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ABSTRACT
We address the problem of shoulder-surfing attacks on au-
thentication schemes by proposing IllusionPIN (IPIN), a
PIN-based authentication method that operates on touch-
screen devices. IPIN uses the technique of hybrid images to
blend two keypads with different digit orderings in such a
way, that the user who is close to the device is seeing one
keypad to enter her PIN, while the attacker who is looking
at the device from a bigger distance is seeing only the other
keypad. The user’s keypad is shuffled in every authentica-
tion attempt since the attacker may memorize the spatial
arrangement of the pressed digits.

To reason about the security of IllusionPIN, we developed
an algorithm which is based on human visual perception and
estimates the minimum distance from which an observer is
unable to interpret the keypad of the user. We tested our es-
timations with 84 simulated shoulder-surfing attacks from 21
different people. None of the attacks was successful against
our estimations. In addition, we estimated the minimum
distance from which a camera is unable to capture the vi-
sual information from the keypad of the user. Based on our
analysis, it seems practically almost impossible for a surveil-
lance camera to capture the PIN of a smartphone user when
IPIN is in use.

1. INTRODUCTION
User authentication is performed in various ways [4]. We
focus on PIN authentication because of its simplicity and
maturity. A Personal Identification Number (PIN) is a se-
quence of digits that confirms the identity of a person when
it is successfully presented. PINs are simpler than alphanu-
meric passwords as they solely consist of numerical charac-
ters (0-9) and have a short length that is usually either 4
or 6 digits. This makes PINs easy to remember and easy to
reproduce, and as a consequence, PIN authentication is char-
acterized by infrequent errors [10]. So, simplicity is trans-
lated to usability. The maturity of PIN authentication is a
result of its continuous usage for years in a wide range of
everyday life applications, like mobile phones and banking
systems.

∗This paper was published as [26]
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From the perspective of security, PIN authentication is sus-
ceptible to brute force or even guessing attacks [5]. To bal-
ance this weakness, the number of allowed authentication
attempts is usually constrained to a small number such as
5. However, a simple attack that is still very hard to miti-
gate is shoulder-surfing [1].

Shoulder-surfing refers to eavesdropping personal informa-
tion, like an alphanumeric password or a PIN, through ob-
servation. A typical example is an adversary who is stand-
ing behind a person in the line for an ATM machine and is
looking, or“surfing”, over the person’s shoulder to obtain her
PIN information. In this scenario, the attacker is observing
a person while being in her vicinity. However, the attacker
may observe someone remotely by using recorded material
that was collected intentionally or even unintentionally. For
example, unintentional recording of shoulder-surfing mate-
rial could result from a surveillance camera that captured a
person while entering her authentication credentials to un-
lock her phone in a store or at the workplace.

Authentication schemes which are not resilient to observa-
tion are vulnerable to shoulder-surfing. Any kind of visual
information may be observed, including the blink of a button
when it is pressed, or even the oily residue that the fingers
leave on a touchscreen [2]. Shoulder-surfing is a big threat
for PIN authentication in particular, because it is relatively
easy for an observer to follow the PIN authentication pro-
cess. PINs are short and require just a small numeric keypad
instead of the usual alphanumeric keyboard. In addition,
PIN authentication is often performed in crowded places,
e.g., when someone is unlocking her mobile phone on the
street or in the subway. Shoulder-surfing is facilitated in
such scenarios since it is easier for an attacker to stand close
to the user while escaping her attention.

The motivation behind this work relies on the hypothesis
that PIN authentication will really meet the needs of its
users when it will increase its shoulder-surfing resistance
without a significant overhead in its usability. We con-
tributed towards this claim in the following ways.

• We designed IllusionPIN (IPIN) for touchscreen de-
vices. The virtual keypad of IPIN is composed of two
keypads with different digit orderings, blended in a
single hybrid image [25]. The user who is close to the
screen is able to see and use one keypad, but a poten-
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tial attacker who is looking at the screen from a bigger
distance, is able to see only the other keypad. We an-
alyze in detail the design of IllusionPIN in Section 5.

• We developed an algorithm to estimate whether or not
the user’s keypad is visible to an observer at a given
viewing position. We explain the estimation algorithm
in Section 6.

• We tested the estimated visibility of IllusionPIN through
a user study of simulated shoulder-surfing attacks on
smartphone devices. In total, we performed 84 attacks
with 21 different people and none of the attacks was
successful against our estimations. We provide the de-
tails of this user study in Section 8.

• We estimated the minimum distance from which a
camera is unable to capture the visual information
from the user’s keypad. The exact procedure is ex-
plained in Section 7. The results show that it is prac-
tically almost impossible for a surveillance camera to
capture the PIN of a smartphone user when Illusion-
PIN is in use.

2. RELATED WORK
We organize shoulder-surfing resistant authentication schemes
according to 6 design principles. The Obscurity principle
states that the visual information of interest has to be ob-
scured. For example, ShieldPIN [14] requires the user to
physically cover the keypad by cupping one hand while us-
ing the other hand to enter her PIN. It is obvious that such
an approach demands physical effort and simultaneous us-
age of both hands that may be unwanted. An alternative
solution that does not require any extra effort from the user
is to make the content of the screen visible within a lim-
ited range of viewing angle. This can be achieved either
with additional hardware, e.g. privacy filters, or with spe-
cial hardware, e.g. automultiscopic displays [6, 21]. In both
cases, deployability may be an issue. However, there is a
number of software solutions which create a similar effect
[11, 15]. Specifically, depending on the viewing angle, dif-
ferent visual elements appear on the screen and obscure the
real content. These approaches exploit technical limitations
of certain screens’ technology, and as a result, they can’t
be generalized or expected to be applicable in the future as
screen technology advances. In addition, a shoulder-surfer
is not necessarily observing from a big angle, as he may be
just standing behind the user.

The Visual Complexity principle states that it has to be
difficult to receive the visual information of interest [12].
For example, DAS [13] is a simple graphical password that
allows the user to create a free-form drawing on a touch-
screen and to use it as her password. Decoy Strokes [42]
is a shoulder-surfing resistant variation of DAS that draws
strokes alongside the user’s password to confuse a malicious
observer. The problem with such schemes is that the user
is exposed to the same distracting information and may end
up confused as well, leading to slower authentication and
more frequent input errors. Also, if the attacker is able to
observe multiple times during the authentication process or
to record it, he may be able to steal the credentials of the
user.

The Cognitive Complexity principle states that it has to
be difficult to process the acquired visual information [38].
For example, in one of the cognitive trapdoor games [31], the
user is required to enter her PIN in the following way. The
digits on the provided keypad are separated into two sets
based on their color; half of them are black, and half of them
are white. The user selects the set that the current digit of
her PIN belongs to, and then the digits are reassigned to the
two color sets. This procedure is repeated until the scheme is
able to uniquely determine the correct digit by intersecting
the selected sets. Then, the user proceeds to the next digit
of her PIN. For an observer, it is extremely difficult, if not
impossible, to successfully perform sequential intersections
of sets to extract the correct PIN. However, such schemes
are usually complex for the users too, with all the inevitable
consequences for usability. In addition, recorded material
or even repeated observation may reveal the authentication
credentials, since all the useful information is observable.

The Alteration principle states that the required input has
to change in every authentication attempt [28, 41]. For ex-
ample, Deja Vu [9] presents to the user a number n of images,
and asks her to specify which of them belong to a predefined
set of images, called the user’s portfolio. In each authentica-
tion attempt, different images from the portfolio are assigned
to the set of the n images. As a consequence, an observer
cannot learn the portfolio of the user in a limited number
of observations. However, multiple observations may reveal
the whole portfolio. In general, with such schemes is difficult
for the user to get familiar with a standard input. For exam-
ple, with Deja Vu the user has to identify different pictures
in every authentication attempt. This requires additional
cognitive effort and may affect the authentication time and
the error rate.

