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Abstract—This paper considers a scenario in which anAlice-
Bob pair wishes to communicate in secret in the presence of an
active Eve, who is capable of jamming as well as eavesdropping in
Full-Duplex (FD) mode. As countermeasure,Bob also operates
in FD mode, using a subset of its antennas to act as receiver,
and the remaining antennas to act as jammer and transmit
noise. With a goal to maximize the achievable secrecy degrees
of freedom (S.D.o.F.) of the system, we provide the optimal
receive/transmit antennas allocation atBob, based on which we
determine in closed form the maximum achievable S.D.o.F.. We
further investigate the adverse scenario in whichEve knows
Bob’s transmission strategy and optimizes its transmit/receive
antennas allocation in order to minimize the achievable S.D.o.F..
For that case we find the worst-case achievable S.D.o.F.. We also
provide a method for constructing the precoding matrices of
Alice and Bob, based on which the maximum S.D.o.F. can be
achieved. Numerical results validate the theoretical findings and
demonstrate the performance of the proposed method in realistic
settings.

Index Terms—Physical-layer security, Cooperative communi-
cations, Multi-input Multi-output, Active Eavesdropper.

I. I NTRODUCTION

Communication security in the presence of malicious nodes
has received a lot of attention. Most of the current literature
addresses the case in which the malicious nodes arepassive
eavesdroppers, i.e., they just listen. In that case, the eaves-
droppers reduce the secrecy rate by the rate they can sustain.
Approaches to improve the secrecy rate in the presence of
passive eavesdroppers include multi-antenna techniques [1]–
[4] and artificial noise (jamming) based methods [5]–[13]; all
these methods target at increasing the received signal-to-noise
ratio (SNR) at the legitimate receiver, or decreasing the re-
ceived SNR at the eavesdropper. Jamming can be implemented
by the source [5], the external helper [6]–[11], or the legitimate
receiver who may work in Full-Duplex (FD) mode [12], [13].

Recently, the case ofactiveeavesdroppers has been receiv-
ing a lot of attention. By active eavesdropper we here refer
to a powerful adversary that can jam as well as eavesdrop
the legitimate receiver. One line of research in that area is
gearing towards designing effective active attack schemesfor
the purpose of minimizing the achievable secrecy transmission
rate [14]–[16]. Another line of research focuses on detecting
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active attacks and offering countermeasures to guarantee reli-
able secret communications [17]–[23]. In particular, [17]–[19]
consider a massive multi-input multi-output (MIMO) scenario,
in which an active eavesdropper attacks the channel estima-
tion process by transmitting artificial noise. [20], [21], [22],
[23] consider a single-input single-output (SISO) scenario, a
MIMO scenario, a relay scenario, and an OFDM scenario,
respectively, wherein an active eavesdropper tries to reduce the
total network throughput by choosing to be a jammer, or an
eavesdropper, or combination of the above, so that it creates
the most unfavorable conditions for secret communications.
To combat such malicious behavior, the source in [20], [21]
chooses between transmitting, remaining silent or acting as a
jammer. The work of [22], [23] conducts relaying selection
and power allocation among all the available sub-carriers,
respectively.

In this paper, we consider a MIMOAlice-Bob-Evewiretap
channel, in whichEve is an active eavesdropper, who can
transmit and receive in FD fashion by appropriately allocating
its antennas for transmission or reception. Our goal is to pro-
vide countermeasures that will ensure maximum secrecy from
the point of view of secrecy degrees of freedom (S.D.o.F.).
Our main contributions are summarized as follows.

1) As countermeasure, we proposed an FDBob, who
transmits jamming signals while receiving. Under this
scenario, we determine in closed form the maximum
achievable S.D.o.F., as function of the number of anten-
nas at each terminal (see eq. (6)). Moreover, we give the
optimal transmit/receive antenna allocation ofBob (see
(7)), which achieves the maximum S.D.o.F..

2) We obtain analytically the worst-case achievable
S.D.o.F. (see eq. (9)), corresponding to the case in which
Eve knows the strategy adopted byAlice and Bob and
optimizes its transmit/receive antenna allocation for the
purpose of minimizing the achievable S.D.o.F..

3) We provide a method for constructing the precoding ma-
trix pair atAlice andBob, which achieves the maximum
S.D.o.F.. While the aforementioned achievable S.D.o.F.
results do not depend on channel state information (CSI),
the precoding matrices depend on the eavesdropping
channels and also the null space of the self-interference
channels atEveandBob.

The rest of this paper is organized as follows. In Section II,
we describe the system model and formulate the S.D.o.F. max-
imization problem. In Section III, we determine in closed form
the maximum achievable S.D.o.F., and provide an optimal
transmission scheme which achieves the maximum S.D.o.F..
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Fig. 1: (a) Gaussian wiretap channel with an active eaves-
dropper. (b) Helper-assisted Gaussian wiretap channel with a

passive eavesdropper.

In Section IV, we consider an activeEve who knows the
transmission strategy adopted by the legitimate terminalsand
tries to minimize the achievable S.D.o.F. by antenna allocation;
for that case, we find the worst-case achievable S.D.o.F..
Numerical results are given in Section V and conclusions are
drawn in Section VI.

Notation: x ∼ CN (0,Σ) meansx is a random variable
following a complex circular Gaussian distribution with mean
zero and covarianceΣ; (a)+ , max(a, 0); ⌊a⌋ denotes
the biggest integer which is less or equal toa; |a| denotes
the absolute value ofa. We use lower case bold to denote
vectors;I represents an identity matrix with appropriate size;
CN×M indicates aN ×M complex matrix set;AH , tr{A},
rank{A}, and |A| stand for the hermitian transpose, trace,
rank and determinant of the matrixA, respectively.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a Gaussian wiretap channel (see Fig. 1(a))
consisting ofAlice, Bob, andEve, equipped withNa, Nb and
Ne antennas, respectively.Eve is an active agent, who works
in FD mode, i.e., it allocatesN r

e antennas to receive signals
and uses the remainingN t

e = Ne − N r
e antennas to transmit

isotropic noise, i.e.,ze, with E{zezHe } = (P/N t
e)I. Alice

wishes to send messages ∼ CN (0, I) to Bob and keep it
secret fromEve. Towards that objective,Bob allocatesN r

b

antennas to receive the message and uses the remainingN t
b =

Nb −N r
b antennas to transmit jamming signals, i.e.,zb, with

zb ∼ CN (0, I). SinceBob transmits noise while receiving the
signal of interest, he generates self-interference, and sodoes

Eve. While several self-interference cancelation techniques
have been reported, such as antenna isolation, analog-circuit-
domain based methods and digital-domain based methods, full
self-interference cancelation is still not achievable [24]. To
describe the effect of residual self-interference we employe
the loop interference model of [12], which quantifies the level
of self-interference with a parameterρ ∈ [0, 1], with ρ = 0
denoting zero self-interference.

