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Finite State Markov Wiretap Channel with

Delayed Feedback
Bin Dai, Zheng Ma, and Yuan Luo

Abstract

The finite state Markov channel (FSMC), where the channel transition probability is controlled by a state

undergoing a Markov process, is a useful model for the mobile wireless communication channel. In this paper,

we investigate the security issue in the mobile wireless communication systems by considering the FSMC with an

eavesdropper, which we call the finite state Markov wiretap channel (FSM-WC). We assume that the state is perfectly

known by the legitimate receiver and the eavesdropper, and through a noiseless feedback channel, the legitimate

receiver sends his received channel output and the state back to the transmitter after some time delay. Inner and

outer bounds on the capacity-equivocation regions of the FSM-WC with delayed state feedback and with or without

delayed channel output feedback are provided in this paper, and we show that these bounds meet if the eavesdropper’s

received symbol is a degraded version of the legitimate receiver’s. The above results are further explained via degraded

Gaussian and Gaussian fading examples.

Index Terms

Capacity-equivocation region, delayed feedback, finite-state Markov channel, secrecy capacity, wiretap channel.

I. INTRODUCTION

A. The finite state Markov channel

The finite state Markov channel (FSMC) is a discrete channel, and its transition probability depends on a channel

state which takes values in a finite set and undergoes a Markov process. Wang et al. [1] and Zhang et al. [2] first

found that the FSMC is a useful model for characterizing the time-varying fading channels, and the capacity of the

FSMC was studied by [3]. Here note that the capacity provided in [3] is a multi-letter characterization, and it is

difficult to calculate. A single-letter characterization of the capacity of the FSMC remains open.

It is known to all that for a point-to-point discrete memoryless channel (DMC), feeding back the channel output

of the receiver to the transmitter via another noiseless channel does not increase the channel capacity [4]. However,
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Cover et al. showed that the capacity regions of several multi-user channels, such as multiple-access channel (MAC)

and relay channel, can be enhanced by feeding back the receiver’s channel output to the transmitter over a noiseless

channel, see [5] and [6]. Then, it is natural to ask: does the receiver’s channel output feedback help to enhance

the capacity of the FSMC? Viswanathan [7] answered this question by considering a practical mobile wireless

communication scenario, where the channel state is perfectly obtained by the receiver, and the receiver noiselessly

feeds back the state and his own channel output to the transmitter after some time delay. Viswanathan [7] showed

that this communication scenario can be modeled as the FSMC with delayed feedback, see Figure 1. The capacity

of the model of Figure 1 is totally determined in [7], and unlike the works of [5] and [6], the capacity results

in [7] imply that feeding back the receiver’s channel output to the transmitter over a noiseless channel does not

increase the capacity of FSMC with only delayed state feedback. Other related works on the FSMC with or without

feedback are investigated in [8]-[13].

Fig. 1: The FSMC with delayed feedback

B. The wiretap channel

Wyner, in his landmark paper on the wiretap channel [14], first investigated the information-theoretic security

in practical communication systems. In Wyner’s wiretap channel model, a transmitter sends a private message

to a legitimate receiver via a discrete memoryless main channel, and an eavesdropper eavesdrops the output of

the main channel via a discrete memoryless wiretap channel. We say that the perfect secrecy is achieved if no

information about the private message is leaked to the eavesdropper. The secrecy capacity, which is the maximum

reliable transmission rate with perfect secrecy constraint, was characterized by Wyner [14]. After Wyner determined

the secrecy capacity of the discrete memoryless wiretap channel model, Leung-Yan-Cheong and Hellman [15]

investigated the Gaussian wiretap channel (GWC), where the noise of the main channel and the wiretap channel

is Gaussian distributed. It is shown in [15] that the secrecy capacity of the GWC is obtained by subtracting the

capacity of the overall wiretap channel 1 from the capacity of the main channel. Wyner’s work was generalized

by Csiszár and Körner [16], where common and private messages are sent through a discrete memoryless general

1Here the overall wiretap channel is a cascade of the main channel and the wiretap channel
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broadcast channel 2. The common message is assumed to be decoded correctly by both the legitimate receiver and

the eavesdropper, while the private message is only allowed to be obtained by the legitimate receiver. The secrecy

capacity region of this generalized model was characterized in [16], and later, Liang et al. [17] characterized the

secrecy capacity region for the Gaussian case of Csiszár and Körner’s model [16]. The work of [14] and [16]

lays the foundation of the information-theoretic security in communication systems. Using the approach of [14]

and [16], the security problems in multi-user communication channels, such as broadcast channel, multiple-access

channel, relay channel, and interference channel, have been widely studied, see [18]-[33].

Recently, the wiretap channel with states has received much attention, see [34]-[38]. These works focus on the

scenario that the states are identical independent distributed (i.i.d.), and to the best of the authors’ knowledge, only

Bloch et al. [39] and Sankarasubramaniam et al. [40] investigated the wiretap channel with memory states, where a

stochastic algorithm for computing the multi-letter form secrecy capacity of this model was provided. A single-letter

characterization for the secrecy capacity of [39] and [40] is still open.

C. Contributions of This Paper and Organization

In practical mobile wireless communication networks, security is a critical issue when people intend to transmit

private information, such as the credit card transactions and the banking related data communications. The secure

transmission of these private messages in the practical mobile wireless communication networks motivates us to

study the finite-state Markov wiretap channel with delayed feedback, see the following Figure 2. In Figure 2, the

transition probability of the channel at each time instant depends on a state which undergoes a finite-state Markov

process. At time i, the receiver 3 receives the channel output Yi and the state Si, and sends them back to the

transmitter after a delay time d via a noiseless feedback channel. The channel encoder, at time i, generates the

channel input according to the transmitted message W and the delayed feedback Yi−d and Si−d. Moreover, at time

i, an eavesdropper receives the channel output Zi and the state Si, and he wishes to obtain the transmitted message

W . The delay time d is perfectly known by the receiver, the eavesdropper and the transmitter. The main results of

the model of Figure 2 are listed as follows.

• First, for the model of Figure 2 with only delayed state Si−d feedback, we provide inner and outer bounds on

the capacity-equivocation region, and we find that these bounds meet if the eavesdropper’s received symbol

Zi is a degraded version of the receiver’s Yi.

• Second, inner and outer bounds on the capacity-equivocation region are provided for the model of Figure 2

with both delayed state Si−d and delayed output Yi−d feedback. We also find that these bounds meet if Zi is a

degraded version of Yi. Moreover, unlike the fact that the delayed receiver’s channel output feedback does not

increase the capacity of the FSMC with only delayed state feedback [7], we find that for the degraded case,

this delayed channel output feedback Yi−d helps to enhance the capacity-equivocation region of the FSM-WC

2Here note that Wyner’s wiretap channel model is a kind of degraded broadcast channel
3Throughout this paper, the “receiver” is used as a shorthand for “legitimate receiver”
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with only delayed state feedback, i.e., sending back the receiver’s channel output to the transmitter may help

to enhance the security of the practical mobile wireless communication systems.