The One-to-Many principle states that the same input has
to correspond to more than one authentication credentials
[17, 40, 29, 8, 31, 37]. For example, SlotPIN [14] allows the
user to enter a PIN by aligning four vertical reels of ran-
domly ordered digits. The first reel is static and denotes
the position of the first PIN digit. The other three reels get
aligned by the user according to the PIN. In the end, ten
PINs are formed, and a shoulder-surfer is unable to know
which is the correct one. In addition, it is difficult to mem-
orize all of them. However, the attacker could replicate the
same input without the need to know the correct credentials.
That’s why schemes designed under this principle random-
ize the input interface periodically. In the case of SlotPIN,
the digits on the reels are randomized in every authentica-
tion attempt. The problem with such schemes is that they
exhibit high complexity in order to break the one-to-one cor-
respondence between inputs and authentication credentials.
This results in high cognitive effort on the user side and ren-
ders such schemes unacceptable for frequent usage, e.g. for
unlocking mobile phones. Also, multiple observations may
reveal the correct credentials.

The Non-Visual Information principle states that at least
part of the information of interest has to be transmitted
through channels that are not observable. This way, an ob-
server is always missing a piece of information and shoulder-
surfing is mitigated even in cases that multiple observations
or recordings are possible. However, the performance of such
schemes in usability and deployability varies. For example,
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schemes which use audio and haptic information [3, 35] suf-
fer from high authentication time and their requirements
for additional hardware heavily affect their deployability.
However, the emergence of touchscreen devices which are
pressure-sensitive may favor schemes which use this kind of
haptic information [19, 32, 22, 34, 33, 23], if they are com-
bined with satisfying usability. Gaze-based authentication
[16] corresponds to high authentication time, and authenti-
cation based on brainwaves [7] or bone conduction [36] re-
quires special equipment. Fingerprint authentication [30]
is a scheme that gains popularity nowadays by offering ex-
cellent usability. A usual problem with biometrics like fin-
gerprints is that they cannot be revoked. In addition, bio-
metrics can be used to uniquely identify a person and they
raise privacy concerns. However, the concept of cancelable
biometrics [27] could alleviate both problems.

3. THREAT MODEL
A threat model guides the design of a security scheme. Our
threat model consists of shoulder-surfing attack scenarios
against smartphone authentication. Different scenarios in-
volve attacks with different difficulty to mitigate. The most
difficult scenario that we consider corresponds to situations
similar to a crowded train where we assume that a shoulder-
surfer may be as close as 25 inches to the user. The least dan-
gerous scenario we consider corresponds to workplace condi-
tions, where a shoulder-surfer has the ability to repeatedly
observe the user but from a minimum distance of 60 inches
(e.g. the shoulder-surfer works to the cubicle next to the
user). A scenario with intermediate difficulty corresponds
to a non-crowded public place, where a shoulder-surfer may
approach the user in a radius of 35 or 45 inches. As we can
see, in each scenario we have to protect the user for view-
ing distances which are equal or bigger than a particular
distance. We call such a distance “safety distance”, and we
denote it with ds. It is also important to consider that when
the shoulder-surfer stands behind the user, it is difficult to
have visual contact with the phone screen even if he is con-
siderably taller than the user. Based on that, we assume
that the shoulder-surfer is standing next to the user at an
angle that is at least 30 degrees. We would like to note that
the aforementioned safety distance values that ranged from
25 to 60 inches and corresponded to different scenarios, were
determined empirically. Similarly, the value of 30 degrees is
empirical too.

We additionally consider the scenario that the attacker has
the ability to record the user during the authentication pro-
cess. It is difficult for an attacker to record a user from
a close distance while escaping her attention. Also, it is
difficult to capture the user during the short time of the
authentication process that usually happens unexpectedly.
Consequently, we will focus on the scenario that the recorded
material is collected with surveillance cameras. In such a
case, the distance of recording is assumed to be at least 100
inches.

4. PERCEPTION OF AN IMAGE BY A HU-
MAN OBSERVER
To explain how we designed IllusionPIN we first need to
provide some background information about the perception
of grayscale images. Based on the 2D Fourier transform
which describes an image as a superimposition of sine wave
gratings, we first examine the perception of a single sine

Figure 1: The image formation process on the retina
according to the model of the pinhole camera. Gr
is the projection of image G on the retina when
is viewed from position N . Spatial positions are
specified according to the coordinate system that
is placed at the center of G.

wave grating and then we extend to arbitrary images.

4.1 Perception of Sine Wave Gratings
We study how a human observer perceives an image of a
sine wave grating by studying how this is done by a single
eyeball. In figure 1, we show how we model the behavior of
an eyeball. We assume that it behaves as an ideal pinhole
camera which directs light rays from the surface of an image
G through a pinhole and onto the retina. On the retina, pho-
toreceptors get activated and form a different 2D image Gr
which corresponds to the visual information that the eye re-
ceives. This is a simplification of the real process, but offers
an acceptable approximation, while being mathematically
convenient. Under this model, Gr is shaped through the
perspective projection of G on the retina, and consequently,
Gr is a scaled version of G. This means that G and Gr
are both sine wave gratings, but with different parameters,
meaning different spatial frequency, contrast and phase. So,
we can think of the image formation process on the retina as
a projection that modifies the parameters ofG. This leads us
to make a distinction between the actual and the perceived
parameters of G, which correspond to its parameters before
and after its projection on the retina respectively. The per-
ceived parameters of G are the parameters of Gr. Based on
these remarks, given the actual parameters of a grating G
and the position N of an observer, we want to derive the
perceived parameters of G.

We start by considering the relation between the actual
and perceived contrast. Perceived contrast depends on the
amount of light rays that reaches the retina from each part
of an image, and consequently, we need to model the illumi-
nation of the 3D scene. In the context of our work, illumi-
nation results from the screen of the device, from external
light sources, e.g. a light bulb, and from light reflected off
surfaces in the surrounding space. We make two assump-
tions regarding illumination. The first is that illumination
is uniform. This means that each part of the image emits
the same amount of light. This is a fair assumption since
we consider that the dominant light source is the screen of
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the device. The second assumption is that the amount of
light rays that reaches the retina is adequate to perceive the
visual information of the image. This assumption is based
on the ability of smartphone devices to adjust the brightness
of their screens to the illumination level of the surrounding
space. Following these assumptions, we lift the need to make
a distinction between the actual and the perceived contrast
of a grating, and from now on we will consider them as being
equal.

Next, we consider perceived phase. As we have seen, Gr is a
scaled version of G. Scaling preserves the number of cycles
of a grating as well as its phase, and consequently, we will
consider perceived phase to be equal to the actual phase.

Now we move to the calculation of the perceived spatial
frequency. In figure 1, we can see that G subtends visual

angle (θx, θy). So, if ~f = (nx/dx, ny/dy) is the actual spatial

frequency of G, its perceived spatial frequency will be ~fp =
(nx/θx, ny/θy), where nx, ny is the number of cycles in the
horizontal and vertical directions, and (dx, dy) is the size
of the image measured in units of length. All we need to
do is to calculate (θx, θy). To this end, we consider the
general setting depicted in figure 1. The coordinate system
for specifying spatial positions is placed at the center of the
image where we assume that the observer is focused. The
position of the observer is N = (x0, y0, z0), where z0 > 0,
meaning that the observer is in front of the image. For θx
we have:

θx = cos−1

( −−→
NA ·

−−→
NB

|
−−→
NA| · |

−−→
NB|

)
(1)

For
−−→
NA we have:

−−→
NA =

−−→
NO +

−→
OA

= −(x0, y0, z0) + (−dx/2, 0, 0)

= (−x0 − dx/2,−y0,−z0)

(2)

Similarly for
−−→
NB we have:

−−→
NB = (−x0 + dx/2,−y0,−z0) (3)

Based on equations 2 and 3, from equation 1 we get:

θx = cos−1

(
x20−1/4·d2x+y20+z

2
0√

(x0+dx/2)2+y20+z
2
0 ·
√

(x0−dx/2)2+y20+z
2
0

)
(4)

Similarly, for θy we get:

θy = cos−1

(
y20−1/4·d2y+x

2
0+z

2
0√

(y0+dy/2)2+x20+z
2
0 ·
√

(y0−dy/2)2+x20+z
2
0

)
(5)

From equations 4 and 5 we can calculate θx and θy.

If we transform equations 4 and 5 in spherical coordinates
(r, θ, φ), where r ∈ (0,+∞) is the viewing distance, θ ∈
(0, π) is the polar angle, and φ ∈ (−π/2,+π/2) is the azimuth
angle, for N = (r0, θ0, φ0) we get:

θx = cos−1

(
r20−1/4·d2x√

(r20+
1/4·d2x)2−(1/2·r0 sin θ0 sinφ0dx)2

)
(6)

θy = cos−1

(
r20−1/4·d2y√

(r20+
1/4·d2y)2−(1/2·r0 cos θ0dy)2

)
(7)

0 20 40 60
0

0.5

1

perceived spatial frequency magnitude (c/d)

G
a

in

Figure 2: The Contrast Sensitive Function model as
proposed by Mannos et al. [20].

