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DDoS Attacks with Randomized Traffic

Innovation: Botnet Identification Challenges
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Abstract

Distributed Denial-of-Service (DDoS) attacks are usually launched through the botnet, an “army”

of compromised nodes hidden in the network. Inferential tools for DDoS mitigation should accordingly

enable an early and reliable discrimination of the normal users from the compromised ones. Unfortu-

nately, the recent emergence of attacks performed at the application layer has multiplied the number of

possibilities that a botnet can exploit to conceal its malicious activities. New challenges arise, which

cannot be addressed by simply borrowing the tools that have been successfully applied so far to earlier

DDoS paradigms. In this work, we offer basically three contributions: i) we introduce an abstract model

for the aforementioned class of attacks, where the botnet emulates normal traffic by continually learning

admissible patterns from the environment; ii) we devise an inference algorithm that is shown to provide

a consistent (i.e., converging to the true solution as time elapses) estimate of the botnet possibly hidden

in the network; and iii) we verify the validity of the proposed inferential strategy over real network

traces.

Index Terms

Distributed Denial-of-Service, DDoS, Cyber-security, Signal Processing for Network Security.

I. INTRODUCTION AND MOTIVATION

Cyber-security ranks among the biggest challenges of modern times. Whether we are talking

of phishing, website sabotages, or even of terrorist attacks, protecting our digital lives is an issue

A short and limited version of this work appears in the conference publication [1].
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of paramount importance. Networks, and especially the Internet, became the natural attackers’

habitat to hide a broad variety of threats. For instance, a dangerous attack to a powerful target

site (e.g., a big e-commerce portal) is often launched through a series of apparently innocuous

attacks to some powerless, but most vulnerable, sites (e.g., some personal computers).

One of the most popular threats is the Denial-of-Service (DoS) attack, which can be broadly

categorized as a volumetric attack, where the target destination is overwhelmed by a huge number

of requests, eventually leading to the impossibility of serving any of the users. In particular, with

a Distributed DoS (DDoS) attack, such a huge number of requests is produced in parallel by a net

of robots (the botnet). According to one of the classical DDoS representations, a relatively large

ensemble of machines (the bots or zombie “army”), acts cooperatively under the supervision of

one or more coordinators (the botmasters). The bots may be either themselves malicious users

acting consciously, or they may be legitimate users that have been preliminarily infected, (e.g.,

by warms and/or Trojans).

The existence itself of an anomalous request rate is essentially uncovered, and, hence, its

detection is not a big deal. The main challenge is instead ascertaining whether the anomaly

is caused by a DDoS attack, and, if so, performing a correct/early identification of the botnet

hidden in the network. These operations are crucial to achieve successful DDoS mitigation, since

discriminating legitimate from malicious users would allow the destination to ban the latter,

without denying the service to the former. Providing inference solutions to botnet discovery and

identification is the main subject of this work.

A. Related Work

The literature about DDoS attacks is rich, and we refer the Reader to the survey in [2] as a

useful entry-point. The earliest DoS paradigms (see, e.g., TCP SYN flooding), relied on specific

protocols’ vulnerabilities, and were characterized by the repetition of one (or few) requests with a

huge rate. In this situation, the single source of the attack can be identified by simply computing

its unusually large request rate.

The distributed variants of such attacks exploit basically the same kind of vulnerabilities and

repetition schemes, but for the fact that the large request rate is now obtained by aggregating

many small individual bot rates. This notwithstanding, in such attacks, the bots can be still

identified at a single-user level. Indeed, normal traffic patterns are typically characterized by a
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certain degree of innovation, while the repetition scheme implicitly emphasizes the bot character.

In fact, several useful inferential strategies have been proposed for such kind of DDoS attacks,

see [2] for a comparative summary.

Recently, the new class of application-layer DDoS attacks is emerging as one of the most

powerful threats [3]–[6]. In such attacks, the malicious traffic patterns are disguised as normal

ones by leveraging the many possibilities offered at the application layer (for instance, when

surfing through a website, more and more web-pages are likely to be explored as time elapses).

By assigning a sufficient degree of variability to each individual bot’s pattern, identification

strategies based on single-user inspection become harmless. Building on such new possibilities,

in this work we shall introduce a formal model for DDoS attacks where the botnet gets at its

disposal a certain emulation dictionary to build the traffic patterns.

A number of intriguing questions arise. Despite the strong power given to the attacker, is it

still possible to consistently unveiling the presence of a botnet? If so, which are the pertinent

inferential strategies, and which the performance limits? Which is the fundamental trade-off

between the botnet learning ability and the inference performance?

B. Relevant Inferential Tools and Methods

The inferential strategies available in the literature are not conceived to manage the class

of DDoS attacks with increasing emulation dictionary [2]. While in principle it is possible to

generalize and take inspiration from some of these strategies, plug-in solutions to our problem

are currently unavailable. Therefore, new inferential solutions must be conceived.

Classical parametric statistical methods (e.g., maximum likelihood, Neyman-Pearson tests)

typically offer a high degree of tractability, analytical results and performance guarantees, but

they are suited to those situations where a detailed knowledge of the models is available [7]–

[10], a condition that is far from being verified in our setting. As a result, the aforementioned

benefits are often paid in the coin of scarce robustness, sensible performance loss, low degree

of versatility and adaptation.

In contrast, fully data-driven techniques (e.g., machine learning) do not require a detailed

knowledge of the underlying models, and provide a high degree of versatility, with these advan-

tages being often paid in the coin of lack of analytical results and performance guarantees, hard

physical interpretation of the metrics, heavy algorithm-tuning when parameters change.

July 2, 2018 DRAFT



4

In order to partly circumvent the limitations of both approaches, as well as to retain some

advantages thereof, in the present work we follow some emerging trends in signal processing for

network cyber-security applications, which lie somehow in-between parametric and fully data-

driven techniques. As notable examples, we mention: sparsity-aware algorithms for unveiling

traffic volume anomalies [11]–[13]; universal algorithms for tracing information flows across

the network [14]–[19]; hypothesis testing in the presence of adversaries that can corrupt the

data, when the statistical hypotheses are specified only through training data [20]. Inspired by a

common underlying philosophy, such works suggest to pursue the following principled approach:

i) focus on minimal-and-realistic physical assumptions; ii) envisage physically-meaningful de-

scriptive indicators arising from the modeling assumptions; iii) devise consequently an inference

strategy.

The DDoS class considered in this work builds upon and generalizes some dangerous threats

that have been recently documented in the literature. To the best of our knowledge, this is the

first attempt to provide a systematic analysis and to devise suitable countermeasures for such

kind of attacks. As a future research step, an interesting extension would be optimizing (from

the attacker’s viewpoint, i.e., playing the bad guy role) the kind of DDoS attack. This approach

would naturally lead to an adversarial perspective where the DDoS and the botnet-identification

strategies should be optimized jointly, by looking for equilibrium solutions aimed at managing

the attacker’s and defender’s conflicting requirements [21].

C. Main Result

This work deals with the design and analysis of inference strategies aimed at identifying

a botnet in the context of distributed denial-of-service attacks. In our setting: i) the network

analyst collects traffic patterns from across the network, and has access to the message content;

ii) the meaning of the messages produced by an individual user provides no special information

about its nature, legitimate, or malicious; and iii) no specific assumptions are made about the

characterization of the traffic patterns of a normal user. In this respect, the inference strategies

proposed in this work are non-parametric.

Starting from the attacks documented in the literature, we introduce a formal model for

randomized DDoS attacks with increasing emulation dictionary, which is defined by the following

main features: i) the botnet emulates the normal traffic patterns by gleaning admissible messages
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from an emulation dictionary; and ii) the botnet is given the strong power of learning an

emulation dictionary that becomes richer and richer as time elapses, so as to guarantee a sufficient

variability across messages. In order to quantify the botnet learning ability, in this work we

introduce the Emulation Dictionary Rate (EDR), namely, the increase of dictionary cardinality

per unit time.

Notably, the considered class of DDoS attacks is more general and powerful than many attacks

documented in the literature. The assumption of such great power in the attacker’s hands might

perhaps look overly pessimistic. At the same time, a worst-case analysis is perfectly suited to

security applications, and allows getting important insights as regards the botnet identifiability

under challenging operational conditions.