To improve the system performance,Alice and Bob will
precode their transmissions, using precoding matricesVa and
Vb, respectively. The signal received atBob and Eve can be
respectively written as

yb = HbaVas+
√
ρbHbbVbzb +Hbeze + nb, (1)

ye = GeaVas+GebVbzb +
√
ρeGeeze + ne, (2)

where nb ∼ CN (0, I) and ne ∼ CN (0, I) represent ad-
ditive white Gaussian noise (AWGN) vectors atBob and
Eve, respectively;Hba ∈ CNr

b ×Na and Hbe ∈ CNr
b ×Nt

e

denote the channel matrices fromAlice and Eve to Bob,
respectively;Gea ∈ CNr

e×Na and Geb ∈ CNr
e×Nt

b denote
the channel matrices fromAlice andBob to Eve, respectively;
Hbb ∈ C

Nr
b ×Nt

b and Gee ∈ C
Nr

e×Nt
e represent the self-

interference channel matrices atBob and Eve, respectively;
ρb andρe denote the self-interference level ofBob and Eve,
respectively. The transmitted signals including the message
signal s and the jamming signalszb and ze are independent
of each other, and independent of the noisenb and ne.
SinceAlice andBob are not expected to cooperate withEve,
Eve cannot do any precoding. The only wayEve can affect
the achievable S.D.o.F. is by optimizing its transmit/receive
antenna allocation.

In the above, the Gaussian signaling assumption is made
in order to maximize the achievable secrecy transmission rate
[25], [26]. Also, the flat fading assumption used in (1), (2) is
valid when the coherence bandwidth of the channel is larger
than the bandwidth of the transmitted signal [27]. Here we
assume that all channels are known at the legitimate nodes,
including the CSI forEve. This is possible in situations in
which Eve is an active network user and its whereabouts and
behavior can be monitored.

For a given precoding matrix pair(Va,Vb), the maximum
achievable rate atBob andEvecan be respectively expressed
as [28]

Rb = log|I+ (I+Wb)
−1HbaQaH

H
ba|, (3a)

Re = log|I+ (I+We)
−1GeaQaG

H
ea|, (3b)

where Qa , VaV
H
a and Qb , VbV

H
b denote the input

covariance matrices atAlice and Bob, respectively, with the
average transmit power budgettr{Qa} = tr{Qb} = P ; the
interference covariance matrices atBob and Eve respectively
are

Wb , ρbHbbQbH
H
bb +

P

N t
e

HbeH
H
be,

We , GebQbG
H
eb +

ρeP

N t
e

GeeG
H
ee.
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Correspondingly, the achievable S.D.o.F., representing the
high SNR behavior of the achievable secrecy rate [29], is

ds,a(Qa,Qb) , lim
P→∞

Rb −Re

log P
, (4)

provided that a positive secrecy rate can be achieved.
The goal of this paper is to determine the maximum

achievable S.D.o.F. over the transmission schemes atAlice
andBob, i.e., the antenna allocation atBoband the precoding
matrices ofAlice and Bob. To that goal, in the following,
we will first determine the optimal number of transmit/receive
antennas atBob, based on which we then analytically deter-
mine the maximum achievable S.D.o.F.. Subsequently, we find
the worst-case achievable S.D.o.F. for the adverse scenario,
in which Eve is smart and tries to minimize the achievable
S.D.o.F. by adjusting the number of transmit/receive antennas.

III. T HE MAXIMUM ACHIEVABLE S.D.O.F.

In [30], [31], we determined the maximum achievable
S.D.o.F. for a helper-assisted Gaussian wiretap channel, which
consists of a source equipped withNs antennas, a legitimate
receiver equipped withNd antennas, a passive eavesdropper
equipped withNep antennas, and an external helper (sending
jamming signals to confuseEve) equipped withNh antennas.
In that scenario, the main idea for achieving the maximum
S.D.o.F. is to include into the source and helper precoding
matrix pair the maximum possible linearly precoding vector
pairs along which the message and jamming signals are
aligned into the same received subspace ofEve, subject to the
constraint that the total number of signal streamsBobcan see
is no greater than its total number of receive antennas. The
achievable S.D.o.F. equals the number of precoding vectors
that has been included into the source precoding matrix. For
easy reference the helper-assisted Gaussian wiretap channel
studied in [30] is depicted in Fig. 1(b). As we will show next,
the maximum achievable S.D.o.F. of the wiretap channel of
Fig. 1(a) is equal to that of the wiretap channel of Fig. 1(b)
with parameters as given in the following proposition.

Proposition 1: Provided thatN t
e < min{N r

b , N
r
e }, the

maximum achievable S.D.o.F. of the MIMO Gaussian wiretap
channel of Fig. 1(a), is equal to that of a helper-assisted
wiretap channel of Fig. 1(b), withNs = Na, Nh = N t

b ,
Nd = N r

b −N t
e andNep = N r

e −N t
e.

Proof: See Appendix A.
Remark 1:Based onProposition 1, one can see that if

N t
e < min{N r

b , N
r
e } the maximum S.D.o.F. of the system

under consideration can be determined based on results on
the helper-assisted wiretap channel. Otherwise, ifN t

e ≥ N r
b

and independent ofN r
e , the maximum achievable S.D.o.F.

is zero, sinceBob already cannot see any interference-free
subspaces; ifN t

e ≥ N r
e , Eve cannot see any interference-

free subspaces, and so the maximum achievable S.D.o.F. is
equal tomin{(N r

b − N t
e)

+, Na}. Therefore, for the purpose
of computing the maximum achievable S.D.o.F. of the system
under consideration, we only need to investigate that of the
corresponding helper-assisted wiretap channel.

Next, we show that for a fixed total number of helper and
destination antennas, i.e.,Nh + Nd = Nsum, one can find a
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Fig. 2: The maximum achievable S.D.o.F. for the system with
Na = 10, Nb = 18 andNe = 20.

solution for the number of helper antennas which achieves
the maximum S.D.o.F.. Details are given in the following
proposition.

Proposition 2: Consider the helper-assisted wiretap chan-
nel of Fig. 1(b). Suppose thatNh andNd can vary but their
sum is always fixed atNsum. Then, the maximum achievable
S.D.o.F. is

ds,p = min{δ,Nsum, Ns}, (5)

whereδ , ⌊ (Nsum−|Ns−Nep|)
+

3 ⌋+ (Ns −Nep)
+.

1) If Nsum ≤ Nep −Ns, the maximum achievable S.D.o.F.
is zero for any pair of(Nh, Nd).

2) If Nsum ≤ Ns−Nep, the maximum S.D.o.F. is achieved
whenNd = Nsum with no antennas being allocated to
the helper.

3) If Nsum > |Ns−Nep|, the maximum S.D.o.F. is achieved
whenNh = N̂h, where

N̂h =

{

Nep −Ns + ⌊Nsum−|Ns−Nep|
3 ⌋ if Ns ≤ Nep,

⌊Nsum−|Ns−Nep|
3 ⌋ if Ns > Nep,

and the remainingNsum− N̂h antennas are assigned to
the legitimate receiver.

Proof: See Appendix B.
CombiningProposition 1andProposition 2, we can deter-

mine the maximum achievable S.D.o.F. for the system under
consideration as follows.

Theorem 1: Consider a MIMO Gaussian wiretap channel,
as depicted in Fig. 1(a). The maximum achievable S.D.o.F. is

ds,a(N
t
e) =

{

min{(Nb −N t

e)
+, Na} if N t

e ≥ Nr

e ,

min{η, (Nb −N t

e)
+, Na} if N t

e < Nr

e ,
(6)

with η , ⌊ (Nb−Nt
e−|Na−Nr

e+Nt
e|)

+

3 ⌋+(Na−N r
e +N t

e)
+. The

maximum S.D.o.F. is achieved when Bob usesN t
b
⋆ antennas

to transmit, withN t
b
⋆ given in (7) at the top of the next page,

and the remainingNb −N t
b
⋆ antennas receive.

