log(r).

Note that, in applying the result of Broderick et al. (2012), we are using the form of the negative binomial

distribution to reinterpret the desired expectation as the expected number of features represented in a beta-

Bernoulli process with r draws from the same underlying base measure.

Now consider general r > 1. Let r(0) = ⌊r⌋ and r(1) = ⌈r⌉. Then
∫

b
(1 − (1− b)r

(0)

)νBP(db)

γθ log(r(1))
≤

∫

b
(1− (1 − b)r)νBP(db)

γθ log(r)
≤

∫

b
(1 − (1− b)r

(1)

)νBP(db)

γθ log(r(0))
(21)

by monotonicity. Moreover,
∫

b(1− (1− b)r
(0)

)νBP(db)

γθ log(r(1))
=

∫

b(1− (1− b)r
(0)

)νBP(db)

γθ log(r(0))
·
γθ log(r(0))

γθ log(r(1))

→ 1, r → ∞.

Similarly,
∫

b(1 − (1− b)r
(1)

)νBP(db)

γθ log(r(0))
→ 1, r → ∞ and hence

∫

b(1− (1− b)r)νBP(db)

γθ log(r)
→ 1, r → ∞.

as was to be shown.

Proof of Lemma 13: By the discussion in the previous proposition, this result follows from the results

in Broderick et al. (2012).

Proof of Lemma 14: Given an atom bk of the beta process, the probability that the associated negative binomial

count ik is equal to j is NB(j|r, bk). It follows that

E[
∑

k

1{ik = j}] = E[E[
∑

k

1{ik = j}|b·]] = E[
∑

k

NB(j|r, bk)] = ν(j) = γθ
Γ(j + r)

Γ(j + 1)Γ(r)

Γ(j)Γ(r + θ)

Γ(j + r + θ)

as above. Now we use Γ(r+θ)
Γ(r) ∼ rθ and Γ(j+r)

Γ(j+r+θ) ∼ r−θ to obtain E[
∑

k 1{ik = j}] ∼ γθj−1.
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Proof of Lemma 15: As in the BNBP case, we have

E[
∑

k

1{ik = j}] = ν(j) = γ
Γ(1 + θ)

Γ(1 − α)Γ(θ + α)

Γ(j + r)

Γ(j + 1)Γ(r)

Γ(j − α)Γ(r + θ + α)

Γ(j + r + θ)

Now we use Γ(r+θ+α)
Γ(r) ∼ rθ+α and Γ(j+r)

Γ(j+r+θ) ∼ r−θ to obtain E[
∑

k 1{ik = j}] ∼ γ Γ(1+θ)
Γ(1−α)Γ(θ+α)

Γ(j−α)
Γ(j+1) r

α.

Proof of Theorem 16: Assume θ > 1. We have from the previous discussion that limr→∞
ξ(r)

γ θ
θ−1 r

= 1. So

lim
r→∞

log(ξ(r)) − log(r) = − log

(

γ
θ

θ − 1

)

.

Hence limr→∞
log(ξ(r))
log(r) = 1 since log(r) → ∞ as r → ∞.

From Lemma 12, we also have limr→∞
Φ(r)

γθ log(r) = 1. Finally, then,

lim
r→∞

Φ(r)

γθ log(ξ(r))
= 1.

Proof of Theorem 17: From above, we have

lim
r→∞

ξ(r)

γ θ
θ+α−1r

= 1 and hence lim
r→∞

(ξ(r))α
(

γ θ
θ+α−1r

)α = 1.

From Lemma 13, we also have

lim
r→∞

K(r)
γ
α

Γ(θ+1)
Γ(θ+α)r

α

a.s.
= 1 and hence lim

r→∞

(ξ(r))α γα
Γ(θ+1)
Γ(θ+α)

(

γ θ
θ+α−1

)α

K(r)

a.s.
= 1.

Proof of Theorem 18: As above, we have from Lemma 15 that

lim
r→∞

Φj(r)

γ Γ(1+θ)
Γ(1−α)Γ(θ+α)

Γ(j−α)
Γ(j+1) r

α
= 1 and hence lim

r→∞

(ξ(r))αγ Γ(1+θ)
Γ(1−α)Γ(θ+α)

Γ(j−α)
Γ(j+1)

(

γ θ
θ+α−1

)α

Φj(r)
= 1,

yielding the desired result.

APPENDIX E

CONJUGACY PROOFS

E.1 Reparameterized beta process and negative binomial pro cess

Theorem 3 in the main text is a corollary of Theorems 19 and 20 below. In particular, Theorems 19 and 20, give

us the form of the posterior process when we have a general CRM prior with a Poisson process intensity with
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finite mean. Choosing the particular Poisson process intensity for the RBP and choosing the distributions of

the prior fixed weights yields the result.

E.2 Finite Poisson process intensity

Theorem 19. Let Bprior be a discrete, completely random measure on [0, 1] with atom locations in [0, 1]. Suppose it

has the following components.

• The ordinary component is generated from a Poisson point process with intensity ν(db) dψ such that ν is continuous

and ν[0, 1] <∞. In particular, the weights are in the b axis, and the atom locations are in the ψ axis.

• There are L fixed atoms at locations u1, . . . , uL ∈ [0, 1]. The weight of the lth fixed atom is a random variable with

distribution hl.

• There is no deterministic measure component.

Draw a negative binomial process I with shape parameter r and input measure Bprior. Let K be the number of

(nonzero) atoms of I . Let Π = {(ik, sk)}
K
k=1 be the pairs of observed nonzero counts and corresponding atom locations.

Then the posterior process for the input measure to the negative binomial process given I is a completely random

measure Bpost with the following components.

• The ordinary component is generated from a Poisson point process with intensity

(1− b)rν(db) dψ.

• There are three sets of fixed atoms.

1) There are the old, repeated fixed atoms. If ul = sk for some k, there is a fixed atom at ul with weight density

c−1
or (1− b)rbikhl(db) dψ,

where the cor is the normalizing constant:

cor =

∫ 1

ψ=0

∫ 1

b=0

(1− b)rbikhl(db).

2) There are the old, unrepeated fixed atoms. If ul /∈ {s1, . . . , sK}, there is a fixed atom at ul with weight density

c−1
ou (1− b)rhl(db),

where the cor is the normalizing constant:

cou =

∫ 1

b=0

(1− b)rhl(db).