The fundamental descriptive indicator employed in this work to ascertain the nature of network

users is the Message Innovation Rate (MIR), namely, the number of distinct messages per unit

time, transmitted by a given group of users. The relevance of the MIR for botnet identification

purposes arises since, in view of the coordination in the DDoS attack, the users belonging to a

botnet are expected to exhibit a smaller degree of innovation than normal users, which act by

their own nature independently one each other.

Our first contribution determines the MIR for a botnet B, with either deterministic or Poisson

transmission scheduling. Denoting by λB the transmission rate corresponding to the overall

transmission activity in B, and by α the EDR, we show that the MIR converges in probability

to the following innovation rate (Theorem 1):

R(α, λB) =
αλB
α + λB

(1)

Our second contribution consists of devising an algorithm that, under a suitable Botnet Identifi-

cation Condition (BIC), guarantees that the botnet hidden in the network is correctly identified

as time elapses (Theorem 2).

Finally, as a third contribution, all of the aforementioned theoretical results are tested and

validated over real network traces; the experimental outcomes are definitely encouraging.

Notation. P[·] and E[·] denote the probability and the expectation operators, respectively. Given

an ensemble of random variables Xt (with either continuous or discrete index t), the notation

Xt
p−→ X means that Xt converges in probability to X as t→∞ [22].
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II. NETWORK ACTIVITY INDICATORS

We start by introducing the basic quantities that will be used to describe the network activity.

The first quantity relates to the transmission activity of the network users. Each user employs a

certain scheduling, which is identified by the transmission epochs of its own messages. More in

general, for any given subnet S of the network, we can define the aggregate pattern that comprises

all (ordered) transmission epochs of the users belonging to S, formally: TS(1), TS(2), . . . , where

TS(i) is the i-th (random) transmission epoch of users belonging to S. Likewise, the pattern of an

individual user u becomes: Tu(1), Tu(2), . . . , where, with a slight abuse of notation (which will

be used throughout the work), we have written u in lieu of {u}. The total number of transmissions

occurred in S, up to a given (deterministic) time t is denoted by NS(t) , |{i : TS(i) ≤ t}|.

As an indicator of the transmission activity, we introduce the empirical transmission rate at

time t, namely,

λ̂S(t) ,
NS(t)

t
(2)

Whenever a limiting rate (as t goes to infinity) is meaningfully defined, it will be denoted by

λS, which will be simply referred to as the transmission rate of subnet S.

Two examples of transmission schedulings which are relevant for our DDoS application, and

which admit a limiting rate, are the synchronous, constant-rate transmission scheduling, and the

independent Poisson scheduling. In the former case, all users transmit synchronously, and the

(constant) interval between two transmissions has duration 1/λ. The empirical transmission rate

clearly obeys: λ̂S(t)→ λ |S| as t→∞. In the latter case, the transmission pattern of user u is a

Poisson process with rate λu, and the processes are mutually independent. Since the aggregate

of independent Poisson processes is still a Poisson process, as a straightforward application of

the (weak) law of large numbers, we have [23]: λ̂S(t)
p−→
∑

u∈S λu.

As a second indicator of the network activity, we define a quantity that relates to the content of

the messages sent by network users. We are interested in the new messages that are incrementally

produced by the users during their activities, namely, in a Message Innovation Rate (MIR). In

order to obtain a formal definition of the MIR, let DS(t) denote the empirical dictionary composed

by the distinct messages sent, up to time t, by users within S. For the sake of clarity, we remark

that, if the same message is sent, e.g., twice, from users belonging to S, it appears only once in
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the dictionary DS(t). The empirical Message Innovation Rate (MIR) is:

ρ̂S(t) ,
|DS(t)|
t

(3)

In particular, if ρ̂S(t)
p−→ ρS, the limiting value ρS will be simply referred to as the MIR of

subnet S.

III. RANDOMIZED DDOS WITH EMULATION DICTIONARY

A botnet Btot, composed by Btot malicious nodes, sends messages to the destination under

attack in order to saturate its resources. The botnet mimics normal patterns by picking messages

from an emulation dictionary, which is learned continually (i.e., its cardinality increases with

time), in order to ensure that a reasonable innovation rate can be sustained. Such a dictionary

construction can occur in many different ways. For instance, by means of one or more powerful

botmasters, the botnet might be able to perform an on-line monitoring of normal activities

from across the network. From such a monitoring, sequences of messages corresponding to

normal patterns of activity are collected, allowing the construction of a dictionary of admissible

messages.

Let E (t) be the (common) dictionary available at time t to all botnet members. We assume

that the number of messages available for emulation grows, asymptotically, in a linear fashion.

Therefore, it makes sense to introduce the Emulation Dictionary Rate (EDR) as:

α , lim
t→∞

|E (t)|
t

(4)

Given the emulation dictionary, the botnet has clearly many ways to build the traffic patterns. At

one extreme, the botmaster disseminates Btot disjoint (say, equal-sized) portions of E (t) through

the botnet. Then, each bot builds its traffic pattern by scanning, in a sequential fashion, its

portion of the emulation dictionary. Such a scheme would clearly maximize the independence

among the bots. With this policy, the problem would become equivalent to the case that each

bot owns a distinct emulation dictionary with EDR equal to α/Btot. However, since Btot must

be large, it is unrealistic to assume that a botmaster can learn so many patterns to build Btot

distinct dictionaries that are in turn so rich to guarantee a credible emulation. Therefore, in the

case of disjoint dictionaries, the number of distinct messages available to a single bot would be
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typically small, implying a suspiciously high degree of replication, which would make the bots

easily identifiable by single-user inspection.

At the other extreme, each bot might simply use all messages contained in E (t). Clearly, such

scheme maximizes the innovation of each individual bot, but also maximizes the dependence

inside the botnet. By inspection of the messages sequentially sent by two or more bots, a traffic

analyst would recognize an anomalous behavior.

We hence assume that the attacker has devised some intermediate strategy to circumvent the

aforementioned issues. We introduce a class of randomized DDoS attacks, where a bot that

intends to transmit at time t picks a message from the available emulation dictionary E (t), and

sends such a message to the destination. The message is chosen uniformly at random, so that

the probability of a particular message is simply 1/|E (t)|.

The corresponding evolution of the empirical dictionaries, for any subnet B of Btot, is easily

obtained as follows. Given the empirical dictionary DB(t), the empirical dictionary DB(t + τ)

is obtained by adding the distinct messages not contained in DB(t), which have been selected

during the interval τ by the bots belonging to B.

We stress that the scheme examined here is not the only one. Other possible attacks include:

purely volumetric DDoS; strategies using disjoint dictionaries; hybrid strategies using groups

of disjoint dictionaries disseminated through the network. While in this work we focus on a

specific class of DDoS attacks, our treatment (as will be clear from the forthcoming analysis)

is sufficiently flexible to accommodate extensions to many interesting scenarios.

A. Characterization of the Botnet Message Innovation Rate

Let us preliminarily introduce the following function:

R(α, λ) ,
αλ

α + λ
(5)

Our first result provides a closed-form expression for the MIR of a botnet.

THEOREM 1 (Botnet MIR). Consider a botnet Btot launching a DDoS attack, where the node

transmission policies are either synchronous with constant transmission rate, or independent

Poisson processes, with rates λu, for u ∈ Btot. Consider a subset of the botnet B ⊆ Btot. Let

E (t) be the emulation dictionary available to the botnet, with emulation dictionary rate α, and
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let DB(t) be the empirical dictionary of the subnet B at time t. Then, the message innovation

rate of B is:
|DB(t)|

t

p−→ ρB = R(α, λB) (6)

where λB =
∑

u∈B λu is the aggregate transmission rate of the considered botnet subset.

Proof. See Appendix A. �

REMARK I. From (5) and (6) we see that increasing the EDR α and/or the transmission rate λ

corresponds to increasing the MIR. Besides, the MIR is always smaller1 than min(α, λ), which

makes sense, since the number of new messages can exceed neither the number of messages

in the emulation dictionary (R(α, λ) ≤ α), nor the overall number of transmitted messages

(R(α, λ) ≤ λ). Notably, the quantity min(α, λ) is the MIR corresponding to a practical scheme

where the patterns are obtained by taking sequentially (in a deterministic way) the messages of

the emulation dictionary. With such a scheme, if α > λ, a new message can be always found

in E (t), and the maximum rate of distinct messages is λ. Likewise, if λ > α, all messages in

E (t) can be selected, along with some unavoidable repetitions, and the maximum rate of distinct

messages is α.

