arXiv:1612.03312v1 [cs.CR] 10 Dec 2016

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 1

Monet: A User-oriented Behavior-based Malware
Variants Detection System for Android

Mingshen Sun, Xiaolei Li, John C.S. Lui, Fellow, IEEE, ACM, Richard T.B. Ma, Zhenkai Liang

Abstract—Android, the most popular mobile OS, has around
78 % of the mobile market share. Due to its popularity, it attracts
many malware attacks. In fact, people have discovered around
one million new malware samples per quarter [1], and it was
reported [2] that over 98 % of these new malware samples are
in fact ‘““derivatives” (or variants) from existing malware families.
In this paper, we first show that runtime behaviors of malware’s
core functionalities are in fact similar within a malware family.
Hence, we propose a framework to combine ‘“runtime behavior”
with “static structures” to detect malware variants. We present
the design and implementation of MONET, which has a client and
a backend server module. The client module is a lightweight, in-
device app for behavior monitoring and signature generation,
and we realize this using two novel interception techniques. The
backend server is responsible for large scale malware detection.
We collect 3723 malware samples and top 500 benign apps to
carry out extensive experiments of detecting malware variants
and defending against malware transformation. Our experiments
show that MONET can achieve around 99 % accuracy in de-
tecting malware variants. Furthermore, it can defend against
10 different obfuscation and transformation techniques, while
only incurs around 7% performance overhead and about 3 %
battery overhead. More importantly, MONET will automatically
alert users with intrusion details so to prevent further malicious
behaviors.

I. INTRODUCTION

NDROID is a mobile operating system from Google and

it powered mobile devices dominate around 78.7 % of
the smartphone OS market in the first quarter of 2016 [3].
Android applications (apps for short) can be downloaded not
only from the Google’s official market Google Play, but also
from third-party markets [4], [5], forums [6] and web sites.
Although Google Play scans any uploaded apps to reduce
malware [7], other markets/sites usually do not have sufficient
malware screening, and they become main hotbeds for spread-
ing Android malware. As a result, Android attracts millions
of malware. It is reported that 97 % of mobile malware is on
the Android platform [8].

Android provides various security mechanisms, such as
the permission mechanism [9] and app verification [10]. The
permission mechanism constrains functionalities of an app.
Apps can only use permissions which are explicitly declared
in their manifest files. When installing an app, users can
review the requested permissions to decide whether to install

Mingshen Sun and John C.S. Lui are with the Department of Computer
Science and Engineering, The Chinese University of Hong Kong. Part of
this work was done during Mingshen’s internship at National University of
Singapore. Email: {mssun, cslui}@cse.cuhk.edu.hk.

Xiaolei Li, Richard T.B. Ma, and Zhenkai Liang are with the
School of Computing, National University of Singapore. Email: wen-
jie011369 @gmail.com, {tbma, liangzk} @comp.nus.edu.sg.

the app or not. The permission system makes it difficult
for attackers to obtain arbitrary privilege, but it does not
help if the user accepts dangerous permissions requested by
malware (and unfortunately, many users do exactly that). In
addition, because of the permission abuse problem [11]-[13],
malware can still find its way to attack many Android devices.
Furthermore, researchers also propose a number of novel
attack methods [14]-[18] targeting Android.

Malware detection is the key to provide Android security.
Due to the difference in architectures, application structures
and distribution channel, Android is very different from tradi-
tional platforms, hence conventional detection methods cannot
be easily adapted to Android systems. To detect Android
malware, a number of systems were proposed by industries
and research communities. A widely deployed solution is to
scan apps in the Android application market, i.e., the Bouncer
scanner [7] in the Google Play Store. This helps to reduce (but
not eliminate) malware in the Google Play market. However,
due to the openness of the Android ecosystem, users often
install apps from other markets or directly download from
other sites (e.g., web forums). Hence, it is important to have
in-device detection systems to target malicious apps.

Broadly speaking, there are two types of in-device malware
detection systems. The first one is to perform static malware
detection. This type of systems [11], [19]-[21] uses static
information such as API calling information and control flow
graphs to generate signatures for detection. For example, anti-
virus engines will scan files in apps after their installation.
However, studies [22], [23] have shown that these types of
anti-virus engines can be easily bypassed using transformation
attacks (i.e., code obfuscation techniques like package name
substitution and reflection technique). Furthermore, sophisti-
cated signature generation and signature matching techniques
based on control flow analysis incur considerable computation
overhead, and consume energy on mobile devices which have
limited battery resource, preventing them from being adopted
as in-device detection systems.

The second type of in-device detection system is the dy-
namic intrusion prevention system, as seen in several prod-
ucts [24]-[26] and research studies [27]-[29]. These systems
work in the background and monitor apps at runtime. Once
they discover any suspicious behavior, a notification will
popup to alert the users. Note that suspicious behaviors are
usually based on sensitive APIs. Many benign apps (e.g., text
message management apps) may also invoke these APIs (e.g.,
sending text message API) for legitimate reasons. Therefore,
this type of systems may introduce false alerts and makes
intrusion notifications annoying and less preferable. Moreover,

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 2

a study [27] also shows that existing products in the market
can be easily circumvented.

According to a survey [2], it was reported that over 98 %
of new malware samples are in fact derivatives (or variants)
from existing malware families. These malware variants use
more sophisticated techniques like dynamic code loading,
manifest cheating, string and call graph obfuscation to hide
themselves from existing detection systems. Although these
techniques can help malware to hide their malicious logic,
we observe that the “runtime behaviors” of malware’s core
functionalities, such as unauthorized subscription of premium
services or privilege escalation at runtime, remain unchanged.
The runtime behaviors of a new malware variant and its earlier
generation are usually very similar. A detection system based
on runtime behaviors of malware will be able to detect most
malware and their variants more reliably. In addition, the static
structures of the malware are often similar within a malware
family.

With this observation, we present the design and implemen-
tation of MONET, an Android malware detection system that
combines “static logic structures” and “dynamic runtime in-
formation”. MONET consists of a client module and a backend
server module. The client module is a lightweight, in-device
app for malware behavior monitoring and signature generation
using two novel interception techniques, while the backend
server module is responsible for malware signature detection.
Our system can accurately describe the behaviors of an app
to detect and classify malware variants and defend against
obfuscation attacks. We focus on classifying malware based
on their behavior similarity. The MONET’s client module can
be easily deployed on any Android mobile device. Moreover,
it has low computational overhead and low demand on battery
resources. Specifically, we make the following contributions:

o We design and implement a runtime behavior signature
which can represent both the logic structures and the run-
time behaviors of an app. Our runtime behavior signature
is effective to detect malware variants and transformed
malware.

« We implement a lightweight, in-device malware detection
system, for Android devices. We propose two novel
interception techniques, and show that it is easy to deploy
and it provides informative alerts to users.

« We implement the solution, and demonstrate its effec-
tiveness and its low overhead, both on CPU and battery
resources.

The rest of the paper is organized as follows. Section II
introduces the necessary background on Android. In Sec-
tion III, we present the design of runtime behavior signature.
In Section IV, we describe the MONET system, and the imple-
mentation details. In Section V, we evaluate the effectiveness
and performance of MONET. Section VI presents the related
work and the conclusion is given in Section VII.

II. BACKGROUND

In this section, we introduce the essential background
knowledge of Android malware variants and evaluation. We
also discuss the intent interface and binder mechanism, which

are important knowledge needed to design our interception
techniques.

A. Malware Variants and Evolution

To circumvent detection and to quickly deploy malware,
hackers usually do not develop new malware from scratch,
but rather improve existing logic or add new malicious logic
into existing malware. They also repackage malware using
disassembled tools [30], [31] to disassemble a benign app,
and inject it with malicious logic, then repackage it as a new
but malicious app. We call a set of malware with similar
logic as a malware family. Moreover, if anti-virus engines
can successfully detect these malware, malware writers will
update parts of the logic of the original malware using some
obfuscation techniques. These newly generated malware will
have similar behavior as the original one. We call these mal-
ware as a “variant” within this malware family. According to
a report [2], many Android malware samples are variations of
existing malware. For example, the DroidKungfu family has
four variants. They use native code, string obfuscation and en-
cryption to make the malware more complicated and difficult
for detection. Studies [22], [23] have shown that using simple
transformations, anti-virus engines can be bypassed easily. We
call the static and automatic transformation techniques such
as string obfuscation, inserting junk instructions, renaming
class names, as “transformation attacks”. Therefore, detecting
malware variants and defending against transformation attacks
are challenging problems.