3) There are the new fixed atoms. If sk /∈ {u1, . . . , uL}, there is a fixed atom at sk with weight density

c−1
new(1 − b)rbikν(db),

where the cnew is the normalizing constant:

cnew =

∫ 1

b=0

(1 − b)rbikν(db).
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• There is no deterministic measure component.

Proof: Our proof follows the proof of beta-Bernoulli process conjugacy of Kim (1999). Let (M,ΣM) be

the set of completely random measures on [0, 1] with weights in [0, 1] and its associated sigma algebra. Let

(G,ΣG) be the set of completely random measures on [0, 1] with atom weights in {1, 2, . . .} and its associated

sigma algebra. For any sets M ∈ ΣM and G ∈ ΣG, let Pprior(M ×G) be the probability distribution induced on

such sets by the construction of the prior measure Bprior and the negative binomial process I . Let Q(M : G)

be the probability distribution induced on measures in M by the proposed posterior distribution. Finally, let

Pmarg(G) be the prior marginal distribution on counting measures in G. To prove the theorem, it is enough

to show that, for any such sets M and G, we have

Pprior(M ×G) =

∫

I∈G

Q(M : I) Pmarg(I). (22)

The remainder of the proof will proceed as follows. We start by introducing some further notation. Then

we will note that it is enough to prove Eq. (22) for certain, restricted forms of the sets M and G. Next, we

will in turn find the form of each of (1) the prior distribution Pprior, (2) the proposed posterior distribution

Q, and (3) the marginal count process distribution Pmarg for our special sets of interest. Finally, we will show

that we can integrate out the posterior with respect to the marginal in order to obtain the prior, as in Eq. (22).

Start by noting that we can write Bprior as

Bprior(dψ) =

J
∑

j=1

ξjδvj (dψ) +

L
∑

l=1

ηlδul
(dψ). (23)

Here, J is the number of atoms in the ordinary component of Bprior. So the total number of atoms in Bprior is

J +L, and the total number of atoms in the counting measure with parameter Bprior is K ≤ J +L. The atom

locations of the ordinary component are {vj} since the fixed atom locations are at {ul}. Together, we have that

the full set of atoms of the counting measure is some subset of the disjoint union {sk}
K
k=1 ⊆ {vj}

J
j=1 ∪{ul}

L
l=1.

The atom weights at the fixed {ul} locations are {ηl}, and the atom weights at the ordinary component

locations {vj} are {ξj}.

Let λ = ν[0, 1], which we know to be finite by assumption. Then the number of atoms in the ordinary

component is Poisson-distributed:

J ∼ Pois(λ).

And the {ξj}
J
j=1 are independent and identically distributed random variables with values in [0, 1] such that

each has density ν(db)/λ.

Next, we note that instead of general sets M and G, we can restrict to sets of the form

M ′ = {J = Ĵ} ∩

Ĵ
⋂

j=1

{vj ≤ v̂j , ξj ≤ ξ̂j}
Ĵ
j=1 ∩

L
⋂

l=1

{ηl ≤ η̂l}. (24)

G′ = {K = 1} ∩ {i1 = î1, s1 ≤ ŝ1}. (25)
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That is, in the random measure Bprior case, we consider a set with a fixed number j of ordinary component

atoms and with fixed upper bounds v̂j , ξ̂j , or η̂l on, respectively, the location of the ordinary component atoms,

the weights of the ordinary component atoms, and the weights of the fixed atoms. In the counting measure

I case, we can restrict to a single atom with location at s1 and count equal to i1 ∈ {1, 2, . . .}.

With this notation and restriction in hand, we proceed to compute the prior, marginal, and posterior so that

we may check whether Eq. (22) holds.

Prior. We first calculate the prior measure of set M ′. Recall that the number of atoms is Poisson-distributed:

Pprior(J = Ĵ) =
λĴ

Ĵ !
e−λ. (26)

Also, the locations of these atoms, given their number, is distributed as

Pprior(

Ĵ
⋂

j=1

{vj ≤ v̂j}|J = Ĵ) = Ĵ !

∫ v̂(1)

ψ1=0

∫ v̂(2)

ψ2=ψ1

· · ·

∫ v̂(Ĵ)

ψ
Ĵ
=ψ

Ĵ−1





Ĵ
∏

j=1

dψj



 . (27)

Note that v(j) denotes the jth order statistic of {vj}
Ĵ
j=1, and the Ĵ ! term results from enumerating the possible

rearrangements of this set. Finally, the sizes of the atoms, given their location and number, have the distribution

Pprior





J
⋂

j=1

{ξj ≤ ξ̂j} ∩

L
⋂

l=1

{ηl ≤ η̂l}|J = Ĵ ,

Ĵ
⋂

j=1

{vj ≤ v̂j}



 =





Ĵ
∏

j=1

∫ ξ̂j

b=0

ν(db)

λ



 ·

[

L
∏

l=1

∫ η̂l

b=0

hl(db)

]

. (28)

Together, Eqs. (26), (27), and (28) yield the prior probability of the set M ′ (Eq. (24)) describing the random

measure Bprior.

Next, we turn to the prior probability of the set G′ describing the counting measure I . In this case, we

condition on a particular measure µ ∈ M ′. Now, in G′, each counting measure I has exactly one atom. This

atom can occur either at an atom in the ordinary component of µ, located at one of {vj}
J
j=1, or at a fixed

atom of µ, located at one of {ul}
L
l=1. We take advantage of the fact that the ul are unique by assumption and

that the vj are a.s. unique and distinct from the ul by the assumption that the distribution on locations is

continuous. We also note that on the set {s1 ≤ ŝ1}, we need only consider those atoms with locations at most

ŝ1. Thus, we break into these two special cases as follows:

Pprior(K = 1, i1 = î1, s1 ≤ ŝ1|µ) =

J
∑

j=1

Pprior(K = 1, i1 = î1, s1 = vj |µ)1{vj ≤ ŝ1}

+

L
∑

l=1

Pprior(K = 1, i1 = î1, s1 = ul|µ)1{ul ≤ ŝ1}.