Proof: See Appendix C.
Theorem 1provides the number of transmit antennas at Bob

which achieves the maximum S.D.o.F.. This is is illustrated
in Fig. 2, where we plot the maximum achievable S.D.o.F.
for the system withNa = 10, Nb = 18 and Ne = 20.
Specifically, for a given antenna number pair(N t

e , N
t
b), we
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N t
b
⋆
=



















N r
e −N t

e −Na + ⌊Nb −N t
e − |Na −N r

e +N t
e|

3
⌋ if N t

e < min{N r
e , Nb − |Na −N r

e +N t
e|} and Na ≤ N r

e −N t
e

⌊Nb −N t
e − |Na −N r

e +N t
e|

3
⌋ if N t

e < min{N r
e , Nb − |Na −N r

e +N t
e|} and Na > N r

e −N t
e

0 otherwise
(7)

plot the achievable S.D.o.F. based onRemark 1. For each fixed
N t

e, we find, with the numerical search method, the points
which achieve the maximum S.D.o.F., and mark them with
red crosses. Looking at the slice of the graph corresponding
to a fixedN t

e, one can see that there are one or moreN t
b ’s

which achieve the maximum S.D.o.F., andN t
b
⋆ marked by a

blue circle, coincides with one of those red crosses.

A. The proposed transmission scheme which achieves the
maximum S.D.o.F.

With the optimal allocation of trnasmit/receive antennas at
Bob, we next construct the pair(V⋆

a,V
⋆
b ) which achieves the

maximum S.D.o.F..
1) For the case ofN t

b
⋆

= 0, and along the lines of
Appendix A, one can see that the wiretap channel of Fig.
1(a) is equivalent to a classic three-node wiretap channel,
with the main channel and eavesdropping channel being
equal toU0

b
H
Hba andU0

e
H
Gea, respectively. Here,U0

b

and U0
e are the orthonormal basis of the null space

of Hbe and Gee, respectively. Therefore, by applying
the precoding matrix design of the three-node wiretap
channel of [3], the maximum S.D.o.F. can be achieved.
According to [3], the precoding matrices are constructed
by selecting those linearly independent precoding vec-
tors along which the legitimate channel has better quality
than the eavesdropping channel.

2) For the case ofN t
b
⋆ 6= 0, and along the lines of

Appendix A, one can see that the wiretap channel
of Fig. 1(a) is equivalent to a classic helper-assisted
wiretap channel, with the channels toBob being equal
to U0

b
H
Hba and U0

b
H
Hbb, the channels toEve being

equal toU0
e
H
Gea and U0

e
H
Geb, and the number of

antennas beingNs = Na, Nh = N t
b , Nd = N r

b −N t
e and

Nep = N r
e −N t

e. Therefore, by applying the precoding
matrix design of [30], [31] to this equivalent helper-
assisted wiretap channel, the maximum S.D.o.F. can be
achieved. The main idea here is to select the maximum
possible number of linearly independent precoding vec-
tor pairs along which the message and jamming signals
are aligned into the same received subspace ofEve.
In particular, we divide the candidate set of precoding
vector pairs into three subsets, i.e., C1, in which the
message signal sent byAlice spreads within the null
space of the eavesdropping channel, C2, in which the
message does not spread within the null space of the
eavesdropping channel andBob is self-interference free,
and C3, in which the message does not spread within the
null space of the eavesdropping channel andBobsuffers
from self-interference. We select precoding vector pairs

from C1 first, followed by C2 and then C3, until there
are no more candidate precoding vector pairs or the total
number of signal streamsBob can see is equal to its
total number of receive antennas. For more details on
determining the number of candidates of each subset
and their formulas, please refer to [30], [31]. It is worth
noting that (to be used in Section V) the formulas of
the precoding vector pairs in C1 only depend on the
channel matrixU0

e
H
Gea; the formulas of the precoding

vector pairs in C3 only depend on the channel matrices
U0

e
H
Gea and U0

e
H
Geb; in addition to U0

e
H
Gea and

U0
e
H
Geb, the formulas of the precoding vector pairs in

C2 also depend on the channel matrixU0
b
H
Hbb.

IV. WORST-CASE ACHIEVABLE S.D.O.F. IN THE

PRESENCE OFA SMART Eve

In this section, we consider a scenario in whichEveknows
the transmit strategies at bothAlice and Bob, and therefore
it derives ds,a(N

t
e), based on which it adjusts the number

of its transmit antennas in order to minimize the achievable
S.D.o.F., i.e.,ds,a(N t

e). In that case, the worst-case maximum
achievable S.D.o.F. is

dwc
s,a = min

0≤Nt
e≤Ne

ds,a(N
t
e). (8)

Theorem 2: Consider the MIMO Gaussian wiretap channel
of Fig. 1(a). Assume that Eve knows the transmit strategies at
Alice and Bob. Then, the maximum achievable S.D.o.F. is given
in (9), which is shown at the top of next page.

Proof: See Appendix D.
Theorem 2enables us to make some interesting observa-

tions, which are given in the following Corollaries.
Corollary 1: For the purpose of minimizing the achievable

S.D.o.F., Eve will jam or eavesdrop, but will not adopt a
combination of both.

Proof: From the proof ofTheorem 2in Appendix D, one
can see that the minimum value ofds,a(N t

e) is obtained only
whenN t

e = 0 or N t
e = Ne. This completes the proof.

Corollary 2: If Nb > Ne, a positive S.D.o.F. can always be
achieved with the proposed cooperative transmission scheme.

Proof: With the expression of (9), it can be verified that
the worst-case achievable S.D.o.F. is greater than zero forthe
case ofNb > Ne. This completes the proof.

V. NUMERICAL RESULTS

As already mentioned, the achievable S.D.o.F. reveals the
high SNR behavior of the achievable secrecy rate. In this
section, we consider a more realistic SNR scenario, and
demonstrate the secrecy rate performance of the proposed
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dwc
s,a =











































0 if Ne ≥ Nb,

min{⌊Nb −Ne +Na

3
⌋, Nb −Ne, Na} if max{Nb −Na

2
, Na} ≤ Ne < Nb,

min{⌊Nb −Na +Ne

3
⌋+Na −Ne, Nb −Ne} if

Nb −Na

2
≤ Ne < min{Nb, Na} and Ne > Na −Nb,

Nb −Ne if
Nb −Na

2
≤ Ne < min{Nb, Na} and Ne ≤ Na −Nb,

Na if Ne < min{Nb −Na

2
, Nb}.

(9)

(0,0)
Alice Bob

Eve

( ,0)R( ,0)R−
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eaG
bbH
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ebG
(0, )y
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eeG

Fig. 3: Model used for numerical experiments.

approach. In particular, we consider a scenario as shown in
Fig. 3. Alice and Bob are respectively fixed at coordinates
(−R, 0) and (R, 0) (unit: meters). The smaller theR, the
higher the received SNR atBob will be. Eve can move in
one of the following two ways, i.e., parallel to thex-axis and
between the points(−20,−R) and (20,−R), and parallel to
the y-axis and between the points(0, 10) and (0, 0).