B. Intent & Binder Mechanism

There are four types of components in an Android app. They
are activity, service, content provider and broadcast receiver.
An activity represents a screen on the devices which can
interact with users. A service is a long-running background
component which does not have a user interface, and their
functions are to support tasks running in the background
(such as playing music). Android provides many system-level
services in the framework layer, for example, the activity
manager and the SMS manager. Developers can also define
services in their apps to provide functions for other apps.
Content providers manage structured data such as SQLite
database for apps. Broadcast receivers listen to events from
other components such as boot completed events and SMS
received event.

Because each component has individual functionalities and
is isolated from other components, Android provides an inter-
face which is called intent to connect these components. An
intent is a messaging object which facilitates a component
to request action from another component. Normally, one
component can use intents to start an activity, start a service
or deliver a broadcast. There are two types of intents: explicit
intent and implicit intent. Explicit intent can start a component
by specifying a full class name. For instance, knowing the
names of classes, developers can use an explicit intent to start
an activity or service in their own apps. Instead of explicitly
declaring the name, implicit intent does not need the name of
a component. Implicit intent can declare a general action to

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 3

Apps Service K
System Server leoh
Telephony
; Manager
Service User
Intent Activity A Manager Activity Space
= Manager Sms
! T
T3 T 2 U 2
|(_)_ _________ (_)._____..I {2) I '_ Kernel
| ___|| |SMS Driver Space

Binder Driver (/dev/binder)

Fig. 1. Intent and binder mechanism.

perform. Other components which are capable of performing
such actions will handle this intent. For example, if an app
wants to make a phone call, it can use an implicit intent with a
dialing action (i.e., android.intent.action.DIAL) to start
a dailer activity. However, if there is more than one dailer app,
the system will popup a dialog for users to choose.

From the operating system’s perspective, one intent call
involves three steps, which we illustrate in Figure 1. For
instance, activity A in an app wants to start the service S
using intent. Firstly, A will request Service Manager to provide
the address of the Activity Manager which is responsible
for the activity related operations (e.g., starting activities and
services). Then, A will request Activity Manager to start the
service S. In the final step, Activity Manager will tell this app
to start the service S.

Because each app runs in a sandbox within an Android
system, components belonging to different apps cannot di-
rectly communicate with each other in user space. But instead,
Android system provides a kernel driver which is called the
binder in kernel space for inter-process communication. We
want to emphasize that intent is a high level abstraction
in the application framework layer, and the implementation
of intent utilizes binder driver in the kernel layer. Figure 1
illustrates the work flow of the intent call in the previous
example. All the communications in the above mentioned
three steps need to go through the binder driver. We call
a binder communication as a binder transaction. There are
several attributes in each binder transaction. Binder descriptor
is a string which represents the target of this transaction.
Transaction code is an integer indicating the action of this
transaction. For instance, in the binder transaction from an app
to the Activity Manager for starting an activity, the descriptor
is android.app.IActivityManager and transaction code
is 3. Besides the intent call, other APIs which need inter-
process communications also utilize the binder mechanism.
For example, to send a text message, an app will use the binder
to request the SMS Manager to send a message through the
SMS driver. In summary, binder calls can represent all inter-
process communication including the intent calls between

apps.

III. SYSTEM DESIGN

In this section, we first state our problem, and then we
discuss the system design of MONET, in particular, the design

on the runtime behavior signature generation and the malware
detection algorithm.

A. Problem Statement

One way to quickly mutate an Android malware is to
use obfuscation methods to transform original codes to hide
its malicious logic. Conventional methods for PC cannot be
directly adapted to Android. Existing in-device solutions have
limited capability to recognize malware, especially under the
constraint of CPU resources and battery power. Our aim is to
design a new and novel user-oriented approach for malware
detection to achieve the following goals: (1) resistant to mal-
ware variants and transformation attacks, (2) user-oriented
and easy to deploy, and (3) highly efficient and scalable to
detect large number of malware variants.

« Resistant to Malware Variants and Transformation
Attacks. MONET should detect malware variants which
have similar runtime behavior. In addition, the transfor-
mation of static features such as package name, string and
instruction order should not affect our detection results.

o User-oriented and Easy Deployment. MONET’s client
module is designed for common mobile device users
rather than app marketplace to prevent malware. It should
be easy to deploy, e.g., without modifying existing An-
droid firmware. Moreover, after installing MONET on
a mobile device, it should not consume much battery
resource.

« High Efficiency and Scalability. After generating the
signature, MONET’s client module will send the infor-
mation to the MONET’s backend server for signature
detection. The backend server needs to be efficient and
scalable to support a large number of real time signature
detection requests.

We like to mention that many current user-oriented anti-
virus software programs only rely on static signatures which
are generated from disassembled codes and other static re-
sources (e.g., package names or unique strings within a
malware family). In addition, many current dynamic analysis
systems are designed only for assisting researchers to better
understand the dynamic behaviors of malware. The current
in-device intrusion prevention systems cannot determine the
maliciousness of suspicious apps for users. Furthermore, mo-
bile devices usually have constrained battery and computation
resources, so conventional host-based intrusion prevention
systems may not be appropriate.

B. Overview of Monet

Our system, MONET, determines the runtime behavior
signature of malware, and it combines both the static logic
structure and the runtime information. Runtime behavior is
difficult to change, and this provides additional information
for us to perform effective malware variant detection. Using
this runtime behavior signature, MONET can detect malware
variants and defend against malware transformation attacks.
We design two interception techniques to realize our system
so that users can easily install the MONET’s client module on
Android devices to provide malware protection.

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 4

MONET uses the following four steps to extract runtime
information to perform malware detection: (1) static behav-
ior graph generation, (2) runtime information collection, (3)
runtime behavior signature generation, and (4) signature de-
tection. Figure 2 illustrates the work flow of MONET to detect
malware on Android devices.

When users install a new app on their devices, MONET
monitors the installation event in the background, and extracts
the static information including component information from
the app’s manifest file and static logic from the disassembled
codes. Then, MONET generates a static behavior graph based
on the static structure of the app before launching the app.
After launching the app, MONET monitors and collects run-
time information including binder transactions as well as some
important system calls (e.g., socket () and execve() system
call). If the system detects an intrusive action, it will popup a
warning dialog to alert the user about the suspicious actions.
If the user cannot determine the maliciousness of this action,
the system will conduct further malware detection. MONET
generates a runtime behavior graph for this app using the static
behavior graph and the collected binder call information, and
suspicious system calls will also be recorded for detection.
Finally, MONET uses both the runtime behavior graph and the
suspicious system call set as the runtime behavior signature,
which is sent to the backend detection server for further
analysis. The MONET’s backend detection server, it will match
any uploaded signature with existing malware signatures in the
database, and return the result to the mobile device and notify
users about the detection result.

C. Runtime Behavior Signature

MONET uses runtime behavior signature (RBS) for malware
detection. Runtime behavior signature includes both the run-
time behavior graph (RBG) and the suspicious system call set
(SSS). RBG contains not only the high level logic structure of
an app, but also describes the calling actions among these logic
structures at runtime. SSS contains execution information of
sensitive system calls at runtime.

RBG is one of the basic elements for our behavior-based
detection system. An RBG of an app is a directed graph over
a set of app components and system components with two sets
C and B. C represents a set of app components which are all
components used within an app and system components which
are system services used, and B represents a set of binder
calls. The set of vertices corresponds to the components in C.
The set of edges corresponds to the binder calls between two
vertices in B. The label of vertex contains the corresponding
components names and properties. The label of edge consists
of binder transaction code representing the calling purpose
and the binder content containing essential information. For
the implicit intent call in the RBG, because we do not know
which component will handle the action of this intent, we
treat this action as a node in the RBG. The property in the
vertex label of a component indicates whether a node is an app
component or a system component. In summary, because RBG
describes the high-level logic structure within an app and the
runtime interactions with other functional system components,
we can use an RBG for behavior-based malware detection.

