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Abstract

In this paper, we study the problems in the discrete Fourier transform (DFT) test
included in NIST SP 800-22 released by the National Institute of Standards and Tech-
nology (NIST), which is a collection of tests for evaluating both physical and pseudo-
random number generators for cryptographic applications. The most crucial problem in
the DFT test is that its reference distribution of the test statistic is not derived math-
ematically but rather numerically estimated; the DFT test for randomness is based on
a pseudo-random number generator (PRNG). Therefore, the present DFT test should
not be used unless the reference distribution is mathematically derived. Here, we prove
that a power spectrum, which is a component of the test statistic, follows a chi-squared
distribution with 2 degrees of freedom. Based on this fact, we propose a test whose
reference distribution of the test statistic is mathematically derived. Furthermore, the
results of testing non-random sequences and several PRNGs showed that the proposed
test is more reliable and definitely more sensitive than the present DFT test.

Keywords: Computer security, random sequences, statistical analysis

1 Introduction

Random numbers are used in many types of applications, such as cryptography, numerical
simulations, and so on. However, it is not easy to generate “truly” random number sequences.
Pseudo-random number generators (PRNGs) generate the sequences by iterating some re-
currence relation; therefore, the sequences are theoretically not “truly” random. The binary
“truly” random sequence is defined as the sequence in which each element has a probability
of exactly 1

2
of being “0” or “1” and in which the elements are statistically independent of

1

ar
X

iv
:1

70
1.

01
96

0v
1 

 [
cs

.C
R

] 
 8

 J
an

 2
01

7



each other. It is also difficult to ascertain if the sequence is truly random; therefore, the
randomness of the sequences is evaluated statistically.

NIST SP 800-22 [1, 2] is one of the famous statistical test suites for randomness that was
used for selecting the Advanced Encryption Standard (AES) algorithm. NIST SP 800-22
consists of fifteen tests, and every test is hypothesis testing, where the hypothesis is that the
input sequence is truly random; if the hypothesis is not rejected in all the tests, it is implied
that the input sequences are random. Among the tests included in NIST SP 800-22, the
DFT test is of the greatest concern to us. This test detects periodic features of a random
number sequence; input sequences are discrete Fourier transformed, and the test statistic is
composed of the Fourier coefficients. In 2003, Kim et al. [3, 4] reported that the DFT test
and the Lempel-Ziv test in the original NIST SP 800-22 [1] have crucial theoretical problems.
Regarding the DFT test, it is reported that the test statistic does not follow the expected
reference distribution because of the problem that the DFT test regards Fourier coefficients as
independent stochastic variables although they are not. Kim et al. numerically estimated the
distribution of the test statistic with pseudo-random numbers generated with a PRNG and
proposed a new DFT test with the estimated distribution. In 2005, Hamano [5] theoretically
scrutinized the distribution of the Fourier coefficients in the original DFT test. However, he
could not derive the theoretical distribution of the test statistic, but he did make the problems
in the DFT test clearer. In 2005, because of these reports, in NIST SP 800-22 version 1.7, the
Lempel-Ziv test was deleted, and the DFT test was revised according to the report of Kim
et al. The DFT test has not subsequently been revised. In 2012, Pareschi et al. [6] reviewed
three tests included in NIST SP 800-22, and they also numerically estimated the distribution
of the test statistic. Consequently, they reported that the distribution estimated by Kim
et al. is not sufficiently accurate. As stated above, several researchers have attempted to
revise the DFT test. However, the distribution of the test statistic has still not been derived
theoretically but rather numerically estimated.

In this paper, we review the problems in the DFT test, and we prove three facts, which are
important for analyzing the reference distribution of the test statistic: Under the assumption
that the input sequence is an ideal random number sequence, when j 6= 0,

• The asymptotic distributions of both
√

2
n
cj(X) and

√
2
n
sj(X) are the standard normal

distribution (N (0, 1)) when n→∞.

• When n is sufficiently large,
√

2
n
cj(X) and

√
2
n
sj(X) are statistically independent of

each other.

• The asymptotic distribution of 2
n
|Sj(X)|2 is a chi-squared distribution with 2 degrees

of freedom (χ2
2) when n→∞.

Here, X is an n-bit binary sequence, Sj(X) is the j-th discrete Fourier coefficient of X, and
cj(X) and sj(X) are the real and imaginary parts of Sj(X), and they are defined in (1),
(2) and (3) in Section 2, respectively. There is no information about these factors in NIST
SP800-22, and, to the best of our knowledge, no researchers who have studied the DFT test
have ever provided rigorous proofs. These factors are necessary for analyzing the reference
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distribution of the test statistic. Furthermore, we propose a new DFT test based on the
fact that χ2

2 is the asymptotic distribution of 2
n
|Sj(X)|2. By comparing the results of several

PRNGs, we show that our test is more reliable and definitely more sensitive than the present
DFT test.