• The above results are further explained via degraded Gaussian and Gaussian fading examples.

Fig. 2: The FSM-WC with delayed feedback

The rest of this paper is organized as follows. In Section II, we show the definitions, notations and the main

results of the model of Figure 2. Degraded Gaussian and Gaussian fading examples of the model of Figure 2 are

provided in Section III. Final conclusions are presented in Section IV.

II. BASIC NOTATIONS, DEFINITIONS AND THE MAIN RESULT OF THE MODEL OF FIGURE 2

Basic notations: We use the notation pV (v) to denote the probability mass function Pr{V = v}, where V (capital

letter) denotes the random variable, v (lower case letter) denotes the real value of the random variable V . Denote

the alphabet in which the random variable V takes values by V (calligraphic letter). Similarly, let UN be a random

vector (U1, ..., UN ), and uN be a vector value (u1, ..., uN ). In the rest of this paper, the log function is taken to

the base 2.

Definitions of the model of Figure 2:

• The channel is a finite-state Markov channel (FSMC), where the channel state S takes values in a finite alphabet

S = {s1, s2, ..., sk}. At the i-th time (1 ≤ i ≤ N ), the transition probability of the channel depends on the

state si, the input xi and the outputs yi, zi, and is given by PY,Z|X,S(yi, zi|xi, si). The i-th time outputs of

the channel Yi and Zi are assumed to depend only on Xi and Si, and thus we have

PY N ,ZN |XN ,SN (yN , zN |xN , sN ) =

N∏
i=1

PY,Z|X,S(yi, zi|xi, si). (2.1)

• The state process {Si} is assumed to be a stationary irreducible aperiodic ergodic Markov chain. The state

process is independent of the transmitted messages, and it is independent of the channel input and outputs

given the previous states, i.e.,

Pr{Si = si|Xi = xi, Y i = yi, Si−1 = si−1} = Pr{Si = si|Si−1 = si−1}. (2.2)
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Here note that (2.2) also implies that

Pr{Si = si|Xi = xi, Y i = yi, Si−d = si−d} = Pr{Si = si|Si−d = si−d}, (2.3)

where 1 ≤ d ≤ i − 1. Denote the 1-step transition probability matrix by K, and denote the steady state

probability of {Si} by π. Let the random variables Si and Si−d be the channel states at time i and i − d,

respectively. The joint distribution of (Si, Si−d) is given by

πd(Si = sl, Si−d = sj) = π(sj)K
d(sj , sl), (2.4)

where sl is the l-th element of S, sj is the j-th element of S, and Kd(sj , sl) is the (j, l)-th element of the

d-step transition probability matrix Kd of the Markov process.

• Let W , uniformly distributed over the finite alphabetW = {1, 2, ...,M}, be the message sent by the transmitter.

Here note that W is independent of the state process {Si} (1 ≤ i ≤ N ) and H(W ) = logM . For the model

of Figure 2 without receiver’s channel output feedback, the i-th time channel input Xi is given by

Xi =

 fi(W ), 1 ≤ i ≤ d

fi(W,S
i−d), d+ 1 ≤ i ≤ N,

(2.5)

and for the model of Figure 2 with receiver’s channel output feedback, Xi is given by

Xi =

 fi(W ), 1 ≤ i ≤ d

fi(W,S
i−d, Y i−d), d+ 1 ≤ i ≤ N.

(2.6)

Here note that the i-th time channel encoder fi is a stochastic encoder.

• The channel decoder is a mapping

ψ : YN × SN → {1, 2, ...,M}, (2.7)

with inputs Y N , SN and output Ŵ . The average probability of error Pe is denoted by

Pe =
1

M

M∑
j=1

∑
sN

PSN (sn)Pr{ψ(yN , sN ) 6= j|j was sent}. (2.8)

• Since the state is also known by the eavesdropper, the eavesdropper’s equivocation to the message W is defined

as

∆ =
1

N
H(W |ZN , SN ). (2.9)

• A rate-equivocation pair (R,Re) (where R,Re > 0) is called achievable if, for any ε > 0, there exists a

channel encoder-decoder (N,∆, Pe) such that

logM

N
≥ R− ε, ∆ ≥ Re − ε, Pe ≤ ε. (2.10)

The capacity-equivocation region is a set composed of all achievable (R,Re) pairs. Here the capacity-equivocation

region of the model of Figure 2 with only delayed state feedback is denoted by R, and Rf denotes the capacity-

equivocation region of the model of Figure 2 with delayed state and receiver’s channel output feedback. In the
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remainder of this section, the bounds on the capacity-equivocation region R are given in Theorem 1 and Theorem

2, and the bounds on Rf are given in Theorem 3 and Theorem 4, see the followings.

Main results on R:

Theorem 1: An inner bound Rin on R is given by

Rin = {(R,Re) : 0 ≤ Re ≤ R,

R ≤ I(V ;Y |S, S̃),

Re ≤ I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃)},

where the joint probability PUV SS̃XY Z(u, v, s, s̃, x, y, z) satisfies

PUV SS̃XY Z(u, v, s, s̃, x, y, z)

= PY Z|XS(y, z|x, s)PX|UV S̃(x|u, v, s̃)PV |US̃(v|u, s̃) ·

PU |S̃(u|s̃)Kd(s̃, s)PS̃(s̃), (2.11)

and U may be assumed to be a (deterministic) function of V . Here note that in Rin, if I(V ;Y |U, S, S̃) −

I(V ;Z|U, S, S̃) < 0, Re = 0.

Proof: The inner bound Rin is achieved by the following key steps:

• First, combining the rate splitting technique used in [16] with the multiplexing coding scheme used in [7],

we divide the transmitted message W into a common message Wc = (Wc,1, ...,Wc,k) and a confidential

message Wp = (Wp,1, ...,Wp,k), where k is the cardinality of S, and Wc,s̃ (or Wp,s̃) (1 ≤ s̃ ≤ k) is the s̃-th

sub-message of Wc (or Wp). Further divide the sub-message Wp,s̃ into two part, i.e., Wp,s̃ = (Wp,s̃,1,Wp,s̃,2).

Here note that the index s̃ is the specific value of the delayed state Si−d, which is represented by S̃.

• Similar to the superposition coding strategy used in [16], the sub-message Wc,s̃ (1 ≤ s̃ ≤ k) is encoded as

the cloud center UNs̃ (here Ns̃ is the codeword length for Wc,s̃ and Wp,s̃), and the message pair (Wc,s̃,Wp,s̃)

is encoded as the satellite codeword V Ns̃ . Here note that the random binning coding strategy used in [16] is

also introduced into the construction of V Ns̃ , i.e., there are three indexes in V Ns̃ , the first index is chosen

according to the common message Wc,s̃, the second index is chosen according to Wp,s̃,1, and the third index

is randomly chosen from a bin with index Wp,s̃,2.