To further explain runtime behavior graph, we use an RBG
of a malware (o5android) as an example to illustrate the
details of RBG. This malware will register itself as a device
administrator to prevent uninstallation, and it also uses the
Google Cloud Messaging services to communicate with its
command-and-control server to avoid detection. Figure 3 illus-
trates a part of the RBG of this malware. The black circles in
the graph represent app components (i.e., the properties of the
nodes) in the malware, and beside the nodes are the names of
the nodes (i.e., the class names of the components). The white
circles, on the other hand, represent system services which
were requested by the malware at runtime, and the names
of nodes are descriptors representing the system services. A
link between two nodes implies a binder call between two
nodes. The label of the link contains the transaction code and
content of a binder call. In the left oval of the graph, there is
a binder call from com.google.elements.AdminActivity
to android.app.action.ADD DEVICE ADMIN. The code 3
represents an action to start an activity. Because the malware
uses implicit intent to start the device administration app, the
intent action is treated as a vertex in the RBG, which is the
white node in the left oval. This part of the RBG describes a
malicious behavior of the malware, which is registering the
service as a device administrator. In the right dotted oval,
there are two nodes and a link calling from com.google.
elements.MainActivity to com.google.android.c2dm.
intent REGISTER. The behavior represented in this dotted
oval is to initiate the Google Cloud Messaging service. We
will illustrate the generation method of RBG in the following
subsections.

RBG utilizes the specific app structure and communication
mechanism for Android to record runtime behaviors. RBG
contains two pieces of important information. The first one is
the calling relation between components inside an app or what
we call the logic structure, e.g., Activity MainActivity starts
the service AdminService. The second component is what
we call the runtime behaviors, e.g., Activity MainActivity
obtains the device’s unique ID through a telephony manager.
Combining the logic structure and the runtime behaviors, RBG
can accurately describe the characteristics of a malware. This
is fundamentally different from existing static approaches [32]
which simply use static features for malware detection. Next,
we further elaborate how to use an RBG as a malware
signature for detection.

Role of Suspicious System Call Set (SSS): SSS is a
set of potentially dangerous system calls. For example, the
system call includes socket and execve because malware
can use socket to download malicious executable files and
use execve to launch those programs. Firstly, malware may
use socket (i.e., network) to communicate with the command
and control server. MONET will capture the address of the
connected server. Secondly, some trojans will execute root
tools at runtime to gain root access and privilege. For example,
DroidKungfu is a trojan malware which will execute the
secbino binary to exploit system vulnerabilities. Because we
can only obtain the calling process (i.e., app) rather than
calling component of system calls in the kernel layer, we

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 5

Mobile Device Mobile Device Mobile Device Detection
Server
APK Intrusion . . S NI
i Signature
__ Install . File Launch Detected = |
L - _& _______ L - _ _,_/_ — F - - ommomomom= { % it
App . 8 Runtime ! 8 ‘p\‘.\.l A= =)
Static Information -l Detection @ A
2‘::3;1"0" Static Dynamic [Result
p Behavior ~e Behavior
Client App Graph d B Graph

(1) staic behavior

graph generation collection

Fig. 2.
runtime behavior graph generation.

android.app.action.
ADD_DEVICE_ADMIN

com.android.internal.
telephony.IPhoneSubinfo

code: 3
content:
"Notifications"

- ~
- ~

- ~
_ “com.google.android.

com.google.elements , 4 c2dm.intent_REGISTER \

AdminActivity

contentANULL

code: 1 ,
content: NULL,

/1

code: 34 1
content: NULL |
\

code: 34 ,
content: NULL v
7

content: NULL

7’
s

com.google.
elements.AdminService

com.google.elements. . ~
\ MainActivity _-7
~ -

Fig. 3. Example of runtime behavior graph.

separate SSS as another element of runtime behavior signature
and record them in SSS at runtime.

Together, both RBG and SSS constitute the runtime behav-
ior signature of the app and we use it for malware detection.
There are several reasons that RBG and SSS are suited as a
basis for malware detection. Firstly, every component in an
app has to use the binder mechanism to communicate with
other components. So binder calls can accurately represent
apps’ runtime behavior. Also, for network behavior and binary
execution, SSS can capture these suspicious system calls as
supplementary runtime behaviors. Secondly, logic structures of
a malware family are usually very similar. Although malware
may use static obfuscation methods to avoid detection by static
analysis, malware variants have similar run-time behavior with
the original malware. Therefore, with an accurate representa-
tion of static structure and runtime behaviors, RBG and SSS
can be used as a runtime behavior signature to detect malware
variants and transformation attacks.

To generate an app’s RBG, we need to extract the logic
structure and the runtime behaviors. One can extract the
app component information from the disassembled resources.
However, we also need to execute the app to obtain the calling
relation between components. Moreover, the calling relations
rely on the execution routines of an app. To accomplish this,
we propose to first use the static behavior graph (SBG),
which can represent the static logic structure before launching
the apps. In essence, SBG is a simplified RBG which only
includes the app components and their static calling relation.
In summary, SBG describes the skelefon (i.e., logic structure)
of an app, and connections within the skeleton are provided

(2) runtime information

(3) runtime behavior graph
generation

(4) signature detection

Overview of MONET. Runtime behavior signature will be generated through static behavior graph generation, runtime information collection and

by the runtime information, which we obtain from RBG.
Specifically, there are two phases to generate an app’s RBG.
They are: (1) static behavior graph generation and (2) runtime
behavior completion, which we explain as follows.

(1) Static Behavior Graph Generation: To generate an
RBG, we first use the static information to generate the static
behavior graph (SBG). SBG is a subgraph of RBG, but it
does not contain runtime information. There are two steps to
generate SBG. The first step is to extract app components from
the app’s manifest file (i.e., AndroidManifest.xml file). The
second step is to find intent calls between components, i.e.,
one app component which starts another app component.

Note that for the second step, due to the limitation of
static data-flow analysis, it is impossible to find all intent
calls. For example, a malware can hide an intent call within
a native code or obfuscate action string in the implicit intent
call. Moreover, traditional static analysis methods impose high
computation complexity. MONET uses an alternative method
to statically extract all intent calls. Firstly, MONET will use the
disassembled code to generate the control flow graph (CFG)
for each class. Secondly, it searches all intent call methods
(i.e., startActivity and startService APIs) in the CFG.
Because there are several attributes in these intent call methods
to indicate the caller and target, we can then keep track of these
variables. Here, we use the reaching definition algorithm [33]
to locate the caller and target. Lastly, we can determine an
intent call and add a link in the SBG.

We want to point out that a full CFG and reaching definition
analysis for an app will cost a lot computation resource. This is
not feasible for battery constrained mobile devices. Therefore,
we build a CFG and use the reaching definition algorithm only
within a component class. For other binder calls which cannot
be found by the SBG generation process, we can obtain them
at runtime.

Figure 4 depicts an example of statically finding an intent
call, which initiates from the activity A to the activity B. We
first locate the startActivity API call. The parameter i
is the intent object. Then, by using the reaching definition
algorithm, we can find the definition of i. Note that i is
defined by the intent constructor. The parameters of the intent
constructor are the caller class and the target class of an intent
call. Therefore, we locate the caller variable (i.e., v1) and
target variable (i.e., v2) of this intent call from the constructor
method of intent. Then, we find the definitions of v1 and v2.