2 Discrete Fourier Transform Test

In this section, we explain the procedure of the original DFT test (DFTToriginal), released in
2001 [1], before the revision in 2005 [2]. We also explain the problems reported by several
researchers [4, 5]. The focus of this test is the peak heights in the discrete Fourier transform
of the sequence. The purpose of this test is to detect periodic features in the tested sequence
that would indicate a deviation from the assumption of randomness. The intention is to
detect whether the number of peaks exceeding the 95 % threshold is significantly different
than 5 %.

2.1 The procedure of the original DFT test

1) The zeros and ones of the input sequence E = {ε0, · · · , εn−1} are converted to values
of −1 and +1 to create the sequence X = {x0, · · · , xn−1}, where xi = 2εi − 1 (i ∈
{0, . . . , n− 1}). For simplicity, let n be even.

2) Apply a discrete Fourier transform (DFT) to X to produce Fourier coefficients
{Sj(X)}n−1j=0 . The Fourier coefficient Sj(X) and its real and imaginary parts cj(X)
and sj(X) are defined as follows:

Sj(X) :=

n−1∑
k=0

xk cos
2πkj

n
−
√
−1

n−1∑
k=0

xk sin
2πkj

n
(1)

cj(X) :=
n−1∑
k=0

xk cos
2πkj

n
(2)

sj(X) :=

n−1∑
k=0

xk sin
2πkj

n
(3)

3) Compute {|Sj(X)|}
n
2
−1

j=0 , where

|Sj(X)|2 = (cj(X))2 + (sj(X))2.

Because |Sj(X)| = |Sn−j(X)|, {|Sj(X)|}n−1j=n
2

are discarded.

4) Compute a threshold value T0.95 =
√

3n. The 95% values {|Sj(X)|}
n
2
−1

j=0 are supposed
to be < T0.95.

3



According to SP800-22, 2
n
|Sj(X)|2 is considered to follow χ2

2, and T0.95 is defined by the
following equation.

P (|Sj(X)| < T0.95) =

∫ 2
n
T 2
0.95

0

1

2
e−

y
2 dy

= 1− e−
T2
0.95
n

:= 0.95

∴ T0.95 =
√
−n ln(0.05) '

√
3n

Several researchers [4, 5] reported that this T0.95 =
√

3n was incorrect, and it was
accordingly revised as T0.95 =

√
−n ln(0.05) in the DFT test in the revised NIST

SP800-22 [2].

5) Count

N1 = #
{
|Sj(X)| | |Sj(X)| < T0.95, 0 ≤ j ≤ n

2
− 1
}
.

If {|Sj(X)|}
n
2
−1

j=0 are mutually independent, then under the assumption of randomness,
N1 can be considered to follow B(n

2
, 0.95), where B is the binomial distribution.

According to the central limit theorem, when n is sufficiently large, the approximation
to B(n, p) is given by the normal distribution N (np, np(1− p)). Therefore, when n is
sufficiently large, under the assumption of randomness,

N1 ∼ N
(

0.95
n

2
, (0.95)(0.05)

n

2

)
.

6) Compute a test static

d =
N1 − 0.95n

2√
(0.95)(0.05)n

2

.

When n is sufficiently large, under the assumption of randomness, the test statistic d
can be considered to follow N (0, 1)

7) Compute P -value; p = erfc

(
|d|√

2

)
.

If p < α, then conclude that the sequence is non-random, where α is a significance level
of the DFT test. NIST recommends α = 0.01 [2]. Therefore, we also define α = 0.01.
If p ≥ α, conclude that the sequence is random.

8) Perform 1) to 7) for m sample sequences {X1, X2, . . . , Xm}; m P -values {p1, p2, . . . , pm}
are computed.
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9) (Second-level test I: Proportion of sequences passing a test)

Count the number of sample sequences for which P -value ≥ α and define it as mp.
Then, under the assumption of randomness, mp follows B(m, 1−α), which approximates
N (m(1 − α),mα(1 − α)) when m is sufficiently large. Therefore, the proportion of

sequences passing a test (= mp/m) approximately follows N
(

(1− α), α(1−α)
m

)
. The

range of acceptable mp/m is determined using the significance interval defined as

1− α− 3

√
α(1− α)

m
<
mp

m
< 1− α+ 3

√
α(1− α)

m
. (4)

If the proportion falls outside of this interval, there is evidence that the data are
non-random.

10) (Second-level test II: Uniform distribution of P -values)

Uniformity may also be determined by applying a χ2 test and determining a P -value
corresponding to the goodness-of-fit distributional test on the P -values obtained for
an arbitrary statistical test (i.e., the P -value of the P -values). This is performed by
computing

χ2 =
10∑
i=1

(Fi −m/10)2

m/10
,

where Fi is the number of P -values in sub-interval i. A P -value PT is calculated such
that

PT = igamc

(
9

2
,
χ2

2

)
,

where igamc is the complementary incomplete gamma function. If

PT ≥ αII(:= 0.0001), (5)

the sequences can be considered to be uniformly distributed, where αII is the significance
level for PT .