• Note that the state S and the delayed state Si−d (represented by S̃) are known by all parties. Then along the

lines of the proof of [16], for the sub-messages Wc,s̃ and Wp,s̃, we can obtain the following region Rins̃

Rins̃ = {(Rs̃, Re,s̃) : 0 ≤ Rs̃ = Rc,s̃ +Rp,s̃,

0 ≤ Rc,s̃ ≤ min{I(U ;Y |S, S̃ = s̃), I(U ;Z|S, S̃ = s̃)},

0 ≤ Rp,s̃ ≤ I(V ;Y |U, S, S̃ = s̃),

0 ≤ Re,s̃ ≤ Rp,s̃,

Re,s̃ ≤ I(V ;Y |U, S, S̃ = s̃)− I(V ;Z|U, S, S̃ = s̃)},
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where Rc,s̃, Rp,s̃ and Rs̃ are the rates of the sub-messages Wc,s̃ , Wp,s̃ and Ws̃ = (Wc,s̃,Wp,s̃), respectively,

and Re,s̃ is the equivocation rate of the sub-message Wp,s̃. Here note that in Rins̃ , if I(V ;Y |U, S, S̃ =

s̃)− I(V ;Z|U, S, S̃ = s̃) < 0, Re,s̃ = 0.

• Finally, using Fourier-Motzkin elimination (see e.g., [43]) to eliminate Rc,s̃ and Rp,s̃ from Rins̃ , and multi-

plexing all the sub-messages, the region Rin is obtained.

The details of the proof are in Appendix A.

Theorem 2: An outer bound Rout on R is given by

Rout = {(R,Re) : 0 ≤ Re ≤ R,

R ≤ I(V ;Y |S, S̃),

Re ≤ I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃)},

where the joint probability PUV SS̃XY Z(u, v, s, s̃, x, y, z) satisfies

PUV SS̃XY Z(u, v, s, s̃, x, y, z)

= PY Z|XS(y, z|x, s)PXV USS̃(x, v, u, s, s̃). (2.12)

Here note that in Rout, if I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃) < 0, Re = 0.

Proof: The outer bound Rout is achieved by the following key steps:

• First, note that the auxiliary random variable Ui in [16] is defined as (Y i−1, ZNi+1). In this paper, in order to

introduce the delayed feedback state Si−d into the definition of Ui, we define Ui , (Y i−1, ZNi+1, S
N ). Here

note that Si−d is included in the SN .

• Using Fano’s inequality, the transmission rate R and the equivocation rate Re can be upper bounded by
1
N I(W ;Y N |SN ) and 1

N (I(W ;Y N |SN )− I(W ;ZN |SN )), respectively.

• Then, using chain rule and the following Csiszár’s equalities
N∑
i=1

I(Yi;Z
N
i+1|Y i−1, SN ) =

N∑
i=1

I(Zi;Y
i−1|ZNi+1, S

N ) (2.13)

and
N∑
i=1

I(Yi;Z
N
i+1|Y i−1, SN ,W ) =

N∑
i=1

I(Zi;Y
i−1|ZNi+1, S

N ,W ), (2.14)

to eliminate some identities of the bound on the equivocation rate Re, the outer bound Rout is obtained.

The details of the proof are in Appendix B.

Remark 1: There are some notes on Theorem 1 and Theorem 2, see the followings.

• Here note that the inner bound Rin is almost the same as the outer bound Rout, except the definitions of

the joint probability PUV SS̃XY Z(u, v, s, s̃, x, y, z) in Rin and Rout. To be specific, in Rin, the definition

of PUV SS̃XY Z(u, v, s, s̃, x, y, z) implies the Markov chains S → (S̃, U, V ) → X , S → (S̃, U) → V and

S → S̃ → U , but these chains are not guaranteed in Rout.
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• If the eavesdropper’s received symbol ZN is a degraded version of Y N , i.e., the Markov chain (XN , SN )→

Y N → ZN holds, the outer bound Rout meets with the inner bound Rin, and they reduce to the following

region R∗, where

R∗ = {(R,Re) : Re ≤ R,

R ≤ I(X;Y |S, S̃),

Re ≤ I(X;Y |S, S̃)− I(X;Z|S, S̃)}, (2.15)

and the joint probability PSS̃XY Z(ss̃xyz) satisfies

PSS̃XY Z(ss̃xyz) = PZ|Y (z|y)PY |X,S(y|x, s)Kd(s̃, s)PX|S̃(x|s̃)PS̃(s̃). (2.16)

Proof: See Appendix C.

• A rate R is called achievable with weak secrecy if, for any ε > 0, there exists a channel encoder-decoder

(N,∆, Pe) such that

logM

N
≥ R− ε, ∆ ≥ R− ε, Pe ≤ ε. (2.17)

The secrecy capacity is the maximum achievable rate with weak secrecy, and it can be directly obtained by

substituting Re = R into the corresponding capacity-equivocation region and maximizing R. Thus, for the

degraded case of the model of Figure 2 with only delayed state feedback, the secrecy capacity C∗s is given by

C∗s = max
PX|S̃(x|s̃)

(I(X;Y |S, S̃)− I(X;Z|S, S̃)). (2.18)

Here C∗s is obtained by substituting Re = R into (2.15) and maximizing R.

Main results on Rf :

Theorem 3: An inner bound Rfi on the capacity-equivocation region Rf is given by

Rfi = {(R,Re) : 0 ≤ Re ≤ R,

R ≤ I(V ;Y |S, S̃),

Re ≤ [I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃)]+ +H(Y |V,Z, S, S̃)},

where [x]+ = x if x > 0, [x]+ = 0 if x ≤ 0, the joint probability mass function PUV SS̃XY Z(u, v, s, s̃, x, y, z)

satisfies

PUV SS̃XY Z(u, v, s, s̃, x, y, z)

= PY Z|XS(y, z|x, s)PX|UV S̃(x|u, v, s̃)PV |US̃(v|u, s̃) ·

PU |S̃(u|s̃)Kd(s̃, s)PS̃(s̃), (2.19)

and U may be assumed to be a (deterministic) function of V .

Proof:
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The output feedback inner bound Rfi is constructed according to the inner bound Rin in Theorem 1, and it is

achieved by the following key steps:

• Similar to the construction of the bound Rin, we split W into Wc and Wp, and define Wc = (Wc,1, ...,Wc,k)

and Wp = (Wp,1, ...,Wp,k). Furthermore, for 1 ≤ s̃ ≤ k, define Wp,s̃ = (Wp,s̃,1,Wp,s̃,2). The index s̃ is the

specific value of the delayed state Si−d, which is represented by S̃.