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 6

[class v2 = B.class| Activity A (this)

o

. reaching
1", definition

ntext vl = thi
|C0 < h— S| ‘\forvl,v2

=~ \

S '
\ \

[Intent i = new Intent(vl, v2)]
x

reaching ‘.]
definition T ~==F - _
fori IstartActivity(i)

Fig. 4. Data-flow analysis for generating the static behavior graph (SBG).

code: 34
content: NULL

Activity B (B.class)

Lastly, the system determines an intent call from the activity
A (i.e., this) to activity B, and this edge will be added into
the SBG of this app. Using the above algorithm, most of
the intent calls can be found and added to the SBG, which
represents the skeleton of the app. Because we only perform
reaching definition algorithm within each component logic,
if definitions reside in other classes, we cannot locate this
binder call. Moreover, some binder calls may be hidden inside
native code. Therefore, the remaining calls will be recorded
at runtime.

(2) Runtime Behavior Completion: Because SBG is based
on static resources, it only possesses limited logic structure in-
formation. For example, malware samples may hide malicious
logic by obfuscation and reflection techniques. To gain these
hidden logic, we should capture runtime information. After
executing the app at runtime, MONET can collect runtime
binder calls. Then MONET will use these calls to complete the
SBG and generate an RBG. After generating the RBG, which
is a part of the signature of the suspicious app. MONET will
send it and SSS to the backend detection server for malware
detection. In Section IV, we will discuss in detail how we
implement the runtime behavior collection process in MONET.

D. Malware Detection

When the MONET’s backend detection server receives the
uploaded runtime behavior signature of a suspicious app, it
will execute the signature matching algorithm to determine
if this suspicious app is a malware. The detection algorithm
involves three parts: (1) graph decoupling, (2) malware sig-
nature generation and (3) signature matching.

(1) Graph Decoupling: Because repackaged malware con-
tains both benign logic and malicious logic, we need to per-
form a graph decoupling for all uploaded RBG to separate this
logic for malware detection. Figure 5 illustrates the process of
graph decoupling. Suppose we have an RBG of a repackaged
malware. There are two steps to achieve graph decoupling.
Firstly, we remove all nodes which are system components
and edges connected to these nodes (e.g., the white nodes in
the figure). Then, we obtain several disconnected subgraphs of
the original RBG. Secondly, for each disconnected subgraph,
we add back the removed system component nodes which
have links with nodes in this subgraph. Then, we re-link the
added nodes to nodes in the subgraph. Lastly, we will obtain
several individual graphs (e.g., the two graphs in the upper

*—eo

(1) (2)

.\‘/o

Fig. 5. The graph decoupling process.

circle and the lower dotted circle showed in the figure) which
contain logic structure and runtime behavior belonging to these
separated graphs. By using graph decoupling, we can easily
separate malicious logic and runtime behaviors from original
mixed RBG.

(2) Malware Signature Generation: Because malicious
runtime behaviors are captured at runtime, some behaviors
can only be triggered by certain events. Moreover, automatic
app-behavior triggering is still an ongoing research problem,
and existing studies [34], [35] cannot effectively trigger all
malicious behaviors. To make the detection more accurate,
malware analyzer should manually trigger the malicious events
at runtime. Therefore, before matching an uploaded suspicious
signature, malware analyzer needs to launch the captured
malware samples in MONET and triggers the malicious be-
havior manually. MONET will generate RBG and SSS for this
malware. For the RBG, MONET will then perform the graph
decoupling process to obtain a set of individual RBGs. Mal-
ware analyzer then determines which RBG contains malicious
behaviors. These malicious RBGs will be stored as malware
signature in the signature database. In Section IV, we will
elaborate the implementation of our signature database.

(3) Signature Matching: Signature matching is to match
the uploaded suspicious runtime behavior signature (includ-
ing SSS and RBG) with existing malware signatures in the
database to determine whether an app is malware or not.
The signature matching process consists of SSS matching
and RBG matching. For SSS, suspicious system calls can be
the indicator of a malware. For instance, one suspicious SSS
contains a connection to a well-known remote command and
control server, or it has an execution of a root exploit binary.
For RBG matching, it involves two steps. In the first step, we
use the graph decoupling algorithm to separate the suspicious
RBG into a set of decoupled RBG (D). For the second step,
the backend detection server will execute a graph similarity
algorithm to compare graph in the decoupled RBG set (D)
with graphs in the malware RBG set (M). We say that there
is a match if there exists a d € D and an m € M such that the
similarity between d and m is smaller than a threshold (7).
In the MONET backend detection server, we use the graph
edit distance algorithm to measure the similarity between two
RBGs. The similarity of two runtime behavior graph G and
G is: sim(G1,Gs) = 1— mlnf&‘fﬂﬁlﬁﬂlmﬁ'@‘fdl), where |V;|
and |Vy| are the number of vertex-edit operations of vertex
insertion and vertex deletion from G; to Gs. |E;| and |Ey]

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 7

ADD_DEVICE_ADMIN ADD_DEVICE_ADMIN

IPhoneSubinfo IPhoneSubinfo

AdminActivity intent_REGISTER AdminActivity intent_REGISTER

AdminService AdminService

MainActivity

G1

MainActivity

G2

Fig. 6. Example of graph edit distance.

are the number of edge-edit operations of vertex insertion and
vertex deletion from G to Go. We calculate the minimum
operation to transform G; to Go. Then, |V |+|V’|+|E|+|E’|
quantifies the maximum operations from G; and Gs. There-
fore, a high similarity score of two RBGs implies that it
needs small number of transformations from one to another.
Figure 6 illustrates an example of graph edit distance between
two RBGs: G; and G5. Both of them have six nodes and six
edges. They have the same graph structure except that one
edge in G2 points to a different node (i.e., dotted link in the
figure). The number of edge-edit operations from G to Gs
is 2 because we have to delete one edge and insert a new
edge. Therefore, the similarity score between G and Gs is
1-(14+140+0)/(64+ 646+ 6) =0.92. In other words,
these two graphs (G1 and G is highly similar.

IV. IMPLEMENTATION OF MONET

In this section, we present the implementation of MONET.
The system consists of two parts: a client app (which can
be installed in any Android device) to capture the behavior
and generate signatures, and a backend detection server to
determine whether a suspicious app is a malware variant.

A. Client App

The MONET client app can generate SBG for newly in-
stalled apps. At runtime, the MONET client app monitors
intrusive transactions and system calls. Once a suspicious
behavior is detected, the MONET client uses the collected
runtime information to generate the RBG and the SSS for the
executed app, and then sends them as the monitored behavior
of that app to the backend detection server for malware de-
tection. In our implementation, the client app consists of three
main components, (1) SBG generator, (2) runtime information
collector and (3) RBG and SSS generator.

(1) SBG generator: The MONET client app monitors the app
installation events (i.e., PACKAGE INSTALL and PACKAGE

ADDED action). Once an app is installed, SBG generator will
use the smali/baksmali library [30] as a disassembler to disas-
semble newly installed apps. The output is a set of disassem-
bled codes. In addition, the SBG generator will also translate
the compiled binary AndroidManifest.xml file into a plain
text file. As we discussed in Section III, to generate an SBG,
the SBG generator will first generate a control flow graph
(CFG) for each component class. Secondly, it will extract
component information from the AndroidManifest.xml.

With the CFG and component information, it uses a data
flow analysis technique and reaching definition algorithm to
generate a static behavior graph based on compiler theory.

The reaching definition algorithm we used is based on the
compiler theory, and the algorithm is depicted in Algorithm 1.
Input to the algorithm is a CFG of an app component class
generated from the disassembled code. In this algorithm,
GEN|[B] is the definitions within the code block B, and
KILL[B] is the definitions which are redefined (i.e., assigned
with other values) in block B. After calculating the reaching
definition, we obtain two sets of definitions: IN[B] and
OUT|B]. IN|[B] contains definitions which reach B’s entry,
and OUT[B] contains definitions which reach B’s exit. For
example, if we want to find the definition of variable i in the
startActivity(i) block (b), using the reaching definition
algorithm, we can obtain definitions that reach block B from
INTb] list. If there is a definition of i in the list, we can
find which statement defines the i variable. Lastly, we can
also determine the value of i in that statement. In summary,
this algorithm statically finds binder calls (links) between app
components (nodes) to generate an SBG. The complexity of
reaching definition algorithm is O(n?), where n is the number
of blocks in a CFG. For all the apps and malware we tested,
the value of n is between 1 and 20.