11) If the set of P -values {p1, p2, . . . , pm} passes both 9) and 10), the physical or pseudo-
random number generators that generated the input sequences are concluded to be
ideal.

2.2 The fundamental problems of the original and present DFT
tests

Kim et al. [4] and Hamano [5] reported the following:

• The test statistic d :=
N1−0.95n

2√
(0.95)(0.05)n

2

does not follow N (0, 1);
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• N1 does not follow N
(
0.95n

2
, (0.95)(0.05)n

2

)
.

Furthermore, Kim et al., using Secure Hash Generator (G-SHA1) [2] as a PRNG, estimated
that

N1 ∼ N
(

0.95
n

2
, (0.95)(0.05)

n

4

)
;

dkim :=
N1 − 0.95n

2√
(0.95)(0.05)n

4

∼ N (0, 1),

and DFTToriginal was revised according to this report of Kim et al. [2]; the present DFT test,
denoted as DFTTpresent, has not been revised since then. Therefore, the reference distribution
of the test statistic of DFTTpresent is not mathematically derived. Furthermore, Pareschi et
al. reported that the numerical estimation is not sufficiently accurate; they numerically
estimated that

N1 ∼ N
(

0.95
n

2
, (0.95)(0.05)

n

3.8

)
;

dpareschi :=
N1 − 0.95n

2√
(0.95)(0.05) n

3.8

∼ N (0, 1).

Moreover, Pareschi et al. proposed that the DFT test with this test statistic (DFTTpareschi) is
more reliable. (The definition of the reliability of a test is discussed in Section 5.) Therefore,
it can be considered that DFTTpresent still has errors. First, DFTTpresent and DFTTpareschi

are performed based on a PRNG, whose randomness should be evaluated with a randomness
test; they cannot be used unless the reference distribution is mathematically derived.

As stated in step 5) in Section 2.1, {|Sj(X)|}
n
2
−1

j=0 are considered to be mutually indepen-

dent. However, {|Sj(X)|}
n
2
−1

j=0 are not mutually independent, and this problem is expected to

be the main factor for why N1 does not follow N
(
0.95n

2
, (0.95)(0.05)n

2

)
[4, 5]. Furthermore,

before considering this problem, it is also necessary to ensure that 2
n
|Sj(X)|2 follows χ2

2. Al-
though 2

n
|Sj(X)|2 is considered to follow χ2

2 in step 4) in Section 2.1, there is no information
about this in SP800-22, and no researchers studying the DFT test have ever provided rig-
orous proofs to the best of our knowledge. We provide a proof for the DFT test in Section
3.

3 The asymptotic distribution of 2
n|Sj(X)|2

In this section, we analyze the asymptotic distribution of 2
n
|Sj(X)|2. From the definition of

|Sj(X)| in (1),

2

n
|Sj(X)|2 =

(√
2

n
cj(X)

)2

+

(√
2

n
sj(X)

)2

.
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When j = 0,

2

n
|S0(X)|2 = 2

(∑n−1
k=0 xk√
n

)2

.

Under the assumption that X is an ideal random number sequence, P (xk = −1) = P (xk =
1) = 1

2
and {xk}n−1k=0 are mutually independent, and E[xk] = 0, V [xk] = 1. Therefore, as

a consequence of the central limit theorem, when n is sufficiently large,
(∑n−1

k=0 xk√
n

)
follows

N (0, 1), and
(∑n−1

k=0 xk√
n

)2
follows a chi-squared distribution with 1 degree of freedom (χ2

1).

Thus, 2
n
|S0(X)|2 does not follow χ2

2.
In the following, we consider the case when j 6= 0. Here, 2

n
|Sj(X)|2 follows χ2

2 if the
following is true:

• Both
√

2
n
cj(X) and

√
2
n
sj(X) follow N (0, 1).

•
√

2
n
cj(X) and

√
2
n
sj(X) are mutually independent.

In the following 2 subsections, we prove the following Theorem 1, Theorem 2 and Theorem
3:
Theorem 1: When n is sufficiently large, both√

2
n
cj(X) and

√
2
n
sj(X) follow

N (0, 1).
Theorem 2: When n is sufficiently large,√

2
n
cj(X) and

√
2
n
sj(X) are mutu-

ally independent.
Theorem 3: 2

n
|Sj(X)|2 follows χ2

2 when n is suffi-
ciently large.

From the definition of χ2
2, Theorem 3 can be proven by combing Theorem 1 and Theorem 2.