Unless otherwise specified, we consider the strong self-
interference levelρb = ρe = ρ = 1, and we setNa = 4,
Nb = 7, N t

e = 1 and N r
e = 5. The transmit power of

each node isP = 0dBm. The noise power level is set as
σ2 = −60dBm. The power is equally allocated between
different signal streams at each node. According toTheorem
1, for the above system, the maximum achievable S.D.o.F. of
2 can be achieved by choosingN t

b = 2, N r
b = 5. Setting

N t
b = 2, N r

b = 5, and according to Section III. A, one can
see that the system under consideration is equivalent to the
helper-assisted wiretap channel of Fig. 1(b), with the number
of antennas beingNs = 4, Nh = 2, Nd = 4 andNep = 4; for
that helper-assisted wiretap channel, the number of candidate
precoding vector pairs in C1, C2 and C3 are respectively 0, 0
and 2. Following the construction method of Section III. A and
sinceNd = 4 and for each precoding vector pair in C3Bob
suffers from self-interference, we can select two precoding
vector pairs in C3 without violating the constraint that the
total number of signal streamsBob can see is no greater than
its total number of receive antennas. Therefore, a total of two
precoding vector pairs can be picked, and as such a number
of two message signal streams will be sent fromAlice. We
construct the precoding matrix pair assuming exact knowledge
of the channels.

With the precoding matrix pair, we examine the achievable
secrecy transmission rate, i.e.,(Rb − Re)

+, whereRb and
Re are given by (3a) and (3b), respectively [28]. Results are
obtained based on1, 000 Monte Carlo runs. In each run, the

effect of the channel on the transmitted signal is modeled bya
multiplicative scalar of the formd−c/2ejθ [32], whered is the
distance between the transmit and receive terminals,c is the
path loss exponent andθ is a random phase, which is taken
to be uniformly distributed within[0, 2π) and independent
between runs. The value ofc is typically in the range of 2
to 4. In our simulations we setc = 3.5. We assume that the
distance of different combinations of transmit-receive antennas
corresponding to the same link is the same, and as such the
corresponding path loss is the same.

For comparison, we also plot the average achievable secrecy
rate of the half-duplex (HD) scheme, whereinBob receives
with all of its antennas. For the HD scheme, the precoding
matrix of Alice consists of the generalized eigenvectors cor-
responding to the largest two generalized eigenvalues of the
matrix pair [3]

(ĤH
ba(I+

P

N t
e

ĤbeĤ
H
be)

−1Ĥba, Ĝ
H
ea(I+

ρeP

N t
e

ĜeeĜ
H
ee)

−1Ĝea),

(10)

where Ĥba and Ĥbe denote the channel matrices toBob,
Ĝea and Ĝee represent the channel matrices toEve. From
Section III. A, the proposed transmission scheme in terms
of the achievable S.D.o.F. can be either equivalent with a
three-node wiretap channel whenN t

b
⋆

= 0, or equivalent
with a helper-assisted wiretap channel whenN t

b
⋆ 6= 0. In the

former case, the proposed scheme reduces to an HD scheme.
In the latter case, the proposed scheme always achieves a
greater S.D.o.F.. For comparison fairness, in the HD scheme
we consider selecting the same number of message signal
streams as in the proposed scheme.

Figs. 4 and 5 illustrate the average achievable secrecy
transmission rate as function ofEve’s position, with thex-
coordinate varying from−20 to 20 and they-coordinate fixed
at −R. Fig. 4 corresponds toR = 10, which represents a low
SNR scenario forBob, while Fig. 5 corresponds toR = 1,
which is a high SNR scenario forBob. From Fig. 4, one can
see that the proposed FD scheme performs overall better than
the HD scheme, except whenEve is to the left ofAlice or to
the right of Bob. The behavior in the latter cases should be
expected, since whenEve is to the left ofAlice, the received
jamming signal is too weak to disturbEve’s channel. As a
result, the HD scheme, which uses all ofBob’s antennas to
receive, performs better. WhenEve is to the right ofBob,
the received SNR is already small even ifBob does not send
jamming signals, and as a result, the HD scheme also performs
better. Naturally, for the higher SNR case, the advantage ofthe
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Fig. 4: Average achievable secrecy rate versus the positionof
Evealong thex-coordinate. The distance parameterR = 10.
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Fig. 5: Average achievable secrecy rate versus the positionof
Evealong thex-coordinate. The distance parameterR = 1.

proposed FD approach is bigger and evident over the entire
range (see Fig. 5). To illustrate the secrecy rate advantageof
using the proposed antenna allocation atBob, i.e., N t

b = 2
and N r

b = 5, in Fig. 5 we also plot the achievable secrecy
transmission rate for another allocation, i.e.,N t

b = 3 and
N r

b = 4; in that case and according to Section III. A, one can
see that only an S.D.o.F. of 1 can be achieved. As expected,
the achievable secrecy transmission rate of that latter case is
almost half of the proposed case, for which an S.D.o.F. of 2
can be achieved.

In Fig. 6, we plot the average achievable secrecy trans-
mission rate versus the position ofEve along they-axis, for
the case ofR = 10 and R = 5. The figure shows that for
both cases, the achievable secrecy transmission rate of the
proposed FD scheme remains constant for all positions ofEve.
In contrast, the achievable secrecy transmission rate of the HD
scheme decreases asy approaches zero. This can be explained
as follows. AsEvecomes closer toAlice, it receives a stronger
signal, and as a result the secrecy rate of the HD scheme
decreases. On the other hand, in the proposed FD scheme,
the message signal sent byAlice and the jamming signal sent
by Bob are aligned into the same received subspace ofEve,
thus keepingEve’s eavesdropping capability constant, and as
a result, keeping the achievable secrecy rate of the proposed
FD scheme constant.

Fig. 7 illustrates the average achievable secrecy transmis-
sion rate of the proposed scheme as function of the self-
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Fig. 7: Average achievable secrecy rate versus the self-
interference level.

interference levelρ, and that of the HD scheme as function
of the self-interference levelρe, for the case ofR = 10
and R = 1. We should note that since for the HD scheme
Alice determines its precoding matrix with (10), the achievable
secrecy transmission rate only relates toρe. One can see that
the achievable secrecy rate of the FD scheme increases as
ρ increases. This is because, by aligning the message and
jamming signals into the same received subspace ofEve, the
proposed scheme delivers a distorted message signal toEve,
which makes the eavesdropping channel more sensitive to self-
interference. Therefore, the achievable secrecy rate of the FD
scheme increases with increasing level of self-interference.
While the achievable secrecy rate of the HD scheme also
increases with increasing level of the self-interference at Eve,
the increase is small as compared to the proposed scheme.

In order to separately check the effect of the self-
interference level, i.e.,ρb or ρe, on the achievable secrecy
rate performance of the proposed scheme, in Fig. 8, we
set ρe = 10−3 and plot the average achievable secrecy
transmission rate versus the self-interference levelρb; also,
we setρb = 10−3 and plot the average achievable secrecy
transmission rate versus the self-interference levelρe. One
can see that the achievable secrecy transmission rate decreases
slightly with ρb, while it increases drastically withρe. This
can also be explained by the fact that, for the FD scheme the
eavesdropping channel is more sensitive to self-interference.

In practice, perfect channel estimates are difficult to obtain.
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interference level. The distance parameterR = 10.