Algorithm 1 Reaching definition algorithm

Input: Control flow graph: CFG = (N, E, ENTRY, EXIT)
Output: IN[B] and OUTB] sets
OUT[ENTRY] + 0
for all basic block B other than ENTRY do
OUT[B] + 0
end for
while changes to any OUT occur do
for all block B other than ENTRY do
IN[B] = J(OUT|p]) > for all predecessors p of B
OUT[B] = GEN[B]U(IN[B] — KILL[B])
end for
end while

(2) Runtime Information Collector: The runtime informa-
tion collector runs in the background of an Android device
and it collects all binder transactions to generate an RBG
and specific system calls to generate an SSS. We implement
the runtime information collector using two interception tech-
niques on binder calls and system calls respectively. Figure 7
illustrates our implementation. It contains two functional parts:
the binder call interception and the system call interception.
e Binder Call Interception. MONET needs to collect the
binder calls information including the binder transaction code,
the transaction descriptors and various additional attributes.
The MONET client app uses the hooking technique on binder
calls. In essence, the client app injects libraries into apps and
system services to hook binder transactions. The first hooking
place is on the JNI interface for intercepting upper binder
related APIs between the Java layer and the native layer. Using
this method, we can intercept all binder calls initiated by this
app from the Java layer. The second hooking place is on the
Service Manager. Because all binder requests need to first go
through the Service Manager, the MONET client app will also
intercept calls to the Service Manager to avoid any malware

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 8

App Service Other
Manager Services
Service
Manager

System
Intercepted Services

Service

Manager
Telephony
F--- Do — - -] - Service
Interception
C/IC++ Sms
System Call Service

Interception
£2 T T

Other L - - -]
Device Drivers Binder Driver (/dev/binder)

Fig. 7. Implementation of the MONET runtime information collector.

TABLE I
BINDER CALL INFORMATION AT RUNTIME.

Caller Component Target Component Code Code Action
*.MainActivity PackageManager 2 getPackagelnfo

* . WorkService ConnectivityManager 4 getActiveNetworkInfo
* .WorkService PhoneSublnfo 4 getDeviceld
*,AdminService DevicePolicyManager 41 isAdminActive

* Package name: com.google.elements

using native code to initiate malicious binder calls. Figure 7
depicts the technical details of our binder call interception. For
example, if a malware uses the sendTextMessage() API to
send a premium message, this API call will go through several
lower layer APIs in the Android SDK. At the end, this method
call will be handled by a binder object. This binder object will
call the transact () JNI method to invoke the native function.
MONET will capture this binder transaction and record this
binder call. In addition, the MONET client app can also obtain
the runtime calling stack trace of this JNI method to find out
which component is initiating the binder call. Because this
binder call is an intrusive transaction, we will then be able
to notify users about the intrusive events. Note that MONET
will also generate an RBG using the current collected runtime
information and send it to the detection server for malware
detection. Table I depicts some binder call records of the
o5android malware. The record includes caller component
names, target component names, binder call codes and corre-
sponding actions of the codes. For example, the com. google.
elements.WorkService component will request device ID
from the PhonelnfoSub component at runtime. These binder
records will be used to complete the SBG to generate RBG
for detection.

e System Call Interception. To intercept system calls, we
implement a loadable kernel module (LKM) for the Linux
kernel. The kernel module will first search the address of the
sys call table structure. The sys call table struc-
ture stores the pointers of system call implementations. In
the MONET client app, we get the sys_call_table address
from the vector_swi handler [36]. Using this method, we
can determine the address of the sys call table for
different build versions of the Linux kernel. Then, to in-
tercept system calls, we change the system call addresses
in the sys_call_table to addresses of our own functions.

Inside our methods, the MONET client app will write the
calling information including caller process ID and system
call parameters into a device driver (/dev/monet) to pass the
information to the user layer app. At the end of the function,
MONET will call back the original functions to continue the
original logic of the app.

In our current implementation, we intercept two system
calls: socket() (i.e., sys_call_table[__NR_socket]) and
execve() (i.e., sys_call_table[__NR_execve]). By re-
placing the system call entries in the system call table, we
redirect these two system calls to our interception first and
then return back to their original system calls. For execve(),
the kernel adds a wrapper to adjust the parameter r3 before
performing the actual execve task. The wrapper points r3 to a
stack location calculated from the stack pointer sp. Therefore,
we should guarantee that the stack pointer sp is not corrupted
during our interception.

Intercepting these two system calls can expose most of
the malicious behavior in apps. Firstly, malware could use
the network to communicate with their remote command and
control servers. Therefore, to intercept this kind of behavior,
we should intercept socket () system call in the kernel layer
so that MONET will get the network connection information
either from the Java APIs or from native codes. Secondly,
many malware (e.g., DroidKungfu) attempt to execute a root
exploit when launching the malware. Therefore, execve() is
another dangerous behavior which we need to keep track.

We like to point out that the interception technique for
binder calls is easy to deploy on Android devices. The
deployment needs root privilege to inject libraries into apps
and system services. There are several tools which provide
root privilege management for apps. Moreover, they will also
prevent malware abusing root privilege to keep the device
secure. For the interception on system calls, because the kernel
for the current Android system is stable and will not have many
modifications, and loadable kernel module is compatible for
the current systems and easy to deploy. Furthermore, using the
above mentioned hooking technique, MONET can be deployed
on a wide variety of Android-based mobile devices.

(3) RBG and SSS Generator: With the collected binder call
and system call information, MONET builds an RBG and an
SSS. RBG is based on the SBG which was generated at the
installation time of a new app. From the runtime information
collector, we can gain a vector of binder calls sequence at
runtime with the caller class names, binder call descriptors and
binder call content. With this information, we can complete
the SBG to generate an RBG. For suspicious system calls,
MONET reads the calling information from the kernel space
via the device driver, and puts the system calls which belong
to current app process to SSS.

B. Backend Detection Server

The backend detection server is responsible for storing
malware signatures in the database, and to perform malware
detection using our signature matching algorithm. Because an
SSS is for detecting network address and binary root exploit
in the blacklist, the SSS matching is based on a traditional

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 9

hashing matching implementation. Note that usually, we only
need to use the RBG for the logic structure and runtime
information for detection. The matching algorithm of RBG
needs to perform graph similarity computation, but graph
comparison is computationally expensive. Therefore, based
on the properties of the runtime behavior graph, we use a
B+ tree to index malware signature to optimize the detection
process. In the current implementation, we use the number of
app components as a key to the B+ tree, and this information
is easy to derive from RBGs. To insert a record in the B+
tree, it only requires O(log, n) operations, and performing a
range query with & elements requires O(log, n+k) operations,
where n is the number of nodes in the B+ tree and b is the
maximum number of children nodes for the internal node.
Lastly, by using the B+ tree, we only need to compare RBGs
within a range. For example, if we need to detect an RBG
with n nodes, we only need to query and compare malware
RBGs in our database within n—« and n+« nodes, where «
is a constant integer we set in MONET. In our experiments,
we set a = 5. If the number of nodes for malware RBGs in
the database is not in [n — a, n + «], with high probability,
the similarity scores between the uploaded RBG and RBGs in
the database will be low. Using this method, it will reduce the
comparison computation for malware detection.

Overall, the workflow of detection can be described as
follows: (1) Monet detects suspicious transaction calls by
monitoring IPC; (2) A warning dialog pops out to users and
at the same time the signature is sent to server for evaluation;
(3) Because these two operations are asynchronized processes,
users can wait for detection results then decide whether
to block the malicious events. Considering some detection
may occur without network connection, we pre-loaded widely
detected malware signatures for offline detection.

V. EVALUATION

In this section, we first present our experimental setup and
dataset. Then, we present the evaluation results on the accuracy
and effectiveness of MONET to detect malware variants and
defend against malware transformation. We also present the
battery consumption of the MONET’s client module.