3.1 Proof of Theorem 1: The asymptotic distribution of
√

2
ncj(X)

In this subsection, we prove Theorem 1. Hamano [5] showed that the average, variance,
skewness, and kurtosis of cj(X) and N (0, n

2
) are the same. However, it cannot be proven

that N (0, n
2
) is the asymptotic distribution of cj(X) based only on these factors.√

2
n
cj(X) is expressed as

√
2
n
cj(X) :=

√
2
n

∑n−1
k=0 xkak,j, where ak,j = cos 2πkj

n
. Under

the assumption that X is an ideal random number sequence, the characteristic function of
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√
2
n
cj(X) denoted by φ(t) is expressed as follows:

φ(t) = EX

[
exp

(√
2

n

√
−1tcj(X)

)]

= EX

[
n−1∏
k=0

exp

(√
2

n

√
−1txkak,j

)]

=
n−1∏
k=0

Exk

[
exp

(√
2

n

√
−1txkak,j

)]

=
n−1∏
k=0

cos

(√
2

n
tak,j

)
.

∴ log φ(t) =
n−1∑
k=0

log cos

(√
2

n
tak,j

)
,

where

EX(·) :=
1

2n

∑
X∈{−1,1}n

(·),

Exk(·) :=
1

2

∑
xk∈{−1,1}

(·).

Using the Taylor expansion about a point t = 0, we obtain

log cos

(√
2

n
tak,j

)
= − 1

n
a2k,jt

2 − 1

3n2
a4k,jt

4 +O(t6).

∴ log φ(t) = − 1

n

n−1∑
k=0

a2k,jt
2 − 1

3n2

n−1∑
k=0

a4k,jt
4 +O(t6).

Since
n−1∑
k=0

a2k,j =
n

2
,
n−1∑
k=0

a2lk,j ≤ n (l ∈ {1, 2, 3, . . . }),

lim
n→∞

log φ(t) = −1

2
t2. ∴ lim

n→∞
φ(t) = e−

1
2
t2 .

Thus, N (0, 1) is the asymptotic distribution of
√

2
n
cj(X). Likewise, it can be proven that

N (0, 1) is the asymptotic distribution of
√

2
n
sj(X).
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3.2 Proof of Theorem 2: Statistical independence of
√

2
ncj(X) and√

2
nsj(X)

In this subsection, we prove Theorem 2. Let us define a 2-dimensional stochastic variable Y
as the following equation:

Y := (Y1, Y2) :=

(√
2

n
cj(X),

√
2

n
sj(X)

)
.

Under the assumption that X is an ideal random number sequence, the characteristic function
of Y denoted by ψ(t) is expressed as follows:

ψ(t) = EX [exp(
√
−1tY >)]

= EX

[
exp

(√
2

n

√
−1(t1cj(X) + t2sj(X))

)]

=
n−1∏
k=0

cos

(√
2

n
(t1ak,j + t2bk,j)

)
,

where

t = (t1, t2), ak,j = cos
2πkj

n
, bk,j = sin

2πkj

n
.

Therefore,

logψ(t) =
n−1∑
k=0

log cos

(√
2

n
(ak,jt1 + bk,jt2)

)
.

Using the Taylor expansion about a point t = 0, we obtain

log cos

(√
2

n
(akt1 + bkt2)

)

= −(ak,jt1 + bk,jt2)
2

n
− (ak,jt1 + bk,jt2)

4

3n2
+ · · · .

Since

n−1∑
k=0

a2k =
n−1∑
k=0

b2k =
n

2
,

n−1∑
k=0

akbk = 0,
n−1∑
k=0

alkb
m
k ≤ n (l,m ≥ 0),

we obtain

lim
n→∞

logψ(t) = −tt>

2
, ∴ lim

n→∞
ψ(t) = exp

(
−tt>

2

)
.
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Therefore, when n is sufficiently large, the joint probability distribution function is described
as follows:

fY1,Y2(y1, y2) =
1

2π
exp

(
−y

2
1 + y22

2

)
.

As we proved before, N (0, 1) is the asymptotic distribution of both Y1 and Y2. Thus, when
n is sufficiently large, the probability distribution functions of Y1 and Y2 are fY1(y1) =
1√
2π

exp
(
−y21

2

)
and fY2(y2) = 1√

2π
exp

(
−y22

2

)
, respectively. Therefore, when n is sufficiently

large, the following equation is obtained:

fY1,Y2(y1, y2) = fY1(y1)fY2(y2).

This means that
√

2
n
cj(X) and

√
2
n
sj(X) are mutually independent when n is sufficiently

large.

