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Abstract—In this paper, an energy harvesting scheme for
a multi-user multiple-input-multiple-output (MIMO) secrecy
channel with artificial noise (AN) transmission is investigated.
Joint optimization of the transmit beamforming matrix, the AN
covariance matrix, and the power splitting ratio is conducted
to minimize the transmit power under the target secrecy rate,
the total transmit power, and the harvested energy constraints.
The original problem is shown to be non-convex, which is
tackled by a two-layer decomposition approach. The inner layer
problem is solved through semi-definite relaxation, and the
outer problem, on the other hand, is shown to be a single-
variable optimization that can be solved by one-dimensional (1-
D) line search. To reduce computational complexity, a sequential
parametric convex approximation (SPCA) method is proposed
to find a near-optimal solution. The work is then extended to
the imperfect channel state information case with norm-bounded
channel errors. Furthermore, tightness of the relaxation for the
proposed schemes are validated by showing that the optimal
solution of the relaxed problem is rank-one. Simulation results
demonstrate that the proposed SPCA method achieves the same
performance as the scheme based on 1-D but with much lower
complexity.

I. INTRODUCTION

In recent years, the idea of energy harvesting (EH) has been

introduced to power electronic devices by energy captured

from the environment. However, harvesting from natural en-

ergy sources such as solar and wind depends on many factors

and thus introduces severe reliability issue. Radio frequency

(RF) signal can be utilized as an alternative to more reliably

deliver energy to EH devices while simultaneously transmit-

ting information [1]–[4]. Based on this idea, simultaneous

wireless information and power transfer (SWIPT) schemes

have been proposed to extend the lifetime of wireless networks

[5]–[9]. For SWIPT operation in multiple antenna systems [7],

[8], co-located receiver architecture employing a power splitter

for EH and information decoding (ID) has been studied [9].
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On the other hand, in the literature we see increasing

research interest in secrecy transmission through physical

layer (PHY) security designs [10]. Unlike conventional cryp-

tographic methods which are normally adopted in the network

layer and rely on computational security, PHY security ap-

proaches are developed from the information-theoretic per-

spective such that provable secrecy capacity can be achieved

[11]–[14]. PHY security techniques have been proposed to

enhance information security of multiple antenna systems

by casting more interference to potential eavesdroppers. By

adding artificial noise (AN) and projecting it onto the null

space of information user channels in transmit beamforming,

the potential eavesdroppers would experience a higher noise

floor and thus obtain less information about the messages

transmitted to the legitimate receivers [15], [16]. In SWIPT

systems, AN injection can improve secrecy capacity of infor-

mation transmission while not affecting simultaneous power

transfer [17]–[25]. The AN-aided beamforming for SWIPT

operation has been investigated in various multiple-input

multiple-output (MIMO) channels [19]–[24]. More recently,

robust AN-aided transmit beamforming with unknown eaves-

droppers was studied for multiple-input single-output (MISO)

cognitive radio systems based on different channel uncertainty

models [25].

In SWIPT systems, when information receivers (IRs) and

energy-harvesting receivers (ERs) are in the same cell, the ERs

are normally closer to the transmitter, compared with the IRs,

because the power sensitivity level of ER is typically low. This

raises a new information security issue for SWIPT systems

because the ERs can potentially eavesdrop the information

transmission to the IRs with relatively higher received signal

strength [20], [23], [26]. In order to guarantee information

security for the IRs, it is desirable to implement some mech-

anism to prevent the ERs from recovering the confidential

message from their observations.

Motivated by the aforementioned observations, in this paper,

we study secrecy transmission over a multi-user MIMO se-

crecy channel which consists of one multi-antenna transmitter,

multiple legitimate single antenna co-located receivers (CRs)

and multiple multi-antenna ERs. We employ an AN injection

scheme to mask the desired information-bearing signals for

secrecy consideration without imposing any structural restric-

tion on the AN. In comparison with existing works which do

not consider power splitter at the legitimate receivers [17],

[18], [21], [22], in this paper, each CR is assumed to adopt

http://arxiv.org/abs/1703.04711v1


a power splitter to collect energy from both the information-

bearing signal and the AN. The design objective is to jointly

optimize the transmit beamforming matrix, the AN covariance

matrix, and the power splitting (PS) ratio such that the AN

transmit power is maximized1 subject to constraints on the

secrecy rate, the total transmit power, and the energy harvested

by both the CRs and the ERs. Because of the coupling effect

in the joint optimization problem, determination of the AN

covariance matrix and the PS ratio makes the derivation of

the secrecy rate and the harvested energy at the CRs more

complicated.

The formulated power minimization (PM) problem for

AN-aided secrecy transmission is shown to be non-convex,

which cannot be solved directly [28]. The PM problem is

thus transformed into a two-layer optimization problem and

solved accordingly through semi-definite relaxation (SDR) and

one-dimensional (1D) line search. We first propose a joint

optimization design for the case with perfect channel state

information (CSI). The framework is then extended to robust

designs for systems having deterministic or statistical CSI

uncertainties. The contributions of this work are summarized

as follows:

• For the case with perfect CSI at the transmitter, the inner

loop of the PM problem is solved through SDR, while the

outer loop is shown to be a single-variable optimization

problem, where a one-dimensional line search algorithm

is employed to find the optima. To reduce computational

complexity, a sequential parametric convex approxima-

tion (SPCA) method is also investigated [14], [24], [32].

• For the imperfect CSI case with deterministic chan-

nel uncertainties, we consider a worst-case robust PM

(WCR-PM) problem. By exploiting the S-procedure [28],

the semi-infinite constraints are transformed into linear

matrix inequalities (LMIs) and the inner loop can be

relaxed into an SDP by employing the SDR method.

The corresponding robust optimal design is proposed.

Furthermore, an SPCA-based iterative algorithm is also

addressed with low complexity.

• For both the perfect CSI and imperfect CSI cases, the

tightness of the SDP relaxation is verified by showing

that the optimal solution is rank-one.

Compared with our preliminary work [23], major additional

work and results incorporated in this paper are summarized in

the following. 1) This paper has extended the problem of AN

power maximization to both perfect and imperfect CSI cases,

which introduces substantial changes in the analyses. 2) An

SPCA-based iterative algorithm has been proposed to solve

the problem such that the computational complexity is largely

reduced compared with the 1-D search method used in the

previous work.

The rest of this paper is organized as follows: The system

model of a multi-user MIMO secrecy channel with SWIPT is

presented in Section II. Section III investigates the transmit

beamforming based PM problem with perfect CSI. Section

IV extends the PM results to the imperfect CSI case. Section

1AN power maximization is equivalent to minimizing the transmit power
of the information signal [19].

V illustrates the computational complexity of the proposed

algorithms. The numerical results are shown in Section VI.