A. Experimental Setup & Dataset

In our experiment, we use an LG Nexus 5 mobile phone to
test our client app. Our test phone runs the Google official
Android firmware, or KitKat 4.4.4 with the build number
KTU84P and kernel version 3.4.0. Our backend detection
server is a Dual-core 3.10 GHz PC and 8 GB memory.

We collected 3,723 malware samples from the Android
Malware Genome Project [20], DroidAnalytics [37] samples
and contagio minidump forums [38]. In addition, we also
downloaded the top 500 apps from the Google Play market
(i.e., the ranking is based on the download number ranking
list). Note that we need these legitimate apps to evaluate
MONET’s capability on true negative, as well as to explore
the number of nodes within an RBG.

To analyze the characteristics of these apps, we execute
these apps for one minute and generate their corresponding

1072
T e -
2 F 1] Top 500 Apps ||
Q 7’
5 4B [Z22Z3 Malware Samples ||
£ [1
= I ":" -
2 o 7 -
E 2 [: ‘ o
= 1
2 RN i
NI L‘hﬁ—.—h e |
o LEZE L - ‘ g
0 50 100 150 200

Number of Nodes in RBG

Fig. 8. Distribution of the number of nodes in RBG for top apps and malware
samples.

RBGs. Figure 8 depicts the distribution of the number of
nodes in an RBG for malware or for benign apps. From the
figure, we see that most of the apps contain less than 50
nodes in their RBGs. In Section III, we discussed that many
graph similarity algorithms require high computation. Because
the number of nodes in RBG is small, the computation of
graph comparison is therefore acceptable. We will present the
performance evaluation of the backend detection server in later
experiment results.

B. Evaluation on Detection Capability

MONET uses the runtime behavior signature for malware
detection. It can detect exiting malware samples and their vari-
ants, as well as malware which uses transformation techniques.
Let us present our results.

Experiment 1 (Accuracy and Effectiveness on Detecting
Malware Variants): DroidKungfu malware is a popular
repackaged malware. It injects malicious classes into benign
apps including tools and games. There are four variants
(DKF1, DKF2, DKF3 and DKF4) of DroidKungfu malware. The
original malware (DKF1) listens to the battery change and boot
complete actions. If these actions are triggered, DKF1 performs
several behaviors including reading/writing data in the XML
file, starting another service, installing a new app, or gaining
root privilege, etc. For the following evolved malware variants,
DKF2 uses native code to execute root exploit. DKF3 uses string
obfuscation and AES encryption methods to hide malicious
string signature. DKF4 uses the same package name as the
hosted benign app to hide its static signatures.

We performed experiments to see the effectiveness of
MONET in using one malware signature (e.g., DKF1) to detect
other malware variants within the same malware family (e.g.,
DKF2 to DKF4). Table II shows the detection results for
each variant of the DroidKungfu malware family. We use
30 DFK1, 30 DKF2, 295 DKF3 and 90 DKF4 samples for
detection. We measure the true positive (TP), false positive
(FP), true negative (TN), false negative (FN) as well as the
accuracy (ACC = (TP+TN)/(TP+TN+FP+FN)) for
each DroidKungfu variant using SSS, or RBG only, or their
combination as signature respectively. We set the threshold 7
to be 0.8 for our detection server. For example, we first use
one sample of DroidKungful to generate a runtime behavior
signature. Then, we install all other samples and 500 benign
apps on our test phone with MONET, and run the apps for one

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 10

minute. To simulate user interactions, we use monkey [39]
to generate 500 pseudorandom system/user events such as
clicks, touches and gestures, etc. More sophisticated triggering
methods or real users’ interactions will help our system to
capture runtime behavior thoroughly.

From our experiments, we found that 29 out of 30 are
detected as DKF1 malware, and so our true positive rate is
29/30. There is one DKF1 sample which is not detected as
malware, so our false negative rate is 1/30. We manually
review the disassembled code of this malware sample. We
found that hackers declare the malicious component name in
the manifest file, but this malware does not contain any ma-
licious logic. Because current anti-virus engines may depend
on this unique static component name for detection. MONET
is based on runtime behaviors, so this app will not be detected
as malware. All 500 benign apps are detected correctly and so
our true negative rate is 1, and none of the benign apps are
reported as malware, so our false positive rate is 0. We also
found that most malicious logic will be initiated at the startup
time of malware samples. Therefore, one-minute running
time is enough for performing this effectiveness evaluation.
However, longer monitoring frames can help the system to
comprehensively complete the runtime behaviors for detection.

Let us illustrate the effectiveness of MONET using the RGB
and SSS for detection. From our experiment, we see that
when using the runtime malware signature including RBG
and SSS for detection, the average accuracy of detecting four
DroidKungfu variants is around 99 %. Secondly, if we only
use RBG for detection, the accuracy is 98.5 %, which drops a
little but it is still very effective in malware variant detection.
The reason is that some malicious binder calls and system
calls are not triggered in the automatic triggering process. The
average detection time on our test detection server is about 0.2
seconds. The data transformation time through Wi-Fi network
is about two seconds. In summary, the total detection time for
each malware sample is less than three seconds under a stable
network status.

Besides detecting existing malware within one variant,
MONET is also effective to detect evolved malware vari-
ant. To illustrate this capability, we use a runtime behavior
signature from one variant of the DroidKungfu family to
detect other variants. Figure 9 illustrates the accuracy of
our detection using different signatures. For example, we
first use DroidKungful (DKF1) signature to detection other
variant samples (DKF2, DKF3, DKF4). The accuracy for the next
generation variant (DKF2) is still high. Because some samples
of DKF3 and DKF4 variants change behavior in interacting with
the command and control server, the detection accuracy drops
a little. In summary, the detection accuracy of two consecutive
variants is above 90 %.

Experiment 2 (Defending Against Malware Transforma-
tion): Transformation attacks use static obfuscation tools
to hide malicious logic. Traditional feature-based anti-virus
engines rely heavily on specific patterns of malware for
detection. But string obfuscation and encryption can change
the pattern and bypass these transitional anti-virus engines.
Moreover, obfuscation also makes the logic complicated such

TABLE 11
DETECTION RESULTS FOR DROIDKUNGFU MALWARE FAMILY WITH 500
BENIGN APPS FROM GOOGLE PLAY.

Malware # of §$$* TPR FNR TNR FPR ACC
Variants Samples
O 0.10 090 100 000 94.9%
DKF1 30 [0.97 0.03 1.00 0.00 99.8%
[] 0.97 0.03 1.00 0.00 99.8 %
O 033 067 1.00 000 96.2%
DKF2 30 » 1.00 0.00 .00 0.00 100.0%
) 1.00 0.00 .00 0.00 100.0%
O 0.11 0.89 .00 0.00 69.9%
DKF3 295 » 0.99 0.01 100 000 99.6%
° 092 0.08 1.00 000 96.9%
O 0.18 082 100 000 87.6%
DKF4 90 [0.98 0.02 1.00 0.00 99.7%
° 0.89 0.11 1.00 000 98.3%
O 0.14 086 .00 000 87.2%
Total 445 » 0.99 0.01 .00 000 99.7%
° 092 008 1.00 000 98.5%

* Runtime behavior signature usage: O: SSS, @: RBG only
@: SSS and RBG together.

0.95 - —

Accuracy

0.9 |- —

0.85 [~ —
| | | |

DKF1 DKF2 DKF3 DKF4

DroidKunfu Variants

—e— DKF1 Signature —«— DKF2 Signature
—A— DKF3 Signature —6— DKF4 Signature

Fig. 9. Detecting DroidKungfu Malware Variants.

that malware researchers cannot easily analyze the malicious
logic. Instead of relying on string patterns, MONET uses
malicious behaviors for detection because malicious behaviors
are difficult to transform. In this experiment, we use a self-
made malware (o5android). This malware will request for
device administrator, or send text messages, or gain device
id, etc. Moreover, hackers generated a set of malware which
have a random configuration file so the MDS5 values are
different. We also use two transformation tools (ADAM [22]
and DroidChameleon [23]) to generate 45 obfuscated apps
from three original malware. In addition, we also implement
reflection and dynamic loading techniques to complement
existing methods. We use twelve types of transformation
techniques in the experiment. Table III shows the descriptions
of these twelve transformation techniques. We install these 45
transformed malware on the device with the MONET client
module. 40 out of 45 are detected as o5android malware by
our system. Because some techniques used by the transfor-
mation tools may corrupt the logic of malware, five of them

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 11

TABLE III
DESCRIPTIONS OF TRANSFORMATION TECHNIQUES.