REMARK II. As α goes to infinity, the MIR converges to λ. In fact, as the number of messages

in the emulation dictionary goes to infinity, each transmission would correspond with high

probability to a new message, and the MIR will eventually reach the maximum allowable value

λ. Likewise, as λ goes to infinity, we see that the MIR converges to α. In fact, as the number

of sent messages goes to infinity, the emulation dictionary is completely spanned, and the MIR

will eventually saturate to its maximum allowable value α.

REMARK III. The MIR is symmetric in α and λ, implying that both quantities, even if they have

a completely different practical meaning, play the same role as regards their effect on the MIR.

In particular, we can write R(α, λ) = (1/α + 1/λ)−1, which reveals that the rate R(α, λ) can

be represented as the inverse of a time interval given by the sum of the average time between

two messages available in the emulation dictionary, 1/α, and the average time between two

transmissions, 1/λ.

1For x > 0 and y > 0, one has x/(x+ y) ≤ 1.
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REMARK IV. For strictly positive α and λ we have:

R(α, λ1) + R(α, λ2) > R(α, λ1 + λ2) (7)

The latter inequality can be straightforwardly checked by exploiting the definition of R(α, λ)

in (5). More interestingly, such inequality can be explained in the light of the physical interpre-

tation of Theorem 1. In fact, the LHS in (7) corresponds to the MIR of a botnet made of two

subnets: i) featuring transmission rates λ1 and λ2, respectively, and ii) picking messages from

two disjoint dictionaries, each one with EDR equal to α. In contrast, the RHS corresponds to the

MIR of a botnet made of two subnets, still featuring transmission rates λ1 and λ2, but picking

messages from a common dictionary with EDR α. Hence, the lower bound follows.

REMARK V. Our focus is on genuinely-distributed DoS attacks where the number of bots is

large, and the transmission rate of each bot is not anomalous. Let us now consider a different

DDoS strategy. Assuming for simplicity that all bots have unitary transmission rates, the MIR

of user u, and the MIR of the whole botnet will be, respectively,

ρu =
α

α +Btot
, ρBtot =

∑
u∈Btot

ρu =
αBtot

α +Btot
, (8)

where the first relationship follows from Theorem 1, while the second relationship follows from

disjointness of the emulation (and, hence, of the empirical) dictionaries. For our coordinated

DDoS with common emulation dictionary, Theorem 1 gives:

ρu =
α

α + 1
, ρBtot =

αBtot

α +Btot
. (9)

Notably, the rightmost formulas in (8) and (9) reveal that the MIR for the case of disjoint

dictionaries is the same as the MIR of a botnet using a common emulation dictionary. On the

other hand, the leftmost formulas in (8) and (9) reveal that the MIR of a single bot for the

case of disjoint dictionaries is approximately Btot times smaller than the MIR of a single bot for

the case of a common emulation dictionary. Such a reduced degree of innovation matches the

observations reported below (4), concerning the flaws of deterministic DDoS attacks based on

disjoint emulation dictionaries.

REMARK VI. Assume that the traffic analyst must estimate α based on the patterns collected from

a certain subnet S. From (5) and (6), we have α = λS ρS/(λS − ρS). Accordingly, a reasonable
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estimator of α can be obtained by replacing ρ and λ with their empirical counterparts, yielding:

α̂S(t) ,
λ̂S(t) ρ̂S(t)

λ̂S(t)− ρ̂S(t)
(10)

In view of Theorem 1, such estimator converges in probability to α as t goes to infinity, for any

S ⊆ Btot.

In contrast, when dealing with normal users, such an interpretation fails in general, since:

i) a limiting value α does not necessarily exist, and ii) the generative mechanism of normal

patterns is not necessarily interpreted in terms of random picking from an emulation dictionary.

Nevertheless, the quantity α̂S(t) can be meaningfully defined also for arbitrary subnets (i.e.,

composed also, or even exclusively, by normal users), since it represents the ratio between

the empirical rate of “distinct” messages ρ̂S(t), and the empirical rate of “repeated” messages

λ̂S(t)− ρ̂S(t), scaled2 by the empirical transmission rate λ̂S(t). Such an interpretation is useful

since it is now independent from the particular model adopted (transmission scheduling, botnet

or normal behavior, etc.). In the following, even when dealing with arbitrary subnets, we shall

loosely refer to α̂S(t) as the empirical, or estimated EDR.

Finally, exploiting (5) and (10), the empirical MIR ρ̂S(t), for an arbitrary subnet S, can be

expressed as:

ρ̂S(t) = R(α̂S(t), λ̂S(t)) (11)

IV. BOTNET IDENTIFICATION CONDITION

The coordination implied in the distributed DoS attack introduces some correlation between

the empirical dictionaries of the bots, due to the common emulation dictionary where messages

are selected. In contrast, the empirical dictionaries of two normal users are expected to be weakly

correlated, due to independence among their activities. Likewise, the empirical dictionaries of a

bot and of a normal user are expected to be weakly correlated, since the network employed by

the botmaster to acquire the emulation dictionary is usually not part of the network monitored

by the traffic analyst.

On the other hand, even in the presence of normal (thus, independent) users, it is realistic to

assume a certain degree of physiological correlation among the users’ activities. Distinct users

2The scaling simply corresponds to expressing the result on a per-time-unit basis, rather than on a per-transmission basis.
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can reasonably share parts of their dictionaries, e.g., their surfing activities might partly overlap,

due to common interests, popular web-pages, peculiar structure of the destination of interest,

etc. Similar considerations apply when dealing with a subset of the botnet and a subnet made

only of normal users.

Given the very limited amount of information and assumptions we made, and according to the

above discussion, any meaningful strategy to discriminate a normal from a malicious behavior,

cannot but be based on the degree of dependence among the users. In our setting, a convenient

way to measure the degree of dependence is provided by the empirical message innovation

rate in (3). However, the mere availability of a good network indicator does not provide a

quantitative way to discriminate normal users from bots. In order to design an algorithm for

botnet identification, we need to define a proper identification threshold. To this aim, we can

use as reference case for a malicious behavior, the MIR corresponding to the activity performed

by a botnet. In order to understand how such operation can be implemented, let us start by

considering the case that we must decide whether users 1 and 2 belong to a botnet. Assume

for now that the empirical EDRs of the two users obtained through (10) are comparable (the

explicit dependence on t being suppressed, for ease of notation, here and in the forthcoming

discussion):

α̂1 ≈ α̂2 ≈ α̂. (12)

When both users belong to a botnet, in view of Theorem 1, for t large enough we can write:

ρ̂{1,2} ≈ R(α̂, λ̂1 + λ̂2) , ρ̂bot. (13)

Moreover, irrespectively of the users’ nature, the empirical MIR of the aggregate subnet {1, 2}

can be upper bounded by the MIR corresponding to disjoint dictionaries, namely,

ρ̂{1,2} ≤ ρ̂1 + ρ̂2 = R(α̂1, λ̂1) + R(α̂2, λ̂2) , ρ̂sum

≈ R(α̂, λ̂1) + R(α̂, λ̂2), (14)

where the second equality follows from (11), while the approximate equality follows from (12).

Since from (7) we know that ρ̂bot < ρ̂sum, it makes sense to introduce a threshold lying between

the two points ρ̂bot and ρ̂sum, formally, for ε ∈ (0, 1):

ρ̂bot < γ = ρ̂bot + ε(ρ̂sum − ρ̂bot) < ρ̂sum. (15)
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When the two users belong to a botnet, from (13) we see that, for large t, the empirical MIR

ρ̂{1,2} converges to the value ρ̂bot. On the other hand, using Theorem 1, it is easy to verify that

ρ̂sum − ρ̂bot converges in probability to a positive quantity, which implies that, for any ε > 0, as

time elapses, the empirical MIR will stay sooner (higher ε) or later (lower ε) below the threshold

γ, yielding:

1 AND 2 are bots⇒ ρ̂{1,2} < γ (16)

Consider now the case that at least one user is normal. Were the dictionaries of the two users

perfectly disjoint, we would clearly observe, for any ε ∈ (0, 1), that ρ̂{1,2} ≈ ρ̂sum > γ. However,

we already noticed that some correlation is expected to exist even among normal users, or among

normal users and bots. It is also natural to assume that such a correlation is weaker than the

correlation exhibited by groups of bots, since the latter are choosing their messages from one

and the same underlying dictionary.3 Accordingly, we might expect that, when at least one user

is normal, for sufficiently small ε, the empirical MIR still stays above the threshold, namely:

1 OR 2 are normal⇒ ρ̂{1,2} > γ (17)

In summary, if the empirical MIR stays below γ, we can declare that the two users form a

botnet, otherwise, we can declare that at least one user is normal.