Finally, we conclude the paper in Section VII.

Notation: Vectors and matrices are denoted by bold low-

ercase and bold uppercase letters, respectively. (·)T and (·)H
represent matrix transpose and Hermitian transpose. The oper-

ator ⊗ represents the Kronecker product. For a vector x, ‖x‖
indicates the Euclidean norm. CM×L and H

M×L denote the

space of M × L complex matrices and Hermitian matrices,

respectively. H+ represents the set of positive semi-definite

Hermitian matrices, and R+ denotes the set of all nonnegative

real numbers. For a matrix A, A � 0 means that A is positive

semi-definite, and ‖A‖F , tr(A), |A| and rank(A) denote the

Frobenius norm, trace, determinant, and the rank, respectively.

vec(A) stacks the elements of A in a column vector. 0M×L is

a zero matrix of size M × L. E{·} is the expectation operator,

and ℜ{·} stands for the real part of a complex number. [x]+

represents max{x, 0} and λmax(A) denotes the maximum

eigenvalue of A.

II. SYSTEM MODEL

In this section, we consider a multi-user MIMO secrecy

channel which consists of one multi-antenna transmitter, L

single-antenna CRs and K multi-antenna ERs. We assume that

each CR employs the PS scheme to receive the information

and harvest power simultaneously. It is assumed that the

transmitter is equipped with NT transmit antennas, and each

ER has NR receive antennas.

We denote by hc,l ∈ CNT the channel vector between the

transmitter and the l-th CR, and He,k ∈ CNT×NR the channel

matrix between the transmitter and the k-th ER. The received

signal at the l-th CR and the k-th ER are given by

yc,l = hH
c,lx+nc,l, ∀l,

ye,k = HH
e,kx+ne,k, ∀k,

where x ∈ CNT is the transmitted signal vector, and nc,l ∼
CN (0, σ2

c,l) and ne,k ∼ CN (0, σ2
kI) are the additive Gaussian

noise at the l-th CR and the k-th ER, respectively.

In order to achieve secure transmission, the transmitter

employs transmit beamforming with AN, which acts as in-

terference to the ERs, and provides energy to the CRs and

ERs. The transmit signal vector x can be written as

x = qs+w, (1)

where q ∈ CNT defines the transmit beamforming vector, s

with E{s2} = 1 is the information-bearing signal intended for

the CRs, and w ∈ CNT represents the energy-carrying AN,

which can also be composed by multiple energy beams.

As the CR adopts PS to perform ID and EH simultaneously,

the received signal at the l-th CR is divided into ID and EH

components by the PS ratio ρc,l ∈ (0, 1]. Therefore, the signal

for information detection at the l-th CR is given by

yIDc,l =
√
ρc,lyc,l+np,l =

√
ρc,l(h

H
c,lx+nc,l)+np,l, ∀l,

where np,l ∼ CN (0, σ2
p,l) is the additive Gaussian noise at the

l-th CR.



Denoting Q = E{qqH} as the transmit covariance matrix

and W = E{wwH} as the AN covariance matrix, the

achieved secrecy rate at the l-th CR is given by

R̂c,l =

[

log

(

1+
ρc,lh

H
c,lQhc,l

ρc,l(σ2
c,l+hH

c,lWhc,l)+σ2
p,l

)

−max
k

log

∣

∣

∣

∣

I+(HH
e,kWHe,k+σ2

kI)
−1HH

e,kQHe,k

∣

∣

∣

∣

]+

, ∀l.
(2)

The harvested power at the l-th CR and the k-th ER is therefore

Ec,l = ηc,l(1−ρc,l)
(

hH
c,l(Q+W)hc,l+σ2

c,l

)

, ∀l,

Ee,k = ηe,k

(

tr
(

HH
e,k(Q+W)He,k

)

+NRσ
2
k

)

, ∀k,
(3)

where ηc,l and ηe,k represent the EH efficiency of the l-

th CR and the EH efficiency of the k-th ER, respectively.

In this paper we set ηc,l = ηe,k = 0.3 for simplicity. The

results can be easily extended to scenarios with different ηc,l
and ηe,k values. In the following section, we consider the

transmit beamforming based PM problem to jointly optimize

the transmit covariance matrix Q, the AN covariance matrix

W, and the PS ratio ρc,l.

III. MASKED BEAMFORMING BASED POWER

MINIMIZATION WITH PERFECT CSI

In this section, we study transmit beamforming optimization

under the assumption that perfect CSI of all the channels is

available at the transmitter.

A. Problem Formulation

In this problem, the transmit power of the information signal

is minimized subject to the total transmit power constraint,

the secrecy rate constraint, and the EH constraints of the CRs

and the ERs such that the AN transmit power is maximized

for secrecy consideration. The AN-aided PM problem is thus

formulated as

min
Q,W, ρc,l

tr(Q)

s.t. log

(

1+
ρc,lh

H
c,lQhc,l

ρc,l(σ2
c,l+hH

c,lWhc,l)+σ2
p,l

)

−max
k

log

∣

∣

∣

∣

I+ (σ2
kI+HH

e,kWHe,k)
−1HH

e,kQHe,k

∣

∣

∣

∣

≥ R̄c,l,(4a)

tr(Q+W) ≤ P, (4b)

hH
c,l(Q+W)hc,l + σ2

c,l ≥
Ēc,l

ηc,l(1− ρc,l)
, (4c)

min
k

tr
(

HH
e,k(Q+W)He,k

)

+NRσ
2
k ≥ Ēe,k

ηe,k
, ∀k, (4d)

Q � 0,W � 0, 0 < ρc,l ≤ 1, ∀l, rank(Q)=1, (4e)

where R̄c,l is the target secrecy rate, P is the total transmit

power, and Ēc,l and Ēe,k denote the predefined harvested

power at the l-th CR and the k-th ER, respectively. The

constraint (4d) guarantees that a minimum energy harvested

power should be achieved by the k-th ER.

B. One-Dimensional Line Search Method (1-D Search)

Problem (4) is non-convex due to the secrecy rate constraint

(4a), and thus cannot be solved directly. In order to circumvent

this issue, we convert the original problem by introducing a

slack variable t for the k-th ER’s rate. Then we have

min
Q,W, ρc,l, t

tr(Q)

s.t. log

(

t+
tρc,lh

H
c,lQhc,l

ρc,l(σ2
c,l+hH

c,lWhc,l)+σ2
p,l

)

≥ R̄c,l, ∀l, (5a)

∣

∣

∣

∣

I+(σ2
kI+HH

e,kWHe,k)
−1HH

e,kQHe,k

∣

∣

∣

∣

≤ 1

t
, ∀k, (5b)

(4b) − (4e).