We can use these equations to examine how viewing distance
and viewing angle affect visual perception. If we vary the
value of viewing distance r0, θx and θy can take all their
possible values. When r0 = 0 we get θx = θy = π. When r0
approaches infinity, the factor r20 dominates equations 6 and

7, and we get θx ≈ θy ≈ cos−1 r20√
r40

= 0. In contrast, when

we change the values of θ0 or φ0, we just affect the denom-
inators in equations 6 and 7 and the value of visual angle
still heavily depends on the viewing distance. This shows
that viewing distance is the main factor that affects visual
perception. For this reason, in the following sections, when
we need to demonstrate changes in perception we mainly
consider variations in the viewing distance of the observer.
However, to accurately estimate the way an image is per-
ceived we have to consider the exact viewing position of the
observer.

4.2 Contrast Sensitivity Function
The human visual system (HVS) demonstrates variability
in its sensitivity to the perceived contrast of gratings with
different perceived spatial frequencies. This variability is
modeled through the contrast sensitivity function (CSF),
which can be seen as a band-pass filter that the HVS applies
to gratings according to their perceived spatial frequencies.
Figure 2 provides the model of the CSF proposed by Mannos
et al. [20]. CSF favors gratings with perceived spatial fre-
quency magnitudes at a particular range around 10 c/d. For
example, a grating with perceived spatial frequency mag-
nitude equal to 30 c/d must have bigger perceived contrast
than a grating with perceived spatial frequency magnitude
10 c/d to be perceived with the same clarity. Gratings with
perceived spatial frequency magnitude beyond the limit of
the visual acuity cannot be perceived, and that’s why CSF
cuts off completely every perceived spatial frequency with
magnitude over 60 c/d.

4.3 Perception of Superimposed Sine Wave Grat-
ings
According to the 2D Fourier transform, an image can be
seen as a superimposition of sine wave gratings with unique
actual spatial frequencies. The contribution of each grat-
ing is quantified by the magnitude of its Fourier coefficient

|X(~f)|, which is proportional to the grating’s amplitude by
a constant factor. Given an example image, in figure 3
(a) we visualize its actual 1D spectrum1. The horizontal
axis represents the magnitudes of actual spatial frequencies

1The diagrams in figure 3 do not originate from an existing
image. The reason is that we wanted to make the demon-
strations simpler (smoother curves) in order to be more un-
derstandable.
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Figure 3: (a) An example of how the actual spec-
trum of an image looks like. (b) The correspond-
ing perceived spectrums when the same image is di-
rectly viewed from 3 different viewing distances.

to create a simple 2D graph instead of a 3D one. Unless
stated otherwise, we will refer to 1D spectrums simply as
spectrums. The vertical axis represents the contribution of

gratings through the quantities ln (1 + |X(~f)|). When the

actual spatial frequencies ~fi, i = 1, 2, ...n from n different

gratings have the same magnitude |~f1|, the corresponding

ln (1 + |X(~fi)|) values are added together and the result is
considered the total contribution of the n gratings. Since
we are dealing with digital images, we are using the Dis-
crete Fourier Transform (DFT) and the circles on the curve
of figure 3 (a) correspond to the existing discrete magnitude
values of actual spatial frequencies.

To understand how an image is perceived from a specific
viewing position N = (r0, θ0, φ0), we use equations 6 and 7
to express the actual spectrum in perceived spatial frequen-
cies. We call such a diagram the perceived spectrum. To aid
our demonstrations, we consider the special case that the ob-
server is looking directly at the image (θ0 = π/2, φ0 = 0) and
additionally holds that dx = dy = d. In such a case, from
equations 6 and 7 we get θx = θy = θ. As a consequence,

it holds that | ~fp| = d/θ · |~f | and the perceived spectrum
has exactly the same form as the actual spectrum. In fig-
ure 3 (b), we depict the perceived spectrums of the image
with the actual spectrum of figure 3 (a) when it is viewed
from 3 different distances r0. The blue curve corresponds
to the smallest viewing distance. As the viewing distance
increases, the visual angle gets smaller and the factor d/θ
gets bigger. As a consequence, the perceived spectrums are
stretched and take the form of the cyan and the red curve.
Since the contrast of a grating can be expressed through its
amplitude, we can use the CSF to filter the perceived spec-
trums in order to understand how they are perceived. As
we can see, the band-pass nature of the CSF favors the cyan
curve. In particular, the CSF assigns small gain values to
gratings with a big contribution in both the blue and the red
curve. As a consequence, part of the visual information that
the image is carrying is either perceived with less clarity or
it is not perceived at all. For example, in the case of the red
curve that the viewing distance has its bigger value, many
gratings with high perceived spatial frequency magnitudes
are completely cut-off. That’s why when an image is viewed
from a big distance, it is perceived as being blurred.

5. ILLUSIONPIN (IPIN)
5.1 Method
IllusionPIN is a PIN-based authentication scheme for touch-
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+
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Figure 4: (a) An example of how the perceived spec-
trums of two square images Ihu and Ils look like when
they are directly viewed from a small distance. Ihu
is the result of high-pass filtering and Ils of low-pass
filtering. (b) The perceived spectrums of the same
images when they are viewed from a bigger distance.

screen devices which offers shoulder-surfing resistance. The
design of IllusionPIN is based on the simple observation that
the user is always viewing the screen of her device from a
smaller distance than a shoulder-surfer. Based on this, the
core idea of IllusionPIN is to make the keypad on the touch-
screen to be interpreted with a different digit ordering when
the viewing distance is adequately large. This way, when
the shoulder-surfer is standing far enough, he is viewing the
keypad as being different from the one that the user is uti-
lizing for her authentication, and consequently he is unable
to extract the user’s PIN. Also, the keypad is shuffled in
every authentication attempt (or every digit entry) to avoid
disclosing the spatial distribution of the pressed digits. We
create the keypad of IllusionPIN with the method of hybrid
images [25, 24] and we call it a hybrid keypad.

A hybrid keypad I is created by blending appropriately two
normal keypads denoted with Iu and Is. Our goal is I to
be interpreted as being Iu when it is viewed from close up,
and to be interpreted as being Is when it is viewed from
far away. That’s why we call Iu the “user’s keypad” and Is
the “shoulder-surfer’s keypad”. To create I, we process Iu
with a high-pass filter and Is with a low-pass filter. The
filtering results in two new images, Ihu and Ils, and we sim-
ply set I = Ihu + Ils. So, a hybrid keypad is composed by
a high spatial frequency component Ihu and a low spatial
frequency component Ils. To understand how the interpre-
tation of I is changing, we consider that we directly view
an example hybrid keypad from different distances. If the
viewing distance is adequately small, the visual angle is such
that the perceived spectrums of Ihu and Ils occupy low per-
ceived spatial frequency magnitudes as depicted in figure 4
(a). As we can see, the gain distribution of the CSF favors
the perceived spectrum of Ihu , and as a result I is interpreted
as being Iu. In figure 4 (b) we depict the same perceived
spectrums for a bigger viewing distance. As we can see,
the perceived spectrums are stretched to higher perceived
spatial frequency magnitudes and the CSF favors Ils. As a
consequence, Is dominates the perception of I. From inter-
mediate viewing distances, both Ihu and Ils are visible to a
considerable extent and is not certain how I is interpreted.
In figure 5, we provide an example hybrid image. In figure
5 (b) we downscale the image of figure 5 (a) to simulate
how it is perceived when it is directly viewed from a 2-times
bigger distance. From reading distance, we expect the digit
ordering of the hybrid keypad in figure 5 (a) and (b) to be
perceived as being different.
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(a) (b)

Figure 5: (a) A hybrid keypad (b) The simulated
perception of the same hybrid keypad when it is di-
rectly viewed from distance which is 2 times bigger.