• The component message Wc,s̃ (1 ≤ s̃ ≤ k) is encoded as UNs̃ (Ns̃ is the codeword length for Wc,s̃ and

Wp,s̃). The component message pair (Wc,s̃,Wp,s̃) and a secret key generated by the delayed output feedback

are encoded as V Ns̃ . To be specific, the delayed output feedback is used to generate a secret key K∗ which

is shared between the receiver and the transmitter, and this key is used to encrypt Wp,s̃,2 (part of the Wp,s̃),

i.e., Wp,s̃,2 is encrypted as Wp,s̃,2⊕K∗. Then, the indexes of V Ns̃ is chosen as follows. The first and second

indexes are chosen from Wc,s̃ and Wp,s̃,1, respectively. The third index is randomly chosen from a bin with

index Wp,s̃,2 ⊕K∗.

• Comparing the above code construction of Rfi with that of Rin, we see that the encoding and decoding

schemes of these two bounds are almost the same, except that the bin index of V Ns̃ is encrypted by K∗. Thus,

we can conclude that for the sub-messages Wc,s̃ and Wp,s̃, the bound Rfis̃ is almost the same as Rins̃ , except

that the equivocation rate Re,s̃ of Rfis̃ is bounded by the sum of two part, see the followings.

– The first part is the upper bound on Re,s̃ of Rins̃ . Here note that in Rins̃ , the bounds Re,s̃ ≥ 0 and

Re,s̃ ≤ I(V ;Y |U, S, S̃ = s̃)−I(V ;Z|U, S, S̃ = s̃) imply that Re,s̃ is upper bounded by [I(V ;Y |U, S, S̃ =

s̃)− I(V ;Z|U, S, S̃ = s̃)]+.

– The second part is the upper bound on the rate of the secret key K∗. Using the balanced coloring lemma

introduced by Ahlswede and Cai [42], we conclude that the rate of the secret key K∗ is bounded by

H(Y |V,Z, S, S̃ = s̃).

Thus, the Re,s̃ of Rfis̃ is upper bounded by [I(V ;Y |U, S, S̃ = s̃)−I(V ;Z|U, S, S̃ = s̃)]+ +H(Y |V,Z, S, S̃ =

s̃). Finally, using Fourier-Motzkin elimination to eliminate Rc,s̃ and Rp,s̃ from Rfis̃ , and multiplexing all the

sub-messages, the region Rfi is obtained.

The details of the proof are in Appendix D.

Theorem 4: An outer bound Rfo on the capacity-equivocation region Rf is given by

Rfo = {(R,Re) : 0 ≤ Re ≤ R,

R ≤ I(V ;Y |S, S̃),

Re ≤ H(Y |Z,U, S, S̃)},

where the joint probability mass function PUV SS̃XY Z(u, v, s, s̃, x, y, z) satisfies

PUV SS̃XY Z(u, v, s, s̃, x, y, z) = PY Z|XS(y, z|x, s)PXV USS̃(x, v, u, s, s̃), (2.20)

and U may be assumed to be a (deterministic) function of V .
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Proof: The derivation of Rfo is almost the same as that of Rout, except the bound on Re, and it is achieved

by the following two steps. First, by using Fano’s inequality, the equivocation rate Re can be upper bounded by
1
NH(Y N |ZN , SN ). Then, using chain rule and the auxiliary random variables defined in the proof of Theorem 2,

the outer bound Rfo is obtained. The details of the proof are in Appendix E.

Remark 2: There are some notes on Theorem 3 and Theorem 4, see the followings.

• Since the delayed receiver’s channel output feedback is not known by the eavesdropper, it can be used to

generate a secret key shared only between the receiver and the transmitter. Comparing Rfi with Rin, it is

easy to see that this secret key helps to enhance the achievable rate-equivocation region of the FSM-WC with

only delayed state feedback. Here note that the delayed state is also shared by the receiver and the transmitter,

but it is known by the eavesdropper, and thus we can not use it to generate a secret key.

• If the eavesdropper’s received symbol ZN is a degraded version of Y N , i.e., the Markov chain (XN , SN )→

Y N → ZN holds, the outer bound Rfo meets with the inner bound Rfi, and they reduce to the following

region Rf∗, where

Rf∗ = {(R,Re) : Re ≤ R,

R ≤ I(X;Y |S, S̃),

Re ≤ H(Y |Z, S, S̃)}, (2.21)

and the joint probability PSS̃XY Z(ss̃xyz) satisfies

PSS̃XY Z(ss̃xyz) = PZ|Y (z|y)PY |X,S(y|x, s)Kd(s̃, s)PX|S̃(x|s̃)PS̃(s̃). (2.22)

Proof: See Appendix F.

• For the degraded case of the model of Figure 2 with delayed state and receiver’s channel output feedback, the

secrecy capacity C∗fs can be directly obtained from the above Rf∗, and it is given by

C∗fs = max
PX|S̃(x|s̃)

min{I(X;Y |S, S̃), H(Y |Z, S, S̃)}. (2.23)

Note that (2.23) can also be re-written as

C∗fs = max
PX|S̃(x|s̃)

min{I(X;Y |S, S̃), I(X;Y |S, S̃)− I(X;Z|S, S̃) +H(Y |X,Z, S, S̃)}, (2.24)

and this is because

I(X;Y |S, S̃)− I(X;Z|S, S̃) +H(Y |X,Z, S, S̃) = −H(X|S, S̃, Y ) +H(X|S, S̃, Z) +H(Y |X,Z, S, S̃)

(1)
= −H(X|S, S̃, Y, Z) +H(X|S, S̃, Z) +H(Y |X,Z, S, S̃)

= I(X;Y |S, S̃, Z) +H(Y |X,Z, S, S̃)

= H(Y |S, S̃, Z), (2.25)
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where (1) is from the Markov chain X → (S, S̃, Y )→ Z. Comparing (2.24) with (2.18), it is easy to see that

the delayed receiver’s channel output feedback helps to enhance the secrecy capacity of the degraded FSM-WC

with only delayed state feedback.

III. SECRECY CAPACITIES FOR TWO SPECIAL CASES OF THE MODEL OF FIGURE 2

A. Secrecy Capacity for the Degraded Gaussian Case of the model of Figure 2 with or without Delayed Receiver’s

Channel Output Feedback

In this subsection, we compute the secrecy capacities for the degraded Gaussian case of Figure 2 with or without

delayed receiver’s channel output feedback, and investigate how this delayed feedback and channel memory affect

the secrecy capacities. At the i-th time (1 ≤ i ≤ N ), the inputs and outputs of the channel satisfy

Yi = Xi +NSi , Zi = Yi +Nw,i. (3.26)

Here note that NSi
is Gaussian distributed with zero mean, and the variance depends on the i-th time state Si = si

(denoted by σ2
si ). The random variable Nw,i (1 ≤ i ≤ N ) is also Gaussian distributed with zero mean and constant

variance σ2
w (Nw,i ∼ N (0, σ2

w) for all i ∈ {1, 2, ..., N}). At time i, the receiver has access to the state Si and the

output Yi. The state Si is fed back to the transmitter through a noiseless feedback channel with a delay time d. The

state undergoes a Markov process with steady probability distribution π(s) and 1-step transition probability matrix

K. The power constraint of the transmitter is given by∑
s̃

π(s̃)EPX|S̃(x|s̃)[X
2|s̃] ≤ P0. (3.27)

Secrecy capacity for the degraded Gaussian case of the model of Figure 2 with only delayed state feedback:

Theorem 5: For the degraded Gaussian case of the model of Figure 2 with only delayed state feedback, the

secrecy capacity C(g)
s is given by

C(g)
s = max

P(s̃):
∑

s̃ π(s̃)P(s̃)≤P0

∑
s̃

∑
s

π(s̃)Kd(s̃, s)(
1

2
log(1 +

P(s̃)

σ2
s

)− 1

2
log(1 +

P(s̃)

σ2
s + σ2

w

)), (3.28)

where P(s̃) is the transmitter’s power for the state s̃, and σ2
s is the variance of the noise NS given the state S = s.