Problem (5) is still non-convex in constraints (5a) and (5b),

which can be addressed by reformulating (5) into a two-layer

problem. For the inner layer, we solve problem (5) for a given

t, which is relaxed as

f(t) = min
Q,W, ρc,l, t

tr(Q)

s.t. hH
c,l

(

tQ−(2R̄c,l−t)W
)

hc,l≥(2R̄c,l−t)
(

σ2
c,l+

σ2
p,l

ρc,l

)

, (6a)

(1
t
−1)(σ2

kI+HH
e,kWHe,k)�HH

e,kQHe,k, ∀k, (6b)

(4b) − (4e),

where f(t) is defined as the optimal value of problem (6),

which is a function of t. Even though the function f(t) cannot

be expressed in closed-form, numerical evaluation of f(t) is

feasible.

Remark 1: It is noted that the LMI constraint (6b) is ob-

tained from [16, Proposition 1], and is based on the assumption

that rank(Q) ≤ 1, which will be shown later.

By ignoring the non-convex constraint rank(Q) = 1, prob-

lem (6) becomes convex and thus can be solved efficiently by

an interior-point method for any given t [28]. The outer layer

problem, whose objective is to find the optimal value of t, is

then formulated as

min
t

f(t)

s.t. tmin≤ t≤ tmax,
(7)

where tmax and tmin are the upper and lower bounds of t,

respectively. The solution to problem (7) can be found by

one-dimensional line search. For the line search algorithm, we

need to determine the lower and upper bounds of the searching

interval for t. It is straightforward that tmax = 1 can be used as

the upper bound due to the feasibility of (5b), while a lower

bound is calculated as

t ≥ min
l

(

1 +
ρc,lh

H
c,lQhc,l

ρc,l(σ2
c,l + hH

c,lWhc,l) + σ2
p,l

)−1

≥ min
l

(

1 +
hH
c,lQhc,l

σ2
c,l + σ2

p,l + hH
c,lWhc,l

)−1

(8)

≥ min
l

(

1 +
P‖hc,l‖2
σ2
c,l + σ2

p,l

)−1

, tmin.



where the first inequality is based on the secrecy rate R̄c,l ≥ 0,

the third inequality follows from (4b). In the following theo-

rem, we prove the equivalence of problem (7) and the original

problem (4).

Theorem 1: The transmit beamforming PM problem (4) is

equivalent to problem (7) when rank(Q) ≤ 1.

Proof: Let us denote the optimal solutions of (4) and (7) as

f∗ and fopt, respectively. First, we show that fopt is a feasible

point of problem (7), i.e. fopt ≤ f∗. It is noted that (4) and

(6) have the same objective function and the optimal solution

of (4) satisfies the constraints of (6) given the assumption that

rank(Q) ≤ 1 [16], which gives rise to f(t∗) = f∗, where t∗

is the optimal value of t. In addition, it follows fopt ≤ f(t∗).
Next, we prove that the solution to problem (6) is achievable

in problem (4), i.e. f∗ ≤ fopt. From (4a), (6a) and (6b),

we can show that the optimal solutions of (6) are feasible

solutions of (4a) when rank(Q) ≤ 1. Therefore, we conclude

that f∗ = fopt. �

Utilizing the results in Remark 1 and Theorem 1, next we

show the tightness of the AN-aided PM problem (4) by the

following theorem.

Theorem 2: Provided that problem (6) is feasible for a given

t > 0, there exists an optimal solution to (4) such that the rank

of Q is always equal to 1.

Proof: See Appendix A. �

Problem (7) can be solved by conducting one-dimensional

line search for f(t) over t and choosing the minimum f(t)
as the optimal solution. Solving the SDP problem (6) with

the optimal f(t), we can obtain the optimal design variables

(Q∗, W∗, ρ∗c,l). The optimal beamforming vector q∗ is then

computed by eigenvalue decomposition Q∗ = q∗q∗H .

C. Low-Complexity SPCA Algorithm

In this subsection, we propose an SPCA based iterative

method to reduce the computational complexity. By introduc-

ing two slack variables r1 > 0 and r2 > 0, the constraint (4a)

can be rewritten as

log(r1r2) ≥ R̄c,l, ∀l, (9a)

1+
ρc,lh

H
c,lQhc,l

ρc,l(σ2
c,l+hH

c,lWhc,l)+σ2
p,l

≥ r1, ∀l, (9b)

1 +
tr(HH

e,kQHe,k)

σ2
k + tr(HH

e,kWHe,k)
≤ 1

r2
, ∀k, (9c)

which can be further simplified as

r1r2 ≥ 2R̄c,l , ∀l, (10a)

hH
c,lQhc,l

σ2
c,l+hH

c,lWhc,l+
σ2

p,l

ρc,l

≥ r1 − 1, ∀l, (10b)

σ2
k + tr(HH

e,kWHe,k)

σ2
k + tr(HH

e,k(Q+W)He,k)
≥ r2, ∀k. (10c)

The inequality constraint (10a) is equivalent to 2R̄c,l+2+(r1−
r2)

2 ≤ (r1 + r2)
2, which can be converted into a conic

quadratic-representable function form as
∥

∥

∥

[√

2R̄c,l+2 r1 − r2

]∥

∥

∥
≤ r1 + r2, ∀l. (11)

By transforming inequality constraints (10b) and (10c) into

σ2
c,l+wHHc,lw+

σ2
p,l

ρc,l
≤ qHHc,lq

r1 − 1
, ∀l, (12a)

σ2
k +wHĤe,kw + qHĤe,kq ≤ σ2

k +wHĤe,kw

r2
, ∀k, (12b)

where Hc,l = hc,lh
H
c,l and Ĥe,k = He,kH

H
e,k, we observe

that these two constraints are non-convex, but the right-hand

side (RHS) of both (12a) and (12b) have the function form of

quadratic-over-linear, which are convex functions [28]. Based

on the idea of the constrained convex procedure [33], these

quadratic-over-linear functions can be replaced by their first-

order expansions, which transforms the problem into convex

programming. Specifically, we define

fA,a(w, t) =
wHAw

t− a
, (13)

where A � 0 and t ≥ a. At a certain point (w̃, t̃), the first-

order Taylor expansion of (13) is given by

FA,a(w, t, w̃, t̃) =
2ℜ{w̃HAw}

t̃− a
− w̃HAw̃

(t̃− a)2
(t− a). (14)

By using the above results of Taylor expansion, for the points

(q̃, r̃1) and (w̃, r̃2), we can transform constraints (12a) and

(12b) into convex forms, respectively, as

σ2
c,l +wHHc,lw +

σ2
p,l

ρc,l
≤ FHc,l,1(q, r1, q̃, r̃1), ∀l, (15a)

σ2
k +wHĤe,kw + qHĤe,kq ≤ σ2

k(
2

r̃2
− r2

r̃22
)

+ FĤe,k,0
(w, r2, w̃, r̃2), ∀k. (15b)