The probability that the single nonzero count occurs at a particular atom is the probability that a nonzero

count appears at this atom and zero counts appear at all other atoms. To express this probability, we first

define a new function:

Φ(J, L,v, ξ,η, i1, s) =







J
∏

j=1

[NB(0|r, ξj)]
1{vj 6=s} [NB(i1|r, ξj)]

1{vj=s}







·

{

L
∏

l=1

[NB(0|r, ηj)]
1{ul 6=s} [NB(i1|r, ηl)]

1{ul=s}

}

.
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Here, NB(x|a, b) is the negative binomial density. A notable special case is NB(0|a, b) = (1− b)a. We can write

the single-atom probabilities with the Φ notation:

Pprior(K = 1, i1 = î1, s1 = vj |µ) = Φ(J, L,v, ξ,η, i1, vj)

Pprior(K = 1, i1 = î1, s1 = ul|µ) = Φ(J, L,v, ξ,η, i1, ul).

We can combine the likelihood of the counting process I given the random measure Bprior with the prior

of the random measure Bprior to find the joint prior probability of the set M ′ × G′. If we use the following

notation to express the sets over which we will integrate,

R(v̂, J) , {ψ : ψ ∈ [0, 1]J , ψ1 ≤ · · · ≤ ψJ} ∩

J
⋂

j=1

{ψ : ψj ≤ v̂j}

r(T = (t1, . . . , tJ), J) , [0, t1]× · · · × [0, tJ ]

then we may write

Pprior(M
′ ×G′) =

∫

B∈M ′

Pprior(G
′|B) dPprior(B)

= e−λ







Ĵ
∑

j=1

[

∫

v∈R(v̂,Ĵ),ξ∈r(ξ̂,Ĵ),η∈r(η̂,L)

1{vj ≤ ŝ1}

·Φ(Ĵ , L,v, ξ,η, i1, vj) ·





Ĵ
∏

j=1

dvj



 ·





Ĵ
∏

j=1

ν(dξ)



 ·

(

L
∏

l=1

hl(dηl)

)





+

L
∑

l=1

[

∫

v∈R(v̂,Ĵ),ξ∈r(ξ̂,Ĵ),η∈r(η̂,L)

1{ul ≤ ŝ1}

·Φ(Ĵ , L,v, ξ,η, î1, ul) ·





Ĵ
∏

j=1

dvj



 ·





Ĵ
∏

j=1

ν(dξ)



 ·

(

L
∏

l=1

hl(dηl)

)











. (29)

This equation completes our prior calculation for now. We will return to it when we evaluate Eq. (22) for sets

M ′ and G′.

Proposed posterior. Next we consider the proposed posterior distribution Q. Just as we calculated the

probability of M ′×G′ under the measure induced by our prior generative model, we can analogously calculate

the quantity Q(M ′ : I) for some I ∈ G′ according to the definition of Q.

In the theorem statement, we specified a construction of completely random measure to induce the proposed

posterior. In this case, the completely random measure has an ordinary component and a set of fixed atoms.

Given the specific set G′ we are considering (Eq. (25)), the set of locations of the fixed atoms is {u1, . . . , uL}∪

{ŝ1}, where the union is not necessarily disjoint. So there are two cases we must examine: either the counting

process atom is at the same location as a fixed atom of the prior random measure (ŝ1 = ul for some l ∈

{1, . . . , L}) or it is at a different location (ŝ1 /∈ {u1, . . . , uL}).

First, we consider the case where the counting process atom location ŝ1 is the same as that of a fixed

atom of the prior random measure, say ul∗ . As before, the number of atoms in the ordinary component is
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Poisson-distributed with mean equal to the total Poisson point process mass

λpost ,

∫ 1

b=0

(1− b)rν(db).

So we have (c.f. Eq. (26))

Q(J = Ĵ : K = 1, i1 = î1, s1 = ul∗) =
λĴpost

Ĵ !
e−λpost . (30)

Also, as for Eq. (27), we can calculate the distribution of the locations of the ordinary component atoms:

Q(

Ĵ
⋂

j=1

{vj ≤ v̂j}|J = Ĵ : K = 1, i1 = î1, s1 = ul∗) = Ĵ !

∫ v̂(1)

ψ1=0

∫ v̂(2)

ψ2=ψ1

· · ·

∫ v̂(Ĵ)

ψ
Ĵ
=ψ

Ĵ−1





Ĵ
∏

j=1

dψj



 . (31)

And again, as in Eq. (28), the sizes of the atoms, given their location and number, have the distribution

Q





J
⋂

j=1

{ξj ≤ ξ̂j} ∩

L
⋂

l=1

{ηl ≤ η̂l}|J = Ĵ ,

Ĵ
⋂

j=1

{vj ≤ v̂j} : K = 1, i1 = î1, s1 = ul∗





=





Ĵ
∏

j=1

∫ ξ̂j

b=0

NB(0|r, b)ν(db)

λpost





[

L
∏

l=1

∫ η̂l
b=0[NB(̂i1|r, b)]

1{l=l∗}[NB(0|r, b)]1{l 6=l
∗}hl(db)

∫ 1

b=0
[NB(̂i1|r, b)]1{l=l

∗}[NB(0|r, b)]1{l 6=l∗}hl(db)

]

. (32)

Putting together Eqs. (30), (31), and (32), we can find the proposed measure of the set M ′ given I ∈ G′ for

the case ŝ1 = ul∗ :

Q(M ′ : I) = Q



J = Ĵ ,
Ĵ
⋂

j=1

{vj ≤ v̂j},
J
⋂

j=1

{ξj ≤ ξ̂j} ∩
L
⋂

l=1

{ηl ≤ η̂l} : K = 1, i1 = î1, s1 = ul∗





= C−1
fixed,l∗e

−λpost

∫

v∈R(v̂,Ĵ),ξ∈r(ξ̂,Ĵ),η∈r(η̂,L)

Φ(Ĵ , L,v, ξ,η, i1, ul∗) (33)

·





Ĵ
∏

j=1

dvj



 ·





Ĵ
∏

j=1

ν(dξ)



 ·

(

L
∏

l=1

hl(dηl)

)

, (34)

where

Cfixed,l∗ ,

L
∏

l=1

∫ 1

b=0

[NB(̂i1|r, b)]
1{l=l∗}[NB(0|r, b)]1{l 6=l

∗}hl(db).