5.2 Parameters
Given the images Iu and Is, the parameters that specify
the hybrid keypad I are the parameters of the low-pass and
the high-pass filters which are used to create Ihu and Ils.
For the low-pass filtering, we use a 2D Gaussian filter Gl,
and for the high-pass filtering we use a filter Gh = 1 − Ghl ,
where Ghl is also a 2D Gaussian filter. In the spatial do-
main, both Gl and Ghl have zero mean values and diagonal
covariance matrices with equal standard deviations. This
way, they affect an image by an equal number of pixels in
each dimension. So, if σlsx and σlsy are the standard devi-
ations of Gl in the horizontal and vertical dimensions, it
will hold σlsx = σlsy . If σlfx and σlfy are the corresponding
standard deviations in the frequency domain, it will hold
Nf

x/2πσlf
x = Nf

y/2πσlf
y ⇒ σlfy = Nf

y/Nf
x · σlfx , where (Nf

x , N
f
y )

is the size of the filter in samples. This shows that we can
completely define Gl by specifying either σlsy or σlfy . For
convenience, we prefer to work in the frequency domain and
consequently, we consider σlfy as the single parameter of Gl.
Similarly, we define Gh through the standard deviations of
Ghl , for which hold σhfy = Nf

y/Nf
x · σhfx in the frequency do-

main. Consequently, we consider σhfy as the single parameter
of Gh.

We have to make two additional remarks. The first is that
we want a filtered image to maintain its original size in pix-
els, (Nx, Ny), without the creation of additional frequency
components in the stop-band of the filters. To this end, we
perform the filtering in the frequency domain by multiplying
the (Nx, Ny)-point DFT of the image with the correspond-
ing filter. Because of this, the ratio Nf

y/Nf
x is equal to the

ratio of the image dimensions Ny/Nx, which usually is 16/9.
The second remark is that we measure σlfy and σhfy in num-
ber of cycles per image (c/im). This way, the visual effect of
filtering is invariant to the size of the image.

5.3 Tuning
The values of σlfy and σhfy create a trade-off between secu-

rity and usability. When the value of σlfy is increased, Ils
becomes more visible since its perceived spectrum extends
to higher spatial frequencies. This means that the user gets
more distracted during her authentication and she may even
need to bring the touchscreen closer to her eyes to clearly
see the user’s keypad. So, usability is negatively affected.
However, a shoulder-surfer needs to reduce his viewing dis-
tance too in order to see the user’s keypad with the same
clarity, and consequently security is increased. When σlfy is
decreased, the opposite effects are caused and usability is
increased while security is decreased. The same trade-off is

observed when the value of σhfy changes, since the clarity of

Ihu is affected. In particular, when σhfy is decreased, usabil-
ity is increased and security is decreased, while the opposite
behavior is observed when σhfy is increased.

To resolve the trade-off between security and usability, we
first set the value of σlfy in such a way that every possible
level of security and usability is still possible depending on
the value of σhfy . Then, based on our security requirements,

we set the minimum σhfy that satisfies them. This way, us-
ability is maximized under the constraint that our security
needs are met. To set the value of σlfy , we consider that if

σlfy gets very small, Ils will be that blurred that the original
digits from Is won’t be recognizable, no matter the viewing
distance. On the other hand, we have to consider that a user
is usually holding her device at a particular distance. If σlfy
gets very big, the user’s keypad won’t be able to dominate
the perception from that specific viewing distance. So, we
set σlfy to be close to the minimum value that allows the dig-

its on Ils to be interpreted. We experimented with Nexus 6
and iPhone 6 smartphones which have representative key-
pads at their lock screens while they differ in size, resolution,
and visual content. We concluded that a suitable value for
σlfy is 35 c/im. However, if the digits in another keypad are
considerably different, e.g. much thicker, we may need to
adjust the value of σlfy to make them equally recognizable.

To specify the value of σhfy we have to consider the given
security requirements, which correspond to a safety distance
value. In Section 6 we explain how we estimate the minimum
value of σhfy that respects a particular safety distance.

5.4 Discussion
For the design of IllusionPIN we follow the principle of ob-
scurity, since the shoulder-surfer’s keypad Is obscures the
user’s keypad Iu. We could use any image in the place of Is,
but we decided to always use the image of keypad because
this way Ihu and Ils are visually aligned. This means that the
digits in Ihu and Ils overlap, and the less dominant keypad
is perceived as noise, providing more clear interpretations of
the hybrid keypad.

We also apply the principle of alteration by shuffling the
user’s keypad in every authentication attempt, or after every
digit entry. Otherwise, it would be enough for a shoulder-
surfer to memorize just the spatial arrangement of the pressed
digits. However, the shoulder-surfer’s keypad always re-
mains the same because this way we expect the user to
become gradually better on ignoring it, resulting in faster
authentication with fewer errors. Out of all the possible
digit orderings that Is may have, we choose the regular digit
ordering, as in figure 5. The reason is that this is the order-
ing that we expect an attacker to be the most familiar with,
and as a consequence, to have the tendency to recognize.

In our threat model, we have considered 4 shoulder-surfing
scenarios with safety distance values which are equal to 25,
35, 45 and 60 inches. For each of these values we estimate the
minimum σhfy that keeps the user protected. This way we
create 4 hybrid keypads for which hold that when security is
increased, usability is decreased. These keypads are offered
as predefined options to the user to pick the one that fits
better to her needs.

6. VISIBILITY ALGORITHM
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Algorithm 1 Visibility Algorithm

Require: hybrid keypad I, shoulder-surfer’s keypad Is,
DAF filter, viewing position N , visibility index threshold
value vth

1: Isp ← calculate 2D perceived spectrum of I given N
2: Is,sp ← calculate 2D perceived spectrum of Is given N
3: IDAFsp ← apply DAF filter to Isp
4: IDAFs,sp ← apply DAF filter to Is,sp
5: IDAF ← transform IDAFsp to spatial domain

6: IDAFs ← transform IDAFs,sp to spatial domain

7: Buttons(IDAF )← segment the buttons of IDAF

8: Buttons(IDAFs )← segment the buttons of IDAFs

9: v ← mean(MSSIM(Buttons(IDAF ), Buttons(IDAFs )))
10: if v ≥ vth then
11: return No
12: else
13: return Yes

The visibility algorithm receives as inputs a hybrid keypad I
and a viewing positionN in the 3D space. It returns a binary
prediction on whether the user’s keypad of I is visible to an
observer who is in position N . We use this prediction either
to estimate the minimum safety distance that corresponds
to a given hybrid keypad, or to create a hybrid keypad that
respects a given safety distance. Algorithm 1 provides the
pseudocode of the visibility algorithm.

6.1 Algorithm

6.1.1 Distance-As-Filtering
In the first step of the visibility algorithm, we simulate the
way I is perceived from the viewing position N by using
the distance-as-filtering hypothesis proposed by Loftus et
al. [18]. The distance-as-filtering hypothesis states that we
can simulate the way an image is perceived from a partic-
ular viewing distance by filtering the image with an appro-
priate low-pass filter. The intuition behind this method is
based on the effect that the CSF has in the visual percep-
tion of an image. However, as explained by Loftus et al.
[18], the perception of an image from a particular distance
and the perception of the corresponding filtered image are
not identical, but they are equivalent with respect to perfor-
mance on some task. Loftus et al. experimentally verified
the distance-as-filtering hypothesis for face recognition tasks
by designing a low-pass filter of a particular form. Our task
is the recognition of digits on hybrid keypads, which dif-
fers from face recognition. However, both tasks require the
perception of almost equally fine visual details, and conse-
quently, we expect the low-pass filter designed by Loftus et
al. to be applicable in our task too. We should also note
that in the experiments conducted by Loftus et al., every
observer was looking directly at an image and his viewing
position was completely defined by his viewing distance. We
use the same filter to simulate the perception of an observer
who is at a random viewing position, by making the simpli-
fying assumption that the perception of an image depends
on the visual angle that it subtends, no matter where the
observer stands.

