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Nicolas Bruneau, Claude Carlet, Sylvain Guilley, Member, IEEE, Annelie Heuser,

Emmanuel Prouff, and Olivier Rioul

Abstract— On the one hand, collision attacks have been intro-
duced in the context of side-channel analysis for attackers who
exploit repeated code with the same data without having any
knowledge of the leakage model. On the other hand, stochastic
attacks have been introduced to recover leakage models of inter-
nally processed intermediate secret variables. Both techniques
have shown advantages and intrinsic limitations. Most collision
attacks, for instance, fail in exploiting all the leakages (e.g., only
a subset of matching samples are analyzed), whereas stochastic
attacks cannot involve linear regression with the full basis (while
the latter basis is the most informative one). In this paper,
we present an innovative attacking approach, which combines
the flavors of stochastic and collision attacks. Importantly, our
attack is derived from the optimal distinguisher, which maximizes
the success rate when the model is known. Notably, we develop an
original closed-form expression, which shows many benefits by
using the full algebraic description of the leakage model. Using
simulated data, we show in the unprotected case that, for low
noise, the stochastic collision attack is superior to the state of the
art, whereas asymptotically and thus, for higher noise, it becomes
equivalent to the correlation-enhanced collision attack. Our
so-called stochastic collision attack is extended to the scenario
where the implementation is protected by masking. In this case,
our new stochastic collision attack is more efficient in all scenarios
and, remarkably, tends to the optimal distinguisher. We confirm
the practicability of the stochastic collision attack thanks to
experiments against a public data set (DPA contest v4). Further-
more, we derive the stochastic collision attack in case of zero-
offset leakage that occurs in protected hardware implementations
and use simulated data for comparison. Eventually, we underline
the capability of the new distinguisher to improve its efficiency
when the attack multiplicity increases.

Index Terms— Side-channel analysis, collision attacks, optimal
distinguisher, masking.

I. INTRODUCTION

S IDE-CHANNEL attacks consist in exploiting some leak-
age occurring during the computation of a cryptographic
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algorithm. The best way to exploit leakages is known in gen-
eral: whenever the context permits, the leakage is profiled and
then a maximum likelihood distinguisher is applied [13], [45].
However, for some devices, like for banking or the ePassport,
the attacker might not be able to hold an open copy of the
device (i.e. a copy with full control), which prevents him
from doing any profiling. Additionally, for some particular
architectures, the leakage may be very specific to each device
(owing for instance to technological dispersion). For scenarii
like the two previous ones, attacks built on a maximum like-
lihood approach are impossible and a deeper analysis is thus
needed to identify the most pertinent/efficient distinguishers,
especially when the leakage nature cannot be captured by the
classical models (as e.g. the Hamming weight).

A. Device-Specific Leakage

One such situation is when every device has a specific
leakage model. This can happen for several reasons. For
instance, in deep submicron (DSM) complementary metal-
oxide-semiconductor (CMOS) technologies, the variability in
fabrication can be large, hence the leakage model is unpre-
dictable [34]. Such variability is, in practice, a drawback in
terms of yield and reliability, since safety margins must be con-
sidered regarding the performances of each chip. Nonetheless,
it can be turned into a constructive feature, for instance for
physically unclonable functions (PUF). Such devices precisely
require a deterministic behavior for every unique device,
but an unpredictable behavior for a device which has not
been characterized. Security-wise, process variation also has
the nice advantage of making profiled side-channel attacks
ineffective. Indeed, a leakage model learned from one design
does not apply to another. While some “porting” of prechar-
acterized template is possible when the acquisition conditions
changed (e.g., using traces normalization [18], [30]), this situ-
ation is not possible when chips differ intrinsically. A second
reason for the leakage to be specific to a chip is when coun-
termeasures are applied, which aim at reducing the differences
in the leakage due to the data. On hardware circuits, this
technique is known as dual-rail precharge logic (see e.g., [43]).
Ideally, the leakage of such circuits is the same for all data:
we say that the countermeasure reduces the signal-to-noise
ratio (SNR). But in practice, the SNR is not exactly equal
to zero, owing to tiny technological unbalances which create
leaks. Now, it is a priori difficult to predict theleakage model.
For instance, it is difficult to know whether a bit (e.g., a gate)
will leak positively or negatively. Similar protection goal can
be reached on FPGAs using a double access to memory (see
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e.g., [4], [44]), and also to software (see e.g., [14], [39]).
Of course, balanced circuits implemented in DSM technology
are even less amenable to template attacks [34].

B. State-of-the-Art About Unprofiled Attacks
In this situation where the leakage is specific to the chip

under attack or simply unknown, only unprofiled strategies
are suitable. One of them consists in assuming a hypothetical
model, which is supposed to be close enough to reality.
A subsequent correlation attack (also known as “correlation
power analysis” or CPA [8]) is performed to extract the
key. The difference of means (DoM) distinguisher has been
introduced by Kocher et al. [24]: technically, it acts as a CPA,
but as it operates on only one single bit, it is less sensitive
to model errors. Another one is called mutual information
analysis (MIA [20]), which selects the best key according to
the entropy of a partitioning. However, for the attack to be
sound, it is known that the partitioning must not be injective
in the key. Hence, an educated guess of such leakage model
is required.

In situations where the leakage model is known up to
a parameterization, one can resort to the so-called linear
regression analysis (LRA, see e.g., [17]). LRA is the non-
profiled version of the stochastic approach (see e.g., [36])
that aims at inferring the model in a profiling phase. In case
of profiling it is possible to use a full basis to accurately
characterize the leakage [21]. However, for LRA one has to
be careful to select an appropriate basis that is not too large.
Otherwise, indeed, the distinguisher becomes not sound, since
the method succeeds in recovering the functional dependency
between the leakage and the hypothesis even when the key
guess is wrong (see e.g., [17]). Consequently, even for LRA,
the attacker has to make some assumptions about the algebraic
properties of the underlying leakage model.

Collision attacks have the nice property that they allow to
circumvent the modeling issue. They have been introduced
by Schramm et al. [38] on DES and in [37] on AES, and
consist in identifying same inputs to some repeated function
(e.g., a substitution box (SBox)) through a side-channel. These
inputs are sensitive values, that is intermediate values which
are input to a subfunction of the cryptographic algorithm, and
depend on a subkey and a part of the cleartext (or ciphertext).
Besides, we can say that collision attacks are unsupervised
side-channel attacks, since they do not require a training
phase. Bogdanov presented generalized collisions in [6]: col-
lisions can be found between different executions of AES.
Bogdanov refined the collision detection method by binary and
ternary voting in [7]. By design, these attacks are ignorant
of the leakage model, and rely on only one assumption:
repeated calls to a given code with the same arguments leak
quite similarly. Unfortunately, the classical collision attack
cannot cope with masking countermeasures. The work of
Clavier et al. [15] follows the same path, but adapts to the
context of side-channel, where collisions can be detected
only after averaging traces. The pro of such attacks is that
the collision detection probability is indeed improved despite
noise, but the con is that many traces are needed to test each
key hypothesis.

Moradi et al. [33] abstract the notion of collision by
first estimating some instantaneous leakage moments corre-
sponding to the manipulation of SBox outputs and in [31]
to masking material. The pro of such an approach is that
each trace contributes globally to the attack (it serves for all
key hypothesis), whereby the leakage moments have to be
estimated accurately enough for each class. The drawback in
the case of masking countermeasures is that only independent
characteristics (e.g., leakage distribution moments) of each
SBox are extracted and then individually compared.

We overcome these limitations with a joint analysis of the
twain SBoxes at once. In our approach, the collision is simply
a constraint on a stochastic regression attack which assumes
that SBoxes have globally the same leakage model.

C. Our Approach: Stochastic Collision Attack

In this paper, we present an innovative attacking approach,
which combines the flavours of stochastic and collision
attacks. Importantly, our attack is derived from the opti-
mal distinguisher [22], which maximizes the success rate
when the model is known. In particular, our attack does
not need to make any assumption on the unknown leakage
model, except that the deterministic leakage repeats when
the code is reused. Hence we adhere to the seminal idea of
Schramm et al. and of Bogdanov, in that we intend to
exploit only collisions (namely generalized collisions between
different executions of the block cipher). But in addition,
we take advantage of the parameterization technique of LRA
and the profiled stochastic approach. Used at its maximum
power, namely with a full basis, the LRA is known not to
be sound as a distinguisher. However, with our approach of
using collisions, the same model is reused and we achieve
soundness. Moreover, we extend our approach to masking
countermeasures.