Two main points emerge. First, the essential feature enabling a successful discrimination is the

assumption in (17), which accordingly plays the role of a Botnet Identification Condition (BIC).

Second, the determination of the threshold γ relies on a tuning parameter ε, which is in principle

related to the intrinsic (and unknown) properties of the normal traffic patterns. Remarkably, the

experimental study conducted in the forthcoming Sec. VI will show clearly that: i) the BIC

can be safely used, and ii) the choice of ε is by no means critical, even in the non-parametric

scenario where no prior information about the normal users’ behavior is available.

Unfortunately, all that glitters is not gold. There is an important complication that has been

deliberately overlooked so far. According to the above explanation, we need to compare the

empirical MIR to the MIR of a reference botnet. However, a botnet is characterized by a common

underlying EDR α, while in practice we shall typically have α̂1 6= α̂2 (especially when at least one

user is normal), implying that the approximation in (12) is unsupported. One approach could

3 In making such assumption, we imply that the specific mechanism used to build normal patterns has a minor influence.
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be that of discarding ab initio the botnet hypothesis whenever α̂1 and α̂2 are too dissimilar.

The qualification of being “too dissimilar” translates into the appearance of some extra tuning

parameter, possibly depending on time, which we want definitely to avoid.

Another possibility is clearly that of choosing as reference EDR some intermediate value

comprised between α̂1 and α̂2. In this connection, we remark that the naı̈ve choice of the

arithmetic average does not work for the following reason. It can be simply verified that, in

general, there exist values of λ1, λ2, α1, α2 ∈ R+ for which R(λ1, α1) + R(λ2, α2) < R(λ1 +

λ2, 1/2(α1 + α2)), implying that the empirical MIR, even for the case of disjoint dictionaries,

is not necessarily greater than the MIR of a botnet with reference EDR given by the arithmetic

average of α̂1 and α̂2. A systematic way to select a proper intermediate value is substantially

more involved, and is the object of the forthcoming section.

A. Reference EDR by Replacement and Reassignment

Let us consider two (disjoint) subnets S1 and S2, with focus on the case that at least one

of them is composed only by normal users, with α̂S1 6= α̂S2 . Recall that we are considering a

fixed time t, and that the explicit dependence of all quantities upon t is suppressed for ease of

notation.

Since a botnet has common underlying EDR, and since we want to compare the behavior of

S1 ∪ S2 to that of a botnet, it would be useful to envisage a new pair of traffic patterns for S1

and S2 possessing the following characteristics:

i) The individual EDRs of S1 and S2 are equal, namely (superscript ′ refers to the “new” patterns),

α̂′S1 = α̂′S2 = α̂′. (18)

ii) The transmission rate and the MIR of the network S1∪S2 coincide with those of the original

traffic patterns.

We now illustrate a Replacement and Reassignment (RR) procedure, which finds such a new

pair starting from the original pattern configuration. Such a procedure relies on the intuitive

consideration that, if some messages are reassigned from the subnet with highest EDR to the other

subnet, the resulting EDRs tend to keep closer each other. In order to avoid misunderstandings,

we remark that the RR procedure does not correspond to any real/physical operations made on
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Fig. 1. The RR procedure, pictorial exemplification.

the traffic patterns. The RR procedure is a conceptual experiment used to demonstrate that it is

possible to construct two patterns possessing the aforementioned requirements i) and ii).

The RR procedure goes as follows — see Fig. 1 for a pictorial illustration.

1. Replacement of repeated messages. The traffic pattern of a subnet S contains |DS| distinct

messages, the remaining NS − |DS| ones being repetitions of messages contained in DS. The

first step of the procedure amounts to replacing such NS − |DS| messages by one and the same

message, say it m∗, contained in DS. The replacement is applied to both subnets S1 and S2,

with the corresponding replacing messages being m∗1 and m∗2. Since replacement acts only on

the message content, the transmission rates do not change. Moreover, since replacement leaves

unaltered the number of distinct messages within each subnet, the MIR of the subnets, and the

MIR of S1 ∪ S2, are unaltered.4

2. Reassignment of messages. Some messages will be reassigned from one subnet to the other

subnet (only in one direction, namely, either from S2 to S1 or from S1 to S2). For the sake of

4The MIR is determined only by the content of the empirical dictionaries.
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clarity, assume that S2 is “passing” some of its messages to S1, with the prescription that the

replacing message m∗2 is never passed. Since, after replacement, all messages different from m∗2

appear only once in the pattern of S2, we see that all messages passed to S1 are necessarily

distinct. The rate of messages (number of messages normalized to the current time t) that are

reassigned from S2 to S1 is denoted by ∆. Accordingly, a negative ∆ will correspond to the

converse situation where S1 passes some of its messages to S2. As a result, the transmission

rates of the pattern configuration after reassignment are:

(λ̂′S1 , λ̂
′
S2

) = (λ̂S1 + ∆, λ̂S2 −∆). (19)

Moreover, since the correlation between the two patterns is weak (recall that one of the subnets

is composed only by normal users), we assume that it is always possible to reassign messages

that do not belong to the intersection of the two empirical dictionaries. Such assumption, along

with the fact that all passed messages are distinct, implies that, in terms of individual MIRs,

what is lost by a subnet is exactly gained by the other subnet. Formally:

(ρ̂′S1 , ρ̂
′
S2

) = (ρ̂S1 + ∆, ρ̂S2 −∆). (20)

Note that not all values of ∆ are admissible. For instance, if messages from S2 are reassigned

to S1, the rate of reassigned messages cannot exceed the rate of distinct messages owned by S2,

namely, ∆ ≤ ρ̂S2 . Likewise, in the converse case, −∆ ≤ ρ̂S1 , finally yielding:5

− ρ̂S1 ≤ ∆ ≤ ρ̂S2 . (21)

Moreover, since the reassignment changes only the “owner” of a given message, the MIR of the

aggregate network S1 ∪ S2 is left unaltered, namely, ρ̂′S1∪S2 = ρ̂S1∪S2 .

3. Choice of ∆ for the equilibrium condition. At the end of the reassignment procedure, the

new EDRs corresponding to S1 and S2 become, respectively, α̂′S1 = λ̂′S1 ρ̂
′
S1

(λ̂′S1 − ρ̂′S1), and

α̂′S2 = λ̂′S2 ρ̂
′
S2
/(λ̂′S2 − ρ̂

′
S2

), where we have exploited (10). In order to get a common reference

EDR α̂′, we enforce the condition in (18), which, using (19) and (20) into the latter two equations,

amounts to seek a value ∆? such that:

α̂′ =
(λ̂S1 + ∆?)(ρ̂S1 + ∆?)

λ̂S1 − ρ̂S1
=

(λ̂S2 −∆?)(ρ̂S2 −∆?)

λ̂S2 − ρ̂S2
, (22)

5 Actually, since we exclude the replacing messages m∗
1 or m∗

2 from the reassignment procedure, a subnet cannot pass all its

distinct messages. However, for large t the contribution of a single message becomes irrelevant.
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with the additional prescription that condition (21) is met. Therefore, the explicit formula for

∆? is found by solving a quadratic equation, and by simple algebra it can be verified that the

solution fulfilling (21) is:

∆? =
λ̂S1λ̂S2 − ρ̂S1 ρ̂S2

(λ̂S1 − ρ̂S1)− (λ̂S2 − ρ̂S2)

−

√
(λ̂S1 − ρ̂S1)(λ̂S2 − ρ̂S2)(λ̂S1 + ρ̂S2)(λ̂S2 + ρ̂S1)

(λ̂S1 − ρ̂S1)− (λ̂S2 − ρ̂S2)
.