Denoting gr1,l = FHc,l,1(q, r1, q̃, r̃1)−σ2
c,l−

σ2

p,l

ρc,l
and gr2,k =

σ2
k(

2
r̃2
−r2

r̃2
2

)+FĤe,k,0
(w, r2, w̃, r̃2)−σ2

k, (15a) and (15b) can be

recast as the following second-order cone (SOC) constraints

∥

∥[2wHhc,l, gr1,l − 1]T
∥

∥ ≤ gr1,l + 1, ∀l, (16a)
∥

∥[2wHHe,k; 2q
HHe,k; gr2,k − 1]T

∥

∥ ≤ gr2,k + 1, ∀k. (16b)

Next we employ the SPCA technique for the SOC constraints

(4c) and (4d) [35] to obtain convex approximations. By

substituting q , q̃ + ∆q and w , w̃ + ∆w into the left-

hand side (LHS) of (4c), we obtain

qHHc,lq+wHHc,lw+ σ2
c,l

= (q̃+∆q)HHc,l(q̃+∆q)+(w̃+∆w)HHc,l(w̃+∆w) + σ2
c,l

≥ q̃HHc,lq̃+ 2ℜ{q̃HHc,l∆q} + w̃HHc,lw̃

+ 2ℜ{w̃HHc,l∆w} + σ2
c,l,

(17)



where the inequality is given by dropping the quadratic terms

∆qHHc,l∆q and ∆wHHc,l∆w. Similarly, in the LHS of

(4d), we have

tr
(

HH
e,k(Q+W)He,k

)

=qHĤe,kq+wHĤe,kw

=(q̃+∆q)HĤe,k(q̃+∆q)+(w̃+∆w)HĤe,k(w̃+∆w)

≥q̃HĤe,kq̃+2ℜ{q̃HĤe,k∆q}+ w̃HĤe,kw̃

+ 2ℜ{w̃HĤe,k∆w}.
(18)

According to (17) and (18), we obtain linear approximations

of the concave constraints (4c) and (4d) as

q̃HHc,lq̃+2ℜ{q̃HHc,l∆q}+w̃HHc,lw̃

+ 2ℜ{w̃HHc,l∆w} + σ2
c,l ≥

Ēc,l

ηc,l(1− ρc,l)
, ∀l,

(19)

and

q̃HĤe,kq̃+2ℜ{q̃HĤe,k∆q}+w̃HĤe,kw̃

+ 2ℜ{w̃HĤe,k∆w}+NRσ
2
k ≥ Ēe,k

ηe,k
, ∀k.

(20)

Finally, by rearranging (4b) as

‖[qT wT ]‖ ≤
√
P , (21)

the original problem (4) is transformed into

min
q,w, ρc,l, r1, r2, gr1,l, gr2,k

‖q‖

s.t. (11), (16), (19), (20), (21), 0 < ρc,l ≤ 1, ∀l.
(22)

Given q̃, w̃, r̃1, and r̃2, problem (22) is convex and can be

efficiently solved by convex optimization software tools such

as CVX [31]. Based on the SPCA method, an approximation

with the current optimal solution can be updated iteratively,

which implies that (4) is optimally solved. In Section VI, we

will show that the proposed SPCA method achieves the same

performance as the 1-D search scheme, but with much lower

complexity.

IV. MASKED BEAMFOMRING BASED ROBUST PM FOR

IMPERFECT CSI

Due to channel estimation and quantization errors, it may

not be possible to have perfect CSI in practice. In this section,

we extend the PM optimization method to more practical

scenarios with imperfect CSI. Specifically, we consider an

AN-aided WCR-PM formulation under norm-bounded channel

uncertainty.

A. Worst-Case Based Robust PM Problem

Now, we adopt imperfect CSI based on the deterministic

model [27]. Specifically, the actual channel between the trans-

mitter and the l-th CR, denoted by hc,l, and the actual channel

between the transmitter and the k-th ER, denoted by He,k, can

be modeled as

hc,l = h̄c,l + ec,l, ∀l,
He,k = H̄e,k +Ee,k, ∀k,

(23)

where h̄c,l and H̄e,k denote the estimated channel available at

the transmitter, and ec,l and Ee,k are the bounded CSI errors

with ‖ec,l‖ ≤ εc,l and ‖Ee,k‖F ≤ εe,k, respectively.

We define Êc,l ,
Ēc,l

ηc,l
and Êe,k ,

Ēe,k

ηe,k
. By taking the CSI

model (23) into account, the AN-aided WCR-PM problem can

be rewritten as

min
Q,W, ρc,l

tr(Q)

s.t. log

(

1+
ρc,l(h̄c,l+ec,l)

HQ(h̄c,l+ec,l)

ρc,l(σ2
c,l+(h̄c,l+ec,l)HW(h̄c,l+ec,l))+σ2

p,l

)

−max
k

log

∣

∣

∣

∣

I+H̄E(H̄e,k+Ee,k)
HQ(H̄e,k+Ee,k)

∣

∣

∣

∣

≥ R̄c,l,(24a)

tr(Q+W)≤P, (24b)

(h̄c,l+ec,l)
H(Q+W)(h̄c,l+ec,l)+σ2

c,l≥
Êc,l

1−ρc,l
, (24c)

tr
(

(H̄e,k+Ee,k)
H(Q+W)(H̄e,k+Ee,k)

)

≥ Êe,k−NRσ
2
k, (24d)

Q�0, W�0, 0 < ρc,l ≤ 1, rank(Q)=1, (24e)

where H̄E =

(

σ2
kI+(H̄e,k+Ee,k)

HW(H̄e,k+Ee,k)

)−1

.

B. One-Dimensional Line Search Method

The above robust PM problem is not convex in terms of

the channel uncertainties. We therefore consider relaxation for

constraint (24a) by introducing a slack variable t1 similar to

the previous section. The constraint (24a) is then transformed

into

(h̄c,l+ec,l)
HT̃l(h̄c,l+ec,l) ≥ (2R̄c,l−t1)

(

σ2
c,l+

σ2
p,l

ρc,l

)

, (25a)

( 1
t1
−1)

(

σ2
kI+(He,k+Ee,k)

HW(He,k+Ee,k)
)

�
(

He,k+Ee,k

)H
Q
(

He,k+Ee,k

)

, ∀k, (25b)

where T̃l = t1Q − (2R̄c,l − t1)W. The constraint (25b)

is obtained under the assumption that rank(Q) ≤ 1 [16,

Proposition 1]. Problem (24) has semi-infinite constraint (24c),

(24d), (25a), and (25b). In order to make the problem tractable,

we exploit the S-procedure [28] to transform the constraints

(24c), (24d), (25a), and (25b) into LMIs. For completeness,

the S-procedure is presented in Lemma 1 in the following.