D. Contributions

We derive our novel stochastic collision attack and impor-
tantly give a closed form of it that is not straightforward.
This closed-form is quite original and made possible by a
stochastic characterization over a full basis. We conduct an
exhaustive comparison of the distinguishers and highlight the
efficiency of the stochastic collision attack by simulations and
attacks on real traces. Our experiments show that the stochastic
collision attack and the correlation-enhanced collision attack
outperform the classical collision attack in any scenario.
This is mainly due to the fact that the collision attack is a
chosen plaintext attack that only uses a fraction of the traces,
whereas the stochastic and the correlation-enhanced collision
attacks are known plaintext attacks involving the complete
set of traces. For low noise, the stochastic collision attack
is superior to the correlation-enhanced collision attack, while
they become closer when the noise increases. Even more,
our mathematical derivation reveals that both distinguishers
become asymptotically equivalent.

Interestingly, we show that it is worthwhile, in terms of
success rate, if enough resources are available, to compute
the stochastic collision attack of dimensionality L as large as
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possible. Note that this feature does not apply on the state-of-
the-art collision attacks as they are restricted only to L = 2
due to their underlying statistical method.

Furthermore, we derive the stochastic collision attack in
case of masking when each SBox is masked with the same
mask or the masks are related to each other as described
in [12]1 and used for the DPA contest v4. In this case,
the distinguisher does not reduce to a simple closed form
expression and we show how to perform the optimization
using the Expectation-Maximization (EM) algorithm (see
e.g., [29], [40]). Remarkably, our simulations and experiments
show that the stochastic collision distinguisher outperforms
all state-of-the-art collision attacks for masking and that our
attack converges to the optimal distinguisher. In particular,
we compare our attack to the correlation-collision attack of
Clavier et al. [15] and with the adaption for software imple-
mentations of Moradi [31]. Additionally, we adapt the attacks
to the case of zero-offset leakage as present in masked
hardware implementations.

E. Outlines

The new distinguisher is mathematically derived in Sec. II,
and contrasted with the state-of-the-art collision attacks. Val-
idation on simulated and real data is done in Sec. III.
We derive our new distinguisher in case of masking with a
theoretical and practical comparison to the state-of-the-art in
Sec IV. Section V concludes and opens some perspectives.
Appendix A provides a comparison between two variants
of correlation-collision attacks and more details about the
correlation-enhanced collision attack is given in appendix B.

II. STOCHASTIC COLLISION DISTINGUISHER

A. Preliminaries and Notation

In the sequel, we are interested in block ciphers which
can be attacked by collisions. The access to substitution
boxes (SBoxes) is especially leaky, because they consist in
a memory look-up, therefore favorable case studies are block
ciphers which reuse the same instance of SBox several times.
This is the case for AES and PRESENT. We denote by
n the fan-in (i.e., the number of inputs) of the SBox, that
is n = 8 bits for AES and n = 4 bits for PRESENT.
The implementation can be either hardware, or software (in
which case the same memory is recalled sixteen times). For
! ∈ {1, . . . , L} (e.g. L = 16 for AES), we denote by
k∗(!) ∈ Fn

2 the !-th secret key byte and by k(!) any possible key
hypothesis thereof. The !-th byte coordinate of the plaintext
corresponding to the qth query (1 ≤ q ≤ Q) is denoted

by t(!)q . The associated leakage is denoted by x (!)
q .

For all the indices !, the leakage models are assumed
to be identical2 but unknown, which leads to view x (!)

q as
realizations of the following random variable:

X (!) = ϕ(T (!) ⊕ k∗(!)) + N (!), (1)

1Extended version of [11] with more results in appendix.
2This assumption is reasonable when the code or the hardware is reused;

this occurs in practice for the sake of cost overhead mitigation.

where the noise N is independent among ! as well as q and
ϕ = ψ ◦ S is a composition of two deterministic functions.
In particular, the SBox function S : Fn

2 → Fn
2 is algorithmic

specific, whereas ψ : Fn
2 → R is an unknown function related

to the device architecture.
In the rest of the paper, we will additionally employ the

following shortcut notations:
• 'k denotes the vector (k(1), · · · , k(L)),
• 'x (·) is the Q × L matrix whose rows correspond to

L-variate leakages,
• to each matrix element x (!)

q of 'x (·) is associated a plaintext
element t(!)q and key element k(!) (note that, as usual, for
each ! the key element k(!) is assumed to be the same
for all the t(!)q and x (!)

q ,
• 'x (!) is a list of the Q leakages which are the consequence

of the processing of (t(!)q )1≤q≤Q ,
• 'xq is a list of the L leakages which are the consequence

of the processing of (t(!)q )1≤!≤L . It is the qth row of 'x (·).
The corresponding vector of plaintext elements is denoted
by 'tq .

For any vector 'y ∈ RL , we will denote by ‖'y‖ the Euclidean
norm of 'y. Moreover, we will denote by fµ,σ 2 the Normal
distribution with mean µ and standard deviation σ . The
notation will be simplified into fσ 2 when the mean is assumed
to be null (note that for any y we have fµ,σ 2(y) = fσ 2(y−µ)).
Eventually, for any function ϕ defined from a set E to a set
F and any vector 'y .= (y1, · · · , yL) ∈ E L , we will simply
denote by ϕ('y) the L-dimensional vector (ϕ(y1), · · · ,ϕ(yL)).

B. New Concept of Stochastic Collision Distinguisher

A distinguisher is a function which takes the known plain-
texts and the measured leakages, and returns a key guess.
A specific distinguisher is optimal when maximizing the
success probability of the attack [22]. Besides considering
univariate first-order distinguisher, two other scenarios have
been considered so far: first, in [10] the authors derived opti-
mal distinguishers when applied on masking countermeasures
and second, [9] studied optimal distinguisher when dimension
reduction is helpful. Thus, both previous studies considered
multiple leaking points that are related to only one key byte
and plaintext.

In the next proposition we derive the optimal distinguisher
in the scenario of collision attacks, namely considering L
independent leakage samples with L different key hypotheses
and plaintexts. For the paper to be self-content, we recall
in Fig. 1 the principle of a collision in a side-channel context.

Proposition 1 (Optimal Collision Based Distinguisher):
The optimal collision based distinguisher, when the noise
is Gaussian and isotropic in the L samples, namely
N (·) ∼ N (0, diag(σ 2, . . . , σ 2)), does not depend on σ 2, and
can be expressed as:

Dopt('t(·), 'x (·)) = argmin
'k∈(Fn

2)L

Q∑

q=1

∥∥'xq − ϕ('tq ⊕ 'k)
∥∥2

. (2)

Proof: The optimal distinguisher Dopt is the ML (Maxi-
mum Likelihood). We write p for random variables’ densities.
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Fig. 1. Setup for a collision attack. The highlighted parts of the traces (blue
circles) correspond to the following collision: t(2)

1 ⊕ k(2) = t(1)
3 ⊕ k(1).

For example, pN denotes the density of N . We can thus
express the ML distinguisher as follows:

Dopt('t(·), 'x (·)) = argmax
'k∈(Fn

2)L

p('x (·)|'t(·), 'k)

= argmax
'k∈(Fn

2)L

Q∏

q=1

pN (·)
q

(
'xq − ϕ('tq ⊕ 'k)

)
(3)

= argmax
'k∈(Fn

2)L

Q∑

q=1

log
L∏

!=1

fσ 2(x (!)
q −ϕ(t(!)q ⊕ k(!))),

(4)

which implies (2) by simply developing the normal distribution
law fσ 2(·), and by removing the key-independent terms.
Basically, Eq. (3) results from the noise independence from
trace to trace. Eq. (4) arises from the Gaussian distribution of
N (·), which is assumed isotropic, and from the fact that the
logarithm is a strictly increasing function.

Remark 2: The hypothesis of noise isotropy in the sample
space is often satisfied in practice. This can be justified
as follows. Assuming that the thermal noise is white, the
correlation window length is inversely proportional to the
bandwidth of the measurement apparatus (typically 1 GHz).
Therefore, the correlation between noisy samples does not
extend beyond 1 ns. In practice, the Sbox calls are at least
separated by one clock period, that is 10 to 100 ns. Therefore,
the measurement noise samples are independent from one
call to another. Still, if the L noise samples are correlated,
the Proposition 1 would still hold, by trading the Euclidean
distance by the Mahalanobis distance [27].