Here note that the definition of P(s̃) is the same as that of the finite state additive Gaussian noise channel [7].

Proof:

(Converse part:) Using (2.18), the secrecy capacity C(g)
s can be re-written by

C(g)
s = max

PX|S̃(x|s̃)

∑
s̃

π(s̃)
∑
s

Kd(s̃, s)(I(X;Y |S = s, S̃ = s̃)− I(X;Z|S = s, S̃ = s̃)). (3.29)

Letting P(s̃) be the transmitter’s power for the state s̃ satisfying (3.27), and σ2
s be the variance of the noise NS
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given the state S = s, then we have

I(X;Y |S = s, S̃ = s̃)− I(X;Z|S = s, S̃ = s̃)

= h(Y |S = s, S̃ = s̃)− h(Y |X,S = s, S̃ = s̃)− h(Z|S = s, S̃ = s̃) + h(Z|X,S = s, S̃ = s̃)

= h(Xs̃ +Ns)− h(Ns)− h(Xs̃ +Ns +Nw) + h(Ns +Nw)

(a)

≤ h(Xs̃ +Ns)− h(Ns)−
1

2
log(22h(Xs̃+Ns) + 22h(Nw)) + h(Ns +Nw)

(b)

≤ 1

2
log(1 +

P(s̃)

σ2
s

)− 1

2
log(1 +

P(s̃)

σ2
s + σ2

w

), (3.30)

where (a) is from the entropy power inequality, (b) is from h(Xs̃+Ns)− 1
2 log(22h(Xs̃+Ns)+22h(Nw)) is increasing

while h(Xs̃+Ns) is increasing, and the fact that for a given variance, the largest entropy is achieved if the random

variable is Gaussian distributed. Furthermore, the “=” in (a) is achieved if Xs̃ ∼ N (0,P(s̃)) and Xs̃ is independent

of Ns. Applying (3.30) to (3.29), the converse part of Theorem 5 is proved.

(Direct part:) Letting Xs̃ be the random variable X given the delayed state s̃, and substituting Xs̃ ∼ N (0,P(s̃))

and (3.26) into (3.29), the achievability proof of Theorem 5 is along the lines of that of (2.18) (see Appendix C),

and thus we omit the proof here.

The proof of Theorem 5 is completed.

Secrecy capacity for the degraded Gaussian case of the model of Figure 2 with delayed state and receiver’s

channel output feedback:

Theorem 6: For the degraded Gaussian case of the model of Figure 2 with delayed state and receiver’s channel

output feedback, the secrecy capacity C(gf)
s is given by

C(gf)
s = max

P(s̃):
∑

s̃ π(s̃)P(s̃)≤P0

∑
s̃

∑
s

π(s̃)Kd(s̃, s) min{1

2
log(1 +

P(s̃)

σ2
s

),
1

2
log

2πeσ2
w(P(s̃) + σ2

s)

P(s̃) + σ2
s + σ2

w

}. (3.31)

Proof: Defining P(s̃) as the transmitter’s power for the state s̃, the secrecy capacity C∗fs in (2.23) can be

re-written as

C∗fs = max
P(s̃):

∑
s̃ π(s̃)P(s̃)≤P0

∑
s̃

∑
s

π(s̃)Kd(s̃, s) min{I(X;Y |S = s, S̃ = s̃), H(Y |Z, S = s, S̃ = s̃)}. (3.32)

(Converse part:) Defining σ2
s as the variance of the noise NS given the state S = s, the mutual information

I(X;Y |S = s, S̃ = s̃) in (3.32) can be further bounded by

I(X;Y |S = s, S̃ = s̃) = h(Y |S = s, S̃ = s̃)− h(Y |S = s, S̃ = s̃, X)

≤ h(Xs̃ +Ns)− h(Y |S = s, S̃ = s̃, X)

= h(Xs̃ +Ns)− h(Ns)

(a)

≤ 1

2
log(1 +

P(s̃)

σ2
s

), (3.33)
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where (a) is from the fact that for a given variance, the largest entropy is achieved if the random variable is Gaussian

distributed.

Moreover, the differential conditional entropy h(Y |Z, S = s, S̃ = s̃) can be further bounded by

h(Y |Z, S = s, S̃ = s̃) = h(Y, Z, S = s, S̃ = s̃)− h(Z, S = s, S̃ = s̃)

(b)
= h(Z|Y ) + h(Y, S = s, S̃ = s̃)− h(Z, S = s, S̃ = s̃)

= h(Z|Y ) + h(Y |S = s, S̃ = s̃)− h(Z|S = s, S̃ = s̃)

(c)
= h(Nw) + h(Y |S = s, S̃ = s̃)− h(Y +Nw|S = s, S̃ = s̃)

(d)

≤ h(Nw) + h(Y |S = s, S̃ = s̃)− 1

2
log(22h(Y |S=s,S̃=s̃) + 22h(Nw))

=
1

2
log(2πeσ2

w) + h(Y |S = s, S̃ = s̃)− 1

2
log(22h(Y |S=s,S̃=s̃) + 2πeσ2

w)

(e)

≤ 1

2
log(2πeσ2

w) +
1

2
log(2πe(P(s̃) + σ2

s))− 1

2
log(2πe(P(s̃) + σ2

s + σ2
w))

=
1

2
log

2πeσ2
w(P(s̃) + σ2

s)

P(s̃) + σ2
s + σ2

w

, (3.34)

where (b) is from the Markov chain (S, S̃) → Y → Z, (c) is from the fact that Z = Y + Nw, (d) is from the

entropy power inequality, and (e) is from the fact that h(Y |S = s, S̃ = s̃) − 1
2 log(22h(Y |S=s,S̃=s̃) + 2πeσ2

w) is

increasing while h(Y |S = s, S̃ = s̃) is increasing, and

h(Y |S = s, S̃ = s̃) ≤ h(Xs̃ +Ns) ≤
1

2
log(2πe(P(s̃) + σ2

s)). (3.35)

Applying (3.33) and (3.34) to (3.32), the converse proof of Theorem 6 is completed.

(Direct part:) Letting Xs̃ be the random variable X given the delayed state s̃, and substituting Xs̃ ∼ N (0,P(s̃))

and (3.26) into (3.32), the achievability proof of Theorem 6 is along the lines of that of Theorem 3, and thus we

omit the details here.