Lemma 1: (S-Procedure [28, Appendix B.2]) Let a function

fm(x) with x ∈ CN×1(m = 1, 2) be defined as

fm(x) = xHAmx + 2Re
{

b
H
mx

}

+ cm (26)

where Am ∈ HN×N , bm ∈ CN×1 and cm ∈ RN×1. Then,

fm(x) ≤ 0 holds if and only if there exists θ ≥ 0 such that

θ

[

A1 b1

b
H
1 c1

]

−
[

A2 b2

b
H
2 c2

]

� 0,

provided that there is a point x̂ which satisfies fm(x̂) < 0. �

To employ the S-procedure, we rewrite the first constraint

in (25) as

eHc,lT̃lec,l+2R{h̄H
c,lT̃lec,l}+h̄H

c,lT̃lh̄c,l ≥ (2R̄c,l−t1)(σ2
c,l+

σ2
p,l

ρc,l
).

(27)



In addition, we introduce al =
1

ρc,l
and bl =

1
1−ρc,l

to convert

the non-convex constraints into convex ones. According to

Lemma 1, by using a slack variable λc, (27) can be expressed

as
[

λc,lI+T̃l T̃lh̄c,l

h̄H
c,lT̃l h̄H

c,lT̃lh̄c,l−(2R̄c,l−t1)(σ
2
c,l+alσ

2
p,l)−λc,lε

2
c,l

]

� 0.

(28)

Let us define h̄e,k , vec(He,k). Using Lemma 1 again and

the property vec(M1M2M3) = (MT
3 ⊗ M1)vec(M2) [30],

constraints (24c) and (24d) become

[

αc,lI+QW QW h̄c,l

h̄H
c,lQW h̄H

c,lQW h̄c,l+σ2
c,l−blÊc,l−αc,lε

2
c,l

]

� 0,(29a)

[

αe,kI+
(

I⊗QW

) (

I⊗QW

)

h̄e,k

h̄H
e,k

(

I⊗QW

)

θe,l

]

�0, ∀k, (29b)

where αc,l and αe,k are slack variables, and QW = Q+W,

and θe,l = h̄H
e,k

(

I ⊗ (Q+W)
)

h̄e,k−Êe,k+NRσ
2
k−αe,kε

2
e,k.

To transform the constraint (25b) into a tractable convex LMI,

we exploit the following lemma.

Lemma 2 [16]: For F1,F2,F3 ∈ CM×M , we denote

g(Z) = ZHF1Z+ZHF2+FH
2 Z+F3, satisfying g(Z) � 0 for

∀Z ∈
{

Z|tr(ZHF4Z) ≤ 1
}

with F4 � 0. Then, the following

LMI holds:
[

F3 FH
2

F2 F1

]

− α

[

I 0

0 −F4

]

� 0,

where α ≥ 0. �

By Lemma 2, the constraint (25b) can be equivalently given

as
[ (

( 1
t1
−1)σ2

k−λe,k

)

I+H̄H
e,kWQH̄e,k H̄H

e,kWQ

WQH̄e,k WQ+
λe,k

ε2
e,k

I

]

� 0, (30)

where λe,k is a slack variable and WQ =
(

( 1
t1
−1)W−Q

)

.

According to (25)-(30), the WCR-PM problem is now given

as

min
Q,W, t1,al, bl

tr(Q)

s.t. tr(Q+W) ≤ P,
1

al
+

1

bl
≤ 1, rank(Q) = 1,

Q�0,W � 0, λc,l ≥ 0, λe,k ≥ 0,

αc,l ≥ 0, αe,k ≥ 0, al ≥ 1, bl ≥ 1, ∀l, ∀k,
(28), (29a), (29b), (30).

(31)

By removing the nonconvex constraint rank(Q) = 1, the above

problem (31) becomes convex and can be solved by applying

a solver in [31] given t1. Tightness of the relaxation of (24)

is shown by the following theorem.

Theorem 3: Provided that the robust problem (24) is feasible

for a given t1, there always exists an optimal solution Q with

rank(Q) = 1.

Proof: See Appendix B. �

So far, we have tackled the WCR-PM problem (31) by

deriving a tight rank relation in Theorem 3. Note that problem

(24) can also be solved by applying one-dimensional line

search over t1 as in Section III.

C. Low-Complexity SPCA Algorithm

Now, let us consider another reformulation of the WCR-PM

problem (24) based on the SPCA algorithm. The optimization

framework can also be recast as a convex form by incorporat-

ing channel uncertainties. First, the robust secrecy rate (24a)

can be rewritten as

log(r3r4) ≥ R̄c,l, ∀l, (32a)

1+
(h̄c,l+ec,l)

HQ(h̄c,l+ec,l)

σ2
c,l+(h̄c,l+ec,l)HW(h̄c,l+ec,l)+

σ2

p,l

ρc,l

≥r3, (32b)

1 +
tr
(

(H̄e,k +Ee,k)
HQ(H̄e,k +Ee,k)

)

σ2
k + tr

(

(H̄e,k +Ee,k)HW(H̄e,k +Ee,k)
) ≤ 1

r4
,(32c)

where r3 > 0 and r4 > 0 are slack variables. The inequalities

in (32) can be rearranged, which gives

r3r4 ≥ 2R̄c,l , ∀l, (33a)

σ2
c,l+wH(Hc,l+∆c,l)w +

σ2
p,l

ρc,l
≤ qH(Hc,l+∆c,l)q

r3 − 1
, (33b)

σ2
k +wH(Ĥe,k+∆e,k)w + qH(Ĥe,k+∆e,k)q

≤ σ2
k +wH(Ĥe,k+∆e,k)w

r2
, (33c)

where ∆c,l = h̄c,le
H
c,l + ec,lh̄

H
c,l + ec,le

H
c,l and ∆e,k =

H̄e,kE
H
e,k+Ee,kH̄

H
e,k+Ee,kE

H
e,k stand for the CSI uncertainty.

It is straightforward to show that

‖∆c,l‖F ≤ ‖h̄c,le
H
c,l‖F+‖ec,lh̄H

c,l‖F+‖ec,leHc,l‖F
≤ ‖h̄c,l‖‖eHc,l‖+ ‖ec,l‖‖h̄H

c,l‖+‖ec,l‖2

= ε2c,l + 2εc,l‖h̄c,l‖,
(34)

‖∆e,k‖F ≤ ‖H̄e,kE
H
e,k‖F+‖Ee,kH̄

H
e,k‖F+‖Ee,kE

H
e,k‖F

≤ ‖H̄e,k‖F‖EH
e,k‖F + ‖Ee,k‖F ‖H̄H

e,k‖F+‖Ee,k‖2F
= ε2e,k + 2εe,k‖H̄e,k‖F .