Second, we consider the case ŝ1 /∈ {u1, . . . , uL}. Then ŝ1 = vj∗ for some j∗ ∈ {1, . . . , J}. Suppose that vj∗

is the jorderth smallest element of {v1, . . . , vJ}. Note that jorder is well-defined since the density of the vj is

continuous. We proceed as above and start by noting that the number of atoms on either side of the location

vj∗ is Poisson-distributed:

Q

(

J = Ĵ : K = 1, i1 = î1, s1 = vj∗
)

=
(λpostvj∗)

jorder−1

(jorder − 1)!
e−(λpostvj∗) ·

(λpost(1− vj∗))
(Ĵ−jorder)

(Ĵ − jorder)!
e−(λpost(1−vj∗ )). (35)

Further, we have the usual distribution for the atom locations on either side of vj∗ :

Q





Ĵ
⋂

j=1

{vj ≤ v̂j}|J = Ĵ : K = 1, i1 = î1, s1 = vj∗





= (jorder − 1)!

∫ v̂(1)

ψ1=0

∫ v̂(2)

ψ2=ψ1

· · ·

∫ v̂(jorder )

ψjorder
=ψjorder−1





jorder−1
∏

j=1

dψj
vj∗




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· (Ĵ − jorder)!

∫ v̂(jorder+1)

ψjorder+1=v̂(jorder )

· · ·

∫ v̂(Ĵ)

ψ
Ĵ
=ψ

Ĵ−1





Ĵ
∏

j=jorder+1

dψj
1− vj∗



 . (36)

As usual, the third step identifies the conditional weight distribution of the atom weights:

Q





J
⋂

j=1

{ξj ≤ ξ̂j} ∩

L
⋂

l=1

{ηl ≤ η̂l}|J = Ĵ ,

Ĵ
⋂

j=1

{vj ≤ v̂j} : K = 1, i1 = î1, s1 = vj∗



 (37)

=







Ĵ
∏

j=1

∫ ξ̂j
b=0

[

NB(̂i1|r, b)
]

1{j=j∗}

[NB(0|r, b)]1{j 6=j
∗} ν(db)

∫ 1

b=0

[

NB(̂i1|r, b)
]

1{j=j∗}

[NB(0|r, b)]
1{j 6=j∗}

ν(db)







[

L
∏

l=1

∫ η̂l
b=0 NB(0|r, b)hl(db)
∫ 1

b=0
NB(0|r, b)hl(db)

]

. (38)

So, combining Eqs. (35), (36), and (38), we find that the proposed posterior distribution in the case ŝ1 = vj∗ is

Q(M ′ : I) = Q



J = Ĵ ,
Ĵ
⋂

j=1

{vj ≤ v̂j},
J
⋂

j=1

{ξj ≤ ξ̂j} ∩
L
⋂

l=1

{ηl ≤ η̂l} : K = 1, N1 = n1, S1 = ξj∗





= C−1
orde

−λpost

∫

v∈R(v̂,Ĵ),ξ∈r(ξ̂,Ĵ),η∈r(η̂,L)

Φ(Ĵ , L,v, ξ,η, î1, vj∗)

·





Ĵ
∏

j=1

dvj



 ·





Ĵ
∏

j=1

ν(dξ)



 ·

(

L
∏

l=1

hl(dηl)

)

, (39)

where

Cord ,

(∫ 1

b=0

NB(̂i1|r, b)ν(db)

)

·

(

L
∏

l=1

∫ 1

b=0

NB(0|r, b)hl(db)

)

.

Putting together the cases ŝ1 = ul∗ for some l∗ (Eq. (34)) and ŝ1 /∈ {u1, . . . , uL} (Eq. (39)), we obtain the full

proposed posterior distribution:

Q(M ′ : I) = Q



J = Ĵ ,

Ĵ
⋂

j=1

{vj ≤ v̂j},

J
⋂

j=1

{ξj ≤ ξ̂j} ∩

L
⋂

l=1

{ηl ≤ η̂l} : K = 1, i1 = î1, s1 = ŝ1





=

L
∑

l∗=1

1{ŝ1 = ul∗} C
−1
fixed,l∗e

−λpost

∫

v∈R(v̂,Ĵ),ξ∈r(ξ̂,Ĵ),η∈r(η̂,L)

Φ(Ĵ , L,v, ξ,η, î1, ul∗)

·





Ĵ
∏

j=1

dvj



 ·





Ĵ
∏

j=1

ν(dξ)



 ·

(

L
∏

l=1

hl(dηl)

)

+ 1 {ŝ1 /∈ {u1, . . . , uL}} C−1
orde

−λpost

∫

v∈R(v̂,Ĵ),ξ∈r(ξ̂,Ĵ),η∈r(η̂,L)

Φ(Ĵ , L,v, ξ,η, î1, vj∗)

·





Ĵ
∏

j=1

dvj



 ·





Ĵ
∏

j=1

ν(dξ)



 ·

(

L
∏

l=1

hl(dηl)

)

. (40)

Counting process marginal. With the prior and proposed posterior in hand, it remains to calculate the

marginal distribution of the counting process. Then we may integrate out the proposed posterior with respect

to the counting process marginal in order to obtain the prior (Eq. (22)). Since we are focusing on counting

process sets G′ of the form in Eq. (25), we aim to calculate

Pmarg(K = 1, i1 = î1, s1 ≤ ŝ1).

In our calculations above, we also worked with a set of prior measure µ ∈ M ′ and therefore worked with

a set of locations for the ordinary component atoms. In this case, we will need to calculate the probability of
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zero counts in an interval where the number and location of the ordinary component atoms is integrated out.

Let I ′{ψ} be the counting process that includes exactly those counts at ordinary component atoms and not

the counts at fixed atoms; we can see, e.g., that I ′{ψ} ≤ I{ψ} at all ψ. Further, similar to Eq. (23), let Bord be

the random measure composed only of those atoms in the ordinary component of Bprior:

Bord =

J
∑

j=1

ξjδvj .

Then we are interested in the quantity:

E [1{∀t ∈ (ψ1, ψ2), I
′{t} = 0}] = E





∏

t∈(ψ1,ψ2)

(1 −Bord{t})
r



 =
∏

t∈(ψ1,ψ2)

(1− E [1− (1 −Bord{t})
r]) ,

where the last equality follows from the independence of Bprior across increments.