4 The proposed DFT test

In Section 3, we proved Theorem 3, stating that 2
n
|Sj(X)|2(j 6= 0) follows χ2

2 when n is

sufficiently large. Therefore, if {|Sj(X)|}
n
2
−1

j=1 are mutually independent, we can consider that

N1 follows N
(
0.95n

2
, (0.95)(0.05)n

2

)
. However, {|Sj(X)|}

n
2
−1

j=1 are not mutually independent.
Therefore, it is necessary to mathematically analyze the distribution of the test statistic d

under the condition that {|Sj(X)|}
n
2
−1

j=1 are not mutually independent. Hamano [5] attempted

to mathematically derive the distribution of the set {|Sj(X)|}
n
2
−1

j=1 , but he could not do so, and
we also could not derive this distribution. However, we rigorously proved that the asymptotic
distribution of 2

n
|Sj(X)|2 is χ2

2, and we develop the new DFT test (DFTTproposed) based on
this fact. The reference distribution of the test statistic of DFTTproposed is mathematically
derived, whereas that of DFTTpresent is estimated with a PRNG. We explain the test statistic
of DFTTproposed in the next subsection.

4.1 The procedure of the proposed DFT test

In the standard approach in NIST SP800-22, each sequence is analyzed; thus, m sequences
give m P -values. However, DFTTproposed generates n

2
− 1 (n: length of a sequence) P -

values. Therefore, more P -values are generated since n is generally larger than m. Since the
number of P -values should not be too large (see Section 5.3), before conducting DFTTproposed,
it is necessary to adjust the length of the sequences and make them into more sets of short
sequences (see also Table 5), assuming that the set input sequences are continuously generated
by an RNG. Therefore, DFTTproposed is theoretically not appropriate for the isolated set of
sequences.

The procedure of the proposed DFT test is described as follows:

10



1) The zeros and ones of the m n-length input sequence {Ei = {εi0, · · · , εin−1}}mi=1 are
converted to values of −1 and +1 to create the sequence {X i = {xi0, · · · , xin−1}}mi=0,
where xij = 2εj − 1 (j ∈ {0, . . . , n− 1}). For simplicity, let n be even.

2) Apply a discrete Fourier transform (DFT) to each X i to produce Fourier coefficients
{Sj(X i)}n−1j=0 . The Fourier coefficient Sj(X

i) and its real and imaginary parts cj(X
i)

and sj(X
i) are defined as follows:

Sj(X
i) :=

n−1∑
k=0

xk cos
2πkj

n
−
√
−1

n−1∑
k=0

xk sin
2πkj

n
,

cj(X
i) :=

n−1∑
k=0

xk cos
2πkj

n
,

sj(X
i) :=

n−1∑
k=0

xk sin
2πkj

n
,

3) For all j ∈ {1, . . . , n
2
− 1}, perform the Kolmogorov-Smirnov (KS) test [8, 9] on the

empirical cumulative distribution function of { 2
n
Sj(Xi)}mi=1 defined as F j

m(y) based on
the difference from χ2

2 and compute the P -value pj. Here, the KS statistic Dj
m and pj

are defined as follows.

Dj
m =

√
mmax

y>0

∣∣F j
m(y)− F (y)

∣∣ ,
pj = 1−H(Dj

m),

where H(y) is the cumulative distribution function of the Kolmogorov-Smirnov distri-
bution:

H(y) = 1− 2
∞∑
i=1

(−1)i−1e−2i
2y.

Note that n
2
− 1 P -values {p1, p2, . . . , pn

2
−1} are computed in this step, while the

DFTTpresent computes m P -values.

4) Perform the second-level tests I and II defined in the original DFT test (see Section
2.1-9, 2.1-10). If the set of P -values {p1, p2, . . . , pn

2
−1} passes both second-level tests

I and II, the physical or pseudo-random number generator that generated the input
sequences is concluded to be ideal.

5 Experiments

In this section, we explain the experiments that we performed and the conclusions de-
rived from their results. In these experiments, we compare the reliability and sensitivity
of DFTTpresent and DFTTproposed. The reliability of tests means a low probability of false

11



Table 1: Types of error

H0 : Null hypothesis H0 is
= “generator is ideal” True False

Judgment of H0

Reject
False Positive

True Positive
(Type I error)

Fail to reject True Negative
False Negative
(Type II error)

positives (type I error) (see Table 1), and the sensitivity of tests means a low probability of
false negatives (type II error). Now, the null hypothesis of the tests (H0) is that the “gen-
erator is ideal”. Therefore, a false positive (type I error) means an erroneous identification
of an ideal generator as not random, and a false negative (type II error) means an erroneous
identification of a generator that is not ideal as random. Comparing the probability of type
I error and type II error, we can conclude which test is better.

For simplicity, in this experiment, we modify the significance interval of the second-level
test I defined in (4) as follows:

1− α− 2.575

√
α(1− α)

m
<
mp

m
< 1− α+ 2.575

√
α(1− α)

m
. (6)

With this modified significance interval, the significance level of the second-level test I (:= αI)
is modified to be αI = 0.01.