Unfortunately, Eq. (2) has one major drawback, as discussed
for other optimal distinguishers in [9], [10], and [22] it can
only be computed provided the leakage model (the function ϕ)
is completely known. However, naturally, the strength of the
state-of-the-art collision attacks is the unnecessariness of the
knowledge of the leakage model. To cope with this problem
we extend Proposition 1 to the case where the model becomes
part of the secrets to be guessed as similarly done in LRA.

Definition 3 (Stochastic Collision Distinguisher):

Dsto.coll('t(·), 'x (·)) = argmin
'k∈(Fn

2)L

min
ϕ:Fn

2→R

Q∑

q=1

∥∥'xq − ϕ('tq ⊕ 'k)
∥∥2

,

where ϕ lives in the vector space of the functions Fn
2 → R.

Definition 3 involves a minimization over all leakage func-
tions ϕ : Fn

2 → R, which appears as an unsolvable task if no
information about the underlying algorithm and leakage model
is known.3 In order to solve this issue, we choose a basis
decomposition for the unknown univariate leakage function
ϕ. Note that, ϕ : Fn

2 → R is a pseudo-Boolean function that
can be seen as a 2n-dimensional vector ϕ(·) ∈ R2n

. Here R2n

is the usual finite-dimensional Euclidean space equipped with
the canonical scalar product 〈ϕ | ϕ′〉 = ∑

t ϕ(t)ϕ′(t). The key
point is that for the stochastic collision attack we can make
use of the full (canonical) basis, i.e. basis of highest degree,
as the distinguisher involves (at least) two leakage samples.

Lemma 4: The stochastic collision attack of highest degree
can be rewritten as follows:

Dsto.coll('t(·), 'x (·))

= argmin
'k∈(Fn

2)L

min
'a∈R2n

Q∑

q=1

∥∥'xq −
∑

u∈Fn
2

auδu('tq ⊕ 'k)
∥∥2

, (5)

where δu(t) = 1 if t = u and 0 otherwise.
Proof: In Definition 3 the leakage model space can be

mathematically described using an orthonormal basis in R2n

(see e.g., [36]). Using the canonical basis (δu)u∈Fn
2
, which is

evidently orthonormal, simply gives ϕ(t) = ∑
u∈Fn

2
ϕ(u)δu(t).

In Eq. (5), we denoted 'a = (ϕ(u))u∈Fn
2
.

Still, the stochastic collision distinguisher as presented in
Eq. (5) is not satisfactory. Indeed, it is not a mathematical
closed form, hence some optimization algorithm shall be run
in order to minimize over 'a ∈ R2n

. As the function inside
the minimization (over 'a) in Eq. (5) is actually convex, there
is a global minimum, and a projection could hence be done
as a first step of the optimization. However, the derivation
of the global minimum implies a matrix inversion (see for
instance [41, Sec. 4.2]), which is computationally intensive,
and suffers drawbacks about accuracy and situations where
the rank is not full. As a consequence of these observations,
it would be preferable to derive the distinguisher by computing
mathematically the value of the minimum (instead of directly
running optimization algorithms). In the following subsection,
we prove that this derivation can be done and we exhibit the
closed form, which will be used in our attack simulations and
experiments.

C. Main Result

This theorem is our main result:
Theorem 5: The stochastic collision attack defined in

Eq. (5) is equal to:

Dsto.coll('t(·), 'x (·)) = argmax
'k∈(Fn

2)L

∑

u∈Fn
2

(∑
!

∑
q/t (!)q ⊕k(!)=u x (!)

q

)2

∑
!

∑
q/t (!)q ⊕k(!)=u 1

.

(6)

3Note that we employ the notation argmink(·) minϕ , which suggests that,
first of all, a minimization on ϕ is performed for a set of vectorial keys k(·),
and then that the minimal value for all k(·) is sought, and the corresponding
key set is returned. But actually, the minimization is not forced to be in this
order, as k(·) ∈ (Fn

2)L and ϕ : Fn
2 → R are independent variables.
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In Eqn. (6), “
∑

q/t (!)q ⊕k(!)=u” is short for “
∑

q∈{1,...,Q}
s.t. t (!)q ⊕k(!)=u

”.

Proof: Let us denote by G(!)
k(!) the Q × 2n matrix, where

G(!)
k(!) [q, u] = δu(t(!)q ⊕k(!)). We use ‖ · ‖ to define the norm-2

in RQ . Then, Eq. (5) can be expressed as:

Dsto.coll('t(·), 'x (·))

= argmin
'k∈(Fn

2)L

min
'a∈R2n

L∑

!=1

∥∥∥'x (!) − G(!)
k(!) 'a

∥∥∥
2
. (7)

In this equation, 'a is seen as a column of 2n real numbers
and G(!)

k(!) 'a is a matrix vector product. Now, we can solve the
minimization on 'a ∈ R2n

by minimizing the convex function:

∑

!

∥∥∥'x (!) − G(!)
k(!) 'a

∥∥∥
2

=
∑

!

∥∥∥'x (!)
∥∥∥

2
(8)

+ 'aT

(
∑

!

G(!)
k(!)

T
G(!)

k(!)

)

'a − 2'aT

(
∑

!

G(!)
k(!)

T 'x (!)

)

, (9)

where 'aT is the vector (i.e., the line-matrix of dimension
1 × 2n) equal to the transposed of 'a. This quadratic form is
minimal when its Jacobian is equal to zero [3]. Let us denote:

• &k(·) the square 2n × 2n matrix
∑
! G(!)

k(!)

T
G(!)

k(!) and

• bk(·) the column of 2n elements
∑
! G(!)

k(!)

T 'x (!).

Let us assume &k(·) is invertible in the following (see
Remark 6 otherwise), then we have 'a = (

&k(·)
)−1 bk(·) . The

optimal value of Eq. (9) is:

∑

!

∥∥'x (!)
∥∥2 + b'k

T

!
!!&−1
'k !!&'k&

−1
'k b'k − 2b'k

T&−1
'k b'k

= cst− b'k
T (
&'k

)−1 b'k, (10)

because &'k is symmetrical (hence its inverse is also). Let apart
the constant, the term −b'k

T (
&'k

)−1 b'k is negative, because(
&'k

)−1 is positive definite. Thus, in the sequel, we rather focus
on maximizing the opposite of this value.

Let us now develop the expressions. For each coordinate of
b'k = (b'k[u])u∈Fn

2
we have:

b'k[u] =
Q∑

q=1

∑

!

G(!)
k(!) [q, u]x (!)

q

=
Q∑

q=1

∑

!

δu(t(!)q ⊕ k(!))x (!)
q

=
∑

!

∑

q/t (!)q ⊕k(!)=u

x (!)
q .

Besides, the element (u, v) ∈ Fn
2 × Fn

2 of the square matrix
&'k can be rewritten as:

&'k [u, v] =
Q∑

q=1

∑

!

δu(t(!)q ⊕ k(!)) δv (t(!)q ⊕ k(!))

=
{∑

!

∑
q/t (!)q ⊕k(!)=u 1 if u = v,

0 otherwise.

Thus, &'k is diagonal as well as its inverse; every element of
the diagonal shall simply be inversed. Therefore, the objective
function (Eq. (10)) takes a closed form expression. Finally,
the stochastic collision distinguisher rewrites:

Dsto.coll('t(·), 'x (·)) = argmax
'k∈(Fn

2)L

∑

u∈Fn
2

(
&'k[u, u]

)−1 b'k[u]2

= argmax
'k∈(Fn

2)L

∑

u∈Fn
2

(∑
!

∑
q/t (!)q ⊕k(!)=u x (!)

q

)2

∑
!

∑
q/t (!)q ⊕k(!)=u 1

.

Remark 6: In case the matrix &k(·) is not invertible,
there exists (at least) one value of u ∈ Fn

2 such that∑
!

∑
q/t (!)q ⊕k(!)=u 1 = 0. Equivalently,

{
(q, !) ∈ {1, . . . , Q}× {1, . . . , L}/t(!)q ⊕ k(!) = u

}
= ∅.

Thus, both numerator and denominator corresponding to u in
Eq. (6) are null. This means that the corresponding summand
shall simply be dropped.