Now define a new process B′ , 1− (1− Bord)
r. This process has intensity ν′, which can be obtained by a

change of variables from the Poisson process intensity ν of Bord. We will find it notationally useful to refer to

ν′ though we do not calculate it here. Also, let B̄′ be the mean process of B′: B̄′(dψ) , E [B′(dψ)]. With this

notation in hand, we can write

E [1{∀t ∈ (ψ1, ψ2), B
′{t} = 0}]

=
∏

t∈(ψ1,ψ2)

(

1− B̄′{t}
)

= exp

{

−

∫ ψ2

t=ψ1

B̄′{t}

}

= exp

{

−

∫ ψ2

t=ψ1

∫ 1

b=0

b′ ν′(db′)

}

= exp

{

−(ψ2 − ψ1)

∫ 1

b=0

(1 − (1− b)r) ν(db)

}

.

As usual, we consider two separate cases. First, suppose s1 = ul∗ for some l∗ ∈ {1, . . . , L}. Then, using

independence of increments of the prior random measure and counting process, we find

Pmarg(K = 1, i1 = î1, s1 = ul∗) = Pmarg(I{ul∗} = î1) Pmarg(∀l 6= l∗, I{ul} = 0) Pmarg(∀t ∈ (0, 1), I ′{t} = 0)

=

(

L
∏

l=1

∫ 1

b=0

[NB(0|r, b)]
1{l 6=l∗}

[

NB(̂i1|r, b)
]

1{l=l∗}

hl(db)

)

· exp

{

−(1− 0)

∫ 1

b=0

(1− (1− b)r) ν(db)

}

= e−λ+λpostCfixed,l∗ . (41)

Next, suppose s1 /∈ {u1, . . . , uL}. Then

Pmarg(K = 1, i1 = î1, s1 ≤ ŝ1) =

∫ ŝ1

ψ=0

Pmarg(K = 1, i1 = î1|s1 = ŝ)dPmarg(s1 ≤ ψ)

=

∫ ŝ1

ψ=0

Pmarg(I{ψ} = î1)Pmarg(∀l, I(ul) = 0)

· Pmarg(∀t ∈ (0, 1)\{ψ}, I ′{t} = 0)dPmarg(s1 ≤ ψ)

=

∫ ŝ1

ψ=0

(∫ 1

b=0

NB(̂i1|r, b)ν(db)

)

[

L
∏

l=1

∫ 1

b=0

NB(0|r, b)hl(db)

]

dψ. (42)

Checking integration. The final step is to note that we may integrate out the proposed posterior in Eq. (40)

with respect to the marginal described by Eqs. (41) and (42) to obtain the joint prior in Eq. (29). This integration
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is exactly the one we desired from Eq. (22) in the special case of sets of the form M ′ in Eq. (24) and G′ in

Eq. (25), as was to be shown.

E.3 Infinite Poisson process intensity

Theorem 20. Theorem 19 still applies when the intensity measure ν does not necessarily have a finite integral ν[0, 1]

but satisfies the (weaker) condition
∫ 1

b=0

b ν(db) <∞. (43)

Proof: The main idea behind the proof of Theorem 20 is to take advantage of the finiteness condition

in Eq. (44) to construct a sequence of finite intensity measures tending to the true intensity measure of the

process. We will use the known form of the posterior in the finite case from Theorem 19 to deduce the form

of the posterior in the case where ν merely satisfies the weaker condition in Eq. (43), which we note implies

∀ǫ > 0, ν[ǫ,∞) <∞. (44)

We therefore start by defining the sequence of (finite) measures νn by

νn(A) ,

∫

b∈A

1{b > 1/n}ν(db), for all measurable A ⊂ [0, 1]. (45)

Further, we may generate a random measure Bprior,n as described by the prior in Theorem 19 with Poisson

point process intensity νn. And we may generate a counting process In with parameters r and Bprior,n as

described in Theorem 19.

As before, let Pprior be the prior distribution on the prior random measure Bprior and the counting process

I . Let Eprior denote the expectation with respect to this distribution. Further, let Pmarg represent the marginal

distribution on the counting process from Pprior. And let Q(M : G) represent the proposed posterior distri-

bution on sets M ∈ M given any set G ∈ ΣG. We use the same notation, but with n subscripts, to denote the

case with finite intensity νn.

Our proof will take advantage of Laplacian-style characterizations of distributions. In particular, we note that

in order to prove Theorem 20, it is enough to show that, for arbitrary continuous and nonnegative functions

f and g (i.e., f, g ∈ C+[0, 1]), we have

∫

B∈M

∫

I∈G

exp

{

−

∫ 1

ψ=0

(g(ψ)B{ψ}+ f(ψ)I{ψ})

}

dQ(B : I) dPmarg(I)

= Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)B{ψ}+ f(ψ)I{ψ})

}]

. (46)

By Lemma 21, we have the following limit for all f, g ∈ C+[0, 1] as n→ ∞:

Eprior,n

[

exp

{

−

∫ 1

ψ=0

(g(ψ)B{ψ}+ f(ψ)I{ψ}))

}]

→ Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)B{ψ}+ f(ψ)I{ψ})

}]

.
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Therefore, by Eq. (46) and the observation that Theorem 19 holds under the finite intensity νn, we see that it

is enough to show that

∫

B∈Mn

∫

I∈G

exp

{

−

∫ 1

ψ=0

(g(ψ)B{ψ}+ f(ψ)I{ψ})

}

dQn(B : I) dPmarg,n(I)

→

∫

B∈M

∫

I∈G

exp

{

−

∫ 1

ψ=0

(g(ψ)B{ψ}+ f(ψ)I{ψ})

}

dQ(B : I) dPmarg(I), n→ ∞. (47)

Define

Ψn(I) ,

∫

B∈Mn

exp

{

−

∫ 1

ψ=0

g(ψ)B{ψ}

}

dQn(B : I) (48)

Ψ(I) ,

∫

B∈M

exp

{

−

∫ 1

ψ=0

g(ψ)B{ψ}

}

dQ(B : I). (49)

By Lemma 22, we have

∫

I∈G

exp

{

−

∫ 1

ψ=0

f(ψ)I{ψ}

}

(Ψn(I)−Ψ(I))dPmarg,n(I) → 0. (50)

And Lemma 21 together with the fact that exp
{

−
∫ 1

ψ=0
f(ψ)I{ψ}

}

Ψ(I) is a bounded function of I yields

∫

I∈G

exp

{

−

∫ 1

ψ=0

f(ψ)I{ψ}

}

Ψ(I)(dPmarg,n(I)− dPmarg(I)) → 0. (51)

Combining Eqs. (50) and (51) yields the desired limit in Eq. (47).