(23)

From (22), it is easily verified that a positive ∆? corresponds to α̂S1 < α̂′ < α̂S2 (while the latter

two inequalities are reversed when ∆? < 0), implying that the subnet with the highest EDR

“passes” a fraction of its messages to the other subnet. In summary, we conclude that:

min(α̂S1 , α̂S2) ≤ α̂′ ≤ max(α̂S1 , α̂S2) (24)

According to the above explanation, when at least one of the subnets is composed only by

normal users, we can write:

ρ̂sum(S1, S2) , ρ̂S1 + ρ̂S2
(a)
= ρ̂′S1 + ρ̂′S2

(b)
= R(α̂′, λ̂′S1) + R(α̂′, λ̂′S2)

(c)
> R(α̂′, λ̂′S1 + λ̂′S2)

(d)
= R(α̂′, λ̂S1 + λ̂S2) , ρ̂bot(S1, S2), (25)

where (a) follows from (20); (b) follows from (11); (c) follows from (7); and (d) follows

from (19). On the other hand, when S1 and S2 form a botnet, Theorem 1 implies that, for t large

enough, α̂S1 ≈ α̂S2 ≈ α, which in turn implies that α̂′ ≈ α in view of (24). Therefore, in this

case the inequality ρ̂sum(S1, S2) > ρ̂bot(S1, S2) is justified by the approximations: ρ̂sum(S1, S2) ≈

R(α, λS1) + R(α, λS2) and ρ̂bot(S1, S2) ≈ R(α, λS1 + λS2).

We have in fact shown that, for arbitrary transmission schedulings and message-picking

policies, the empirical MIR of a botnet with reference EDR value (22) does always provide

a lower bound to the sum of individual MIRs.6

6We remark that the aforementioned result does not relate in any way to the deterministic or Poisson scheduling and to the

random message picking that characterize the class of DDoS attacks considered in the present work.
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Fig. 2. Time evolution of the empirical message innovation rate ρ̂ (solid, black), compared to the identification threshold γ

(solid, red). For comparison purposes, the upper bound corresponding to the case of disjoint dictionaries, ρ̂sum (dashed, green),

and the lower bound corresponding to the botnet case, ρ̂bot (dashed, magenta) are displayed. Moving from left to right, the

different panels refer to i) the union of two normal users; ii) the union of a botnet of size 10 and a normal user; and iii) the

union of a botnet of size 10 and a bot.

B. Threshold Setting

Let us introduce an intermediate threshold lying between the lower bound and the upper bound

in (25), namely, for ε ∈ (0, 1),

γ(S1, S2) = ρ̂bot(S1, S2) + ε [ρ̂sum(S1, S2)− ρ̂bot(S1, S2)] (26)

When S1 and S2 form a botnet, from Theorem 1 it is immediately seen (recall that α̂′ will

converge to the true α) that ρ̂S1∪S2 < γ(S1, S2) as t→∞.

When at least one of the subnets is made of normal users, the degree of dependence among

their patterns is low. Since i) we have shown that there exist two patterns, with common EDR, α̂′,

and with the same joint properties (overall transmission rate and MIR) of the original patterns;

and ii) the RR procedure only replaces and/or reassigns messages, it is expected that the joint

MIR of a botnet with EDR α̂′ is lower than ρ̂S1∪S2 . Otherwise stated, it is reasonable to assume

that ρ̂S1∪S2 , even if not coinciding with the upper bound ρ̂sum(S1, S2) in (25), is still sufficiently

far from the lower bound ρ̂bot(S1, S2). These considerations, for small ε, implicitly define the

following identification condition.

Botnet Identification Condition (BIC)

Let S1 and S2 be two subnets with S1

⋂
S2 = ∅. If at least one of the subnets is composed only

by normal users:

ρ̂S1∪S2 ≥ γ(S1, S2) (27)
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We remark that the case of S1 arbitrary vs. S2 arbitrary is not dealt with. This is not unintentional,

since, as it will be clear from Theorem 2, the two situations discussed are sufficient to devise a

consistent botnet identification algorithm.

In summary, we end up with the following recipe:

S1 AND S2 contain only bots ⇒ ρ̂S1∪S2 < γ(S1, S1), (28)

S1 OR S2 contain only normal users ⇒ ρ̂S1∪S2 ≥ γ(S1, S1). (29)

In Fig. 2, we illustrate the significance of the BIC. The normal users’ activity refers to a

monitoring campaign conducted over real data. The bots’ activity has been generated according to

the model described in Sec. III. The details of such a campaign will be given in the forthcoming

section. In all the three panels we display: the empirical MIR, the threshold γ in (26), along

with its upper (ρ̂sum) and lower (ρ̂bot) bounds. An observation window of 2.5 min is considered.

All the relevant quantities are updated each 1 s, and both quantities are displayed as functions

of time, in the interval between 1 and 2.5 min.

In the leftmost panel, we address the case of a pair of normal users. We see that the MIR stays

(slightly) below the upper bound, meaning that a certain degree of correlation exists. However,

the MIR stands clear above the threshold, as prescribed by (29), and confirming the validity of

the BIC.

In the middle panel, the two subnets under test, S1 and S2, are a botnet of size 10, and a

normal user, respectively. Conclusions similar to those pertaining to a normal-normal pairing can

be drawn, substantiating again the BIC. We further see that, at the beginning of the observation

window, the activities of the two subnets are almost independent, i.e., the MIR essentially matches

the upper bound. As time elapses, a certain degree of correlation appears, but the MIR still stays

above the threshold.

Finally, in the rightmost panel, the case of a botnet/bot interaction is addressed. We see that

the empirical MIR: i) approaches, as time elapses, the quantity ρ̂bot, in perfect agreement with

Theorem 1, and ii) stands clear below the threshold, in perfect agreement with (28).

In summary, the picture obtained from the above analysis reveals that the theoretical findings

of Theorem 1, as well as the conjectured behavior of the normal users implied by the BIC, are
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confirmed over real network traces.7

V. THE BOTBUSTER ALGORITHM

We now focus on the derivation of the inference algorithm aimed at disclosing a botnet possibly

hidden in the network. The BotBuster algorithm is described by the pseudo-code reported in the

right column above, and basically exploits the fact that, given two disjoint subnets, the BIC

allows to discriminate the situation where both subnets are part of a botnet, from the situation

where at least one of them is made of normal users. We shall show that the proposed algorithm

possesses the fundamental requirement of consistency, namely, the guarantee that the botnet is

correctly identified as t grows.

Let us examine how the algorithm works. First, note that a botnet made of one user, besides

making little sense in practice, is by definition non-identifiable, since we assumed that the

characteristics of the messages at a single-user level do not reveal any special information. Now,

at the beginning of the algorithm, user 1 is initially declared as a bot, namely, B̂ = {1}. Then, it

is checked whether users 1 and 2 form a botnet. If so, B̂ = {1, 2} is taken as the current botnet

estimate. If not, B̂ = {1} is retained. Then, it is checked whether the currently estimated botnet

B̂ forms a bot with user 3, and so on. At the end of the inner loop, the algorithm ends up with

an estimate B̂. If the cardinality of the estimated set is greater than one, it is taken as a current

estimate.

The procedure is then restarted by choosing user 2 as initial pivot, and sequentially checking

the remaining users as explained before. At the end of the inner loop, the algorithm ends up with

another estimate B̂. If the cardinality of the estimated set is greater than one and greater than the

cardinality of the previously estimated set8, then it is taken as a current estimate. Otherwise, the

previous estimate is retained. The procedure ends when all users have been scanned as pivots.

We see that, under the BIC, all checks performed by the algorithm will give eventually the

right answer, with probability tending to 1 as t → ∞. BotBuster is accordingly expected to

provide a consistent botnet estimator, as will be stated and proved in the forthcoming Theorem 2.

7Needless to say, our experiments have been repeated for many pairs of normal users, not reported here for obvious reasons.
8When t is large and the BIC is perfectly verified, the inner loop ends with either an empty set or the true botnet. Thus,

selecting the estimate with the highest cardinality might appear redundant. Such operation is instead useful when operating

under non-ideal conditions, as we shall explain soon.
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Algorithm 1: B̂new=BotBuster

N = {1, 2, . . . , N}; B̂new = ∅;

for b0 ∈ N do

B̂ = {b0};

for j ∈ N \ {b0} do

if ρ̂(B̂ ∪ {j}) < γ(B̂, {j}) then

B̂ = B̂
⋃
{j};

end

end

if |B̂| > max(1, |B̂new|) then

B̂new = B̂;

end

end

The algorithm complexity is O(N2) (only pairwise checks are performed), which is definitely

tolerable, since we are seeking, within a network of size N , a subset of unknown size that

matches some prescribed conditions. Finally, the looping structure of the algorithm makes it

naturally open to parallelization, which is especially important for large networks.