If there is only one value for !, say ! ∈ {1}, then Eq. (6)
cannot distinguish keys. Indeed, by a variable change u′ ←
u ⊕ k, we have:

∑

u∈Fn
2

(∑
q/tq⊕k=u xq

)2

∑
q/tq⊕k=u 1

=
∑

u′∈Fn
2

(∑
q/tq=u′ xq

)2

∑
q/tq=u′ 1

,

which clearly does not depend on k. Interestingly, this provides
another proof of the fact that LRA is not sound when provided
with a full basis [16].

This does not apply any longer when ! can take strictly
more than one value. Indeed, the variable change u′ ← u⊕k(1)

actually removes the key part in u⊕ k(1) (which becomes u′),
but not in u ⊕ k(2) which becomes u′ ⊕ k(1) ⊕ k(2).

D. Comparison With State-of-the Art Collision Attacks

1) Classical Collision Attack [37]: The collision attack,
as published in the state-of-the-art, consists in distances to be
minimized. In the case L = 2, the collision attacks minimize
an Euclidean distance between the two leakages. This choice
of distance is not justified in the state-of-the-art papers; still,
it looks like a natural choice when the noise is Gaussian.
So, when L = 2, the classical collision attack computes the
distinguisher to test an hypothesis 'k on the sum of keys
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k(1) ⊕ k(2):

Dcoll('t(·), 'x (·))

= argmin
'k∈Fn

2




∑

1≤q≤Q
t (1)
q ⊕t (2)

q ='k

1





−1

∑

1≤q≤Q
t (1)
q ⊕t (2)

q ='k

(
x (1)

q − x (2)
q

)2
.

(11)

Remark 7: In the state-of-the-art paper, for instance [15,
Sec. 3.1], the Pearson correlation between X (1) and X (2),
knowing T (1) ⊕ k(1) = T (2) ⊕ k(2), is also suggested as a
possible distinguisher. Now, the denominator of a correlation
does not allow to distinguish, and the numerator is a covari-
ance, which is proportional to the double-product term of
Eq. (11) when the square is developed. Thus, in the sequel,
we indifferently refer to the classical collision attack as a
Euclidean distance or a correlation. See Appendix A for a
more detailed discussion and a practical validation.

Remark 8: The stochastic collision distinguisher (Eq. (6))
uses in its computation all the x (!)

q , for ! ∈ {1, . . . , L} and 1 ≤
q ≤ Q. Instead, the collision attack (Eq. (11)) uses only some
values of x (!)

q in order to detect the collision. In particular, for
each key guess only the traces which correspond to t(1)

q ⊕t(2)
q =

'k are used, which is roughly Q
2n traces out of Q. This is one

evidence why the stochastic distinguisher is more efficient in
terms of success rate for a given number of traces (i.e., a given
value of Q); Section III will confirm this remark. Notice that
it applies even stronger if there are more than two leakages to
combine.

In order to deal with the issue reported in Remark 8, and
hence to exploit all traces for all key guesses, Moradi et al.
proposed in [33] an enhancement of the classical collision
attack.

2) Correlation-Enhanced Collision Attack: Let us also
recall the correlation-enhanced collision attack [33]. It com-
putes (see details in Appendix B):

Dcorr-coll('t(·), 'x (·))

= argmax
k(1),k(2)

∑

u∈Fn
2

∑
1≤q≤Q

t (1)
q ⊕k(1)=u

x (1)
q

∑
1≤q≤Q

t (1)
q ⊕k(1)=u

1
×

∑
1≤q≤Q

t (2)
q ⊕k(2)=u

x (2)
q

∑
1≤q≤Q

t (2)
q ⊕k(2)=u

1
.

(12)

As the correlation-enhanced collision attack first estimates
averages of one SBox (conditioned by the plaintext) and
then correlates it to the second one, a sufficient amount of
traces is needed for each class in order to succeed. However,
asymptotically the problem of estimation can be neglected.
Indeed, we have this interesting result for large Q in the
next lemma. These observations for small and large Q (which
corresponds to low and high noise) are confirmed in our
experiments in Sec. III.

Lemma 9: When the number of traces Q is large and the
plaintexts are equidistributed, then Dcorr-coll and Dsto.coll get
equivalent.

Fig. 2. Success rates for the four distinguishers Dsto.coll of Eq. (6), Dcoll
of Eq. (11), Dcorr-coll of Eq. (12), and Dopt of Eq. (2) for (a) σ = 0,
(b) σ = 1, (c) σ = 4. On the left, with a small number of traces, on the right
with more traces (in logarithmic scale for q), so that all attacks succeed.
In these figures, we have n = 4, so the SNR is simply σ−2, that is
(a) SNR = +∞, (b) SNR = 1, (c) SNR = 1/16.

Proof: Owing to the uniform distribution of the plaintexts,
we have (by the law of large numbers) that 1

Q

∑
q/tq=u 1 −→

2−n when Q → +∞. Therefore, the denominator in
both Eq. (6) (Dsto.coll) and Eq. (12) (Dcorr-coll) can be
neglected (asymptotically). Second, let us develop:

∑

u∈Fn
2




∑

!

∑

q/t (!)q ⊕k(!)=u

x (!)
q





2

=
∑

!

∑

u∈Fn
2

∑

q/t (1)
q ⊕k(1)=u

(
x (!)

q

)2

+
∑

! 1=!′

∑

u∈Fn
2




∑

q/t (!)q ⊕k(!)=u

x (!)
q








∑

q/t (!
′)

q ⊕k(!′)=u

x (!′)
q



 .

All the square terms do not depend on the key. Therefore, only
cross-products remain, and each is exactly the expression of
Dcorr-coll for one pair.

III. THE NEW DISTINGUISHER IN PRACTICE

A. Validation by Simulations for Different Noise Variances

The success rate SR of several attacks is plotted in Fig. 2
for different noise variances σ 2. The thickness of the curves
represents the estimation error, namely plus/minus one stan-
dard deviation (SR(1 − SR)/Nattack)1/2, where Nattack is the
number of attack simulations performed to get the estimate
SR. Indeed, the success rate is estimated as a counting, hence
obeys a binomial distribution with parameters Nattack and
SR [26, Sec. 3.4]. The more attacks are repeated, the more
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narrow the error bars. In general, we carry out at least Nattack =
100 attacks, and sometimes 1000 to better distinguish between
several curves which are close to each other.

The leakage model we used is ϕ = wH ◦ S, i.e., the
composition of the Hamming weight and the PRESENT 4×4
SBox (that is, n = 4). As usual, the noise is assumed centered
and of variance σ 2, therefore the SNR in Fig. 2 is equal
to n/(2σ )2 = σ−2. On these figures, the performance of
the optimal attack has been superimposed, which consists
in a template attack on one SBox that nonetheless requires
additionally the knowledge of the leakage model.

As we derived in theory (see Lemma 9) the stochastic
collision attack outperforms the correlation-enhanced collision
attack for lower noise (and thus smaller q), but they become
equivalent for higher amount of traces. Moreover, we observe
that the stochastic collision and the correlation-enhanced col-
lision attack are always much more powerful than the classical
collision attack, while not being far (in terms of performances)
from the optimal attack. Actually, the more noise, the closer
the stochastic collision attack and the optimal attack. On the
contrary, as shown on the success rate with the logarithm
of traces, the collision attack seems to get further to the
stochastic collision attack when the noise variance increases.
This can be accounted by the fact the classical collision attack
is only using a fraction of the available traces (as discussed
in Remark 8). Naturally, this amount gets higher the more
traces are used (due to the higher noise variance) and thus
the disadvantage of the classical collision attack becomes
more compensated. This highlights that the classical collision
attack is ad hoc, i.e., defined through an engineering idea but
not a thorough analysis of the goal (maximizing the success
probability).

B. Experiments on Real Traces

A similar analysis as in Fig. 2 is repeated on real
traces, namely those publicly available from the DPA contest
v4 dataset [42]. Those traces are collected from a masked
implementation of AES. However, in this section we make the
assumption that the masks are known to the adversary, which
gives a similar context as in Subsect. III-A except that we have
n = 8 instead of n = 4. The success rates are plotted in Fig. 3,
in linear scale for q on the left-hand side, and in logarithmic
scale on the right-hand side, so as to show that the classical
collision attack indeed succeeds eventually (albeit with much
more traces). We estimated an SNR of 2.2966 and 2.0652
from the leakage measurements for the first and second SBox,
respectively, which shows that the variance of noise at both
points in time are close.