The proof of Theorem 6 is completed.

Numerical results of C(g)
s and C(gf)

s

In order to gain some intuition on the secrecy capacities C(g)
s and C

(gf)
s , we consider a simple case that the

state alphabet S is composed of only two elements. At each time instant, the state of the channel is G (good state)

or B (bad state). For the state G, the noise variance of the channel is σ2
G. Analogously, for the state B, the noise

variance of the channel is σ2
B . Here note that σ2

B > σ2
G. The state process is shown in Figure 3, where

P (G|G) = 1− b, P (B|G) = b, P (B|B) = 1− g, P (G|B) = g. (3.36)

The steady state probabilities π(G) and π(B) are given by

π(G) =
g

g + b
, π(B) =

b

g + b
. (3.37)
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Fig. 3: The state process of the two-state case

Fig. 4: The secrecy capacities C(g)
s and C(gf)

s for P0 = 100, σ2
G = 1, σ2

B = 100, σ2
w = 2000, c = 1 and several

values of u

Define u = 1 − g − b and c = g/b. The parameter u is related to the channel memory, 4 and the parameter c

controls the steady state distributions (see 3.37). Fixing c (for example, c = 1), we can choose different u and d

to investigate the effects of channel memory and feedback delay on the secrecy capacities C(g)
s and C(gf)

s . Figure

4 and Figure 5 show the effect of the feedback delay on the secrecy capacities for P0 = 100, σ2
G = 1, σ2

B = 100,

σ2
w = 2000 (σ2

w = 1000) , c = 1 and several values of u. As we can see in Figure 4 and Figure 5, when the channel

is changing rapidly (which implies that the channel memory u is small, for example, u = 0.02), the secrecy capacity

4Mushkin and Bar-David [41] has already shown that the channel memory is increasing while u is increasing.
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Fig. 5: The secrecy capacities C(g)
s and C(gf)

s for P0 = 100, σ2
G = 1, σ2

B = 100, σ2
w = 1000, c = 1 and several

values of u

goes to the infinite asymptote even if d = 1. However, when the channel is changing slowly (which implies that the

channel memory u is large, for example, u = 0.9), a larger feedback delay is tolerable since the secrecy capacity

loss compared with feedback without delay (d = 0) is smaller. Moreover, it is easy to see that the delayed receiver’s

channel output feedback enhances the secrecy capacity C(g)
s of the degraded Gaussian case of the FSM-WC with

only delayed state feedback. Furthermore, comparing these two figures, we can see that for fixed P0, σ2
G, σ2

B and

c, the gap between C(g)
s and C(gf)

s is increasing while σ2
w is decreasing.

B. Secrecy Capacity for the Degraded Gaussian Fading Case of Figure 2

In this subsection, we compute the secrecy capacities for the degraded Gaussian fading case of Figure 2. At the

i-th time (1 ≤ i ≤ N ), the inputs and the outputs of the channel satisfy

Yi = g(si)Xi +NSi
, Zi = l(si)Yi +Nw,i. (3.38)

Here g(si) and l(si) are the fading processes of the channels for the receiver and the eavesdropper, respectively,

and they are deterministic functions of si. The noise NSi
is Gaussian distributed with zero mean, and the variance

depends on the i-th time state Si of the channel. The random variable Nw,i (1 ≤ i ≤ N ) is also Gaussian distributed

with zero mean and constant variance σ2
w (Nw,i ∼ N (0, σ2

w) for all i ∈ {1, 2, ..., N}). Now we apply (2.18) to

determine the secrecy capacities of this degraded Gaussian fading model with or without delayed receiver’s channel

output feedback, see the remainder of this subsection.

Secrecy capacity for the degraded Gaussian fading case of the model of Figure 2 with only delayed state

feedback:
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Fig. 6: The secrecy capacities C(g∗)
s and C(gf∗)

s for P0 = 100, σ2
G = 1, σ2

B = 100, σ2
w = 200, c = 1, g(G) = 1,

g(B) = 0.5, l(G) = 0.8, l(B) = 0.2 and several values of u

Theorem 7: For the degraded Gaussian fading case of the model of Figure 2 with only delayed state feedback,

the secrecy capacity C(g∗)
s is given by

C(g∗)
s = max

P(s̃):
∑

s̃ π(s̃)P(s̃)≤P0

1

2

∑
s̃

∑
s

π(s̃)Kd(s̃, s)(
1

2
log(1 +

g2(s)P(s̃)

σ2
s

)− 1

2
log(1 +

g2(s)l2(s)P(s̃)

l2(s)σ2
s + σ2

w

)). (3.39)

Proof:

Similar to Subsection III-A, let P(s̃) be the power for the state s̃, and σ2
s be the variance of the noise NS given

S = s, and thus we have

I(X;Y |S = s, S̃ = s̃)− I(X;Z|S = s, S̃ = s̃)

= h(Y |S = s, S̃ = s̃)− h(Y |X,S = s, S̃ = s̃)− h(Z|S = s, S̃ = s̃) + h(Z|X,S = s, S̃ = s̃)

= h(g(s)Xs̃ +Ns)− h(Ns)− h(l(s)(g(s)Xs̃ +Ns) +Nw) + h(l(s)Ns +Nw)

(a)

≤ h(g(s)Xs̃ +Ns)− h(Ns)−
1

2
log(22h(g(s)Xs̃+Ns)l2(s) + 22h(Nw)) + h(l(s)Ns +Nw)

(b)

≤ 1

2
log(1 +

g2(s)P(s̃)

σ2
s

)− 1

2
log(1 +

g2(s)l2(s)P(s̃)

l2(s)σ2
s + σ2

w

), (3.40)

where (a) is from the entropy power inequality and the property that h(aX) = h(X) + log a, and (b) is from

h(g(s)Xs̃ + Ns) − 1
2 log(22h(g(s)Xs̃+Ns)l2(s) + 22h(Nw)) is increasing while h(g(s)Xs̃ + Ns) is increasing, and

the fact that for a given variance, the largest entropy is achieved if the random variable is Gaussian distributed.

Furthermore, the “=” in (a) is achieved if Xs̃ ∼ N (0,P(s̃)) and Xs̃ is independent of Ns. Applying (3.40) to

(3.29), the converse proof of Theorem 7 is completed.
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Fig. 7: The secrecy capacities C(g∗)
s and C(gf∗)

s for P0 = 100, σ2
G = 1, σ2

B = 100, σ2
w = 100, c = 1, g(G) = 1,

g(B) = 0.5, l(G) = 0.8, l(B) = 0.2 and several values of u

Here note that replacing Xi by g(si)Xi, and Yi by l(si)Yi, the achievability proof of Theorem 7 is along the

lines of that of Theorem 5, and thus we omit the proof here.

The proof of Theorem 7 is completed.