Lemma 21. Let Bprior,n be a completely random measure with a finite set of fixed atoms in [0, 1] and with the Poisson

process intensity νn in Eq. (45), where ν satisfies Eq. (43). Let In be drawn as a negative binomial process with parameters

r and Bprior,n. Similarly, let Bprior be a completely random measure with Poisson process intensity ν, and let I be

drawn as a negative binomial process with parameters r and Bprior. Then

(Bprior,n, In)
d
→ (Bprior, I)

Proof: It is enough to show that, for all f, g ∈ C+[0, 1], we have

Eprior,n

[

exp

{

−

∫ 1

ψ=0

(g(ψ)Bprior,n{ψ}+ f(ψ)In{ψ})

}]

→ Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)Bprior{ψ}+ f(ψ)I{ψ})

}]

, n→ 0.

We can construct a new completely random measure, B̂n, by keeping only those jumps from Bprior (gener-

ated with intensity ν) that are either at the fixed atom locations or have height at least 1/n. Then B̂n
d
= Bprior,n

for Bprior,n generated with intensity νn. Let În be the counting process generated with parameters r and B̂n.

Then it is enough to show

Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)B̂n{ψ}+ f(ψ)În{ψ})

}]

→ Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)Bprior{ψ}+ f(ψ)I{ψ})

}]

, n→ 0.

Let B̂−
n = Bprior − B̂n be the completely random measure consisting only of an ordinary component
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with jumps of size less than 1/n. Let Î−n be a counting process with parameters r and B̂−
n . Then, using

the independence of B̂n and B̂−
n , we have

Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)B̂n{ψ}+ f(ψ)În{ψ})

}]

= Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)Bprior{ψ}+ f(ψ)I{ψ})

}]

Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)B̂−
n {ψ}+ f(ψ)Î−n {ψ})

}]

.

So it is enough to show that

Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)B̂−
n {ψ}+ f(ψ)Î−n {ψ})

}]

→ 1, n→ ∞. (52)

In order to show Eq. (52) holds, we establish the following upper bounds:

Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)B̂−
n {ψ}+ f(ψ)Î−n {ψ})

}]

≤ 1, (53)

and

∫ 1

ψ=0

(g(ψ)B̂−
n {ψ}+ f(ψ)Î−n {ψ}) ≤ (max

ψ
g(ψ))B̂−

n [0, 1] + (max
ψ

f(ψ))Î−n [0, 1].

Henceforth we use the shorthand c , (maxψ g(ψ)) and c′ , (maxψ f(ψ)). These quantities are finite by the

assumptions on g and f . Choose ǫ > 0. Further define the events

AB , {B̂−
n [0, 1] > ǫ} and AI , {Î−n [0, 1] > ǫ}.

By Chebyshev’s inequality,

P(AB,n) < E

[

B̂−
n [0, 1]

]

/ǫ and P(AI,n) < E

[

Î−n [0, 1]
]

/ǫ.

Using these definitions, we can write

Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)B̂−
n {ψ}+ f(ψ)Î−n {ψ})

}]

≥ Eprior

[

exp
{

−cB̂−
n [0, 1]− c′Î−n [0, 1]

}]

≥ Eprior

[

1(ACB,n ∩ ACI,n) exp
{

−cB̂−
n [0, 1]− c′Î−n [0, 1]

}]

≥ Pprior(A
C
B,n ∩ ACI,n) · exp {−cǫ− c′ǫ} . (54)

Now Pprior(A
C
B,n ∩ ACI,n) = 1− Pprior(AB,n ∪AI,n). And

Pprior(AB,n ∪ AI,n) ≤ Pprior(AB,n) + Pprior(AI,n)

≤ ǫ−1
{

E

[

B̂−
n [0, 1]

]

+ E

[

Î−n [0, 1]
]}

→ 0, n→ ∞,

where the last line follows by noting

E

[

B̂−
n [0, 1]

]

=

∫ 1/n

b=0

bν(db) → 0, n→ 0,

since ν is continuous and
∫ 1

b=0 bν(db) <∞ by assumption, and

E

[

Î−n [0, 1]
]

=

∞
∑

m=1

∫ 1/n

b=0

Cb−1(1− b)θ−1

(

m+ r − 1

m

)

(1− b)rbm db
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where C is a constant in n (c.f. Eq. (14))

= C
∑

m

(2/n)m
∫ 1/2

0

(b̃)m−1(1− (2/n)b̃)r+θ−1

(

m+ r − 1

m

)

db̃

≤ C2r+θ−1
∑

m

(2/n)m
∫ 1/2

0

b̃m−1(1 − b̃)r+θ−1

(

m+ r − 1

m

)

db̃

≤ 2r+θ−1(1/n)
∞
∑

m=1

C

∫ 1

0

b̃m−1(1− b̃)r+θ−1

(

m+ r − 1

m

)

db̃

= 2r+θ−1(1/n)C′,

where C′ is a constant in n (by Lemma 10). The final line goes to zero as n→ 0.

So Pprior(A
C
B,n ∩ ACI,n) → 1 as n→ ∞, and the bound in Eq. (54) yields:

lim
n→∞

Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)B̂−
n {ψ}+ f(ψ)Î−n {ψ})

}]

≥ exp {−cǫ− c′ǫ} .

Since this result is true for every ǫ > 0, we must have

lim
n→∞

Eprior

[

exp

{

−

∫ 1

ψ=0

(g(ψ)B̂−
n {ψ}+ f(ψ)Î−n {ψ})

}]

≥ 1.

Together with Eq. (53), this equation gives the desired result.