In order to quantify the algorithm performance, we need to choose some meaningful indicators.

With reference to a network N = {1, 2, . . . , N}, containing a botnet B, and letting B̂(t) be the

botnet estimated at time t by BotBuster, we introduce the following performance indices:

ηbot(t) =
E[|B̂(t) ∩B|]

|B|
, ηnor(t) =

E[|B̂(t) ∩ (N \B)|]
|N \B|

, (30)

namely, the expected fraction of correctly banned users (i.e., discovered bots), and the expected

fraction of incorrectly-banned users (i.e., normal users erroneously declared as bots). Clearly,

ηbot(t) (resp., ηnor(t)) is not defined when B = ∅ (resp., when B = N). We would like to see

ηbot(t) → 1, and ηnor(t) → 0 as t goes to infinity. Under the ideal assumption that the BIC is

always verified, such requirement is in fact fulfilled, as stated in the following theorem.

THEOREM 2 (Consistency of BotBuster). Consider a network N = {1, 2, . . . , N}, containing

a botnet B, with |B| 6= 1, launching a randomized DDoS attack. The bots’ transmission policies
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are either synchronous with constant transmission rate, or independent Poisson processes, while

the normal users’ transmission policies are arbitrary. Then, for any finite emulation dictionary

rate α, the algorithm BotBuster is consistent, namely,

lim
t→∞

ηbot(t) = 1, lim
t→∞

ηnor(t) = 0 (31)

The claim for the case B = ∅ (resp., B = N) is intended to hold with reference solely to ηnor(t)

(resp., to ηbot(t)).

Proof. See Appendix B. �

Theorem 2 reveals that the botnet estimated by BotBuster converges to the true one as time

elapses. The fundamental requirement enabling such result is the BIC validity. On the other

hand, in real-world applications, the assumption that the BIC is verified for all normal/normal

and botnet/normal interactions, as well as for all time epochs, is surely an over-idealized one.

It cannot be excluded that, occasionally, two independent users feature an unusual degree of

superposition between their empirical dictionaries, giving rise to spurious clusters of normal users

that might be erroneously included in the estimated botnet. What is expected to be true even

in real-world applications, is that such cases are rare and that the clusters’ cardinality is small.

Now, since the algorithm selects the estimate B̂ with the highest cardinality, and since distributed

DoS attacks with small botnet sizes make little sense, estimated botnets of unreasonably small

cardinality should be easily ruled out by BotBuster. As a result, the final estimate is likely to

contain the true botnet, plus (possibly) a small fraction of normal users. Thus, even under non-

ideal operation conditions, it is expected that ηbot(t) → 1 as t → ∞, whereas ηnor(t) possibly

takes on some small value.

VI. EXPERIMENTAL RESULTS

The theoretical analysis conducted in the previous sections relies upon a number of assump-

tions. As a result, when dealing with real network traces, and with challenging DDoS attacks,

the operational validity of the algorithm BotBuster is not at all obvious. This is why we have

performed a detailed experimental analysis, whose outcomes are now reported.

A popular e-commerce website has been selected as target destination of the attack. Clearly,

the normal users have no attacking intent, they perform ordinary surfing activity. About 20 min

of (application-layer) traffic have been collected, from 10 independent users, which were students
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and researchers working in our laboratory, and carrying on their surfing activity almost indepen-

dently. The collected streams have been partitioned into chunks of 2 min. In the forthcoming

analysis we take two perspectives. In one scenario, the number of normal users is 10, and, per

each trial, we choose 10 traces of 2 min, at random among the available traces. In the other

scenario, 2-min chunks belonging to the same user have been treated as if they were coming

from distinct users. In this way, we multiplied (fictitiously) the number of available normal users.

We stress that considering each chunk as an independent user is an approximation, but at the

same time such approximation introduces a spurious correlation among the users, which clearly

makes more challenging the botnet identification.

The DDoS attack has been generated so as to fall into the class described in Sec. III. Given

the dictionary of messages obtained from the whole activity recorded in the laboratory, it is

assumed that, at epoch t, only the first be0 + αtc messages of such a dictionary are available

to the botnet, giving rise to the emulation dictionary E (t), for fixed parameters e0 (size of

the dictionary at t = 0) and α. Then, independently at each bot, a Poisson time-scheduling is

randomly generated, and, per each transmission epoch t, each bot picks messages at random

from the currently available E (t).

We are now ready to examine the performance of our algorithm. We recall that our algorithm

is non-parametric, namely, that it does assume knowledge neither of the transmission rates, nor

of the parameters of the botnet emulation dictionary (e0 and α). In contrast, the size of the

network is obviously known. The only input parameter is the factor ε appearing into (26). Our

experiments will serve to ascertain:

• The practical significance of the BIC over real data.

• The ability of BotBuster in discovering the hidden bots.

• The role of the algorithm parameters.

• The role of the botnet power (the learning ability α).

In Fig. 3, we consider a network made of 10 normal users, without bots. Therefore, the quantity

ηbot makes little sense, and is accordingly not displayed. The observation window lasts 2 min,

and the simulation points refer to the output of the algorithm taken each 1 s. The algorithm

is run for three values of the threshold parameter ε ∈ (0, 1), namely, 0.05, 0.1, and 0.2, and

the estimates are averaged over 100 Monte Carlo trials. Now, were the BIC exactly verified for

any subset of normal users, and for any time epoch, the fraction of banned users should be
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Fig. 3. Fraction of banned users as a function of time, for different values of the threshold parameter ε. The monitored network

is composed of 10 normal users, and contains no bots. The depicted curves are computed over 100 independent Monte Carlo

trials. Per each trial, 2-min chunks of each user are randomly selected among the available chunks.

always zero. As already discussed, in practice the BIC is expected to be verified approximately.

This notwithstanding, in Fig. 3 we see that the percentage of erroneously banned users is very

small for all the thresholds in the considered range, never exceeding 5%. Notably, such behavior

suggests that a BIC violation is unlikely to occur, and that, in any case, it involves small groups

of users.

In Fig. 4, the same analysis is repeated for the case that the network comprises 10 normal users

plus 10 bots. The botnet EDR is α = 10. We remark that such a value is compatible with some

of the empirical values α̂ estimated over the normal users’ traces. We see that the dashed curves

are in practice invisible, revealing that the estimated ηnor is almost zero for all the considered

values of ε. This behavior should be contrasted to what observed in Fig. 3, where, in the absence

of a botnet, the BIC was occasionally violated. However, as discussed at the end of Sec. V, the

spurious-and-small estimated clusters containing normal users can be efficiently ruled out by the

fact that the algorithm selects, as a final estimate, only the cluster with maximum size, which

is expected to contain only bots.

With regard to the fraction of correctly identified bots, we see that ηbot increases as ε increases
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Fig. 4. Fraction of banned users as a function of time, for different values of the threshold parameter ε. The monitored network

is composed of 10 normal users, and contains B = 10 bots. Solid curves refer to correctly banned bots, whereas dashed curves

refer to erroneously banned normal users. The depicted curves are computed over 100 independent Monte Carlo trials. Per each

trial, 2-min chunks of each user are randomly selected among the available chunks.

from 0.05 to 0.2. In fact, increasing ε makes it easier staying below the threshold, which facilitates

the inclusion of a node in the estimated botnet.

The analysis summarized in Fig. 4 reveals that the choice of the threshold is not critical, and

the algorithm offers excellent performance for a relatively large range of ε. Indeed, recall that

ε ∈ (0, 1), and that ε must be “small”, so that ε = 0.05 up to 0.2 can be definitely considered a

“large”, flexible range.

In Fig. 5, the different curves refer to three EDR values (which, we recall, is not known to the

algorithm). The threshold parameter ε was set to 0.2. Let us start by examining the behavior of

ηnor. We see that, irrespectively of the EDR value, ηnor stays approximately constant at 0, which

matches our previous evidences and observations.