Since the proposed precoding matrix design highly depends on
the channels, we next examine the secrecy rate performance
in the presence of imperfect channel estimates. We model
imperfect CSI through a Gauss-Markov uncertainty of the form
[33]

Gei = d
−c/2
ei

(

√

1− α2Ḡei + α∆Ḡei

)

, i = a, b, (11)

where0 ≤ α ≤ 1 denotes the channel uncertainty.α = 0 and
α = 1 correspond to perfect channel knowledge and no CSI
knowledge, respectively. The entries ofḠei areejθ with θ be
a random phase uniformly distributed within[0, 2π). ∆Ḡei ∼
CN (0, I) represents the Gaussian error channel matrices.dei
denotes the distance fromAlice or Bob. With the same channel
model as in (11), we model the channel uncertainty of the
channelsHbi, i = a, b, e. We construct the precoding matrix
pair (Va,Vb) with the estimated channels.

In Fig. 9, we plot the achievable secrecy rate with respect
to the channel uncertainty inHbi, i = a, b, e, for the proposed
antenna allocation scheme, i.e.,N t

b = 2, N r
b = 5. It can

be observed that the achievable secrecy rate remains constant
for different channel uncertainties ofHbi, i = a, b, e. This
should be expected, since the constructed precoding matrix
pair consists of two precoding vector pairs from C3, whose
formulas only depend on the matricesU0

e
H
Gea andU0

e
H
Geb.

Therefore, the channelsHbi, i = a, b, e do not enter in the
construction of the precoding matrix pair. Indeed, for the
equivalent helper-assisted wiretap channel with the antenna
allocation given byProposition 2, i.e., N̂h, it can be verified
that there are no candidate precoding vector pairs in C2.
Therefore, the achievable secrecy rate of proposed scheme is
independent of the channel uncertainties ofHbi, i = a, b, e.
As illustrated in Fig. 2, for a given fixedN t

e there may be
more than oneN t

b ’s which can achieve the maximum S.D.o.F..
Intuitively, those schemes achieving the same S.D.o.F. canalso
achieve the same secrecy rate performance, which, combined
with the fact that the proposed schemes’s achievable secrecy
rate remains unchanged even when the channel estimates turns
noisy, indicates that the proposed scheme will outperform the
others. Next, with simulations we show that advantage of
the proposed scheme. Let’s take the antenna allocation, i.e.,
N t

b = 4, N r
b = 3, as an example. SubstitutingN t

b = 4,
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Fig. 9: Average achievable secrecy rate versus channel uncer-
tainty. The distance parameterR = 10.

N r
b = 3 into Section III. A, one can see that the maximum

S.D.o.F. of 2 can also be achieved. In particular, withN t
b = 4,

N r
b = 3 the system under consideration is equivalent to the

helper-assisted wiretap channel of Fig. 1(b), with the number
of antennas beingNs = 4, Nh = 4, Nd = 2 andNep = 4; for
that helper-assisted wiretap channel, the number of candidate
precoding vector pairs in C1, C2 and C3 are respectively 0,
2 and 2. Following the construction method in Section III. A,
we first select the two candidate precoding vector pairs in C2.
SinceNd = 2, we cannot pick any more precoding vector pairs
without violating the constraint that the total number of signal
streamsBob can see is no greater than its total number of
receive antennas. Concluding, a total of two precoding vector
pairs can be picked from C2, and as such an S.D.o.F. of 2
can be achieved [30], [31]. Based on Fig. 9 one can see that
the proposed scheme, i.e.,N t

b = 2, N r
b = 5, and that with

N t
b = 4, N r

b = 3, provide the same secrecy rate performance
when the channel estimates are perfect. Moreover, when the
channel estimates are noisy, i.e.,α > 0, the proposed scheme
outperforms the other one, since the achievable secrecy rate
of the proposed scheme remains unchanged while that of the
other scheme drops with the increase of uncertainty in the
channelsHbi, i = a, b, e. This is because, unlike the proposed
scheme the formulas of the precoding vector pairs of the other
one are from C2, and as such they depend on the channel
U0

b
H
Hbb.

On the other hand, in Fig. 9 it can be observed that the
achievable secrecy rate drops with the increase of uncertainty
in the channelsGbi, i = a, b, e. This should be expected, since
the benefits brought by the proposed scheme come from the
successful alignment of the message and jamming signals at
Eve. To achieve that goal, the exact knowledge of the channels
Gei, i = a, b, e, is necessary. As a conclusion, one can see
that the uncertainty in the channelsGei, i = a, b, e, is more
dangerous.

VI. CONCLUSION

We have analytically addressed the S.D.o.F. maximization
problem of a MIMO Gaussian wiretap channel in the presence
of an activeEve. Specifically, we have proposed a Full-Duplex
Bobscheme, whereBobdivides the antenna set into two parts,
one devoted to receiving and the other to jamming. Based on
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the proposed scheme, we have derived the optimal number
of transmit/receive antennas atBob, and determined the max-
imum S.D.o.F., as a function of the number of antennas at
each terminal. We have further found the worst-case achievable
S.D.o.F. for the adverse scenario in whichEve knows the
transmit strategies and tries to minimize the S.D.o.F. by adjust-
ing its number of transmit/receive antennas. Our analysis has
revealed that a positive S.D.o.F. can be guaranteed as long as
it holds thatNb > Ne. We have also constructed a precoding
matrix pair which achieves the maximum S.D.o.F.. Numerical
results have revealed the advantages of the proposed secrecy
transmission scheme over the existing half-duplex scheme,and
have validated the robustness of the proposed scheme under
realistic scenarios.

APPENDIX A
PROOF OFProposition 1

Given an arbitrary point(Va,Vb), with tr{Qa} = P and
tr{Qb} = P . We can respectively rewriteQa and Qb as
Qa = P Q̄a andQb = P Q̄b, with tr{Q̄a} = tr{Q̄b} = 1.
Correspondingly, (3a) can be rewritten as

Rb = I2b − I1b , (12)

where

I1b , log|I+ PMHbbQ̄bH
H
bb|, (13a)

I2b , log|I+ PM(HbbQ̄bH
H
bb +HbaQ̄aH

H
ba)|, (13b)

with M , (I+
P

N t
e

HbeH
H
be)

−1.

Let HbeH
H
be =

[

U1
b U0

b

]

[

Σb 0

0 0

] [

U1H
b

U0H
b

]

be the

singular value decomposition (SVD), and then

M = U1
b(I+

P

N t
e

Σb)
−1U1H

b +U0
bU

0H
b . (14)

Substituting (14) into (13a) and (13b), respectively, we obtain

lim
P→∞

I1b
log(P )

= lim
P→∞

log|I+ P H̄bbQ̄bH̄
H

bb|

log(P )
, (15a)

lim
P→∞

I2b

log(P )
= lim

P→∞

log|I+ P (H̄bbQ̄bH̄
H

bb + H̄baQ̄aH̄
H

ba)|

log(P )
,

(15b)

whereH̄bb , U0H
b Hbb, H̄ba , U0H

b Hba.
Combining (12), (15a) and (15b), we arrive at that

lim
P→∞

Rb

log(P )
= lim

P→∞

log|I+ (I+ P H̄bbQ̄bH̄
H

bb)
−1P H̄baQ̄aH̄

H

ba|

log(P )
.