Transformation Techniques # of Samples # of Detection

1. renaming classes 6 5

2. reversing bytecode order 3 3

3. string encryption 6 5

4. arrays encryption 3 3

5. removing debug information 3 3

6. reordering instructions 3 3

7. inserting non-trivial junk instructions 6 5

8. inserting NOP instructions 3 3

9. renaming method 6 5

10. renaming fields 6 5

11. reflection 3 3

12. dynamic loading 2 2
Total 50 45

TABLE IV
BENCHMARK RESULTS.

Test Baseline MONET Overhead
CPU 21043 20015 4.8%
Memory 14201 13019 8.3%
/0 7334 6782 7.5%
2D 325 311 4.0%
3D 2320 2302 0.8%
Composite 8802 8142 7.4%

crash after transformation. So we cannot consider them in the
experiment. We also conduct an experiment on a real world
malware family called FakeAV. This malware family utilizes
a simple transformation method to generate large amount of
samples. We successfully detect all collected nine malware
samples with different hash values (e.g., SHA1).

Experiment 3 (Performance and Battery Overhead): We
use Quadrant Standard Edition v2.1.1 [40] to measure the
general purpose benchmark for CPU, memory, I/O, 2D and
3D graphics. Table IV shows the benchmark results. Because
MONET will intercept binder calls and system calls, we have
round 8 % overhead in memory and I/O benchmarks. We also
measure the battery overhead introduced by MONET. We first
check the battery overhead in the standby mode. We use a
fully-charged test phone in standby mode for 24 hours. The
device with MONET installed only has 3.2 % battery overhead
as compared with device without MONET. Then, we use the
phone for one hour with heavy usage including 20 minutes
game playing, 20 minutes network surfing and 20 minutes
telephone call. We monitor the battery capacity by reading the
/sys/class/power_supply/battery/capacity file. The
battery of MONET for a heavy user is about 5.5%. In
summary, MONET has a low impact on the battery resource.

Experiment 4 (Capability to Alert Users): Figure 10
demonstrates two screenshots of MONET. When users launch
the o5android malware, MONET detects a malicious be-
havior, which is requesting users to add itself as a device
administration. From the left screenshot, MONET shows a
popup dialog to indicate the app is starting the device manager

O 4946

Encrypt application data

Fig. 10. Screenshots of MONET.

for ADD DEVICE ADMIN action. The content of this intent
is a message in Russian which means “encrypt application
data”. o5android is using this message to deceive users to
accept this ADD DEVICE ADMIN request. At the same time
of this alert, MONET will send runtime behavior signature to
the backend detection server. In the right screenshot, the alert
dialog shows the detection result, and users can click “Deny”
button to avoid executing malicious behavior.

VI. RELATED WORK

With the emergence of malware on the Android ecosystem,
researchers have proposed a number of systems to detect
Android malware based on static resources such as permis-
sion information, disassembled codes and other resources.
Zhou et al. [41] and Asokan [42] systematically analyze
the evolution of Android malware. DroidMOSS [20], Jux-
tapp [43], DNADroid [44], AnDarwin [45], MassVet [46],
ViewDroid [47], Dendroid [48], ResDroid [49], and DroidEa-
gle [50] aim at detecting repackaged and clone malware.
DroidRanger [21] uses permission-based footprinting and
heuristic schemes to detect existing malware. RiskRanker [32]
can automatically uncover malicious behaviors of zero-day
malware. DREBIN [51], DroidSIFT [52] and ICCDetector [53]
use machine learning algorithm to detect malware. There
are a number of works [19], [54]-[57] which use static
dataflow analysis to identify malicious logic in Android apps
and classify existing malware. To prevent malware exploiting
capability leaks and content leaks vulnerabilities, systems [11],
[20] aim at detecting such loopholes in apps. All these
systems are based on static features of malware. However,
current malware use advanced obfuscation methods to bypass
disassembled tools or hide the malicious logic in native code.
Moreover, learning-based malware algorithm is not compu-
tational efficiency and their effectiveness strongly depends
on the feature selection. In contrast, our system uses both
static features and dynamic runtime information to describe
malicious behavior, and MONET is effective in defense against
logic transformation.

To analyze sophisticated malware, researchers propose a
number of dynamic analysis systems. TaintDroid [58], Tain-
tART [59], DroidScope [60], VetDroid [61], CopperDroid [62]
and DroidBox [63] detect malicious behavior using dynamic

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 12

analysis. Marvin [64] combines static and dynamic analysis for
classifying malicious apps. In addition, some systems [65] are
proposed to track information flow to prevent privacy leakage.
However, these systems are designed for malware analysts. It
is difficult for regular mobile device users to install them on
their device to detect and prevent malware. Therefore, several
systems [27]-[29], [66]-[70] are proposed to prevent intrusion
on devices for regular users. However, these systems can only
warn users about the suspicious behaviors at runtime, and
users cannot easily determine whether a suspicious behavior
is from a malware or not. Our system is designed for reg-
ular mobile users. If an intrusion from a suspicious app is
detected, MONET can effectively determine the malware from
its runtime behavior and alert the user.

There are a number of malware detection systems based on
dynamic behavior or runtime information for mobile devices.
Bose et al. [71] propose a behavior-based detection system
for Symbian OS, which is an outdated mobile system. At
that time, malware in mobile devices were rare and simple.
pBMDS [72] and DroidScribe [73] uses machine learning
methods to classify the behaviors of apps. However, the model
only works on keyboard inputs, while most interactions with
devices are on the touchscreen nowadays. Crowdroid [74] and
MADAM [75] utilize system call sequences as malware be-
havior for detection. System calls contain less semantic infor-
mation and cannot accurately represent a malicious behavior.
MONET captures binder transactions and system calls, for
they contain more semantic information which can accurately
describe the runtime behavior.

VII. CONCLUSION

In this paper, we present the design and implementation
of MONET to detect malware variants and to defend against
transformation attack. MONET will generate a runtime be-
havior signature which consists of RBG and SSS to ac-
curately represent the runtime behavior of a malware. Our
system includes a backend detection server and a client app
which is easy to deploy on mobile devices. Our experiments
show that MONET can accurately detect malware variants
and defend against transformation attacks with only a min-
imal performance and battery overhead. Note that recently,
Google released Android 5.0 Lollipop which will replace the
Dalvik virtual machine with ART. ART runtime abandons
the virtual machine mechanism, but uses the ahead-of-time
compilation. Therefore, our current implementation using the
binder interception may not be directly applicable to the ART
runtime. However, because the application package structure
and binder mechanism remain unchanged, so one can easily
extend MONET on the ART runtime. This is our future work.

REFERENCES

[1] McAfee, “Mcafee labs threats report q2 2015, Tech. Rep., 2015.

[2] Symantec, “The future of mobile malware,” http://www.symantec.com/
connect/blogs/future-mobile-malware.

[3] Gartner, “Gartner says worldwide smartphone sales grew 3.9 percent in
first quarter of 2016,” http://www.gartner.com/newsroom/id/3323017.

[4] AppChina, “Appchina app market,” http://www.appchina.com, 2014.

[5] Slideme, http://slideme.org, 2014.

[6] Anzhi, http://bbs.anzhi.com, 2014.

[7]

[8]
[9]

[10]
[11]

(12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]
(30]

(31]
[32]

[33]
[34]

[35]

[36]

[37]

(38]

[39]
[40]

[41]

[42]

Google, “Android and security,” http://googlemobile.blogspot.hk/2012/
02/android-and-security.html, 2012.

F-Secure, “Threats report q2 2014,” Tech. Rep., 2014.

Google, http://developer.android.com/guide/topics/security/permissions.
html, 2014.

e https://support.google.com/accounts/answer/2812853 ?hl=en,
2014.