C. Multi-Collisions

The state-of-the-art collision attacks are only suited for the
two-leakage case (L = 2). On the contrary, the stochastic
collision attack can apply to L > 2 leakages. It is interesting
to assess in which respect this feature is an advantage. To do
so, we compared the success rate to extract a pair of keys one
by one,

Fig. 3. DPA contest v4 (masks known). Left: linear, right: logarithmic scale
for q.

Fig. 4. Three-way vs. two-way collisions, applied to the recovery of one
pair of keys.

• using two stochastic collision attacks for L = 2, (4) or
• using only one stochastic collision attack for L = 3.

Both strategies only allow to retrieve two keys out of three.
Let us assume that k∗(1) is known (or exhaustively searched
for), and that k∗(2) and k∗(3) are unknown. A side-channel
distinguisher thus estimates the pair (k̂∗(2), k̂∗(3)) according to
one of the two following strategies:
{
(k̂∗(2), k̂∗(3)) = (Dsto.coll('t(1,2), 'x (1,2)),Dsto.coll('t(1,3), 'x (1,3))),

(k̂∗(2), k̂∗(3)) =Dsto.coll('t(1,2,3), 'x (1,2,3)).

There seems to be pros and cons to both strategies; hence
a priori there is no clear intuition which option is the best.
By guessing less keys (when L = 2, only one key is
enumerated in Fn

2), accordingly, there exist less rivals to
the correct key. But an attack which exploits simultaneously
L = 3 leakages collects more information than an attack which
considers only L = 2 leakage samples.

To determine which tendency is preponderant, we launched
simulations in the same setup as for Sec. III-A. The results
are represented in Fig. 4 for two levels of noise: σ ∈ {1, 4}.
Clearly, it appears better to guess two keys in one go. This
result is one more reason to favor multivariate stochastic
collision attacks over pairwise collision attacks. Recall that
the state-of-the-art collision attacks are restricted to pairwise
comparisons due to their underlying statistic tools. If compu-
tational power permits, it is all the more successful to carry
out multivariate collision attacks as L is large.

Actually, to conclude, the distinguisher Dsto.coll being opti-
mal (recall terms of Definition 3), when unknown parameters

4Such strategy can be improved by exploiting the natural redundancy in
pairwise key search. Indeed, the L = 2 collision can concern leakages {1, 2},
{1, 3}, but also {2, 3}. Papers, such as [35], showed that a coding approach
may constructively increase the efficiency of the attack. In this paper, we do
not enter into this sophistication level.
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are both the keys and the model, it is sensible that the second
strategy has a smaller success probability.

IV. STOCHASTIC COLLISION ATTACK IN THE

PRESENCE OF MASKING

In this section, we compare stochastic collision attacks with
collision attacks in the case of masking, more specifically,
in the case where the SBoxes are all masked with the same
mask.5 Indeed, this case is common in practice because
recomputing a masked SBox is very lengthy, and masking
every SBox with a different mask does not increase the (first)
order of the countermeasure. With respect to the unprotected
case, the model differs from Eq. (1), in that:

∀! ∈ {1, . . . , L}, X (!) = ψ(S(T (!) ⊕ k∗(!))⊕ M) + N (!),

(13)

where the masks M are uniformly distributed in Fn
2.

Furthermore, we extend and validate our attack to the
scenario given by the DPA contest v4.1 in Subsect. IV-D
in which the masks are not the same but related. Finally,
we shortly discuss the case of zero-offset leakage given in
hardware implementation in Subsect. IV-E.

A. Mathematical Expression of the Stochastic Collision
Distinguisher

The optimal collision based distinguisher in case of masking
is given in the following proposition.

Proposition 10 (Optimal Collision Based Distinguisher for
Masking): The optimal collision based distinguisher when
the model is masked at first order and when the noise is
Gaussian and isotropic in the sample space, namely N (·) ∼
N (0, diag(σ 2, . . . , σ 2)) can be expressed as:

Dmask
opt ('t(·), 'x (·))

= argmax
'k∈(Fn

2)L

Q∑

q=1

log
∑

m∈Fn
2

exp
−

∣∣∣
∣∣∣'xq − ψ(S('tq ⊕ 'k)⊕ m)

∣∣∣
∣∣∣
2

2σ 2 .

(14)
Proof: The proof is similar to that of Proposition 1,

by noticing that:

Dmask
opt ('t(·), 'x (·)) = argmax

'k∈(Fn
2)L

p('x (·)|'t(·), 'k)

= argmax
'k∈(Fn

2)L

Q∏

q=1

p('xq |'tq , 'k)

= argmax
'k∈(Fn

2)L

Q∑

q=1

log
∑

m∈Fn
2

×P(M = m)p('xq |'tq , 'k, m). (15)

Now, as the masks are uniformly distributed, the constant
quantity P(M = m) = 1/2n can be removed. Nonetheless,

5This situation occurs in products implementing the so-called table recom-
putation countermeasure proposed by Kocher [23] – see also [28] for a
description of this countermeasure when applied to AES.

the logarithm of a sum of exponentials cannot be further
simplified, which is why Eq. (14) is more complex than
Eq. (2).

Now, to cope with the scenario in which ψ is unknown to
the attacker, we build the stochastic collision distinguisher in
case of masking:

Definition 11 (Stochastic Collision Distinguisher for
Masking):

Dmask
sto.coll('t(·), 'x (·))

= argmax
'k∈(Fn

2)L

max
ψ :Fn

2→R

Q∑

q=1

log \

∑

m∈Fn
2

exp
−

∣∣∣
∣∣∣'xq − ψ(S('tq ⊕ 'k)⊕ m)

∣∣∣
∣∣∣
2

2σ 2 . (16)

Lemma 12: By decomposing ψ in the canonical basis
(δu)u∈Fn

2
, we get the following equivalent expressions:

Dmask
sto.coll('t(·), 'x (·))

= argmax
'k∈(Fn

2)L

max
a∈R2n

Q∑

q=1

log \

∑

m∈Fn
2

exp
−

∥∥'xq − 'aS('tq⊕'k)⊕m

∥∥2

2σ 2 , (17)

where 'aS('tq⊕'k)⊕m denotes the vector (aS(t (!)q ⊕k(!))⊕m)1≤!≤L .
Proof: Similar to the proof of Lemma 4.

In Eq. (17), the maximization on a ∈ R2n
is a difficult

problem, because the objective function:

∑

m∈Fn
2

p('xq |'tq , 'k, m) =
∑

m∈Fn
2

exp
−

∥∥'xq − 'aS('tq⊕'k)⊕m

∥∥2

2σ 2 (18)

is a mixture of Gaussians. Therefore, it is not convex, but can
instead have several local maxima.

Fortunately, some iterative algorithms (see for
instance [29], [40]) exist that allow to numerically solve
Eq. (17), which we detail next. We leverage on the Expectation
Maximization (EM): it is a general framework to optimize in
the context of Gaussian mixtures. It has already been used in
side-channel analysis to extract the parameters of templates
during profiling stage [25]. However, apparently for the first
time, we exploit EM in the online attacking phase.

In order to simplify the presentation, we assume the follow-
ing:

• The Q traces 'x (·) = (x (!)
q )1≤q≤Q,1≤!≤L corresponding

to the Q plaintexts 't(·) = (t(!)q )1≤q≤Q,1≤!≤L have been
drawn.

• We fix a key guess 'k ∈ (Fn
2)

L .
• We consider that the mask M is a random variable,

uniformly distributed on Fn
2.

• We model the unknown weights a ∈ R2n
as a random

variable.
Thus, the objective function (recall Eq. (18)) can rewrite:

p('x (·)|a),
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where the lefthand side of Eq. (18) actually displays
p('x (·)|a) = ∑

m P(m)p('x (·)|a, m). The EM algorithm is
a method to get a series of values a0, a1, . . ., such that
p('x (·)|a0) ≤ p('x (·)|a1) ≤ . . .. The model is given in the
following

Lemma 13 (EM): Let a′ ∈ R2n
. We define a′′ ∈ R2n

as:

a′′ = argmin
a∈R2n

∑

m

p('x (·)|m, a′)[− log p('x (·)|m, a)]. (19)

Then, we have p('x (·)|a′) ≤ p('x (·)|a′′).
Proof: Let a, a′ ∈ R2n

. We consider the quantity Q(a, a′)
defined as:

Q(a, a′) =
∑

m

P(m)p('x (·)|m, a′) log
p('x (·)|m, a)

p('x (·)|m, a′)
.