5.1 Experiment 1: Test results for periodic sequences

In this experiment, we compare the sensitivity of DFTTpresent and DFTTpareschi. Sensitivity
means a low false negative rate (low probability of type I error), i.e., high true positive rate.
Here, we compare the true positive rate of each test result.

Sensitivity := low probability of type II error

= low false negative rate

= high true positive rate

Now, we define an nm-length input sequence Xn,m as

Xn,m := {x0, x1, x2, . . . , xmn−1}
= {Xn

1 , X
n
2 , . . . , X

n
m},

where
Xn
i = {x(i−1)n, . . . , xin−1} (i = 1, 2, . . . ,m),

xk ∈ {−1, 1}. (k = 1, 2, . . . ,mn− 1).

12



Figure 1: Passing rate RI in experiment 1. The “threshold” means the lower limit of the
significance interval defined in Eq. (7)

We purposely create non-random (periodic) sequences from the mn-length sequence Xn,m
using the method described as follows:

xk =

{
−1 (k mod T = 0 & k mod 2T = 0)

1 (k mod T = 0 & k mod 2T 6= 0)
.

Therefore,

X T
n,m := {x0, . . . , xT , . . . , x2T , . . . , x3T , . . . , x4T , . . . , xmn−1}

= {x0, . . . ,−1, . . . , 1, . . . ,−1, . . . , 1, . . . , xmn−1}.

We can clearly state this sequence is a non-random sequence. Therefore, if the test does not
reject the H0 (=null hypothesis: “generator is random”), then it is a false negative (type II
error).

For each T ∈ {100, 101, 102, . . . , 120, 130, 140, 150}, we use 10 sets of an mn-length (nm =
100, 000, 000) input sequence Xn,m generated by the Mersenne Twister algorithm [10] and
covert them to non-random mn-length sequences X T

n,m. Table 5 in Section 5.3 shows the
parameters n and m for each test. In Section 5.3, we explain why the parameters n and m
for DFTTproposed are different from the other tests. Note that mn is the same. Table 2, Fig.

13



Figure 2: Passing rate RII in experiment 1. The “threshold” means the lower limit of the
significance interval defined in Eq. (8)

1 and Fig. 2 show the passing rate RI(II), which is defined as follows:

Passing Rate : RI(II)

:=
number of X T

n,m passing the second-level test I (II)

10
.

=

{
True negative rate (if H0 = TRUE)

False negative (type II error) rate (if H0 = FALSE)

Because we know that X T
n,m is non-random, we know that H0 =FALSE, and the passing rate

means a false negative rate in this experiment. Now, the significance levels of second-level
tests I and II are αI (= 0.01) and αII (= 0.0001) (defined in (5)), respectively. Therefore,
the significance intervals defined in Eq. (6) of RI and RII are described as follows:(

1− αI − 2.575

√
αI(1− αI)

10
, 1− αI + 2.575

√
αI(1− αI)

10

)
' (0.991, 1.07)∗, (7)
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(
1− αII − 2.575

√
αII(1− αII)

10
, 1− αII + 2.575

√
αII(1− αII)

10

)
' (0.9992, 1.008)∗. (8)

Therefore, if RI < 0.991 or RII < 0.9992, we can conclude that the true positive rate is high,
and we can conclude that the test is sensitive.

As shown in Table 2, Fig. 1 and Fig. 2, RI and RII of DFTTproposed are all 0.0%, whereas
RI(II) of DFTTpresent and DFTTpareschi are not as low. From this table and the figures, we
can conclude that DFTTproposed is more sensitive than the other tests.

5.2 Experiment 2: Test results for existing pseudo-random num-
ber generators

We use 1000 sets of an mn-length (mn = 100, 000, 000) Xn,m input sequence generated by

• AES Counter Mode (AES-CTR) [11],

• Mersenne Twister [10],

• Xorshift random number generator [12],

• Vector Stream Cipher 2.0 (VSC 2.0) [13],

• Linear congruential generator (LCG) [2],

• Cubic congruential generator (CCG) [2],

• Quadratic congruential generator I (QCG-I) [2],

• Quadratic congruential generator II (QCG-II) [2],

• Micali-Schnorr random bit generator [2].

VSC 2.0 is a stream cipher based on chaos theory, which was proposed by A. Iwasaki and K.
Umeno [13]. We test these PRNGs using both the DFT and MS-DFT tests, and we compare
the results. The parameter sets of n and m are the same as Table 5 in Section 5.3.