Let us switch to the analysis of ηbot. The lowermost curve corresponds to the highest EDR

value considered in the figure, namely, to α = 50. Compared to what we have observed in the

real-network traces, such an EDR is a kind of relatively high value. We see that the average

percentage of correctly identified bots is relatively large (> 80%), even at the beginning of the

July 2, 2018 DRAFT



26

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [min]

F
ra

c
ti

o
n

 o
f 

b
a
n

n
e
d

 u
se

rs

B = 10, ǫ = 0.2, for different EDRs
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α = 10, ηnor
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Fig. 5. Fraction of banned users as a function of time, for different values of the EDR α. The monitored network is composed

of 10 normal users, and contains B = 10 bots. Solid curves refer to correctly banned bots, whereas dashed curves refer to

erroneously banned normal users. The depicted curves are computed over 100 independent Monte Carlo trials. Per each trial,

2-min chunks of each user are randomly selected among the available chunks.

monitoring activity. Then, the estimated ηbot increases, approaching unity as time elapses, in

perfect accordance with the theoretical results of Theorem 2.

Let us now move toward examining the incidence of the EDR on the algorithm performance.

We see that the curves corresponding to ηbot move upward as α decreases. This sounds perfectly

reasonable, since α quantifies the learning ability (i.e., the power) of the botnet. On the other

hand, for each value of α, the performance must eventually reach the limiting value of unity

after a sufficiently long time. In particular, the uppermost curve corresponds to the degenerate

case α = 0, namely, to the classical and well-documented case where the botnet uses repeatedly

the same patterns. As such, the case α = 0 could be addressed by other (simpler) tools, since a

normal user will seldom feature such a small innovation rate in practice. In summary, the above

analysis emphasizes that the performance decreases with the botnet learning ability α.

As last case, we consider the aforementioned scenario where the normal users are fictitiously

multiplied by treating distinct chunks of the same user as distinct users. In Fig. 6 we consider
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α = 10, ǫ = 0.2, for different botnet sizes

 

 

B = 10, ηbot
B = 50, ηbot
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Fig. 6. Fraction of banned users as a function of time, for different botnet sizes B. The monitored network is composed of 50

normal users (“multiplied” scenario — see main text). Solid curves refer to correctly banned bots, whereas dashed curves refer

to erroneously banned normal users. The depicted curves are computed over 100 independent Monte Carlo trials. Per each trial,

2-min chunks of each user are randomly selected among the available chunks.

a network made of 50 normal users, for three cases, namely, B = 0, B = 10 and B = 50 bots.

The relevant EDR was set to α = 10, while the threshold parameter was set to the intermediate

value ε = 0.2. In agreement with our previous evidences, even for such larger network, we see

that ηnor is very small when B = 0, and is in practice zero for B = 10, 50.

We see that ηbot increases with B. However, increasing B is expected to augment the botnet

“visibility”, but also the number of mistakes the algorithm can commit. Thus, the dependence of

the performance upon B is not obvious. In fact, other evidences collected during our experimental

campaign (not reported for space constraints), suggest that ηbot is not necessarily monotonically

increasing with B.

Finally, we stress that simulations were carried for networks up to 100 nodes. The algorithm

was able to guarantee the real-time requirement, yet with a standard laptop, with no careful

managing of memory and computational burden, and no code optimization, such issues being

beyond the scope of the work.
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APPENDIX A

In the following, the symbol o(gn) will denote a function such that o(gn)/gn → 0 as n→∞.

Also, when convenient for notational reasons, the expectation of X is denoted by X̄ .

PROPOSITION 1 (Useful recursion). Let a, c > 0, b ∈ R, n ∈ N, ηn = 1− 1/(c + an), and

fn = ηn fn−1 + b. We have:

fn = f0

n∏
`=1

η` + b

(
1 +

n∑
k=2

n∏
`=k

η`

)
, (32)

or:

fn = f0

n∏
`=1

η` +
ab

1 + a

[
n+

(
1 +

c

a

)(
1−

n∏
`=1

η`

)]
, (33)

and the following limit holds:

lim
n→∞

fn
n

=
ab

1 + a
(34)

Proof. First, observe that:

f1 = f0η1 + b, f2 = f0η1η2 + b(1 + η2), . . . (35)

which yields (32) by recursion. Let now f̂n denote the RHS in (45). By the induction principle,

the claim in (45) will be proved if we show that f1 = f̂1, and that

fn = f̂n ⇒ fn+1 = f̂n+1 (36)

Making explicit the definition of η1 where needed, we have:

f̂1 = η1f0 +
ab

1 + a
(1 + 1/a) = η1f0 + b = f1. (37)

Assuming now that fn = f̂n, we can write

fn+1 = ηn+1 f̂n + b = f0

n+1∏
`=1

η` −
ab

1 + a

(
1 +

c

a

) n+1∏
`=1

η`

+
ab

1 + a

(
n+ 1 +

c

a

)(
1− 1

c+ a(n+ 1)

)
+ b︸ ︷︷ ︸

= ab
1+a [n+1+(1+ c

a)]

= f̂n+1.

(38)

Finally, the claim in (34) follows by observing that the term
∏n

`=1 η` in (33), vanishes as n→

∞. �
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COROLLARY 1 (Small perturbations). Let a, b > 0, n ∈ N, and let fn be a nonnegative

sequence such that:

fn ≤ fn−1

(
1− 1

an+ o(n)

)
+ b+ o(1). (39)

Then:

lim sup
n→∞

fn
n
≤ ab

1 + a
. (40)

If the inequality in (39) is reversed, the constant b can be relaxed to be an arbitrary real number,

and:

lim inf
n→∞

fn
n
≥ ab

1 + a
. (41)

Proof. Clearly, it suffices to prove (40). In the following, ε > 0 is an arbitrarily small constant.

For n large enough, and for all c ∈ R, we have:

0 < 1−
(

1

an+ o(n)

)
≤ 1− 1− ε

c+ an
. (42)

Moreover, we have b+ o(1) ≤ b+ ε. Since fn is nonnegative by assumption, a certain n0 exists,

such that, for all n > n0:

fn ≤ fn−1

(
1− 1− ε

c+ an

)
+ b+ ε. (43)

Introducing, for m = 1, 2, . . . , the definition

ηm = 1− 1− ε
c+ a(n0 +m)

= 1− 1
c+an0

1−ε + a
1−ε m

. (44)

from (43) we get, by recursion:

fn0+m ≤ fn0

m∏
`=1

η` + (b+ ε)

(
1 +

m∑
k=2

m∏
`=k

η`

)
. (45)

In view of (44), Proposition 1 allows to conclude that:

lim sup
n→∞

fn
n
≤

a
1−ε(b+ ε)

1 + a
1−ε

, (46)

and, hence, the claim in (40) follows from arbitrariness of ε. �

Proof of Theorem 1. First, we prove the claim for the synchronous scheduling, where all bots

transmit regularly at intervals of constant duration τ = 1/λ. Accordingly, we consider a slotted

system with discrete time index n ≥ 0, and introduce the quantities:

Dn , DB(nτ), Mn , |Dn|, En , E (nτ), en , |En|, (47)
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where we further observe that:

lim
n→∞

en
nτ

= α⇒ en = ατ n+ o(n). (48)

Now, for the synchronous case, it suffices to show that:

Mn

nτ

p−→ αBλ

α +Bλ
⇔ Mn

n

p−→ ατ B

ατ +B
, ρ, (49)

where B is the cardinality of subnet B. Observe preliminarily that, by the orthogonality principle,

we can write:

E

[(
Mn

n
− ρ
)2
]

= E

[(
Mn − M̄n

n

)2
]

+

(
M̄n

n
− ρ
)2

, (50)

and, since mean-square convergence implies convergence in probability [22], it suffices to show

that, as n→∞, both terms on the RHS in (50) vanish.9 We start by showing that M̄n/n→ ρ.

At time n, the probability that k bots out of B pick a message outside Dn−1 is (conditionally

on Mn−1): (
B

k

)(
1− Mn−1

en

)k (
Mn−1

en

)B−k
. (51)

Let us introduce the binomial random variable X̂n, with probability mass function given by (51),

whose (conditional) expectation and variance are:

E[X̂n|Mn−1] = B

(
1− Mn−1

en

)
, (52)

and

VAR[X̂n|Mn−1] = B

(
1− Mn−1

en

)
Mn−1

en
. (53)

In order to build Dn, we must select all the distinct messages among the k available ones.