(16)

Letting GeeG
H
ee =

[

U1
e U0

e

]

[

Σe 0

0 0

] [

U1H
e

U0H
e

]

be the

SVD, and applying the same derivations from (12) to (16), we
obtain that

lim
P→∞

Re

log(P )
= lim

P→∞

log|I+ (I+ P ḠebQ̄bḠ
H

eb)
−1P ḠeaQ̄aḠ

H

ea|

log(P )
,

(17)

whereḠea , U0H
e Gea andḠeb , U0H

e Geb.
Combining (16) and (17), one can see that the achievable

S.D.o.F. is equal to that of a helper-assisted wiretap channel,

with the channels toBob asU0H
b Hba andU0H

b Hbb, and the
channels toEveasU0H

e Gea andU0H
e Geb, respectively. Since

N t
e < N r

b and N t
e < N r

e , and all the channel matrices are
assumed to be full rank, this helper-assisted wiretap channel
has effective number of antennasNs = Na, Nh = N t

b , Nd =
N r

b −N t
e andNep = N r

e −N t
e. This completes the proof.

APPENDIX B
PROOF OFProposition 2

It can be verified that, for the case ofNsum ≤ Ns − Nep,
the maximum achievable S.D.o.F. equalsNsum, which is
consistent with (5); for the case ofNsum ≤ Nep − Ns,
the maximum achievable S.D.o.F. equals 0, which is also
consistent with (5). Thus, in the sequel, we only need to focus
on the case ofNsum > |Ns −Nep|, in which

ds,p = min{δ,Nsum, Ns}, (18)

whereδ = ⌊Nsum−|Ns−Nep|
3 ⌋+ (Ns −Nep)

+.
According toTheorem 1of [30] or equation (36) of [31],

the maximum achievable S.D.o.F. for such a helper-assisted
wiretap channel is

g(Nh) = min{dc=1(Nh) + d⋆c=2(Nh), Nd, Ns}, (19)

where

dc=1(Nh) , (Ns −Nep)
+ + s1(Nh), (20a)

d⋆c=2(Nh) , min{s2(Nh), ⌊(Nd − dc=1(Nh))
+/2⌋}, (20b)

with

s1(Nh) , (min{Ns, Nep}+min{(Nh −Nd)
+, Nep} −Nep)

+,

s2(Nh) , (min{Ns, Nep}+min{Nh, Nep} −Nep)
+ − s1(Nh).

In the following, we will consider two distinct cases, i.e.,the
case ofNs ≤ Nep and the case ofNs > Nep. For each case
we first give a specific value ofNh, denoted byN̂h, which
satisfiesg(N̂h) = ds,p. We then prove that for anyNh 6= N̂h,
it holds thatg(Nh) ≤ ds,p. In this way, we complete the proof
of Proposition 2.

A. For the case ofNs ≤ Nep

It holds thatδ = ⌊Nsum − |Ns −Nep|
3

⌋.

Let N̂d = 2⌊Nsum − |Ns −Nep|
3

⌋+ i, and

N̂h = ⌊Nsum − |Ns −Nep|
3

⌋+ (Nep −Ns), (21)

wherei , Nsum − 3N̄d. By definition i ∈ {0, 1, 2}.

A. 1 Whenδ ≥ Ns

In this subcase, it can be verified thatNsum ≥ Ns. Thus,
(18) becomes

ds,p = Ns. (22)

On the other hand, sincêNh ≥ Nep, (20a) becomes

dc=1(N̂h) = Ns. (23)
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Substituting (23) into (19) and combined with the fact that
min{N̂d, Ns} = Ns, we arrive atg(N̂h) = Ns. Besides, by
(19) the inequalityg(Nh) ≤ Ns always holds true. Therefore,
the maximum value ofg(Nh) overNh is

g(N̂h) = Ns
(a)
= ds,p,

where (a) comes from the equality in (22).

A. 2 Whenδ < Ns

In this subcase, it can be verified thatδ < Nsum. Thus, (18)
becomes

ds,p = δ. (24)

On the other hand, sinceNs ≤ Nep andN̂h− N̂d ≤ Nep −
Ns, (20a) and (20b) respectively becomes

dc=1(N̂h) = 0, (25)

d⋆c=2(N̂h) = δ. (26)

Substituting (25) and (26) into (19) and combined with the
fact thatmin{δ, N̂d, Ns} = δ, we obtain

g(N̂h) = δ
(a)
= ds,p, (27)

where (a) comes from the equality in (24).
Next, we will prove that for any otherNh 6= N̂h it holds that

g(Nh) ≤ ds,p, thus completing the proof that the maximum
value of g(Nh) over Nh is g(N̂h) = ds,p. To achieve that

goal, we introduceN̄d = ⌊Nsum − |Ns −Nep|
3

⌋, and

N̄h = 2⌊Nsum − |Ns −Nep|
3

⌋+ i+ (Nep −Ns).

With similar derivations from (22) to (27) it can be verified
that g(N̄h) = ds,p = g(N̂h). In the remaining text of this
subsection, we will show that for any otherNh 6= N̄h it holds
that g(Nh) ≤ ds,p.

i) For anyNh > N̄h, it holds thatNd < N̄d. In addition,
by (19) it holds thatg(Nh) ≤ Nd. Therefore,

g(Nh) < N̄d = ds,p.

ii) For anyNh < N̄h, sayNh = N̄h − k with k ≥ 1, i.e.,

Nh = 2N̄d + i+ (Nep −Ns)− k,

Nd = N̄d + k.

Thus,Nh −Nd = N̄d + (Nep −Ns) + i− 2k < Nep, which,
together with (20a), gives

dc=1(Nh) = (N̄d + i− 2k)+. (28)

1) For the case of2k ≤ N̄d+ i, (28) becomesdc=1(Nh) =
N̄d + i − 2k, which, combined with (20b), gives

d⋆c=2(Nh) ≤ ⌊3k − i

2
⌋. Therefore,

g(Nh) ≤ dc=1(Nh) + d⋆c=2(Nh)

≤ N̄d + i− 2k + ⌊3k − i

2
⌋

(a)

≤ N̄d
(b)
= ds,p.

Here, sincei ≤ 2 andk ≥ 1, it holds true thati− 2k+

⌊3k − i

2
⌋ ≤ 0, and as a result, (a) holds true; (b) comes

from the equality in (24).
2) For the case ofN̄d + i < 2k ≤ 2(N̄d + 1), (28)

becomesdc=1(Nh) = 0. In addition, by (20b), it
holds thatd⋆c=2(Nh) ≤ ⌊Nd/2⌋, which, combined with
Nd = N̄d+k ≤ 2N̄d+1, indicates thatd⋆c=2(Nh) ≤ N̄d.
Therefore,

g(Nh) ≤ d⋆c=2(Nh) ≤ N̄d = ds,p.

3) For the case ofk ≥ N̄d+2, (28) becomesdc=1(Nh) = 0.
Therefore,

g(Nh) ≤ d⋆c=2(Nh) ≤ s2(Nh)

= min{Ns, Ns +Nh −Nep}
≤ 2N̄d + i− k ≤ N̄d + i− 2

≤ N̄d = ds,p.

Based on the above two subcases, i.e.,A. 1 and A. 2, one
can see that for the case ofNs ≤ Nep the maximum value of
g(Nh) overNh is g(N̂h) = g(N̄h) = ds,p. It is worth noting
that, although bothN̂h and N̄h can achieve the maximum
S.D.o.F., as it can be observed in Section V, for the helper-
assisted wiretap channel with the antenna allocation givenby
N̂h, the formulas of the candidate precoding vector pairs are
independent of the channel matrices toBob. Therefore, when
the channel estimates are noisy the proposed scheme with
Nh = N̂h outperforms that scheme withNh = N̄h in terms
of the achievable secrecy rate.