Now, the significance levels of second-level tests I and II are αI := 0.01 and αII := 0.0001,
respectively, and in this experiment, 1000 mn-length sequences generated by each PRNG are

∗These significance intervals range through 1, although RI and RII ∈ [0, 1]. This is because the number
of sets of input sequences in this experiment is 10, and it is too small to provide a good approximation (see
Section 2.1-9). Furthermore, αII(= 0.0001) is very small, so the significance interval of RII often ranges
through 1.
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Table 2: Test results for periodic sequences: passing rate RI and RII for each T (red cell
means that the RI(II) lies outside its significance interval)

Test DFTTpresent DFTTpareschi DFTTproposed

Passing rate RI RII RI RII RI RII

T = 100 0.0 0.0 0.0 0.0 0.0 0.0
T = 101 0.5 0.9 0.8 1.0 0.0 0.0
T = 102 0.7 1.0 1.0 1.0 0.0 0.0
T = 103 0.9 1.0 1.0 1.0 0.0 0.0
T = 104 0.9 0.9 1.0 1.0 0.0 0.0
T = 105 0.7 1.0 1.0 1.0 0.0 0.0
T = 106 1.0 1.0 1.0 1.0 0.0 0.0
T = 107 0.9 1.0 0.9 1.0 0.0 0.0
T = 108 0.7 1.0 1.0 1.0 0.0 0.0
T = 109 0.8 1.0 1.0 1.0 0.0 0.0
T = 110 0.9 1.0 0.9 1.0 0.0 0.0
T = 111 0.9 1.0 0.9 1.0 0.0 0.0
T = 112 1.0 1.0 1.0 1.0 0.0 0.0
T = 113 1.0 1.0 1.0 1.0 0.0 0.0
T = 114 0.9 1.0 1.0 1.0 0.0 0.0
T = 115 0.9 1.0 1.0 1.0 0.0 0.0
T = 116 1.0 1.0 1.0 1.0 0.0 0.0
T = 117 0.9 1.0 1.0 1.0 0.0 0.0
T = 118 1.0 1.0 1.0 1.0 0.0 0.0
T = 119 1.0 1.0 1.0 1.0 0.0 0.0
T = 120 1.0 1.0 1.0 1.0 0.0 0.0
T = 130 1.0 1.0 1.0 1.0 0.0 0.0
T = 140 0.9 1.0 1.0 1.0 0.0 0.0
T = 150 0.8 1.0 1.0 1.0 0.0 0.0

tested. Table 3, Fig. 3 and Fig. 4 show the passing rate RI(II), defined as follows:

Passing Rate : RI(II)

:=
number of Xn,m passing the second-level test I (II)

1000

=

{
True negative rate (if H0 = TRUE)

False negative (type II error) rate (if H0 = FALSE)

Now, the significance intervals (99%) of passing rates RI and RII are described as,(
1− αI − 2.575

√
αI(1− αI)

1000
, 1− αI + 2.575

√
αI(1− αI)

1000

)
' (0.9819, 0.9982), (9)
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(
1− αII − 2.575

√
αII(1− αII)

1000
, 1− αII + 2.575

√
αII(1− αII)

1000

)
' (0.9991, 1.0007)∗, (10)

respectively.
In this experiment, H0 for each PRNG is defined as follows:

• H0 is TRUE (considered as random): AES-CTR, Mersenne-Twister, Xorshift, VSC
2.0, LCG (Define them as “good PRNGs”).

Because these PRNGs pass all the tests included in NIST SP800-22 [2, 13], we consider
them as random in this experiment.

• H0 is FALSE (considered as non-random): Micali-Schnorr random bit generator, QCG-
I, QCG-II, CCG (Define them as “bad PRNGs”).

Because these PRNGs are rejected by several tests included in NIST SP800-22 [2], we
consider them as non-random in this experiment.

Under the assumption that this definition of H0 is appropriate, let us consider the sensitivity
and reliability of DFTTpresent, DFTTpareschi and DFTTproposed. As shown in Fig. 4, it is
difficult to compare the reliability from the figure. This is because RII(= 0.0001) is very
small, whereas the number of sets of input sequences is 1000. Therefore, in this experiment,
we focus on Fig. 3 and derive the conclusion of this experiment as follows.

• Reliability ; RI of “good PRNGs” (AES-CTR, Mersenne-Twister, Xorshift, VSC 2.0,
and LCG).

If the RI of “good PRNGs” lies inside its significance interval, we can conclude that
the reliability of the test is sufficiently high.

As shown in Fig. 3, the RI of “good PRNGs” of DFTTproposed and DFTTpareschi lies
inside its significance interval, whereas that of DFTTpresent is lower than the threshold.
Therefore, we can conclude that the reliabilities of DFTTpareschi and DFTTproposed are
sufficiently high. Moreover, we can conclude that the reliability of DFTTpresent is low.

• Sensitivity ; the RI of “bad PRNGs” (Micali- Schnorr random bit generator, QCG-I,
QCG-II, and CCG).

If the RI of “bad PRNGs” lies lower than the threshold, we can conclude that the
sensitivity of the test is the highest.