Secrecy capacity for the degraded Gaussian fading case of the model of Figure 2 with delayed state and

receiver’s channel output feedback:

Theorem 8: For the degraded Gaussian fading case of the model of Figure 2 with delayed state and receiver’s

channel output feedback, the secrecy capacity C(gf∗)
s is given by

C(gf∗)
s = max

P(s̃):
∑

s̃ π(s̃)P(s̃)≤P0

∑
s̃

∑
s

π(s̃)Kd(s̃, s) min{1

2
log(1+

g2(s)P(s̃)

σ2
s

),
1

2
log

2πeσ2
w(g2(s)P(s̃) + σ2

s)

g2(s)l2(s)P(s̃) + l2(s)σ2
s + σ2

w

}.

(3.41)

Proof: Replacing Xi by g(si)Xi, and Yi by l(si)Yi, the proof of Theorem 8 is along the lines of that of

Theorem 6, and thus we omit the proof here.

Numerical results of C(g∗)
s and C(gf∗)

s

We consider a simple two-state case where the state process is the same as that in Subsection III-A, see Figure

3. Define g(G) = 1, g(B) = 0.5, l(G) = 0.8, l(B) = 0.2, u = 1 − g − b and c = g/b. By choosing c = 1,

Figure 6 and Figure 7 show the effect of the feedback delay (d) and channel memory (u) on the secrecy capacities

C
(g∗)
s and C

(gf∗)
s for P0 = 100, σ2

G = 1, σ2
B = 100, σ2

w = 200 (σ2
w = 100) and several values of u. Similar to

the numerical result of Subsection III-A, we find that when the channel is changing rapidly (which implies that

the channel memory u is small, for example, u = 0.02), the secrecy capacity goes to the infinite asymptote even
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Fig. 8: The comparison of the secrecy capacities C(g∗)
s and C

(g)
s for P0 = 100, σ2

G = 1, σ2
B = 100, σ2

w = 200,

c = 1, g(G) = 1, g(B) = 0.5, l(G) = 0.8, l(B) = 0.2 and several values of u

if d = 1. However, when the channel is changing slowly (which implies that the channel memory u is large, for

example, u = 0.9), a larger feedback delay is tolerable since the secrecy capacity loss compared with feedback

without delay (d = 0) is smaller. Moreover, it is easy to see that the delayed receiver’s channel output feedback

enhances the secrecy capacity C(g∗)
s of the degraded Gaussian fading case of the FSM-WC with only delayed state

feedback. Furthermore, comparing these two figures, we can see that for fixed P0, σ2
G, σ2

B and c, the gap between

C
(g∗)
s and C(gf∗)

s is increasing while σ2
w is decreasing.

Comparison of the fading and non-fading cases

The comparison of the fading and no-fading cases is shown in the following Figure 8 to Figure 11. In Figure

8 and Figure 9, we see that C(g∗)
s dominates C(g)

s (which implies that the fading may enhance the security of the

degraded Gaussian model of Figure 2 with only delayed state feedback), and the gap between C
(g∗)
s and C

(g)
s is

increasing while σ2
w is decreasing.

In Figure 10 and Figure 11, we see that C(gf)
s dominates C(gf∗)

s (which implies that the fading may weaken the

security of the degraded Gaussian model of Figure 2 with delayed state and receiver’s channel output feedback),

and the gap between C(gf)
s and C(gf∗)

s is increasing while σ2
w is increasing.

IV. CONCLUSIONS

In this paper, we provide inner and outer bounds on the capacity-equivocation regions of the FSM-WC with

delayed state feedback, and with or without delayed receiver’s channel output feedback. We find that these bounds

meet if the channel output for the eavesdropper is a degraded version of that for the legitimate receiver. In the

proof of these bounds, we show that the delayed receiver’s channel output feedback is used to generate a secret key
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Fig. 9: The comparison of the secrecy capacities C(g∗)
s and C

(g)
s for P0 = 100, σ2

G = 1, σ2
B = 100, σ2

w = 100,

c = 1, g(G) = 1, g(B) = 0.5, l(G) = 0.8, l(B) = 0.2 and several values of u

shared between the receiver and the transmitter, and this key helps to enhance the rate-equivocation region of the

FSM-WC with only delayed state feedback. The results of this paper are further explained via degraded Gaussian

and degraded Gaussian fading examples. In these examples, we show that when the channel is changing rapidly,

the secrecy capacities go to the infinite asymptote even if the delayed time d is very small, and when the channel

is changing slowly, a larger feedback delay is tolerable since the secrecy capacity loss compared with feedback

without delay (d = 0) is smaller. Moreover, comparing these two examples, we find that the fading may enhance

the security of the degraded Gaussian FSM-WC with only delayed state feedback, and the fading may weaken the

security of the degraded Gaussian FSM-WC with delayed state and receiver’s channel output feedback.
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APPENDIX A

PROOF OF THEOREM 1

The main idea of the proof of Theorem 1 is to construct a hybrid encoding-decoding scheme, which combines

the rate splitting technique, Wyner’s random binning technique [14] with the classical multiplexing coding for the

finite state Markov channel [7]. The details of the proof are as follows.
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Fig. 10: The comparison of the secrecy capacities C(gf∗)
s and C(gf)

s for P0 = 100, σ2
G = 1, σ2

B = 100, σ2
w = 200,

c = 1, g(G) = 1, g(B) = 0.5, l(G) = 0.8, l(B) = 0.2 and several values of u

A. Definitions

• The transmitted message W is split into a common message Wc and a private message Wp, i.e., W = (Wc,Wp).

Here Wc and Wp are uniformly distributed in the sets {1, 2, ..., 2NRc} and {1, 2, ..., 2NRp}, respectively. Since

W is uniformly distributed in the set {1, 2, ..., 2NR}, we have R = Rc +Rp. In the remainder of this section,

we first prove that the region R1

R1 = {(R,Re) : 0 ≤ R = Rc +Rp,

0 ≤ Rc ≤ min{I(U ;Y |S, S̃), I(U ;Z|S, S̃)},

0 ≤ Rp ≤ I(V ;Y |U, S, S̃),

0 ≤ Re ≤ Rp,

Re ≤ I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃)}

is achievable. Then, using Fourier-Motzkin elimination (see e.g., [43]) to eliminate Rc and Rp from R1, it is

easy to see that the region R is achievable.