Lemma 22. For Φn and Φ defined in, respectively, Eqs. (48) and (49), we have the limit in Eq. (50):

∫

I∈G

exp

{

−

∫ 1

ψ=0

f(ψ)I{ψ}

}

(Ψn(I)−Ψ(I))dPmarg,n(I) → 0. (55)

Proof: We start by choosing n large enough so that (1) the difference between the ordinary components in

the truncated case and the non-truncated case are, in some sense, small enough and (2) the number of atoms

in the truncated case is bounded with high probability. Under these two conditions, we will then show that

Ψn(I) and Ψ(I) are sufficiently close in value by examining in turn each of the various types of atoms in the

proposed posterior.

Therefore, choose ǫ > 0. First note that by the assumption of finite integration of ν (Eq. (43)) we can choose

n0 such that for all n > n0 we have
∫ 1/n

b=0

bν(db) < ǫ. (56)

This choice implies the existence of n1 such that for all n > n1 and all i ≥ 1 we have Eq. (56) as well as

∫ 1/n

b=0

bi(1− b)rν(db) < ǫ. (57)

Second, since I ∼ Pmarg,n approaches I ∼ Pmarg in distribution by Lemma 21, there exist constants K ′ and

n2 such that the number of atoms Kn of In satisfies

Pmarg(Kn > K ′) < ǫ for all n > n2.

It remains to use these conditions to bound

∫

I∈G

exp

{

−

∫ 1

ψ=0

f(ψ)I{ψ}

}

(Ψn(I)−Ψ(I))dPmarg,n(I).
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For instance, since Ψn(I) and Ψ(I) are both bounded between zero and one, we have that
∣

∣

∣

∣

∫

I∈G

exp

{

−

∫ 1

ψ=0

f(ψ)I{ψ}

}

(Ψn(I)−Ψ(I))dPmarg,n(I)

∣

∣

∣

∣

≤ 2ǫ+

∫

I∈G

Kn≤K
′

|Ψn(I)−Ψ(I)| dPmarg,n(I). (58)

Next, we need to bound the second term on the righthand side of Eq. (58). To that end, we break Ψn and

Ψ into their three constituent parts: the fixed atoms from the prior, the new fixed atoms in the proposed

posterior, and the ordinary component in the proposed posterior. For Ψn, we have

Ψn(I) =

∫

B∈Mn

exp

{

−

∫ 1

ψ=0

g(ψ)B{ψ}

}

dQ(B : I)

=

∫

B∈Mn

exp







−
∑

ψ:I{ψ}≥1,ψ/∈{u1,...,uL}

g(ψ)B{ψ} −

L
∑

l=1

g(ul)B{ul} −

∫ 1

ψ=0

g(ψ)Bord{ψ}







dQ(B : I)

=





∏

ψ:I{ψ}≥1,ψ/∈{u1,...,uL}

∫

B∈Mn

exp {−g(ψ)B{ψ}} dQ(B : I)





·

[

L
∏

l=1

∫

B∈Mn

exp {−g(ul)B{ul}} dQ(B : I)

]

[∫

B∈Mn

exp

{

−

∫ 1

ψ=0

g(ψ)Bord{ψ}

}

dQ(B : I)

]

by the independence of these components under Q(B : I)

=





∏

ψ:I{ψ}≥1,ψ/∈{u1,...,uL}

c−1
new,n

∫ 1

b=0

exp{−g(ψ)b}bI{ψ}(1− b)rνn(db)





·

[

L
∏

l=1

∫

B∈Mn

exp {−g(ul)B{ul}} dQ(B : I)

]

[

exp

{

−

∫ 1

b=0

∫ 1

ψ=0

(

1− e−g(ψ)b
)

(1− b)r dψ νn(db)

}]

.

The final factor results from Campbell’s theorem. The analogous formula holds for Ψ by removing the n

subscripts.

With the formulas for Ψn and Ψ in hand, we turn again to our desired bound. We follow Lemma 3 of Kim

(1999) in using the following fact: for x1, . . . , xM , y1, . . . , yM ∈ R and |xm|, |ym| ≤ 1 for all m, we have
∣

∣

∣

∣

∣

M
∏

m=1

xm −

M
∏

m=1

ym

∣

∣

∣

∣

∣

≤

M
∑

m=1

|xm − ym|.

In particular, we apply this inequality to transform the difference in Ψn and Ψ into separate differences

in each component, where we note that the prior fixed atom component is shared and therefore disappears.

First, for notational convenience, define

Cn(I, ψ) ,

∫ 1

b=0

exp{−g(ψ)b}bI{ψ}(1− b)rνn(db)

C(I, ψ) ,

∫ 1

b=0

exp{−g(ψ)b}bI{ψ}(1− b)rν(db)

Then

∫

I∈G

Kn≤K
′

|Ψn(I)−Ψ(I)| dPmarg(I)



54

≤

∫

I∈G

Kn≤K
′











∑

ψ:I{ψ}≥1,ψ/∈{u1,...,uL}

∣

∣

∣[cnew,n(I{ψ})]
−1
Cn(I, ψ)− [cnew(I{ψ})]

−1
C(I, ψ)

∣

∣

∣





+

∣

∣

∣

∣

exp

{

−

∫ 1

b=0

∫ 1

ψ=0

(

1− e−g(ψ)b
)

(1− b)r dψ νn(db)

}

− exp

{

−

∫ 1

b=0

∫ 1

ψ=0

(

1− e−g(ψ)b
)

(1− b)r dψ ν(db)

}∣

∣

∣

∣

}

.

We note that |cnew,n(I{ψ}) − cnew(I{ψ})| ≤ ǫ and |Cn(I, ψ) − C(I, ψ)| ≤ ǫ. And finally the difference in the

two exponential terms is at most ǫ. So for large enough n and hence small enough ǫ we have

∫

I∈G

Kn≤K
′

|Ψn(I)− Ψ(I)| dPmarg(I)

≤ ǫK ′ max
ψ:I{ψ}≥1,ψ/∈{u1,...,uL}

[

cnew(I{ψ})
−1 + C(I, ψ)

]

+ ǫ

Together with Eq. (58), this bound completes the proof.

APPENDIX F

POSTERIOR INFERENCE DETAILS

F.1 Exact Gibbs slice sampler

We sample bd,k and ψk from their Gibbs conditionals as follows:

Sample ψk. The conditional posterior of ψk given z·,· and x·,· is proportional to

H(dψk)

D
∏

d=1

Nd
∏

n=1

F (dxd,n | ψk)
I(zd,n=k).