Ignoring repetitions, we can write:

Mn ≤Mn−1 + X̂n, (54)

and, taking expectations:

M̄n ≤ M̄n−1

(
1− 1

ατn/B + o(n)

)
+B, (55)

9In fact, we prove a stronger result in terms of mean-square convergence.
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having used (52) and the expression of en appearing on the RHS in (48). Direct application of

Corollary 1 now yields:

lim sup
n→∞

M̄n

n
≤ ατ B

ατ +B
. (56)

Let us now prove the above (reversed) inequality for the lim inf. To this aim, we split En into

C non-overlapping cells:

En =
C⋃
c=1

Ec,n,

⌊
|En|
C

⌋
≤ |Ec,n| ≤

⌊
|En|
C

⌋
+ 1, (57)

where C is an arbitrary integer. Since we focus on the regime where n → ∞, it can be safely

assumed that the initial number of words in the emulation dictionary obeys: e0 ≥ C. Let now:

Dn =
C⋃
c=1

Dc,n, Mc,n , |Dc,n|, Mn =
C∑
c=1

Mc,n, (58)

and the events, for j = 1, 2, . . . , B, and c = 1, 2, . . . , C:

Aj,c , {bot j picks a message belonging to Ec,n \Dc,n−1}. (59)

Then we have, for any j:

P[Aj,c|Mc,n−1] =
|Ec,n| −Mc,n−1

|En|
, pc,n, (60)

with the dependence of pc,n upon Mc,n−1 being suppressed for ease of notation. From (57), we

have:
1

C
− 1

en
− Mc,n−1

en
≤ pc,n ≤

1

C
+

1

en
− Mc,n−1

en
. (61)

Now, Mc,n−1 increases by at least 1 whenever at least one bot picks a new message belonging

to the c-th cell. This implies:

E[Mc,n|Mc,n−1] ≥Mc,n−1 +Bpc,n − (Bpc,n)2, (62)

where we used the inequality (1− p)B ≤ 1− Bp + (Bp)2. On the other hand, for large n and

small ε > 0, from (61), we get p2
c,n ≤ (1/C + 1/en)2 ≤ C−2 + ε, and, hence, from (62):

E[Mc,n|Mc,n−1] ≥Mc,n−1 +Bpc,n −
(
B

C

)2

− ε′, (63)

for a certain small ε′. Conversely, using the lower bound in (61), and averaging over Mc,n−1, for

large n we get:

M̄c,n ≥ M̄c,n−1

(
1− B

en

)
+
B

C

(
1− B

C

)
− ε′′, (64)
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B̂1 = {1}, E2 =
{
ρ̂B̂1∪{2} < γ(B̂1, {2})

}
, E3 =

{
ρ̂B̂2∪{3} < γ(B̂2, {3})

}
, . . . EB =

{
ρ̂B̂B−1∪{B} < γ(B̂B−1, {B})

}
,

EB+1 =
{
ρ̂B̂B∩{B+1} ≥ γ(B̂B, {B + 1})

}
, . . . EN =

{
ρ̂B̂B∩{N} ≥ γ(B̂B, {N})

}
. (74)

for a certain small ε′′. Summing over c, we get:

M̄n ≥ M̄n−1

(
1− B

en

)
+B

(
1− B

C

)
− C ε′′︸ ︷︷ ︸

b

= M̄n−1

(
1− 1

ατ/B + o(n)

)
+ b, (65)

having used en in (48). Invoking now Corollary 1, we obtain:

lim inf
n→∞

M̄n

n
≥ ατ b

ατ +B
≥ ατ B

ατ +B
, (66)

where the latter inequality follows from the definition of b, since C and ε are arbitrary. Equa-

tion (66), along with (56), yields that the second term on the RHS in (50) vanishes. Let us switch

to the first term in (50). In view of the ascertained convergence of expectations, the variance

will be proved to vanish if we show that: E[M2
n]/n2 → ρ2. Now, in the light of (54), we can

write: E[M2
n|Mn−1] ≤ M2

n−1 + E[X̂2
n|Mn−1] + 2Mn−1E[X̂n|Mn−1], which, using (52) and (53),

yields:

vn ≤ vn−1
n− 1

n

[
1− 2B

en
+
B(B − 1)

e2
n

]
+ B

M̄n−1

n

(
2− 2B − 1

en

)
+
B2

n
, (67)

having also introduced the definition vn , E[M2
n]/n. Now, the first term appearing on the RHS

can be represented as

vn−1

(
1− 1

ατ
ατ+2B

n+ o(n)

)
. (68)

Likewise, the second term appearing on the RHS in (67) can be written as 2Bρ+o(1). Applying

Corollary 1, we get:

lim sup
n→∞

E[M2
n]

n2
= lim sup

n→∞

vn
n
≤ 2Bρ

ατ
ατ+2B

1 + ατ
ατ+2B

= ρ2. (69)
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Now, subadditivity of limit superior implies:

lim sup
n→∞

E

[(
Mn − M̄n

n

)2
]

≤ lim sup
n→∞

E[M2
n]

n2
+ lim sup

n→∞

(
−M̄

2
n

n2

)
≤ 0, (70)

with the latter inequality coming from (69), and from M̄n/n→ ρ. The claim for the synchronous

case is so proved.

With regard to the Poisson case, we consider again the slotted system in (47), but for the

fact that τ is now an arbitrarily small interval. The number of transmission attempts in a single

slot, A, is now a Poisson random variable with expectation Ā =
∑

u∈B λuτ = λBτ . Since the A

transmissions correspond to A independent choices of messages from the emulation dictionary,

for small τ the system behaves as if we had A synchronous bots, where A is now random. Thus,

the proof for the Poisson case boils down to modify slightly the previous proof in order to take

into account such additional randomness. Specifically, Eq. (55) should be modified by considering

a random number of bots A, and then taking expectations, yielding:10 M̄n ≤ M̄n−1(1−Ā/en)+Ā.

Likewise, Eq. (62) becomes: E[Mc,n|Mc,n−1] ≥Mc,n−1 + 1−E[(1−pc,n)A|Mn−1]. Since, for the

Poisson random variable A, it is easy to show that E[(1− p)A] = e−Āp ≤ 1− Āp + (Āp)2, the

conclusion in (49) still holds true, with B simply replaced by Ā. Finally, the inequality in (67)

becomes:

vn ≤ vn−1
n− 1

n

[
1− 2Ā

en
+
A(A− 1)

e2
n

]

+
M̄n−1

n

(
2Ā− A(2A− 1)

en

)
+ A2. (71)

Having shown that all the equations used to prove the pertinent convergence hold true with B

replaced by Ā, we conclude that: Mn

n

p−→ ατ Ā
ατ+Ā

= αλB
α+λB

. �

APPENDIX B

Proof of Theorem 2. Let us focus on a single step of the BotBuster loop, i.e., the algorithm

behavior for a fixed b0. Consider first the case that b0 is a normal user, and introduce, for

10We implicitly use: i) the independence between scheduling policy and message picking, and ii) the memoryless property

of the Poisson process.
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j ∈ N \ {b0}, the events:

Ej = {ρ̂{b0}∪{j} ≥ γ({b0}, {j})}. (72)

Eq. (29) reveals that, for any j, P[Ej]→ 1 as t→∞. But we also have that, for b0 normal,

P[inner loop outputs B̂ = {b0}] = P[∩j∈N\{b0}Ej]→ 1, (73)

where the convergence follows by the fact that each of the events has probability converging to

one as t→∞.

In contrast, if b0 is a bot, we distinguish two cases: i) if j is normal, from (29) we conclude

that ρ̂{b0}∪{j} ≥ γ({b0}, {j}) with probability converging to one as t → ∞, while ii) if j is a

bot, from (28) we conclude that ρ̂{b0}∪{j} < γ({b0}, {j}) with probability converging to one as

t→∞. Assume now, without loss of generality, that the first B users are bots, that b0 = 1, and

that the remaining users are normal. In (74), we introduce the events corresponding to the inner

loop over index j, as well as the associated botnet estimates at step j, denoted by B̂j . After

noticing that, in the definition of these events, the inequality signs in the threshold comparisons

are different for j ≤ B and for j > B, it is seen that the event B̂ = {1, 2, . . . , B} corresponds to

the event ∩Nj=2Ej . Since, in view of the above points i) and ii), we have P[Ej]→ 1, we conclude

that (if b0 = 1 is a bot):

P[inner loop outputs B̂ = {1, 2, . . . , B}] = P[∩Nj=2Ej]→ 1, (75)

which implies the validity of (31). �
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