B. For the case ofNs > Nep

It holds thatδ = ⌊Nsum − |Ns −Nep|
3

⌋+ (Ns −Nep).

Let N̂d = 2⌊Nsum − |Ns −Nep|
3

⌋+ j + (Ns −Nep), and

N̂h = ⌊Nsum − |Ns −Nep|
3

⌋, (29)

wherej , Nsum− 3N̂ t
b . By definition,j ∈ {0, 1, 2}. Besides,

sinceN̂h < N̂d, it holds that

dc=1(N̂h) = Ns −Nep. (30)

B. 1 WhenN̂h ≥ Nep

In this subcase, it can be verified thatNs ≤ δ andNs ≤
Nsum. Thus, (18) becomes

ds,p = Ns. (31)

On the other hand, sincêNh ≥ Nep, it holds that

s2(N̂h) = Nep. (32)

Substituting (30) and (32) into (19) yieldsg(N̂h) = Ns. In
addition, by (19) the inequalityg(Nh) ≤ Ns always holds
true. Therefore, the maximum value ofg(Nh) overNh is

g(N̂h) = Ns
(a)
= ds,p,



10

where (a) comes from the equality in (31).

B. 2 WhenN̂h < Nep

In this subcase, it can be verified thatδ ≤ Ns andδ ≤ Nsum.
Thus, (18) becomes

ds,p = δ = N̂h + (Ns −Nep). (33)

On the other hand,̂Nh < Nep combined with (20b), gives

d⋆c=2(N̂h) = N̂h. (34)

Substituting (30) and (34) into (19) yields

g(N̂h) = N̂h + (Ns −Nep)
(a)
= ds,p,

where (a) comes from the equality in (33).
In the sequel, we will prove that for any otherNh 6= N̂h

it holds thatg(Nh) ≤ ds,p, thus completing the proof of that
the maximum value ofg(Nh) overNh is g(N̂h) = ds,p.

i) For anyNh < N̂h, it holds thatdc=1(Nh) = Ns − Nep

andd⋆c=2(Nh) = Nh < N̂h. Therefore,

g(Nh) ≤ dc=1(Nh) + d⋆c=2(Nh) ≤ ds,p. (35)

ii) For anyNh satisfyingNh > N̂h andNh ≤ Nd, it holds
that dc=1(Nh) = Ns −Nep. Based on (20b) it holds that

d⋆c=2(Nh) ≤ ⌊(Nd − dc=1(Nh))
+/2⌋

≤ ⌊(N̂d − 1− dc=1(Nh))
+/2⌋

= N̂h + ⌊(j − 1)/2⌋,
which, combined with the factj ≤ 2, indicates that,
d⋆c=2(Nh) ≤ N̂h. Therefore, the inequalities in (35) also hold
true.

iii) For anyNh satisfyingNh > N̂h andNh > Nd, we will
first give a specific value ofNh, denoted byN̄h, which satisfies
g(N̄h) ≤ ds,p. We then prove that for any otherNh 6= N̄h it
holds thatg(Nh) ≤ g(N̄h). In this way, we finish the proof
that g(Nh) ≤ ds,p.

Note that sinceNsum = Nh + Nd > 2Nd, for the case
of Nsum ≤ 2(Ns − Nep) it holds thatNd < (Ns − Nep),
which, combined withg(Nh) ≤ Nd, indicates thatg(Nh) <
Ns − Nep < ds,p. Therefore, in the following arguments we
only need to focus on the case ofNsum > 2(Ns −Nep).

Let N̄d = ⌊Nsum − 2|Ns −Nep|
3

⌋+ (Ns −Nep), and

N̄h = 2⌊Nsum − 2|Ns −Nep|
3

⌋+ τ + (Ns −Nep), (36)

whereτ , Nsum − 3⌊Nsum − 2(Ns −Nep)

3
⌋− 2(Ns −Nep).

By definition, it holds thatτ ∈ {0, 1, 2}.
Substituting (36) into (20a), we arrive at

dc=1(N̄h) = Ns −Nep +min{⌊Nsum − 2|Ns −Nep|
3

⌋+ τ,Nep},

which, combined with (19), gives

g(N̄h) = N̄d = ⌊Nsum − 2|Ns −Nep|
3

⌋+ (Ns −Nep).

(37)

On comparing (33) and (37), one can see that

g(N̄h) ≤ ds,p. (38)

On the other hand, for anyNh < N̄h, sayNh = N̄h − k,
k ≥ 1, it holds thatNd = N̄d + k. Thus,Nh − Nd = N̄h −
N̄d − 2k < Nep, which together with (20a), indicates that

dc=1(Nh) = (Ns −Nep) + ⌊Nsum − 2|Ns −Nep|
3

⌋+ τ − 2k

(a)
= g(N̄h) + τ − 2k,

where (a) is due to (37). In addition, by (20b) we have

d⋆c=2(Nh) ≤ ⌊(Nd − dc=1(Nh))
+/2⌋ ≤ ⌊3k − τ

2
⌋.

Sinceτ ≤ 2 andk ≥ 1, it holds thatτ − 2k+ ⌊3k − τ

2
⌋ ≤ 0.

Therefore,

g(Nh) ≤ dc=1(Nh) + d⋆c=2(Nh) ≤ g(N̄h). (39)

Moreover, for anyNh > N̄h, it holds that

g(Nh) ≤ Nd < N̄d = g(N̄h). (40)

Combining (39) with (40), one can see that for any other
Nh 6= N̄h satisfyingNh > N̂h andNh > Nd, it holds that
g(Nh) ≤ g(N̄h), which, combined with (38), indicates that
g(Nh) ≤ ds,p. This completes the proof.

APPENDIX C
PROOF OFTheorem 1

In the sequel, we will consider three distinct cases.
1) For the case ofN t

e ≥ N r
e , Eve cannot see any

interference-free subspaces, and so the maximum

achievable S.D.o.F. is equal tolim
P→∞

Rb

log P
, whose

maximum value over the input covariance matrices is
min{(Nb − N t

e)
+, Na}. In that case, there is no need

for Bob to transmit jamming signals to reduce the
interference-free subspace thatEve can see, and so we
setN t

b
⋆
= 0.

2) For the case ofN t
e < N r

e andN t
e ≥ Nb the maximum

achievable S.D.o.F. is zero sinceBob already cannot
see any interference-free subspaces. In that case, the
achievable S.D.o.F. will be zero even ifBob transmits
jamming signals, and so we setN t

b
⋆
= 0.

3) For the case ofN t
e < N r

e and N t
e < Nb, no positive

S.D.o.F. can be achieved ifN r
b ≤ N t

e, and thus, in
order to maximize the achievable S.D.o.F.,Bob should
choose a value ofN r

b such thatN r
b > N t

e. In that case,
and by Proposition 1, one can see that the maximum
achievable S.D.o.F. is equal to that of a helper-assisted
wiretap channel with number of antennasNs = Na,
Nh = N t

b , Nd = N r
b − N t

e, Nsum = Nb − N t
e

and Nep = N r
e − N t

e. Substituting these values into
Proposition 2, we arrive at we arrive at the expression
of N t

b
⋆, i.e., N̂h, and also the maximum achievable

S.D.o.F., i.e.,min{η,Nb −N t
e, Na}.