This has a closed form when H is conjugate to F (ψk) and may otherwise be sampled using a generic univariate

sampling procedure (e.g., random-walk Metropolis-Hastings or slice sampling).

Sample bd,k. By beta-negative binomial conjugacy, the conditional posterior of bd,k given zd,. and b0,k is a

beta distribution,

bd,k ∼ Beta(γdθdb0,k +Nd,k, θd(1 − γdb0,k) + rd),

where Nd,k ,
∑

n I(zd,n = k).

Sample b0,k. To sample the shared beta process weights b0,k, we turn to the size-biased construction of the

beta process introduced by Thibaux and Jordan (2007)

B0 =

∞
∑

m=0

Cm
∑

i=1

b0,m,iδψm,i,·
,

where

Cm
ind
∼ Pois

(

θ0γ0
θ0 +m

)

, b0,m,i
ind
∼ Beta(1, θ0 +m), and ψm,i,·

iid
∼ H.

If we order the atoms by the rounds in which they were drawn, then the k-th atom overall was drawn in

round mk, where

mk , min







m :

m
∑

j=0

Cj ≥ k







.
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Conditional on the round indices (mk)
∞
k=1, we have

B0 =

∞
∑

k=1

b0,kδψk

for

b0,k
ind
∼ Beta(1, θ0 +mk) and ψk

iid
∼ H.

The conditional density of b0,k given the remaining variables is therefore proportional to

(1− b0,k)
θ0+mk−1

D
∏

d=1

1

Γ(γdθdb0,k)Γ(θd(1− γdb0,k))

(

bd,k
1− bd,k

)γdθdb0,k

(59)

and may be sampled using random-walk Metropolis-Hastings.

It remains then to sample the latent round indices mk or, equivalently, their differences hk , mk −mk−1,

where m0 , 0 for notational convenience. Let fm and Fm denote the pmf and cdf of the Pois( θ0γ0θ0+m
) distribution

respectively, and define Cm,j ,
∑j
k=1 I(mk = m). Since Cm =

∑∞
k=1 I(mk = m) ∼ Pois( θ0γ0θ0+m

), it follows that

P(hk < 0 | (hj)
k−1
j=1 ) = 0,

P(hk = 0 | (hj)
k−1
j=1 ) =

1− Fmk−1
(Cmk−1,k−1)

1− Fmk−1
(Cmk−1,k−1 − 1)

for mk−1 =
∑k−1

j=1 hj , and

P(hk = h | (hj)
k−1
j=1 ) =

fmk−1
(Cmk−1,k−1)

1− Fmk−1
(Cmk−1,k−1 − 1)

(1− fmk−1+h(0))

h−1
∏

g=1

fmk−1+g(0)

for all h ∈ N. The conditional distribution of hk given (hj)
k−1
j=1 and b0,k is then

p(hk | (hj)
k−1
j=1 , b0,k) ∝ (1− b0,k)

hk(θ0 + hk +mk−1)p(hk | (hj)
k−1
j=1 ),

which cannot be normalized in closed form due to the infinite summation. To permit posterior sampling of

hk, we introduce an auxiliary variable vk with conditional distribution

vk ∼ Unif(0, ζ0,hk
(1− b0,k)

hk)

where (ζ0,h)
∞
h=1 is a fixed positive sequence with limh→∞ ζ0,h = 0. Given vk, we may slice sample hk from the

finite distribution

p(hk | (hj)
k−1
j=1 , b0,k) ∝

I(vk ≤ ζ0,hk
(1− b0,k)

hk)

ζ0,hk

(θ0 + hk +mk−1)p(hk | (hj)
k−1
j=1 ).

F.2 Collapsed sampling

In Eq. (59), we sampled b0,k conditional on b·,k. A more efficient alternative is to integrate b·,k out of this

conditional. We exploit the conjugacy of the beta and negative binomial distributions to derive the conditional

distribution of Nd,k given b0,k, γd, θd, and rd:

p(Nd,k | b0,k, γd, θd, rd) =

∫

p(Nd,k | bd,k, rd)p(bd,k | b0,k, γd, θd)dbd,k

=

∫

Γ(Nd,k + rd)

Nd,k! Γ(rd)

Γ(θd)b
Nd,k+γdθdb0,k−1
d,k (1 − bd,k)

rd+θd(1−γdb0,k)−1

Γ(γdθdb0,k) Γ(θd(1− γdb0,k))
dbd,k
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=
Γ(Nd,k + rd)

Nd,k! Γ(rd)

Γ(θd) Γ(Nd,k + γdθdb0,k) Γ(rd + θd(1− γdb0,k))

Γ(Nd,k + rd + θd) Γ(γdθdb0,k) Γ(θd(1− γdb0,k))
.

The conditional density of b0,k with b·,k integrated out now takes the form

(1− b0,k)
θ0+mk−1

D
∏

d=1

Γ(Nd,k + γdθdb0,k) Γ(rd + θd(1− γdb0,k))

Γ(γdθdb0,k) Γ(θd(1− γdb0,k))

and may be sampled using random-walk Metropolis-Hastings.

F.3 Finite approximation Gibbs sampler

The full conditional distribution of b0,k under the finite approximation of Eq. (10) is proportional to

b
θ0γ0/K−1
0,k (1 − b0,k)

θ0(1−γ0/K)−1
D
∏

d=1

1

Γ(γdθdb0,k)Γ(θd(1− γdb0,k))

(

bd,k
1− bd,k

)γdθdb0,k

,

while the conditional density with b·,k integrated out is proportional to

b
θ0γ0/K−1
0,k (1− b0,k)

θ0(1−γ0/K)−1
D
∏

d=1

Γ(Nd,k + γdθdb0,k) Γ(rd + θd(1− γdb0,k))

Γ(γdθdb0,k) Γ(θd(1− γdb0,k))
.

Random-walk Metropolis-Hastings may be used to sample b0,k from either distribution.

With this approximation in hand, we sample λd,k, bd,k, and ψk precisely as described in Section 7.1. Since

the number of components is finite, no auxiliary slice variables are needed to sample the component indices.

Hence, we may sample zd,n from its discrete conditional distribution

P(zd,n = k) ∝ F (dxd,n | ψk)λd,k

given the remaining variables.
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