The low-pass filter proposed by Loftus et al. [18] has con-
stant gain equal to 1 until the perceived spatial frequency

magnitude |~f0|, and then drops until it reaches the value 0

Figure 6: We consider an example hybrid keypad
I = Ils + Ihu . In the first row, the third button of
Il,DAFs is depicted when Ils is directly viewed from
different distances. In the second row, the corre-
sponding button of IDAF is depicted when I is di-
rectly viewed from the same distances as Ils. In the
third row, the value of the visibility index for each
viewing distance is provided.

at the perceived spatial frequency magnitude |~f1|. We call it
DAF filter and it is mathematically defined in the following
way:

DAF ( ~fp) =


1 if| ~fp| < |~f0|
1−

(
log (| ~fp|/| ~f0|)

log (r)

)2
if|~f0| ≤ | ~fp| ≤ |~f1|

0 if| ~fp| > |~f1|
(8)

where r is a positive constant for which holds r > 1, and

|~f0| = | ~f1|/r. So, the parameters of the filter are the values

of r and |~f1|. Loftus et al. conducted 4 different face recog-
nition experiments to specify the values of the parameters,

and concluded that r = 3, while |~f1| may be equal to 25, 31
or 42 c/d, depending on the task at hand. In Section 6.2.2, we

explain how we specified |~f1| for the purposes of our work.

6.1.2 Visibility Index
In the second step of our algorithm, we compute the visibil-
ity index which quantifies how visible the user’s keypad of I
from the viewing position N is. We remind that I = Ils+Ihu .
To compute the visibility index, we apply the DAF filter
both to I and to Ils, and we create the images IDAF and
Il,DAFs , respectively. This way we simulate how I and Ils
are perceived when they are viewed from position N . Then,
we separate in equal rectangular regions the buttons from
IDAF and Il,DAFs , and we compute the similarity of the cor-
responding buttons with the mean structural similarity in-
dex (MSSIM) [39]. The visibility index is the mean value of
the 10 MSSIM index values from the pairs of corresponding
buttons.

The visibility index is the cornerstone of our algorithm and
we would like to clarify its behavior and the intuition behind
it. Given a reference image I1 and a distorted version of I1
denoted with I2, MSSIM index measures the similarity be-
tween I1 and I2. The maximum value of the MSSIM index
is 1 and is obtained when I1 and I2 are identical, meaning
that I2 is not distorted at all. In our case, Il,DAFs is the
reference image and IDAF is considered a distorted version
of Il,DAFs because of the presence of the user’s keypad. The

7



maximum value of the visibility index is 1 and is obtained
when the user’s keypad is completely out of perception. In
figure 6, we demonstrate the behavior of the visibility index
for an example hybrid keypad I. In the first row, we de-
pict the third button of Il,DAFs , when Ils is directly viewed
from different distances. In the second row, we depict the
third button of IDAF , when I is directly viewed from the
same distances as Ils. In the third row, we provide the value
of the visibility index for each viewing distance. From left
to right, the viewing distance is increasing. As we can see,
as the viewing distance is increasing, the digit 9 which be-
longs to the user’s keypad is fading away and the visibility
index is increasing. When the visibility index becomes big
enough, the digit from the user’s keypad is no longer visible.
We would like to make clear that we apply the MSSIM in-
dex between separated buttons and not between Il,DAFs and
IDAF as a whole, because in Il,DAFs and IDAF exist big,
almost identical, regions and the MSSIM index would have
a very big value irrespectively of the buttons form.

The MSSIM index follows the premise that the main func-
tion of the human eye is to extract structural information
from the viewing field. This connection to human percep-
tion is the main reason that we decided to use the MSSIM
index. An additional advantage is that MSSIM index is very
easily computed.

6.1.3 Threshold Value of the Visibility Index
Let’s assume that we are given a hybrid keypad I and an
observer who first views I from position N1 and then from
position N2. If the corresponding visibility index values are
v1 and v2 and holds v2 > v1, we expect the user’s keypad to
be less visible from position N2 than from N1. If v1 ' v2,
we expect the user’s keypad to be almost equally visible
in both cases. This is a direct consequence of the way we
have defined the visibility index. Now let’s assume that
two different hybrid keypads I1 and I2 are viewed by the
same observer from positions N1 and N2, respectively. If
the corresponding visibility index values are v1 and v2 and
holds v2 > v1, we expect the user’s keypads of I1 to be more
clearly visible than that of I2. Similarly, if v1 ' v2, we
expect the user’s keypads of I1 and I2 to be almost equally
visible. This is the main assumption that we make about
the behavior of the visibility index and we expect to hold in
its reverse form too. This means that if the user’s keypad
from a hybrid keypad I1 is more clearly visible than the
user’s keypad of a different hybrid keypad I2 when they are
viewed from positions N1 and N2, respectively, then for the
corresponding visibility index values v1 and v2 we expect to
hold v2 > v1. If the user’s keypads from I1 and I2 are almost
equally visible, then we expect v1 ' v2. It is important to
mention that we expect these assumptions to hold only for
the same observer. The reason is that the visual capabilities
of different observers vary. For example, if a person with
strong vision is directly viewing a hybrid keypad from a
particular distance and is able to recognize the user’s keypad
with difficulty, then a person with weaker vision will have
to go closer to the image to interpret it in the same way. As
a result, the hybrid keypad will be interpreted in the same
way by the two observers, but the value of the visibility
index will be different.

Based on the aforementioned remarks, we set as a threshold
vth the value of the visibility index when a particular ob-

server is able to marginally recognize the digits of a user’s
keypad. Then, the visibility algorithm calculates the visi-
bility index v for the inputs I and N , and compares it with
vth. If v ≥ vth, we predict that the user’s keypad cannot be
interpreted by the observer. If v < vth, we predict that the
observer is able to interpret the digits of the user’s keypad.
Since the threshold value will vary for different observers, we
universally use the vth value that corresponds to people with
the strongest vision, because we don’t want to mistakenly
predict that the user’s keypad is not visible when it is.

6.2 Parameter Tuning
The parameters of the visibility algorithm are the spatial

frequency |~f1| and the threshold vth. To specify their values,
we conducted a user study.

6.2.1 Data Collection
Participants. We recruited 11 participants from our insti-
tution, who were between 21 and 34 years of age. Our aim
was to have participants with strong vision and that’s why
they all were of young age. Out of the 11 participants, 6
reported that they had either myopia or astigmatism, but
they were wearing their glasses during the process. The
rest of the participants reported that they did not have any
problem.

Materials. We used 2 different phones, a Nexus 6 and an
iPhone 6. These two phones have displays with the same
dimension ratio (= 16/9), but different size and different res-
olution. The Nexus 6 has display size 5.96 inches and reso-
lution 1440 × 2560, while the iPhone 6 has display size 4.7
inches and resolution 750 × 1334 pixels. For each phone,
we created 7 different categories of hybrid keypads. In 6 of
them, we set σlfy = 35 c/im, since this is the value that we

have decided to use in our hybrid keypads. The value of σhfy
was equal to 120, 160, 200, 240, 280 and 320 c/im. In the
seventh category, we tried a different value for σlfy , which

we set equal to 60 c/im, while σhfy = 200 c/im. For each
category, we created 30 hybrid keypads which had user’s
keypads with different digit ordering.

Procedure. Each subject participated in at least 3 sessions.
Each session was split in 3 trials. The goal of each trial
was to specify a viewing position N , from which the user’s
keypad of a hybrid keypad was marginally recognized. The
hybrid keypad was displayed on a smartphone device. To
specify the viewing position N of the participant, we used
spherical coordinates; meaning that N = (r0, θ0, φ0). The
coordinate system was placed at the center of the image. In
each trial, we kept θ0 and φ0 constant and we varied r0.

The exact procedure was the following. During each trial,
a smartphone device was placed on a tripod that matched
the height of the participant. This way, when the partici-
pant was looking at the phone, θ0 was π/2 rad. To change
the value of θ0, we tilted the phone on the tripod. Also,
the participant was able to move relatively to the tripod in
order to change the value of φ0. Having specified θ0 and φ0,
the participant started to approach the phone from a big
distance r0. The initial value of r0 was big enough to keep
the user’s keypad out of perception. As the participant was
approaching to the phone, the user’s keypad was starting to
become visible. We recorded the maximum r0 from which
the participant was able to read the digits on the user’s key-
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(a) (b) (c) (d)

Figure 7: (a) The third button from a hybrid key-
pad. We simulate the perception of this button from
position (63, π/2, 0) by using DAF filters with different

|~f1| values. (b) The filtered button with |~f1| = 25 c/d.

(c) The filtered button with |~f1| = 31 c/d. (d) The

filtered button with |~f1| = 42 c/d.

pad. In particular, the participant had 15 seconds to read
all the 10 digits and only one mistake was allowed. The
time limit is connected to the fact that a shoulder-surfer has
limited time to observe the user while entering her authenti-
cation credentials. Also, as the participant was approaching
the phone, each time he or she failed to read the digits, we
switched to a different hybrid keypad from the same cate-
gory in order to be sure that the participant is not getting
familiar with a specific digit ordering. This is the reason
that we created multiple hybrid keypads from each category
for each phone.