(35)

Note that ∆c,l and ∆e,k are norm-bounded matrices as

‖∆c,l‖F ≤ ξc,l and ‖∆e,k‖F ≤ ξe,k where ξc,l = ε2c,l +

2εc,l‖h̄c,l‖ and ξe,k = ε2e,k + 2εe,k‖H̄e,k‖F . Similarly, we

equivalently recast (33a) as
∥

∥

∥

[√

2R̄c,l+2 r3 − r4

]∥

∥

∥
≤ r3 + r4, ∀l. (36)

According to [9], we can minimize constraint (32b) by

maximizing the LHS of (33b) while minimizing its the RHS.

Then the constraints (33b) and (33c) can be approximately

rewritten as, respectively,

max
‖∆c,l‖F≤ξc,l

σ2
c,l+wHAc,lw +

σ2
p,l

ρc,l

≤ min
‖∆c,l‖F≤ξc,l

qHAc,lq

r3 − 1
,

(37)

max
‖∆e,k‖F≤ξe,k

σ2
k +wHBe,kw + qHBe,kq

≤ min
‖∆e,k‖F≤ξe,k

σ2
k +wHBe,kw

r2
,

(38)

where Ac,l = Hc,l+∆c,l and Be,k = Ĥe,k+∆e,k.



In order to minimize the RHS of (37) and (38), a loose

approximation [34] is applied, which gives

min
‖∆c,l‖F≤ξc,l

qHAc,lq

r3 − 1
≥ qHȞc,lq

r3 − 1
,

min
‖∆e,k‖F≤ξe,k

σ2
k +wHBe,kw

r2
≥ σ2

k +wHȞe,kw

r2
,

(39)

where Ȟc,l = Hc,l−ξc,lINT
and Ȟe,k = Ĥe,k−ξe,kINT

. Using

similar technique to the LHS of (37) and (38) yields

max
‖∆c,l‖F≤ξc,l

wHAc,lw ≤ wHH̄c,lw, (40)

max
‖∆e,k‖F≤ξe,k

σ2
k +wHBe,kw+ qHBe,kq

≤ σ2
k +wHH̄e,kw+ qHH̄e,kq,

(41)

where H̄c,l = Hc,l+ξc,lINT
and H̄e,k = Ĥe,k+ξe,kINT

.

From (37)-(41), (33b) and (33c) can be given as

σ2
c,l +wHH̄c,lw+

σ2
p,l

ρc,l
≤ qHȞc,lq

r3 − 1
, (42)

σ2
k +wHH̄e,kw + qHH̄e,kq ≤ σ2

k +wHȞe,kw

r4
. (43)

Exploiting the same method in (13)-(14), we obtain

σ2
c,l +wHH̄c,lw+

σ2
p,l

ρc,l
≤ FȞc,l,1

(q, r3, q̃, r̃3), (44a)

σ2
k +wHH̄e,kw + qHH̄e,kq

≤ σ2
k(

2

r̃4
− r4

r̃24
) + FȞe,k,0

(w, r4, w̃, r̃4). (44b)

By using a loose approximation approach for constraints

(24c) and (24d), we have

qHȞc,lq+wHȞc,lw≥ Êc,l

1−ρc,l
− σ2

c,l, (45a)

wHȞe,kw + qHȞe,kq ≥ Êe,k−NRσ
2
k. (45b)

Substituting q = q̃ + ∆q and w = w̃ + ∆w into the LHS

of (45a) and (45b), the SPCA technique can be applied to

approximate (45a) and (45b), respectively, as

q̃HȞc,lq̃+2ℜ{q̃HȞc,l∆q}+w̃HȞc,lw̃

+2ℜ{w̃HȞc,l∆w}≥ Êc,l

1−ρc,l
− σ2

c,l, (46a)

q̃HȞe,kq̃+2ℜ{q̃HȞe,k∆q}+w̃HȞe,kw̃

+2ℜ{w̃HȞe,k∆w} ≥ Êe,k−NRσ
2
k. (46b)

Eventually, the WCR-PM problem is converted into the

following convex form as

min
q,w, ρc,l, r3, r4

‖q‖

s.t. (36), (44a), (44b), (46a), (46b), (21), 0 < ρc,l ≤ 1.
(47)

Given q̃, w̃, r̃3, and r̃4, problem (47) is convex and can

be solved by employing an interior-point method to update

iteratively until convergence.

V. COMPUTATIONAL COMPLEXITY

In this section, we evaluate the computational complexity

of the proposed robust methods. As will be shown in Section

VI, the proposed SPCA algorithm achieves substantial im-

provement in complexity for the same performance compared

with the method based on 1-D search. Now we compare

complexity of the algorithms through analyses similar to that

in [29] and [35]. The complexity of the proposed algorithms

are shown in Table I on the top of next page. We denote

n, D = log2
tmax−tmin

η
, and Q as the number of decision

variables, the 1-D search size, and the SPCA iteration number,

respectively. The complexity analysis is given in the following.

1) PM with 1-D Search in problem (6) involves K LMI

constraints of size NR + 1, two LMI constraints of size NT ,

and 4L+K + 1 linear constraints.

2) PM with SPCA in problem (22) has L SOC constraints

of dimension 2, L SOC constraints of dimension NT + 1, K

SOC constraints of dimension 2NT + 1, one SOC constraints

of dimension 2NT , and L+ 3K linear constraints.

3) WCR-PM with 1-D Search in problem (31) consists of

2L LMI constraints of size NT +1, K LMI constraints of size

NRNT +1, two LMI constraints of size NT , and 5L+2K+1
linear constraints.

4) WCR-PM with SPCA in problem (47) contains L SOC

constraints of dimension 2, L SOC constraints of dimension

NT +1, K SOC constraints of dimension 2NT +1, one SOC

constraints of dimension 2NT , and L+3K linear constraints.

For example, for a system with L = 2,K = 3, NT =
4, NR = 2, D = 100, and Q = 8, the complexity of the

PM with 1-D search, the PM with SPCA, the WCR-PM with

1-D search, and the WCR-PM with SPCA, are O(6.92×107),
O(3.70×105), O(7.78×108), and O(1.45×105), respectively.

Thus, the complexity of the proposed SPCA method is only

1% compared to the scheme based on 1-D search.

VI. NUMERICAL RESULTS

In this section, we present numerical results to validate

performance of the proposed transmit beamforming schemes.

In the simulations, we consider a system where the transmitter

is equipped with NT = 4 transmit antennas, two CRs are only

equipped with single antenna, and three ERs have NR = 2
receive antennas. Both large-scale and small-scale fading are

considered in the channel model. The simplified large-scale

fading model is given by DL =
(

d
d0

)−α
, where d represents

the distance between the transmitter and the receiver, d0 is

a reference distance equal to 10 m in this work, and α = 3
is the path loss exponent [36]. We define dc = 40 m as the

distance between the transmitter and the CRs, and de = 20
m as the distance between the transmitter and the ERs, unless

otherwise specified.