Concluding the above three cases, one can obtain the
expressions ofds,a(N t

e) and N t
b
⋆, as given in (6) and (7),

respectively. This completes the proof.
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APPENDIX D
PROOF OFTheorem 2

We should note that for the case ofNe ≥ Nb, the best
choice forEve is to allocateNb antennas to transmit; for that
case no positive S.D.o.F. can be achieved. In what follows, we
only need to study the nontrivial case ofNe < Nb.

From (6), one can see that the achievable S.D.o.F. for
the case ofN r

e < N t
e is no greater than that of the other

case. Therefore, to make sure that the achievable S.D.o.F. is
minimized, Eve would always choose the value ofN t

e such
thatN t

e < N r
e ; for that case

ds,a(N
t
e) = min{η,Nb −N t

e, Na}, (41)

with η , ⌊ (Nb−Nt
e−|Na−Nr

e+Nt
e|)

+

3 ⌋+ (Na −N r
e +N t

e)
+.

Looking into the expression ofη, we get two thresholds

of N t
e, i.e.,

Ne −Na

2
and

Nb +Ne −Na

3
. SinceNe < Nb, it

holds that
Ne −Na

2
<

Nb +Ne −Na

3
. In order to simply the

expression ofds,a(N t
e), in the following we will consider three

distinct cases, which are obtained by those two thresholds.

1) For the case ofN t
e ≤ Ne −Na

2
, it holds that

η = ⌊Nb +Na −Ne +N t
e

3
⌋ ≤ ⌊Nb −N t

e +Na +Ne

3
⌋

(a)

≤ Nb −N t
e,

where (a) comes from the fact that

Na +Ne ≤ 2(Ne −N t
e) < 2(Nb −N t

e).

Thus, (41) becomes

m1(N
t
e) = min{⌊Nb +Na −Ne +N t

e

3
⌋, Na}.

2) For the case of
Ne −Na

2
< N t

e <
Nb +Ne −Na

3
, it

holds that

η = ⌊Nb −Na +Ne

3
⌋+Na −Ne +N t

e.

In addition, due toN t
e <

Nb +Ne −Na

3
it holds that

2N t
e ≤ 2⌊Nb +Ne −Na

3
⌋

⇒ 2N t
e < Nb +Ne −Na − ⌊Nb +Ne −Na

3
⌋

⇒ ⌊Nb +Ne −Na

3
⌋+Na −Ne +N t

e < Nb −N t
e.

Thus, (41) becomes

m2(N
t

e) = min{⌊
Nb +Ne −Na

3
⌋ +Na −Ne +N

t

e , Na}.

3) For the case ofN t
e ≥ Nb +Ne −Na

3
, it holds that

η = Na −Ne + 2N t
e.

Besides, it holds thatNb−N t
e ≤ Na−Ne+2N t

e, which,
combined with2N t

e < Ne, indicates thatNb−N t
e < Na.

Thus, (41) becomes

m3(N
t
e) = Nb −N t

e.

Concluding the above three cases, one can see that

dwc
s,a = min

0≤Nt
e≤Ne

min{m1(N
t
e),m2(N

t
e),m3(N

t
e)}. (42)

In the sequel, we will consider three distinct cases, accord-
ing to whethermi(N

t
e), i = 1, 2, 3, is feasible. For example,

for the case ofNe < Na, m1(N
t
e) is infeasible, since by

definition it rangesN t
e ≤ Ne −Na

2
< 0 which is unavailable.

A. Whenmax{Nb −Na

2
, Na} ≤ Ne < Nb

It holds that
Ne −Na

2
≥ 0 and

Nb +Ne −Na

3
≤ Ne,

which indicates that bothm1(N
t
e) andm3(N

t
e) are feasible.

Moreover,

min
Nt

e≤
Ne−Na

2

m1(N
t
e) = m1(0) = min{⌊Nb +Na −Ne

3
⌋, Na},

min
Nt

e≥
Nb+Ne−Na

3

m3(N
t
e) = m3(Ne) = Nb −Ne.

As to m2(N
t
e), it is feasible only for the case of

⌊Ne −Na

2
⌋+ 1 <

Nb +Ne −Na

3
, in which

min
Ne−Na

2
≤Nt

e≤
Nb+Ne−Na

3

m2(N
t
e) = m2(

Ne −Na − ξ

2
+ 1)

= min{⌊Nb +Ne −Na

3
⌋+ Na −Ne − ξ

2
+ 1, Na}.

Here,ξ = 1 if Ne −Na is odd and otherwiseξ = 0.
SinceNa ≤ Ne < Nb, it holds that

⌊Nb −Ne +Na

3
⌋ ≤ ⌊Nb +Ne −Na

3
⌋ − ⌊2(Ne −Na)

3
⌋.

In addition, it can be verified thatNe−Na+ξ
2 −1 ≤ ⌊ 2(Ne−Na)

3 ⌋.
Therefore, we havem1(0) ≤ m2(

Ne−Na−ξ
2 + 1).

Combining (42) with the above discussions, one can see

that for the case ofmax{Nb −Na

2
, Na} ≤ Ne < Nb,

dwc
s,a = min{m1(0),m3(Ne)}

= min{⌊Nb +Na −Ne

3
⌋, Nb −Ne, Na}.

B. When
Nb −Na

2
≤ Ne < min{Nb, Na}

It holds that
Ne −Na

2
< 0 and

Nb +Ne −Na

3
≤ Ne,

which indicates thatm3(N
t
e) is feasible andm1(N

t
e) is

infeasible. Moreover,

min
Nt

e≥
Nb+Ne−Na

3

m3(N
t
e) = m3(Ne) = Nb −Ne.
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m2(N
t
e) is feasible only for the case ofNb−Na+Ne > 0,

in which case it holds that

min
Nt

e≥
Nb+Ne−Na

3

m2(N
t
e) = m2(0)

= min{⌊Nb +Ne −Na

3
⌋+Na −Ne, Nb −Ne}.

Combining (42) with the above discussions, we have the
following conclusions:

1) For the case of
Nb −Na

2
≤ Ne < min{Nb, Na} and

Nb −Na +Ne > 0, it holds that

dwc
s,a = min{⌊Nb +Ne −Na

3
⌋+Na −Ne, Nb −Ne}.

2) For the case of
Nb −Na

2
≤ Ne < min{Nb, Na} and

Nb −Na +Ne ≤ 0, it holds that

dwc
s,a = Nb −Ne.

C. WhenNe < min{Nb −Na

2
, Nb}

It holds that
Nb +Ne −Na

3
> Ne, which indicates that

m3(N
t
e) is infeasible, andm2(N

t
e) is feasible.

m1(N
t
e) is feasible only for the case ofNe ≥ Na, in which

case it holds that

dwc
s,a = min{m1(0),m2(

Ne −Na − ξ

2
+ 1)}

(a)
= m1(0)

(b)
= Na.

where (a) is due tom1(0) ≤ m2(
Ne −Na − ξ

2
+ 1). (b) is

due to the fact that⌊Nb +Na −Ne

3
⌋ ≥ Na, which is due to

2Ne < Nb −Na andNe ≥ Na.
Also, for the case ofNe < Na, we have

dwc
s,a = m2(0)

= min{⌊Nb +Ne −Na

3
⌋+Na −Ne, Na}

= Na.

Concluding, for the case ofNe < min{Nb −Na

2
, Nb}, it

holds thatdwc
s,a = Na. This completes the proof.
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