For each session, the value of θ0 was constant. Specifically,
θ0 was equal to π/2, π/4 or π/3 rad. On each trial of a session,
we had a different value for φ0. During the first trial, we had
φ0 = 0 rad, during the second φ0 = π/6 rad, and during the
third φ0 = π/3 rad. Since θ0 ∈ (0, π) and φ0 ∈ (−π/2,+π/2),
the values of θ0 and φ0 that we considered belonged to the
1/4 of the available space. The reason is that the visual
angle is symmetric with respect to the xy, zx and zy planes
as can be easily seen in equations 4 and 5. In addition, on
each session we used hybrid keypads from a single category
and we used only one smartphone device.

Last but not least, we have to comment on the illumination
of the scene since it affects the perception of the hybrid key-
pad. The experiments were conducted in an indoor space
with normal artificial lighting and the smartphone was care-
fully placed to avoid distracting reflections from surrounding
objects. In addition, the brightness of the screen was set to
its maximum value. In general, we tried to create favorable
conditions for the observers, since the collected data would
be used for the estimation of the security strength of IPIN,
and we wanted to correspond to the worst case scenario.

Collected data. An entry in our dataset is composed of
the identification number of a participant, the hybrid keypad
that was at view, and the viewing position from which the
participant was able to marginally recognize the digits from
the user’s keypad. In total, we have 270 entries. We tried
to balance the number of data that we collected with each
phone and from each hybrid keypad category. We stopped
collecting data when the statistical analysis provided robust
results with respect to the variables of our data.

6.2.2 Estimation of the DAF Filter Parameters
We considered a subset of the data with 81 entries from 3
participants and we calculated the visibility index for each
entry. We expected the behavior of the DAF filter to have

two characteristics. The first was the visibility index to have
small standard deviation for each participant. The second
was the filtered hybrid keypads to have a user’s keypad with
digits that can be marginally recognized. Loftus et al. [18]

suggested 3 possible values for |~f1|, depending on the task
at hand. Unfortunately, there was not a unique value for

|~f1| that could create a DAF filter with the desired behavior
for our task. The reason was that when the viewing posi-
tion N = (r0, θ0, φ0) of a participant had big φ0 or small
θ0, the corresponding value of the visibility index was sig-
nificantly smaller. This means that when the participants
were viewing a hybrid keypad from an angle, they had to
approach closer to the screen than expected according to
the visibility index values. We assume that this problem is
connected with the fact that the brightness of LCD screens,
like the ones used by iPhone 6 and Nexus 6, dims when
an observer is viewing from an angle. As a result, when the
participants were viewing from an angle, the perceived con-
trast was lower and more gratings from the hybrid keypad
were not perceived. To account for this effect, we gradually

reduce the value of |~f1| as φ0 is increasing and θ0 is decreas-
ing. Based on these remarks, we defined the DAF filter in 2
steps.

In the first step, the goal was to specify the initial value of

|~f1| when the brightness of the screen is unaffected by the

viewing angle. The possible values for |~f1| were 25, 31 and
42 c/d, as proposed by Loftus et al. [18]. To select the most
suitable value, out of the 81 entries in our dataset, we sin-
gled out those with φ0 = 0 and θ = π/2, meaning the entries
that corresponded to an observer who is looking directly at
the screen. Then, since this subset had a small size, we
applied the 3 DAF filter variants to the corresponding hy-
brid keypads and we picked the filter that created hybrid
keypads with marginally recognizable user’s keypad. Fig-
ure 7 (a) provides the third button of a hybrid keypad from
our subset. The digit of the shoulder-surfer’s keypad is 3
and the digit of the user’s keypad is 6. We simulate how
the button is perceived when it is directly viewed from 63
inches, since this viewing position was part of our data for
this hybrid keypad. In figure 7 (b), we used a DAF filter

with |~f1| = 25 c/d, in figure 7 (c), |~f1| = 31 c/d, and in figure

7 (d), |~f1| = 42 c/d. As we can see, the digit on the button is
interpreted as 3 in figure 7 (b), it is marginally interpreted
as 6 (or even 3) in figure 7 (c), and is clearly interpreted
as being 6 in figure 7 (d). Following this way of reasoning,

we concluded that the most suitable initial value for |~f1| is
31 c/d.

In the second step, we modeled how the value of |~f1| changes

as a function of θ0 and φ0. We assume that |~f1| = 31 ·
A(φ0, θ0). For the function A, we have:

A(φ0, θ0) =

(
1−

( φ0

π/2

)ka)
·

(
1−

(θ0 − π/2
π/2

)ka)
(9)

where ka is a positive real number that controls how fast the

value of |~f1| drops when φ0 is increasing or θ0 is decreasing.
We use the same number ka in both factors because we as-
sume that the brightness of the screen changes in the same
way when either φ0 or θ0 is changing. We considered five
different cases for the effect of φ0 and θ0. The first was

that they don’t affect |~f1|, meaning that A = 1. The rest
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Table 1: The standard deviation of the visibility in-
dex for three participants p1, p2 and p3, when dif-
ferent forms of the function A(φ0, θ0) are used. The
minimum standard deviation value for each partici-
pant is highlighted.

A = 1 ka = 2.5 ka = 3 ka = 3.5 ka = 4
p1 0.0496 0.0181 0.0138 0.0159 0.0212
p2 0.0546 0.0167 0.0112 0.0141 0.0223
p3 0.0560 0.0224 0.0178 0.0183 0.0240

four cases corresponded to ka = 2.5, ka = 3, ka = 3.5 and
ka = 4. For each of these cases, we created the correspond-
ing DAF filter and we computed the visibility index for all
the 81 entries in our subset. Then, for each participant we
calculated the standard deviation of the visibility index. In
Table 1 we provide the results from this process. Each row
corresponds to a different participant and each column cor-
responds to a different function A(φ0, θ0). As we can see,
all the participants demonstrated the smallest standard de-
viation for ka = 3, and consequently, this was the choice we
made. We have to note that the data we used were from
participants without reported problems in their vision, be-
cause we wanted to increase the probability of defining a
DAF filter that simulates the visual perception of a person
with strong vision.

6.2.3 Estimation of the Threshold Value for the Visi-
bility Index
According to the assumptions we made in Section 6.1.3, the
visibility index should have almost identical values for each
participant in our dataset, irrespectively of the phone that
was used during the data collection process, or the categories
that the hybrid keypads belonged to. To verify this, we used
the DAF filter we defined in the previous section to compute
the visibility index for each of the 270 entries in our dataset.
Then, we computed the coefficient of variation (cv) for the
visibility index values of each participant. We provide the
results in Table 2. As we can see, the cv is lower than 10%
for every participant, and consequently, we concluded that
the values of the visibility index are homogeneous for each
participant.

We wanted to further test the assumption that the values
of the visibility index for each participant are independent
of the smartphone device that was used. Also, we wanted
to test the assumption that the values of the visibility index
vary significantly between different participants. We tested
both of these assumptions by applying a two-factor ANOVA
with randomized complete block design. We used data from
the participants who were exposed to both phones during
the data collection process. These were 5 out of the 11 par-
ticipants. The visibility index values from different partic-
ipants were assigned to separate blocks, and consequently,
the participants were the blocking factor. The factor of in-
terest within each block was the type of the phone; Nexus 6
or iPhone 6. Since the normality and homoscedasticity con-
ditions were satisfied, we were able to compute the p-value
of the two factors. The p-value for the type of the phone
was 12.07% > 5% and we concluded that the smartphone
device is not a statistically significant factor of variation for
the value of the visibility index. In contrast, the p-value
for the participants was less than 1h and consequently, the

Figure 8: The box and whisker plot with median
notch after applying the Kruskal-Wallis test in our
whole dataset with the participants as the factor of
variation.

values of the visibility index between the participants have
statistically significant differences.