Because all the receivers are are expected to harvest en-

ergy from the RF signal, we consider line-of-sight (LOS)

communication scenario where the Rician fading model is

adopted for small scale fading coefficients. The channel vector

hc,l is expressed as hc,l =
√

KR

1+KR
hLOS
c,l +

√

1
1+KR

hNLOS
c,l ,

where hLOS
c,l indicates the LOS deterministic component with

‖hLOS
c,l ‖22 = DL, hNLOS

c,l represents the Rayleigh fading



TABLE I: Complexity analysis of the proposed algorithms
Algorithms Complexity Order

PM with
1-D Search

O
(

nD
√
KNR+2K+2NT+4L+1

{

K(NR+1)3+2N3

T
+n[K(NR+1)2+2N2

T
+4L+K+1]+n2

})

where n = O(2N2

T
+L)

PM with
SPCA

O
(

nQ
√
5K+5L+2

{

(2K+L+2)NT+3L+K+n(3K+L)+n2
})

where n = O(2NT+2L+K+2)

WCR-PM
with 1-D

Search

O
(

nD
√

(KNR+2L+2)NT+7L+3K+1
{

2L(NT+1)3+K(NRNT+1)3+2N3

T
+n[2L(NT+1)2

+K(NRNT+1)2+2N2

T
+5L+2K+1]+n2

})

where n = O(2N2

T
+4L+K)

WCR-PM
with SPCA

O
(

nQ
√
5K+5L+2

{

(2K+L+2)NT+3L+K+n(3K+L)+n2
})

where n = O(2NT+L+2)

component as hNLOS
c,l ∼ CN (0, DLI), and KR = 3 is the

Rician factor. It is noted that for the LOS component, we

use the far-field uniform linear antenna array model [37].

In addition, the noise power at the l-th CR is set to be

σ2
c,l = −60 dBm for information transfer and σ2

p,l = −50 dBm

for power transfer. The noise power at all the ERs is σ2
k =

−50 dBm, ∀k. The channel error bound for the deterministic

model is set to εc,l = εe,k = ε, ∀l, k. Consequently, the

channel error covariance matrices are given as Nc,l = ε2INT

and Dk = ε2INTNR
. The EH efficiency coefficients are set to

ηc,l = ηe,k = 0.3.

For the perfect CSI case, we compare the PM with SPCA

algorithm and the PM with 1-D search method. For the case

with imperfect CSI, we show the performance of the WCR-PM

with SPCA algorithm, the WCR-PM with 1-D search method,

the no-AN PM with W = 0, and the non-robust method which

computes a solution without considering channel uncertainties.

Fig. 1 illustrates the convergence of the SPCA method with

respect to iteration numbers for P = 50 dBm, Ēc,l = Ēe,k =
E, R = 1 bps/Hz, and ε = 0.01. It is easily seen from the

plots that convergence is achieved for all cases within just 8

iterations.
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Fig. 1: Average transmit power of information signal versus
iteration numbers

Fig. 2 illustrates the average transmit power of the infor-

mation signal in terms of different target secrecy rates with

P = 30 dBm and Ēc,l = Ēe,k = 10 dBm, ∀k. It is

observed that the transmit power increases with the secrecy

rate target. In addition, the SPCA algorithm achieves the

same performance as the 1-D search method, but with much

lower complexity. Compared with the scheme without AN, the

power consumption of the proposed AN-aided scheme is 9
dB lower. Moreover, we can check that the proposed scheme

performs better than the scheme with ρc = ρc,l = 0.5, and

the performance gap becomes larger as the target secrecy rate

increases. This indicates that optimizing the PS ratio ρc,l is

important, especially when the target secrecy rate is high.
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secrecy rate

2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

6

8

10

12

14

16

18

20

Number of receive antennas N
R

A
ve

ra
ge

 tr
an

sm
it 

po
w

er
 o

f i
nf

or
m

at
io

n 
si

gn
al

 (
dB

m
)

 

 
no−AN PM

PM with ρ
c
 = 0.5

WCR−PM with 1−D
WCR−PMwith SPCA
PM with 1−D
PM with SPCA

Fig. 3: Average transmit power of information signal versus the
number of receive antenna at the ERs

In Fig. 3, we compare the average transmit power with

respect to different numbers of ER antennas by fixing NT = 8,



P = 40 dBm, Ēc,l = Ēe,k = 10 dBm, and R̄c,l = 1 bps/Hz.

In this figure, one can observe that the performance of the

1-D search method and that of the proposed SPCA algorithm

remains the same regardless of the value of NR. This is due

to the fact that all the harvested power at the ERs can be

provided by the AN signal.
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Fig. 4: Average transmit power of information signal versus the
target harvested power at the CR

In Fig. 4, we plot the average transmit power in terms of

different target harvested power at the CR with P = 40 dBm,

Ēe,k = 10 dBm and R̄c,l = 0.5 bps/Hz. We can check that

the curves of the PM and the WCR-PM schemes increase

with the same slope. Moveover, when the harvested power

target decreases, the performance gap between the no-AN PM

scheme and the proposed PM scheme becomes wider. This

indicates that AN is essential in achieving the performance

gains. Furthermore, the PM scheme and the WCR-PM scheme

require 6 dB and 4.5 dB lower power than the PM scheme with

fixed ρc, respectively.
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Fig. 5: Average transmit power of information signal versus the
number of ERs

Fig. 5 evaluates the average transmit power of information

signal with respect to different number of ER with NT = 6,

P = 30 dBm, Ēc,l = Ēe,k = 5 dBm, and R̄c,l = 1 bps/Hz. It

is observed that both the proposed SPCA algorithms and the 1-

D search method achieved the same performance, and the PM

with ρc = 0.5 exhibits a 2.8 dBm loss over the scheme with

the optimal ρ∗c,l regardless of the number of ERs. In addition,

we can find that the curve of the no-An PM scheme increases

slowly with the number of ERs.
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Fig. 6: CDF of the minimum harvested power at the ERs

Finally, in Fig. 6 we plot the cumulative density function

(CDF) of the minimum harvested power at the ERs with NT =
4, P = 30 dBm, Ēc,l = 10 dBm, Ēe,k = 10 dBm, R̄c,l = 0.5
bps/Hz, and ε = 0.1. It is observed that the proposed robust

schemes always satisfy the predefined harvested power target

(Ēe,k = 10 dBm), whereas the non-robust method achieves

only 25% of the predefined harvested power at the ERs.