M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of
capability leaks in stock android smartphones.” in NDSS, 2012.

S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on android.”
in NDSS, 2012.

A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission
re-delegation: Attacks and defenses.” in USENIX Security Sym., 2011.
B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and D. Xu, “Guitar: Piec-
ing together android app guis from memory images,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015.

B. Cooley, H. Wang, and A. Stavrou, “Activity spoofing and its defense
in android smartphones,” in ACNS, 2014.

C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu, “Towards discovering and
understanding task hijacking in android,” in USENIX Security, 2015.
H. Huang, S. Zhu, K. Chen, and P. Liu, “From system services freezing
to system server shutdown in android: All you need is a loop in an app,”
in CCS, 2015.

C. Mulliner, W. Robertson, and E. Kirda, “Virtualswindle: An automated
attack against in-app billing on android,” in ASIACCS, 2014.

M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware an-
droid malware classification using weighted contextual api dependency
graphs,” in Proceedings of the 21st ACM Conference on Computer and
Communications Security, 2014.

W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-
phone applications in third-party android marketplaces,” in CODASPY,
2012.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets.” in NDSS, 2012.

M. Zheng, P. P. Lee, and J. C. S. Lui, “Adam: an automatic and extensible
platform to stress test android anti-virus systems,” in DIMVA, 2013.

V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon: evaluating android
anti-malware against transformation attacks,” in ASIA CCS. ACM,
2013.

“Lbe secrity guard,” http://www.lbesec.com/.

“Qihoo 360 mobile guard,” http://shouji.360.cn/.

“Jinshan mobile duba,” http://m.duba.net/.

M. Sun, M. Zheng, J. C. Lui, and X. Jiang, “Design and implementation
of an android host-based intrusion prevention system,” in ACSAC, 2014.
R. Xu, H. Saidi, and R. Anderson, “Aurasium: Practical policy enforce-
ment for android applications.” in USENIX Security Sym., 2012.

B. Davis and H. Chen, “Retroskeleton: Retrofitting android apps,” in
MobiSys, 2013.

“smali/baksmali,” https://code.google.com/p/smali/.

“Apktool: A tool for reverse engineering android apk files,” 2012.

M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:
scalable and accurate zero-day android malware detection,” in MobiSys.
ACM, 2012.

A. V. Aho, Compilers: Principles, Techniques and Tools, 2003.

V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: automatic security
analysis of smartphone applications,” in CODASPY, 2013.

C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: an automatic system for revealing ui-based trigger conditions in
android applications,” in SPSM, 2012.

“Android platform based linux kernel rootkit,” http://www.phrack.org/
issues/68/6.html.

M. Zheng, M. Sun, and J. C. S. Lui, “Droid analytics: A signature
based analytic system to collect, extract, analyze and associate android
malware,” in TrustCom, 2013.

“Contagio mobile malware mini dump,” http://contagiominidump.
blogspot.com.

“monkey,” http://developer.android.com/tools/help/monkey.html.
“Aurora softworks quadrant standard edition,” https://play.google.com/
store/apps/details?id=com.aurorasoftworks.quadrant.ui.standard.

Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in /[EEE Sym. on Security and Privacy, 2012.

N. Asokan, “On mobile malware infections,” in Proceedings of the 2014
ACM conference on Security and privacy in wireless & mobile networks.
ACM, 2014.

TECHNICAL REPORT OF MONET: A USER-ORIENTED BEHAVIOR-BASED MALWARE VARIANTS DETECTION SYSTEM FOR ANDROID 13

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A
scalable system for detecting code reuse among android applications,”
in DIMVA, 2013.

J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting
cloned applications on android markets,” in ESORICS, 2012.

——, “Andarwin: Scalable detection of semantically similar android
applications,” in ESORICS 2013, 2013.

K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and
P. Liu, “Finding unknown malice in 10 seconds: Mass vetting for new
threats at the google-play scale,” in USENIX Security, 2015.

F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “Viewdroid: to-
wards obfuscation-resilient mobile application repackaging detection,”
in Proceedings of the 2014 ACM conference on Security and privacy in
wireless & mobile networks, 2014.

G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco, “Den-
droid: A text mining approach to analyzing and classifying code struc-
tures in android malware families,” Expert Systems with Applications,
2014.

Y. Shao, X. Luo, and C. Qian, “Towards a salable resource-driven
approach for detecting repackaged android applications,” in ACSAC,
2014.

M. Sun, M. Li, and J. C. S. Lui, “Droideagle: Seamless detection
of visually similar android apps,” in Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks,
ser. WiSec ’15, 2015.

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket,” in Prof. of the Network and Distributed System
Security Symposium, 2014.

S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou, V. P.
Ranganath, H. Li, and N. Guevara, “Experimental study with real-
world data for android app security analysis using machine learning,”
in Proceedings of the 31st Annual Computer Security Applications
Conference. ACM, 2015.

K. Xu, Y. Li, and R. H. Deng, “Iccdetector: Icc-based malware detection
on android,” IEEE Transactions on Information Forensics and Security,
2016.

W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of android
application security.” in USENIX security symposium, 2011.

L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings
of the 2012 ACM conference on Computer and communications security.
ACM, 2012.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in 35th SIGPLAN Conf. on Programming Language Design and
Implementation. ACM, 2014.

C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras, “Droidminer:
Automated mining and characterization of fine-grained malicious behav-
iors in android applications,” in ESORICS 2014, 2014.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “Taintdroid: an information flow tracking system for real-
time privacy monitoring on smartphones,” Communications of the ACM,
2014.

M. Sun, T. Wei, and J. C. S. Lui, “Taintart: A practical multi-level
information-flow tracking system for android runtime,” in Proceedings of
the 23rd ACM Conference on Computer and Communications Security,
ser. CCS’16, 2016.

L.-K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis.” in
USENIX Security Symposium, 2012.

Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang, “Vetting undesirable behaviors in android apps with permission
use analysis,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 2013.

K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Auto-
matic reconstruction of android malware behaviors.” in NDSS, 2015.
“Droidbox,” https://code.google.com/p/droidbox/.

M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Efficient
and comprehensive mobile app classification through static and dynamic
analysis,” in Computer Software and Applications Conference (COMP-
SAC), 2015 IEEE 39th Annual. 1EEE, 2015.

M. 1. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard, “Information flow analysis of android applications in droidsafe.”
in NDSS, 2015.

[66]

[67]
[68]
[69]

[70]

[71]

[72]

[73]

[74]

[75]

S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and fine-grained
mandatory access control on android for diverse security and privacy
policies.” in Usenix security, 2013.

C. Wu, Y. Zhou, K. Patel, Z. Liang, and X. Jiang, “Airbag: Boosting
smartphone resistance to malware infection,” in NDSS, 2014.

X. Li, H. Hu, G. Bai, Y. Jia, Z. Liang, and P. Saxena, “Droidvault: A
trusted data vault for android devices,” in ICECCS. 1EEE, 2014.

X. Wang, K. Sun, Y. Wang, and J. Jing, “Deepdroid: Dynamically
enforcing enterprise policy on android devices.” in NDSS, 2015.

M. Sun, J. C. S. Lui, and Y. Zhou, “Blender: Self-randomizing address
space layout for android apps,” in Proceedings of the 19th International
Symposium on Research in Attacks, Intrusions and Defenses, ser. RAID
’16, 2016.

A. Bose, X. Hu, K. G. Shin, and T. Park, “Behavioral detection of
malware on mobile handsets,” in MobiSys. ACM, 2008.

L. Xie, X. Zhang, J.-P. Seifert, and S. Zhu, “pbmds: a behavior-based
malware detection system for cellphone devices,” in Prof. of the 37
ACM Conf. on Wireless network security, 2010.

S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder,
and L. Cavallaro, “Droidscribe: Classitying android malware based on
runtime behavior,” 2016.

I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-
based malware detection system for android,” in SPSM. ACM, 2011.
A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam: Effective
and efficient behavior-based android malware detection and prevention,”
2016.