We further tested if participants are a factor of variation by
considering the whole dataset with the 11 participants. Our
intention was to apply an one-way ANOVA, but the normal-
ity and homoscedasticity conditions weren’t satisfied, and as
a result, we applied the non-parametric Kruskal-Wallis test.
The p-value was less than 1h and we confirmed that there
are statistically significant differences between the visibility
index values of different participants. In figure 8, we provide
the corresponding box and whisker plot with median notch
of the visibility indexes of all participants. As we can see, the
participants formed three main groups based on their visibil-
ity index values. Participants p1, p2, p3, p4 and p5 formed
the first group, p6, p8, p10 and p11 formed the second group,
and p7 and p9 formed the third group. We confirmed this
grouping of the participants by performing pairwise compar-
isons with Man-Whitney tests. Each group had participants
with visibility index values in a different range and this is
because the participants demonstrated different visual capa-
bilities. The first group had the participants with the high-
est visibility index values and consequently, these were the
people who demonstrated the strongest vision. The mean
value of the visibility index in this group was 0, 92996 with
standard error 0.00115. The desired threshold value of the
visibility index was set equal to 0.93.

7. SAFETY DISTANCE
7.1 Shoulder-Surfing With a Naked Eye
We assume that we are given a hybrid keypad I and an
observer at a position N = (r0, θ0, φ0). If ds is a safety
distance for I, then ∀θ0, φ0, if r0 ≥ ds, the user’s keypad
can not be interpreted by the observer. Of course, we are
interested in the minimum possible value of ds, because it
corresponds to the maximum protection that I can offer
against shoulder surfing. In addition, as we have seen in
previous sections, even in the case that we are given a desired
ds and we are asked to design a hybrid keypad I that satisfies
it, we aim to maximize the usability of I by making ds to be
the minimum safety distance of I. So, we are only interested
in the minimum possible value of the safety distance.

To estimate the minimum ds for a hybrid keypad I, we first
examine from which viewing positions at the 3D space the
user’s keypad of I is visible. We call the resulting region
of the 3D space, “visibility region”. To estimate the visi-
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Table 2: The coefficient of variation for the visibility index values of each participant in our dataset.
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

cv (%) 1.85 1.51 1.48 1.92 2.01 5.41 2.66 2.06 2.54 2.51 3.86
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Figure 9: The visibility region of a hybrid keypad I
created with σlfy = 35 c/im and σhfy = 320 c/im for the
iphone 6 smartphone.

bility region of a hybrid keypad, we applied the visibility
algorithm for viewing positions from a dense grid at the 3D
space. For a hybrid keypad I created with σlfy = 35 c/im

and σhfy = 320 c/im for the iphone 6 smartphone, the visi-
bility region is depicted in Figure 9. The depicted zx plane
can be used as a reference to understand the geometry of
the visibility region. The user’s keypad is visible when I is
viewed from positions which are either on the depicted sur-
face or they are enclosed by it. The coordinate system is
the same as the one used in Figure 1, with the image placed
in position (0, 0, 0). In addition, for all viewing positions
N = (x0, y0, z0), we assume that z0 > 5 inches. The visi-
bility region is symmetric with respect to planes zx and yz.
This is something that we expected because of the symmetry
in equations 4 and 5. In general, the form of the visibility re-
gion is similar to that of an ellipsoid. If we consider spherical
coordinates, the safety distance will be slightly bigger than
the biggest viewing distance r0 of a position N = (r0, θ0, φ0)
that belongs to the visibility region. Since the form of the
visibility region is ellipsoidal, for the position N with the
maximum r0 will hold θ0 = π/2 and φ0 = 0. This is a result
that we expected, since for a given r0, from equations 6 and
7, we can easily derive that the visual angle is maximized
when θ0 = π/2 and φ0 = 0.

In our threat model, we have assumed that for the viewing
position N = (r0, θ0, φ0) of the shoulder-surfer holds |φ0| ≥
π/6 rad. In the visibility region, as |φ0| is increasing, the
maximum r0 is decreasing. As a consequence, we define the
safety distance to be the minimum distance ds for which
holds that from the viewing position N = (rs, π/2, π/6), an
observer with strong vision is unable recognize the digits on
the user’s keypad. Based on this definition, if we are a given
a hybrid keypad I, we can apply the visibility algorithm for
viewing positions N = (r0, π/2, π/6) with varying r0, and set

the safety distance to be equal to the minimum r0 for which
holds that the corresponding visibility index v is greater than
vth. We are also interested in the case that we are given as a
security requirement a safety distance ds and we have to set
the value of σhfy . To do this, we vary the value of σhfy that
we use to create I, and we apply the visibility algorithm
for the position N = (ds, π/2, π/6). We create I with the
minimum σhfy for which holds that the visibility index v is
greater than vth. This way we were able to create the 4
hybrid keypads that we provide as predefined options to the
users of IllusionPIN.

7.2 Shoulder-Surfing Through a Surveillance
Camera
We assume that we are given a hybrid keypad I, a smart-
phone device where I is displayed on, and a surveillance
camera at position N = (r0, θ0, φ0). To estimate the safety
distance, we calculate the minimum r0 for which holds that
∀θ0, φ0, the camera is unable to capture the user’s keypad
Ihu . We assume that the camera is unable to capture Ihu
when a cycle from the grating of Ihu with the biggest cycle
size, occupies at most a pixel when it is projected on the
image plane of the camera.

We start by estimating the smallest spatial frequency com-
ponents which are present in Ihu , since they will correspond
to the cycles with the biggest size. We remind that Ihu is
the result of applying the high-pass filter Gh to Iu. We
assume that when Gh assigns a gain value less than 0.5
to a spatial frequency, the corresponding grating is cut off.
The isocontour of Gh that corresponds to the value 0.5 will
be an ellipse that we call the cut-off ellipse. We consider
that all the spatial frequencies enclosed by the cut-off el-
lipse are cut off. Since Gh = 1 − Ghl , where Ghl (fx, fy) =
exp(−1/2σhf

x · f2
x − 1/2σhf

y · f2
y ), for the axes of the cut-off

ellipse will hold:

a =

√
2σhfx log (1/0.5) (10)

b =

√
2σhfy log (1/0.5) (11)

To describe the region of the spatial frequencies which are
cut off by the filter in a simpler way, we consider the rect-
angle with the biggest area that is inscribed to the cut-off
ellipse. We assume that the spatial frequencies which are
cut off by the filter, are those enclosed by this rectangle in-
stead of those enclosed by the cut-off ellipse. We call this
rectangle, the cut-off rectangle. For the biggest horizon-
tal and vertical spatial frequency components in the cut-off
rectangle will hold:

fsx = a · √2/2 (12)

fsy = b · √2/2 (13)

Based on these remarks, we conclude that for a grating from

Ihu with spatial frequency ~f = (fx, fy) will hold fx ≥ fsx
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and fy ≥ fsy . For an example filter Gh with (σhfx , σhfy ) =
(120.9375 c/im, 215 c/im), we calculate fsx = 100.69 c/im and
fsy = 178.99 c/im.

After measuring the smallest frequency components present
in Ihu , we should calculate the length of the corresponding
cycles. To this end, we need to know the resolution xr × yr
of the screen that is used to display I and the number of
pixels per inch (ppi). Based on that, we can calculate the
biggest cycle size in each dimension:

lx =
xr/ppi

fsx
(14)

ly =
yr/ppi

fsy
(15)

where xr/ppi and yr/ppi express the length of the display in
the horizontal and vertical dimension respectively, measured
in inches. If we assume that I is displayed on a Nexus 6 de-
vice, the resolution is 1440×2560 pixels and ppi = 493 p/in.
As a consequence, we find that lx = 0.029 inches and
ly = 0.029 inches. As we can see, both lengths are equal.
This is something that we expected, because we have de-
signed Gh to be isotropic in the spatial domain.

To estimate the safety distance ds, we assume that we have
a square stimulus c of size (lx, ly), which is viewed by a cam-
era in the same way that an image is viewed by a human
observer in Figure 1. This means that the camera is mod-
eled as an ideal pinhole camera. In this setting, the camera
is in position N = (r0, θ0, φ0). As we increase r0, c subtends
increasingly smaller angle. The camera will not be able to
capture c for the first time when c will subtend visual angle
that corresponds exactly to one pixel. As a result, safety
distance will be the biggest distance for which holds that
c is projected to exactly one pixel. From equations 6 and
7, we can easily see that a specific visual angle corresponds
to the biggest r0 when θ0 = π/2 and φ0 = 0. As a result,
in our setting, we assume that the camera is in position
N = (ds, π/2, 0), while c subtends visual angle that corre-
sponds to exactly one pixel on the image plane. Since c is
a square stimulus, we simply use perspective projection in
the horizontal dimension to find that for ds holds:

ds = f · lx/sp (16)

where f is the focal length of the camera, and sp is the
pixel size. If we assume that the surveillance camera has
the specifications of a Nexus 6 camera, for the pixel size
will hold sp = 0.001127 mm and for the focal length f =
3.8 mm. As a result, we get ds = 97.81 inches.