Then, using that for all z ≥ 0, log z ≤ z − 1, we have that:

Q(a, a′) ≤
∑

m

P(m)p('x (·)|m, a)−
∑

m

P(m)p('x (·)|m, a′),

and the right-hand side equals p('x (·)|a) − p('x (·)|a′). Thus,
in particular, for

a′′ = argmax
a∈R2n

Q(a, a′) = argmax
a∈R2n

∑

m

p('x (·)|m, a′)

× log p('x (·)|m, a),

we have that p('x (·)|a′′)− p('x (·)|a′) ≥ Q(a′′, a′) ≥ 0. Indeed,
by definition of a′′, ∀a, Q(a′′, a′) ≥ Q(a, a′), hence in
particular for a = a′, we have Q(a′′, a′) ≥ Q(a′, a′) = 0.

So, the minimization of the objective function p('x (·)|a) can
be achieved according to this procedure:

1) Choose a random initial value a0 ∈ R2n
;

2) Set an iteration counter i , starting from 0, and compute
ai+1 as the value given in Eq. (19), where a′ = ai and
the obtained a′′ = ai+1. Notice that the Eq. (19) gives its
name to the EM algorithm, since it is a minimization of
an expectation over the masks M . When p('x (·)|ai+1)−
p('x (·)|ai) ≤ ε, where ε is a small value, then break the
loop and return ai+1.

The convergence of this procedure can be guaranteed [46].
Notice that the optimization problem of p('x (·)|a) is

turned into a series of optimization problems (Eq. (19)).
However, the problem of Eq. (19) is simple
because in our case, the objective function a 4→∑

m p('x (·)|m, a′)[− log p('x (·)|m, a)] is concave.
Lemma 14 (Minimization Within EM Iterations): Let a′ ∈

R2n
and αq(m) = p('xq |m, a′). Then, a′′ = (a′′u )u∈Fn

2
given in

Eq. (19) has its coordinates equal to:

a′′u =
∑

q,m,!/S(t (!)q ⊕k(!))⊕m=u αq(m)x (!)
q

(∑
q,m,!/S(t (!)q ⊕k(!))⊕m=u αq (m)

) . (20)

Proof: Let a′ ∈ R2n
and αq(m) = p('x (·)|m, a′). The

function to minimize is

a 4→ −
∑

m

p('x (·)|m, a′) · log p('x (·)|m, a)

= −
∑

m∈Fn
2

αq (m) · log
Q∏

q=1

L∏

!=1

fσ 2(x (!)
q − aS(t (!)q ⊕k(!))⊕m)

= cst1 + cst2︸︷︷︸
>0

×
∑

q,m,!

αq(m)

2

(
x (!)

q − aS(t (!)q ⊕k(!))⊕m

)2
,

which is concave (as the sum of 2n QL concave func-
tions). Now, for all u ∈ Fn

2 and after denoting Eu =
{(q, m, !); S(t(!)q ⊕ k(!))⊕ m = u}, we have that:

∂

∂au

∑

q,m,!

αq (m)

2

(
x (!)

q − aS(t (!)q ⊕k(!))⊕m

)2

=
∑

q,m,!

αq(m)δu(S(t(!)q ⊕ k(!))⊕ m)
∂

∂au

1
2

(
x (!)

q − au

)2

= −
∑

(q,m,!)∈Eu

αq (m)
(

x (!)
q − au

)

= au




∑

(q,m,!)∈Eu

αq (m)



−



∑

(q,m,!)∈Eu

αq (m)x (!)
q



 .

Clearly, this derivative is equal to zero if and only if Eq. (20)
is satisfied.

The whole procedure using the EM approach is summarized
in Alg. 1. We notice that Eq. (20) is not well defined (“0/0”)
if there exists one u ∈ Fn

2, such that for all q, m, !, we have
S(t(!)q ⊕ k(!)) ⊕ m 1= u. But this has no impact, since in
this case, one simply does not evaluate this value of au (i.e.,
the corresponding line 16 is skipped in Alg. 1). Indeed, this
ill-defined value of au is not required in the sequel (that is at
line 8).

B. State-of-the-Art Collision Attacks

The classical collision attack described in [15] still applies
successfully in the masked context described by Eq. (13).
Actually, we notice that this distinguisher (Dmask

coll ) does
not need to be adapted as explained by the authors.
Here, as underlined in Remark 7, we consider that the
Euclidean distance and the correlation are alike. Indeed,
as the mask is shared by all the SBoxes, the collisions
happen under the same conditions as in the case without
masking.

Correlation-enhanced collision (Dcorr-coll, coined in [33] and
presented in Eq. (12)) fails if the masking is perfect. Indeed,
in a perfect masking scheme [5], the average of each leakage !
(1 ≤ ! ≤ L) of Eqn. (13)) depends neither on T (!) nor on k∗(!).
Therefore, we also introduce the adaptation of correlation-
enhanced collision to the case of masking without any first-
order leakage. Such adaptation is done by Moradi [31]. As
explained by the author in [31, Sec. 4.4], the collision can be
done only provided a bivariate combination is done at each
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Algorithm 1 Stochastic Collision Distinguisher in the
Case of Masking in Gaussian Noise Using the EM
Approach

input : 't(·) and 'x (·), a series of L plaintexts and
leakages,
σ , the noise standard deviation.

output: Dmask
sto.coll('t(·), 'x (·)) ∈ (Fn

2)
L , as defined in Eq. (17)

// Attack using stochastic-collision powered with EM for
defeating masking

1 for 'k(·) ∈ (Fn
2)

L do
// The initial value of au must not be constant,
otherwise, obviously, the attack fails!

2 for u ∈ Fn
2 do

3 au ← wH (u) // It is better if this choice is close
to the real model ψ : Fn

2 → R
4 end
5 for iteration ∈ {1, . . . ,+∞} do

// Expectation step
6 for q ∈ {1, . . . , Q} do
7 for m ∈ Fn

2 do
8 βq(m)←

exp
(
− 1

2σ 2

∑L
!=1

(
x (!)

q − aS(t (!)q ⊕k(!))⊕m

)2
)

9 end
10 &βq ←

∑
m∈Fn

2
βq(m)

11 for m ∈ Fn
2 do

12 αq (m)← βq(m)/&βq
// Normalization (Lemma 14)

13 end
14 end

// Minimization step
15 for u ∈ Fn

2 do

16 au ←
(∑

q,m,!/S(t (!)q ⊕k(!))⊕m=u αq (m)
)−1
×

(∑
q,m,!/S(t (!)q ⊕k(!))⊕m=u αq (m)x (!)

q

)

// Eq. (20)
17 end
18 break if au has not changed (up to given

tolerance)
19 end
20 Log-Likelihood('k(·))←∑Q

q=1 log&βq

21 end

22 return argmax'k(·) Log-Likelihood('k(·))
// Notice: here, we assume for instance that k(0) is
known or brute-forced

SBox before correlation-enhanced collision. It is thus needed
to add L leakages to Eq. (13). For L = 2, the correlation-
enhanced collision is 4-variate attack which exploits,
for ! ∈ {1, 2}:
{

X (!) =ψ(S(T (!)⊕ k∗(!))⊕M)+N (!), (e.g., SBox output)
X ′(!) =ψ(M) + N ′(!), (e.g., mask leakage)

Fig. 5. Success rates for the four distinguishers Dmask
sto.coll of Eq. (17), Dcoll

of Eq. (11), Dmask
corr-coll of Eq. (21), and Dmask

opt (Eq. (14)), for (a) σ = 0.1,
(b) σ = 1, and (c) σ = 4. On the left, with a small number of traces,
on the right with more traces (in logarithmic scale for q), so that all attacks
succeed. In these figures, we have n = 4, so the SNR is simply σ−2, that is
(a) SNR = 100, (b) SNR = 1, and (c) SNR = 1/16.

where N (1), N (2), N ′(1) and N ′(2) are independent (and
assumed i.i.d. following the same law N (0, σ 2) for simpli-
fication). In this scenario, the correlation-enhanced collision
of lowest order, which we denote by Dmask

corr-coll, is given (by
analogy with Eq. (12)) by:

Dmask
corr-coll('t(·), ('x (·), 'x ′(·)))

= argmax
k(1),k(2)

∑

u∈Fn
2

∑
1≤q≤Q

s.t. t (1)
q ⊕k(1)=u

x (1)
q x ′(1)

q

∑
1≤q≤Q

s.t. t (1)
q ⊕k(1)=u

1

×

∑
1≤q≤Q

s.t. t (2)
q ⊕k(2)=u

x (2)
q x ′(2)

q

∑
1≤q≤Q

s.t. t (2)
q ⊕k(2)=u

1
. (21)

In Eq. (21), the leakages could be centered, meaning that
x (!)

q is replaced by x (!)
q − 1

Q

∑Q
q=1 x (!)

q . But the distinguisher
Dmask

corr-coll would not change, as the centering only introduces,
after expansion, terms which do not depend on the key
hypotheses k(1) and k(2).