VII. CONCLUSION

In this paper, we have proposed a transmit beamforming

power minimization scheme for a multi-user MIMO SWIPT

secrecy communication system where power splitters are em-

ployed by the receivers for SWIPT operation. The original

problem, which was shown to be non-convex, was relaxed to

formulate a two-layer problem. The inner layer problem was

recast as a sequence of SDPs and solved accordingly. Then the

optimal solution to the outer problem, on the other hand, has

been obtained through one-dimensional line search. This opti-

mization framework has also been extended to robust secrecy

transmission designs by incorporating deterministic channel

uncertainties. Moreover, tightness of the relaxation scheme has

been investigated for both the perfect and imperfect CSI cases

by showing that the optimal solution is rank-one. To reduce the

computational complexity, an SPCA based iterative algorithm

has been proposed, which achieved near-optimal solution in

both the perfect and imperfect CSI cases. Finally, numerical

results have been provided to validate the performance of the

proposed transmit beamforming schemes.



APPENDIX A

PROOF OF THEOREM 2

We first consider the Lagrange dual function of (6) as

L(Q,W,Z,Y, ξl,Ae,k, γ, µl, θk)= tr(Q)− tr(ZQ)− tr(YW)

−ξl

[

tr

(

hc,lh
H
c,l[tQ−(2R̄c,l−t)W]

)

− (2R̄c,l − t)(σ2
c,l+

σ2
p,l

ρc,l
)

]

−
K
∑

k=1

tr

[

Ae,k

(

HH
e,k

(

(
1

t
−1)W −Q

)

He,k+(
1

t
−1)σ2

kI

)]

+γ
(

tr(Q+W)−P
)

−µl

[

tr
(

hc,lh
H
c,l(Q+W)

)

− Ēc,l

1−ρc,l
+σ2

c,l

]

−
K
∑

k=1

θk

(

tr
(

HH
e,k(Q+W)He,k

)

− Ēe,k+NRσ
2
k

)

,

where Z ∈ H
NT

+ , Y ∈ H
NT

+ , ξl ∈ R+, Ae,k ∈ H
NT

+ , γ ∈ R+,

µl ∈ R+, and θk are the dual variables of Q, W, (6a), (6b),

(4b), (4c), and (4d), respectively. Then, some of the related

KKT conditions are listed as

∂L
∂Q

= I− Z− (ξlt+ µl)hc,lh
H
c,l +

K
∑

k=1

He,kAe,kH
H
e,k

+ γI−
K
∑

k=1

θkHe,kH
H
e,k = 0, (48a)

∂L
∂W

=−Y+[ξl(2
R̄c,l−t)−µl]hc,lh

H
c,l + γI−

K
∑

k=1

θkHe,kH
H
e,k

−
K
∑

k=1

(
1

t
−1)He,kAe,kH

H
e,k=0, (48b)

ZQ = 0, Y�0, Ae,k � 0, ξl ≥ 0, µl ≥ 0, ∀k. (48c)

From the Lagrangian function and the KKT conditions, we

have 0 < ρc,l ≤ 1 and the KKT condition ξl > 0 and µl > 0.

Now, we will show these conditions via the dual problem of

(6) as

max
Z,Y,Ae,k,ξl,γ,µl,θk

min
Q,W,ρc,l

L(Q,W,Z,Y, ξl,Ae,k, γ, µl)

= max
Z,Y,Ae,k,ξl,γ,µl,θk

min
Q,W,ρc,l

[

− tr(ZQ)−tr(YW)

+
ξl(2

R̄c,l−t)σ2
p,l

ρc,l
+

µlĒc,l

1−ρc,l
−

K
∑

k=1

(
1

t
−1)σ2

e tr(Ae,k) (49)

+[ξl(2
R̄c,l−t)−µl]σ

2
c,l−γP +

K
∑

k=1

θk(Ēe,k−NRσ
2
k)

]

.

Since problem (6) is convex and satisfies the Slater’s con-

dition, the duality gap between (6) and (49) is zero, and the

strong duality holds. Therefore solving problem (6) is equiv-

alent to solving (49). In addition, the constraint 0 < ρc,l ≤ 1
can be satisfied as

min
0<ρc,l≤1

ξl(2
R̄c,l−t)σ2

p,l

ρc,l
+

µlĒc,l

1−ρc,l
.

Also the optimal variable ρ∗c,l, and the dual variables ξ∗l , µ
∗
l

are related by

ρ∗c,l=

√

ξ∗l (2
R̄c,l−t)σ2

p,l
√

ξ∗l (2
R̄c,l−t)σ2

p,l+
√

µ∗
l Ēc,l

.

From the above inequality, we will show that ξ∗l > 0 and

µ∗
l > 0 by contradiction. Suppose that ξ∗l = 0 and/or µ∗

l = 0.

Then there are two cases (i.e., ρ∗c,l = 0 or 1), which violate the

constraints (4a) and (4c). Thus, it follows ξl > 0 and µl > 0.

Now, subtracting (48b) from (48a) yields

Z+ξ∗l 2
R̄c,lhc,lh

H
c,l=I+Y+

1

t

K
∑

k=1

He,kAe,kH
H
e,k. (50)

We post-multiply Q by both sides of (50) and use (48c) as
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H
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H
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Due to ξ∗l > 0, we have

rank(Q)

=rank
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ξ∗l 2
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He,kAe,kH
H
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H
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]

=rank(hc,lh
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This completes the theorem. �

APPENDIX B

PROOF OF THEOREM 3

First we write the Lagrange dual function of (31) as

L(Q,W,Z,Y, ξl,Tc,l,Te,k,Rc,l,Re,k) = tr(Q)− tr(ZQ)

−tr(YW)+ξl
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,



where Z ∈ H
NT

+ , Y ∈ H
NT

+ , ξl ∈ R+, Tc,l ∈ H
NT

+ , Te,k ∈
H

NT

+ , Rc,l ∈ H
NT

+ , and Re,k ∈ H
NTNR

+ are the dual variables

of Q, W, (28), (30), (29a), and (29b), respectively, and
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and D
(j,j)
e,k ∈ H
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+ is a block submatrix of Ĥe,kRe,kĤ
H
e,k as
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Now, we consider the following related KKT conditions as

∂L
∂Q

= I− Z+ ξlI− t1Hc,lTc,lH
H
c,l +

K
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k=1

Ge,kTe,kG
H
e,k
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Hence, we have the rank relation as

rank(Q)

= rank

(

2R̄c,lQHc,lTc,lH
H
c,l

(

I+Y+

K
∑

k=1

1

t1
Ge,kTe,kG

H
e,k

)−1
)

≤ rank(Hc,lTc,lH
H
c,l).

(52)

Now, we will compute the rank of the matrix Hc,lTc,lH
H
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[

I 0
]

and post-multiplying HH
c,l to (51d),
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and it is non-singular. Thus multiplying this matrix will not
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This completes the proof of Theorem 3. �
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