In our threat model, we assumed that for this attack sce-
nario the surveillance camera is recording from a distance
that is at least 100 inches. According to the previous cal-
culations, for a hybrid keypad created with (σhfx , σhfy ) =
(120.9375 c/im, 215 c/im) and displayed on a Nexus 6 smart-
phone, our security requirement is satisfied. It is important
to note that this specific keypad is the second most usable
hybrid keypad out of the 4 predefined options that we offer
to Nexus 6 users. In addition, we have to consider that
all the assumptions that we made during our calculations
were in favor of the attacker. Some examples are that we
required the camera to be unable to capture all the grat-
ings from Ihu and not a subset of them, that we disregarded

the effect of Ils, and that we overestimated the specifications
of the surveillance camera. All these show that under real
life conditions, is extremely improbable to capture the user’s
keypad of IllusionPIN with a surveillance camera.

8. EVALUATION
We would like to estimate the probability of underestimat-
ing the safety distance with the visibility algorithm. In
other words, we would like to know how probable it is for
a shoulder-surfer to steal the credentials of an IllusionPIN
user, even if the viewing distance of the attacker is equal
or bigger than the estimated safety distance. To this end,
we performed simulated shoulder-surfing attacks against Il-
lusionPIN.

Participants. We recruited 21 participants who were un-
dergraduate and graduate students from our institution. All
participants were less than 40 years old and they had either
normal or corrected vision. Note that all experiments in this
work were approved by the IRB of our institution.

Materials. We built an application for the Android oper-
ating system to aid the execution of the simulated attacks.
The application was run on a Nexus 6 phone and allowed
the users to create five keypad categories that we denote with
ci, for i = 1, 2, 3, 4, 5. The first 4 categories were hybrid key-
pads that corresponded to the 4 safety distance values dis,
i = 1, 2, 3, 4, that we have considered in our threat model.
All hybrid keypads were created with σlfy = 35 c/im. Cate-

gory c1 was created with σhfy = 145 c/im and corresponded

to d1s = 60 inches, c2 had σhfy = 215 c/im and d2s = 45

inches, c3 had σhfy = 305 c/im and d3s = 35 inches, and c4
had σhfy = 440 c/im and d4s = 25 inches. Category c5 was a
normal keypad that is used in regular PIN authentication.

Procedure. Participants worked in pairs. Each pair per-
formed 10 simulations in total. In the first 5 simulations
one participant was playing the role of the attacker and
the other the role of the user. Then, the participants were
asked to switch roles and repeat the same 5 simulations.
The first 5 simulations si, i = 1, 2, 3, 4, 5, were performed
in the following way. The shoulder-surfer was placed at po-
sition N = (dis, π/2, π/6), while the phone was at position
N = (0, π/2, 0). The user freely created a 4-digit PIN with
a keypad from category ci, and was asked to successfully
authenticate 3 times. The attacker was able to observe the
user during all authentication attempts and then was asked
to replicate the PIN. During s5, we set d5s = d1s, which was
the biggest distance that we considered.

Before the simulations, we asked the participants to practice
with all the keypad categories by authenticating 10 times
with each category. During the simulations, we tried to cre-
ate favorable conditions for the attackers. In particular, the
simulations were performed in a silent indoor place with ad-
equate illumination, while the brightness of the phone screen
was set to its maximum level. In addition, the users were
asked to keep the screen of the phone in the view of the
attackers during the authentication. It is also important to
clarify that we purposely selected participants of young age
with normal or corrected vision, because these participants
could impersonate skillful shoulder-surfers.

Collected data. We simulated 84 shoulder-surfing attacks
against IllusionPIN, and none of them was successful. The
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best performance was demonstrated by 2 participants who
managed to correctly replicate 3 out of 4 PIN digits in one
attack each. All 21 attacks against the regular PIN authen-
tication were successful.

Data analysis. It is very important that none of the at-
tackers was able to break IllusionPIN. We should also note
that the category of a hybrid keypad wasn’t a factor that
affected the success rate of the attackers. Based on that,
we consider that we have 21 independent samples and we
calculate the Clopper-Pearson interval for the success rate
of shoulder-surfing attacks. With probability 95%, we ex-
pect the interval [0, 0.1329] to contain the success rate. If
we increase the sample size, the range of the interval will be
reduced. However, based on the unfavorable conditions for
our scheme, the visual capabilities of the participants, and
the performance of the attackers, we expect that we have
to record a very large number of attacks to find a successful
one. As a result, we are already confident that the success
rate is much closer to 0 than to 0.1329.

9. LIMITATIONS AND CONCLUDING RE-
MARKS
The main goal of our work was to design a PIN-based au-
thentication scheme that would be resistant against shoulder-
surfing attacks. To this end, we created IllusionPIN. We
quantified the level of resistance against shoulder-surfing by
introducing the notion of safety distance, which we esti-
mated with a visibility algorithm. In the context of the
visibility algorithm, we had to model at a basic level how
the human visual system works. In this process, we made
a number of simplifying assumptions that limit the accu-
racy of our calculations. The most obvious example is the
pinhole camera model that we used to describe the image
formation process in the eye. This is a widely used model,
but disregards important parts of the human eye, like the
lens. In Section 6.1.1, we made an additional simplification
by assuming that the perception of an image depends on the
visual angle that it subtends, no matter where the observer
stands. A problem with this assumptions is that, depending
on the viewing position, we may perceive the dimensions of
an image as having a different ratio. For example, as we can
see in equations 6 and 7, when φ0 is increasing, only θx is
decreasing and the image is perceived as being squeezed in
the horizontal dimension. As a consequence, the image of
a circle could be perceived as the image of an ellipse when
it is viewed from a big angle. It is interesting to note that
even if we did not explicitly model such phenomena, the fac-
tor A(φ0, θ0) that we estimated in Section 6.2.2 may have
accounted for them implicitly to some extent. It is very im-
portant that despite all these simplifying assumptions that
we made, our results led us to conclusions that agreed with
our expectations. For example, the visibility region depicted
in Figure 9 has the expected ellipsoidal form, while the visi-
bility index demonstrated the behavior we described in Sec-
tion 6.1.3. So, more strict assumptions, followed by more
detailed models, could improve the accuracy of our current
results, but we expect the general conclusions to remain the
same.

The visibility algorithm forms the core of our work and we
would like to examine whether it can be used to assess the
visibility of images other than hybrid keypads. The visibility
algorithm uses the MSSIM index which quantifies the distor-

Figure 10: A button from a different kind of hybrid
keypad. The shoulder-surfer’s keypad is composed
of uniformly white buttons.

tion between two images. If we are given a random image Ir
and a viewing position N , we could apply the same rationale
by considering IDAFr as the distorted version of Ir. However,
we do not expect the visibility index threshold value that we
specified in Section 6.2.3 to be applicable to random images.
The reason is that the level of distortion does not uniquely
correspond to how visible particular visual details are in the
distorted image. To verify this, we extended the data collec-
tion process that we presented in Section 6.2.1 to a different
kind of hybrid keypads that we call white keypads. An ex-
ample button from such a keypad is depicted in Figure 10.
As we can see, the shoulder-surfer’s keypad of a white key-
pad is composed of all white buttons. In the small dataset
that we collected, the visibility index values were consistent
for a particular user, but they were considerably lower than
the corresponding values that the same user reported in the
original dataset. This means that even if a person perceives
the digits on a hybrid keypad to be equally visible to the
digits on a white keypad, the distortion in the white keypad
is bigger and the visibility index has a lower value. This is
something logical, because when the reference buttons are
all white, a digit that is even slightly visible is considered a
big distortion. Based on that, we conclude that the visibility
index threshold value is not universal. We would also like to
remind that the values of the DAF filter parameters depend
on the task at hand. As a result, we may have to repeat
the estimation process for a considerably different task. We
conclude that the visibility algorithm could be used to assess
the visibility of general images, but its parameters have to
be appropriately tuned for the particular task at hand.
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