C. Validation by Simulations for Different Noise Variances

We give in Fig. 5, for L = 2, a validation of Dmask
sto.coll

(Eq. (17)), compared to the optimal Dmask
opt (Eq. (14)) and to

the state-of-the-art Dcoll (Eq. (11)) and Dmask
corr-coll (Eq. (21)).

These results can be directly compared to that of the various
collision attacks without masking (Fig. 2), except that one
cannot choose σ = 0 for Dmask

opt (unless a division by zero
occurs). Thus, we replaced the σ = 0 (case (a) of Fig. 2) by
σ = 0.1 (case (a) of Fig. 5).
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Fig. 6. Attack results on DPA contest v4.1 standardized traces (Sbox
0 and 5).

One can see that Dmask
corr-coll performs better than Dcoll

for large noises, which was not noticed before our
work. However, despite Dmask

corr-coll exploits 4 leakages (it is
4-variate), it is less efficient than Dmask

sto.coll, which exploits
only 2 leakages (it is bi-variate). Obviously, Dmask

opt is the best
distinguisher, but most importantly, it represents the threshold
of possible attacks: no attack can have a success rate above
that of the optimal distinguisher (by definition, the optimal
distinguisher maximizes the success probability). Remarkably,
the stochastic collision attack Dsto.coll converges to the optimal
attack, whereas both state-of-the-art attacks become equivalent
and stay inferior even for high noise. Note that, as for large q
the chosen plaintext attack setting becomes equivalent to the
known plaintext attack setting, naturally, both state-of-the-art
attack become closer the more traces and thus more plaintext
are involved.

Remark 15: Note that, Dmask
corr-coll and Dmask

sto.coll have opposed
approaches to cope with masking. More precisely, Dmask

corr-coll
tries to remove the effect of the mask by multiplying the
leakage of the masked SBox and the mask alone, as it is done
in the classical second-order DPA. On the contrary, Dmask

sto.coll
handles the mask within the estimation algorithm (see Alg. 1),
and iteratively attempts to refine the model despite masking.

Remark 16: It is noteworthy that the classical collision
attack Dcoll recovers the key with fewer traces when there
is masking than when there is not. For example, it can be
seen in the right part of Fig. 2(c) (resp. of Fig. 5(c)) that Dcoll
needs 120, 000 (resp. 60, 000) traces to reach 80% of success
rate without masking (resp. with masking). This is related to
the confusion coefficient [19]. Unfortunately, due to the lack
of space we cannot go into further details.

D. Experiments on Real Traces

In the DPA contest v4.1, the masks are not uniformly
distributed over Fn

2, but over a code (we refer to [12] for more
details). Besides, the masks are not the same for all sboxes:
If mask m(1) = mi (0 ≤ i ≤ 15) for sbox 1, then the mask
for sbox 2 is m(1) = mi+1 mod 16. It is straightforward to
check that the stochastic collision approach still works. The
classical collision attack also works, albeit with an adaptation.
This is mainly due to the fact that mi ⊕mi+! is not balanced
as observed in [32].

The results are shown in Fig. 6. The signal to noise ratio
‖ψ‖22/σ 2 = ‖α‖22/σ 2 is 2.94 for Sbox 5 and 2.61 for Sbox
10. Traces have been standardized prior to attack: that is,

the mean is removed and a scaling by the standard deviation is
applied, as done in [30]. We have a finite amount of 200, 000
traces, hence with Q = 1250, only 16 attacks can be launched.
Assuming we know the model (except the masks), we would
compute a second-order CPA. This has already been done
by combining an XOR and an SBox call in [2, Fig. 4(b)],
where ≈ 300 traces are needed for 80% success rate. Here,
we compute a second-order attack by comparing it with a
SBox 1 and 5 as the two sources of leakage. This CPA
requires about 400 traces to reach 80% success rate. The
stochastic collision attack requires about twice more traces.
However, despite the stochastic collision attack, CPA requires
the knowledge of the ψ on a proportional scale.

E. Extension to Zero-Offset Collision Attacks

In a hardware setup, the various SBoxes can be instantiated
in parallel. Therefore, there is only one measurement (and one
noise), and the leakage model is slightly different from Eq. (1):

X =
L∑

!=1

ϕ(T (!) ⊕ k∗(!)) + N. (22)

Such leakage is called Zero-Offset (ZO). An adaptation of
Dsto.coll (Eq. (6)) is denoted DZO

sto.coll and given in Theorem 17.
As shown in Corollary 18, the expression can be simpli-
fied for a large number of traces and balanced plaintexts
as DZO,coll

sto.coll , which as the same expression as Dsto.coll. Note
that, the adaptation of Dcoll (Eq. (11)) is not straightforward.
Indeed, the difference in the square is always equal to zero.
Therefore, we fall back to the variant Dcoll (with corr) defined in
Eq. (25).

Theorem 17: Let G is the Q× 2n matrix whose element at
position (q, u) is G[q, u] = ∑

! δu(t(!)q ⊕ k(!)). The stochastic
collision attack defined by analogy of DZO

opt in the case of zero-
offset, where the leakage function ϕ is guessed in parallel to
the key (recall argumentation of Sec. II-B), is

DZO
sto.coll('t(·), 'x) = argmax

'k(·)∈(Fn
2)L

xTGG+x, (23)

where G+ is the Moore-Penrose pseudo-inverse of G [1].
Proof: The expression of DZO

sto.coll is

argmin
'k(·)∈(Fn

2)L

min
ϕ:Fn

2→R

Q∑

q=1

(

xq −
L∑

!=1

ϕ(t(!)q ⊕ k(!))

)2

= argmin
'k(·)∈(Fn

2)L

min
a∈R2n

Q∑

q=1



xq −
L∑

!=1

∑

u∈Fn
2

auδu(t(!)q ⊕ k(!))




2

= argmin
'k(·)∈(Fn

2)L

min
a∈R2n

Q∑

q=1



xq−
∑

u∈Fn
2

au
∑L
!=1 δu(t(!)q ⊕ k(!))

︸ ︷︷ ︸
G[q,u]





2

.

The Euclidean norm that DZO
sto.coll minimizes over a ∈ R2n

is
‖'x − Ga‖2, where G is the Q × 2n matrix whose element at
position (q, u) is G[q, u] = ∑

! δu(t(!)q ⊕k(!)). It is known that
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the solution that minimizes the Euclidean norm is a = G+'x .
Hence the minimization over 'k(·) ∈ (Fn

2)
L consists of:

∥∥(I − GG+)'x
∥∥2

= 'xT 'x − 'xT(GG+)
T 'x − 'xT(GG+)'x + 'xT(GG+)

T
(GG+)'x

= 'xT 'x − 'xTGG+'x .

Indeed, the Q× Q matrix GG+ is symmetrical, and one has
the remarkable identity GG+G = G. As 'xT 'x does not depend
on the key,

DZO
sto.coll('t(·), 'x) = argmin

'k(·)∈(Fn
2)L

'xT 'x − 'xTGG+ 'x

= argmax
'k(·)∈(Fn

2)L

'xTGG+'x .

Corollary 18: The stochastic collision attack in the case of
zero-offset leakage DZO

sto.coll is well approximated by a formula
sibling to Dsto.coll:

DZO.approx
sto.coll ('t(·), 'x) = argmax

'k(·)∈(Fn
2)L

∑

u∈Fn
2

(∑
!

∑
q/t (!)q ⊕k(!)=u xq

)2

∑
!

∑
q/t (!)q ⊕k(!)=u 1

.

(24)

One recognizes Dsto.coll (Eq. (6)) where x (!)
q is replaced by xq

(indeed, in the ZO context, the leakage is monovariate).
Proof: By the law of large numbers, we have

1
Q
&k(·) [u, v] −−−−−→

Q→+∞

∑

!,!′
p(T (!)⊕ k(!) =u∧T (!′)⊕ k(!′) =v).