As shown in Fig. 3, except for the Micali-Schnorr random bit generator, the RI of
“bad PRNGs” of DFTTproposed are definitely lower than the other tests. The RI of
DFTTpresent are also low, but not as low as DFTTproposed, and the RI of DFTTpareschi

are higher than the RI of DFTTpresent. Therefore, we can conclude that the reliability
of DFTTproposed is definitely high, that of DFTTpresent is high, and that of DFTTpareschi

is low.
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Figure 3: Passing rate RI in experiment 2. The “threshold” means the lower limit of the
significance interval defined in Eq. (9)

Table 3: Test results for existing pseudo-random number generators: Passing rates RI and
RII of each PRNG (red cells mean that the RI(II) lies outside its significance interval)

Test DFTTpresent DFTTpareschi DFTTproposed

Passing rate RI RII RI RII RI RII

AES-CTR 0.9520.995 0.9961.000 0.9881.000
Mersenne-Twister 0.9480.996 0.9931.000 0.9911.000

Xorshift 0.9470.989 0.9961.000 0.9861.000
VSC 2.0 0.9520.998 0.9941.000 0.9881.000

LCG 0.9520.995 0.9950.998 0.9840.999

Micali-Schnorr 0.9750.993 1.0001.000 0.9941.000
QCG-I 0.9550.994 0.9971.000 0.6970.991
QCG-II 0.9540.993 0.9930.998 0.0000.000

CCG 0.6670.900 0.9110.995 0.0000.000

These conclusions from the aforementioned experiment are summarized in Table 4. We can
conclude that DFTTproposed is more reliable and definitely more sensitive than DFTTpresent.
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Figure 4: Passing rate RII in experiment 2. The “threshold” means the lower limit of the
significance interval defined in Eq. (10)

Table 4: Summary of the conclusions derived from experiments 1 and 2

Test DFTTpresent DFTTpareschi DFTTproposed

Reliability low high enough high enough
Sensitivity high low definitely high

5.3 Appropriate selection of n and m

As shown in Table 5, the parameters n and m of DFTTproposed are different from the other
tests. NIST SP800-22 recommends n = 1, 000, 000 and m = 1, 000 [2] (in experiments 1
and 2, we defined n = 100, 000 and m = 1, 000 for DFTTpresent and DFTTpareschi to avoid
excessive computation because we need 10 and 1000 of mn-length sequences, respectively).
However, as we stated in Step 3) in Section 4.1, in the procedure of DFTTproposed, n

2
− 1

P -values are generated, whereas DFTTpresent and DFTTpareschi generate m P -values.
Pareschi et al. reported that the number of P -values should not be too large because for

extremely large numbers of P -values, the second-level tests always fail [15, 16]. Pareschi et
al. recommended that, in the case that n = 220 = 1, 048, 576, for the frequency test included
in NIST SP800-22, the number of P -values should be smaller than 4795. Therefore, in
DFTTproposed, n should not be too large (in DFTTpresent, m should not be too large). However,
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Table 5: The parameter sets for each test, and the numbers of P -values generated by each
test

Parameter DFTTpresent DFTTpareschi DFTTproposed

n 100,000 100,000 4,000
m 1,000 1,000 25,000

Number of P -values m = 1000 m = 1000 n
2
− 1 = 1999

Table 6: Trade-off in the selection of n in DFTTproposed

n small large

Second-level test Accurate Erroneous
Distribution of 2

n
|Sj(X)|2 Erroneous Accurate

as we proved in Theorem 3, χ2
2 is the asymptotic distribution of 2

n
|Sj(X)|2. Therefore, n

should be as large as possible. Thus, in DFTTproposed, a selection of the parameter n is
a trade-off between the error of the second-level test and the error of the distribution of
2
n
|Sj(X)|2 (as shown in Table 6). Considering this trade-off, we defined the value of n as

shown in Table 5. The appropriate selection of n and m in DFTTproposed still needs to be
analyzed more specifically.

6 Conclusion

In this paper, we have considered the DFT test included in the NIST SP800-22 statistical
test suite for random number sequences. The most crucial problem in the present DFT
test (denoted as DFTTpresent) is that the reference distribution of its test statistic is not
mathematically derived but is rather obtained by numerical estimation with a pseudo-random
number generator; the basis of the test for randomness itself is based on a pseudo-random
number generator. Therefore, DFTTpresent cannot be used unless the reference distribution
is mathematically derived.

We proved that the asymptotic distribution of the power spectrum is χ2
2, and based on

this fact, we proposed a new DFT test denoted as DFTTproposed, whose distribution of the
test statistic is mathematically derived.

Furthermore, although appropriate selection of the parameters n and m for DFTTproposed

still need to be analyzed more specifically, the results of testing non-random sequences and
several pseudo-random number generators showed that DFTTproposed is more reliable and
definitely more sensitive than DFTTpresent, which is the current standard DFT test.
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