Now,
• when ! = !′, p(T (!) ⊕ k(!) = u ∧ T (!) ⊕ k(!) = v) ={

2−n if u = v,

0 otherwise;
• when ! 1= !′, p(T (!) ⊕ k(!) = u ∧ T (!′) ⊕ k(!′) = v) =

p(T (!) = k(!)⊕u)× p(T (!′) = k(!′)⊕v) = 2−2n because
T (!) and T (!′) are independent.

Therefore, we have that:

1
Q
&k(·)

−−−−−→
Q→+∞

L × 2−n





1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1





+ L(L − 1)× 2−2n





1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1





= 2−2n L





2n +(L−1) (L−1) · · · (L−1)
(L−1) 2n +(L−1) · · · (L−1)

...
...

. . .
...

(L−1) (L−1) · · · 2n +(L−1)




.

Fig. 7. Success rates for the four collision attacks in the context of zero-
offset leakage for σ = 0.1 and σ = 4. In these figures, we have n = 4, so the
SNR is simply σ−2, that is SNR = 100 and SNR = 1/16.

Clearly, as in practice one has 2n 7 (L − 1) (e.g., n =
4 or 8, and L = 2 or 3), the extra-diagonal terms can be
dropped from the matrix without altering it significantly.

So, for small values of Q, we simplify &k(·) as a diagonal
matrix, whose element at position (u, u) is

∑
q,!/t (!)q ⊕k(!)=u 1.

Thence, the approximate distinguisher DZO.approx
sto.coll takes on the

announced form.
The success rates of the four distinguishers are represented

in Fig. 7, under similar conditions as those obtained for a
bivariate leakage (L = 2, and two distinct leakage samples
— recall Fig. 2). First of all, we notice that all four dis-
tinguishers succeed even in the ZO (monovariate collision)
context, and that the optimal distinguisher DZO

opt is, as expected,
the best. Second, we see that the stochastic collision is still
achieving better than other state-of-the-art variants DZO

corr-coll
and DZO

coll (with corr). Although the distinguisher DZO
sto.coll can be

computed for any number Q ≥ 1 of traces, its performance
is fairly bad for strictly less than Q = 2n traces. The reason
is that not all the possible texts have been encountered, hence
a poor stochastic characterization of the leakage function. So,
in our case, the success rate is ≈ 0 for Q < 2n , and the
approximation DZO.approx

sto.coll is thus better in this tiny region,
which is especially visible for extremely high SNRs (σ = 0.1).
This is actually the only limitation we observed about stochas-
tic collision attacks: they are not reliable when the system
of observations and unknown variables (model and key) is
underdetermined. But clearly, when Q ≥ 2n , the accurate
DZO

sto.coll overcomes the approximate DZO.approx
sto.coll in terms of

success rate.
For σ ≥ 1, many traces (Q ! 100) are required to

recover the key, hence DZO
sto.coll is very well approximated by

DZO.approx
sto.coll . Besides, Lemma 9 applies, hence DZO.approx

sto.coll is in
turn equivalent to DZO

corr-coll. Only DZO
coll (with corr) lags behind,

because it is impeded by the fact traces are specialized to test
one key hypothesis out of 2n (recall Remark 8).

Eventually, we notice that in the absence of masking, even
in high noise setups, the non-optimal distinguishers never
perform as well as the optimal distinguisher (as was already
shown for the L-variate collisions in Fig. 2).

V. CONCLUSIONS

In this paper, we mathematically derived the stochastic
collision attack from the optimal distinguisher, while com-
bining the flavors from collision attacks and stochastic mod-
elling. The classical collision attack is inefficient in that it
discards traces, which do not feature collisions. Similar to the
correlation-enhanced collision attack, our approach consists in
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Fig. 8. Comparison between Dcoll and Dcoll (with corr).

taking advantage of all traces with a view to build a leak-
age model while distinguishing keys. Compared to stochastic
attacks, our new methodology can apply linear regressions
with the full basis which puts aside the problem of soundly
choosing a sound sub-basis and allows, asymptotically, for
perfectly recovering the algebraic description of the determin-
istic part of the leakage. Both in simulation and in real life,
we have shown that the stochastic collision attack outperforms
the state-of-the-art collision attacks, except in the unprotected
case with (very) low SNR where the correlation-enhanced
collision attack has similar efficiency, which confirms that
in this unprotected low signal-to-noise scenario the state-of-
the-art correlation-enhanced collision attack was already an
appropriate choice. Furthermore, we extended our attack to
the scenario of masking countermeasures in software and
hardware and confirmed its practicability in simulations and
experiments.

APPENDIX A
COMPARISON BETWEEN VARIANTS OF CHES 2011 [15]

COLLISION ATTACK

In this appendix, we provide a comparison between two
variants of collision-correlation power analysis on first-order
protected AES, where the same mask is used at two SBoxes.
Namely, we compare the collision based on pairwise square of
differences (Dcoll, defined in Eq. (11)) with the collision based
on correlation, in the same setup as in Sec. IV. According to
Remark 7, the correlation sibling variant of Dcoll is:

Dcoll (with corr)('t(·), 'x (·))

= argmax
k(·)∈(Fn

2)2

∑
1≤q≤Q

s.t. t (1)
q ⊕t (2)

q =k(1)⊕k(2)

x (1)
q × x (2)

q

∑
1≤q≤Q

s.t. t (1)
q ⊕t (2)

q =k(1)⊕k(2)

1
. (25)

Notice that both Dcoll and Dcoll (with corr) use only a fraction
2−n of the traces for each key guess. This is an inherent limi-
tation of the correlation-collision attacks of CHES 2011 [15].
As explained in Remark 7, both attacks are supposed to be
equivalent, which can be checked in Fig. 8 (curve in yellow
and dark blue) for a noise of variance σ = 4.

APPENDIX B
CORRELATION-ENHANCED COLLISION ATTACK

The correlation-enhanced collision attack [33] consists in
estimating the average value of the leakage of an SBox for

a given text. Then, assuming the two SBoxes leak the
same, their average value is expected to match when the
correct key is XORed to each corresponding plaintext byte.
Moradi et al. propose to use a correlation coefficient to
estimate the similarity of leakage of each SBox. The attack
first estimates moments on one SBox (whose key byte must
be known), and then matches it online on the second SBox.
Thus, a bivariate attack reveals (like Dcoll and Dsto.coll) only
the XOR between the two key bytes.

Formally, let us denote the mean of leakage of SBox !,
1 ≤ ! ≤ L, conditioned by the text byte u ∈ Fn

2, as:

Ê(X (!)|T (!) = u)

=




∑

1≤q≤Q
s.t. t (!)q ⊕k(!)=u

1





−1 


∑

1≤q≤Q
s.t. t (!)q ⊕k(!)=u

x (!)
q




.

Assume a fictive random variable U uniformly distributed
on Fn

2. For a random variable A(U), which depends on U ,
let us also denote 〈A(U)〉 = 1

2n

∑
u∈Fn

2
A(u). So, the Dcorr-coll

distinguisher is computed as:

Dcorr-coll('t(·), 'x (·))
= argmax

k(1),k(2)

ρU (Ê(X (1)|T (1) = U ⊕ k(1)),

Ê(X (2)|T (2) = U ⊕ k(2))),

where the Pearson correlation coefficient is

ρU (A(U), B(U))

= 〈A(U)B(U)〉 − 〈A(U)〉〈B(U)〉
√
〈A(U)2〉 − 〈A(U)〉2

√
〈B(U)2〉 − 〈B(U)〉2

.

Now, the average 〈Ê(X (!)|T (!) = U ⊕ k(!))〉 =
〈Ê(X (!)|T (!) = U)〉 does not depend on a key. Thus, in the
computation of Dcorr-coll, only the expectation of the product
is key-dependent. Hence, Dcorr-coll may be rewritten:

Dcorr-coll('t(·), 'x (·))
= argmax

k(1),k(2)

∑

u∈Fn
2

Ê(X (1)|T (1) = u ⊕ k(1))

× Ê(X (2)|T (2) = u ⊕ k(2))

= argmax
k(1),k(2)

∑

u∈Fn
2

∑
1≤q≤Q

s.t. t (1)
q ⊕k(1)=u

x (1)
q

∑
1≤q≤Q

s.t. t (1)
q ⊕k(1)=u

1
×

∑
1≤q≤Q

s.t. t (2)
q ⊕k(2)=u

x (2)
q

∑
1≤q≤Q

s.t. t (2)
q ⊕k(2)=u

1
.
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