• Without loss of generality, we assume that the state takes values in S = {1, 2, ..., k} and that the steady state

probability π(l) > 0 for all l ∈ S. Let Ns̃ (1 ≤ s̃ ≤ k) be the number satisfying

Ns̃ = N(π(s̃)− ε
′
), (A1)

where 0 ≤ ε
′
< min{π(s̃); s̃ ∈ {1, 2, ..., k}} and ε

′ → 0 as N → ∞. Denote the transmission rates Rc and
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Fig. 11: The comparison of the secrecy capacities C(gf∗)
s and C(gf)

s for P0 = 100, σ2
G = 1, σ2

B = 100, σ2
w = 1,

c = 1, g(G) = 1, g(B) = 0.5, l(G) = 0.8, l(B) = 0.2 and several values of u

Rp for a given s̃ by Rc(s̃) and Rp(s̃) (1 ≤ s̃ ≤ k), respectively, and they satisfy
k∑
s̃=1

π(s̃)Rc(s̃) = Rc, (A2)

and
k∑
s̃=1

π(s̃)Rp(s̃) = Rp. (A3)

• Divide the common message Wc into k sub-messages Wc,1,...,Wc,k, and each sub-message Wc,s̃ (1 ≤ s̃ ≤ k)

takes values in the set Wc,s̃ = {1, 2, ..., 2Ns̃Rc(s̃)}. Since the actual transmission rate R∗c of the common

message Wc is denoted by

R∗c =
H(Wc)

N
=

∑k
s̃=1H(Wc,s̃)

N
=

∑k
s̃=1Ns̃Rc(s̃)

N

(a)
=

∑k
s̃=1N(π(s̃)− ε′)Rc(s̃)

N

=

k∑
s̃=1

(π(s̃)− ε
′
)Rc(s̃)

=

k∑
s̃=1

π(s̃)Rc(s̃)− ε
′
k∑
s̃=1

Rc(s̃), (A4)

where (a) is from (A1). From (A2) and (A4), it is easy to see that R∗c tends to be Rc while ε
′ → 0.

• Divide the private message Wp into k sub-messages Wp,1,...,Wp,k, and each sub-message Wp,s̃ (1 ≤ s̃ ≤ k)

takes values in the set Wp,s̃ = {1, 2, ..., 2Ns̃Rp(s̃)}. Similar to (A4), the actual transmission rate R∗p of the

private message Wp tends to be Rp while ε
′ → 0.



22

B. Construction of the code-books

Fix the joint probability mass function PUV SS̃XY Z(u, v, s, s̃, x, y, z) satisfying (2.11).

• Construction of UN : Construct k code-books U s̃ of UN for all s̃ ∈ S. In each code-book U s̃, randomly

generate 2Ns̃Rc(s̃) i.i.d. sequences uNs̃ according to the probability mass function PU |S̃(u|s̃), and index these

sequences as uNs̃(i), where 1 ≤ i ≤ 2Ns̃Rc(s̃).

• Construction of V N : Construct k code-books V s̃ of V N for all s̃ ∈ S. In each code-book V s̃, randomly gen-

erate 2Ns̃(I(V ;Y |U,S,S̃=s̃)+Rc(s̃)) i.i.d. sequences vNs̃ according to the probability mass function PV |U,S̃(v|u, s̃).

Index these sequences of the code-book V s̃ as vNs̃(is̃, as̃, bs̃), where 1 ≤ is̃ ≤ 2Ns̃Rc(s̃), as̃ ∈ As̃ =

{1, 2, ..., As̃}, bs̃ ∈ Bs̃ = {1, 2, ..., Bs̃},

As̃ = 2Ns̃(I(V ;Y |U,S,S̃=s̃)−I(V ;Z|U,S,S̃=s̃)), (A5)

and

Bs̃ = 2Ns̃I(V ;Z|U,S,S̃=s̃). (A6)

• Construction of XN : For each s̃, the sequence xNs̃ is i.i.d. generated according to a new discrete memoryless

channel (DMC) with transition probability PX|U,V,S̃(x|u, v, s̃). The inputs of this new DMC are uNs̃ and vNs̃ ,

while the output is xNs̃ .

C. Encoding scheme

For a fixed length N , let Ls̃ be the number of times during the N symbols for which the delayed feedback

state at the transmitter is S̃ = s̃. Every time that the corresponding delayed state is S̃ = s̃, the transmitter

chooses the next symbols of uN and vN from the component code-books U s̃ and V s̃, respectively. Since Ls̃ is

not necessarily equivalent to Ns̃, an error is declared if Ls̃ < Ns̃, and the codes are filled with zero if Ls̃ > Ns̃.

Therefore, we can send a total of 2
∑k

i=1Ni(Rc(i)+Rp(i)) messages. Since the state process is stationary and ergodic

limN→∞
Ls̃

N = Pr{S̃ = s̃} in probability. Thus, we have

Pr{Ls̃ < Ns̃} → 0, as N →∞. (A7)

For each s̃ ∈ S, defineWp,s̃ = As̃×Js̃, where Js̃ = {1, 2, ..., Js̃} and Js̃ = 2Ns̃(Rp(s̃)−I(V ;Y |U,S,S̃=s̃)+I(V ;Z|U,S,S̃=s̃)).

Furthermore, we define the mapping gs̃ : Bs̃ → Js̃, and partition Bs̃ into Js̃ subsets with nearly equal size. Here

the “nearly equal size” means

‖g−1s̃ (j1)‖ ≤ 2‖g−1s̃ (j2)‖, ∀j1, j2 ∈ Js̃. (A8)

The transmitted codewords uN and vN are obtained by multiplexing the different component codewords. Specifically,

first, suppose that a message w = (wc, wp) = (wc,1, ..., wc,k, wp,1, ..., wp,k) is transmitted, and here we denote wp,s̃

(1 ≤ s̃ ≤ k) by (as̃, js̃), where as̃ ∈ As̃ and js̃ ∈ Js̃. Second, in each component code-book U s̃ (1 ≤ s̃ ≤ k), the

transmitter chooses uNs̃(wc,s̃) as the s̃-th component codeword of the transmitted uN . Third, in each component

code-book V s̃ (1 ≤ s̃ ≤ k), the transmitter chooses vNs̃(i∗s̃, a
∗
s̃, b
∗
s̃) as the s̃-th component codeword of the transmitted

vN , where i∗s̃ = wc,s̃, a∗s̃ = as̃, and b∗s̃ is randomly chosen from the sub-set js̃ of Bs̃.
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D. Decoding scheme

• (Decoding scheme for the receiver:)

– (Decoding the common message wc:) The delayed feedback state S̃ at the transmitter, which is used

to multiplex the component codewords, is also available at the receiver. Thus once the receiver receives

yN and the state sequence sN , he first demultiplexes them into outputs corresponding to the component

code-books and separately decodes each component codeword. To be specific, in each code-book U s̃, the

receiver has (yNs̃ , sNs̃) and tries to search a unique uNs̃ such that (uNs̃ , yNs̃ , sNs̃) are strongly jointly

typical sequences [4], i.e.,

(uNs̃ , yNs̃ , sNs̃) ∈ TNs̃

U,S,Y |S̃(ε). (A9)

If there exists such a unique uNs̃ , put out the corresponding index ŵc,s̃. Otherwise, i.e., if no such

sequence exists or multiple sequences have different message indices, declare a decoding error. If for

all 1 ≤ s̃ ≤ k, there exist unique sequences uNs̃ such that (A9) is satisfied, the receiver declares that

ŵc = (ŵc,1, ŵc,2, ..., ŵc,k) is sent. Based on the AEP, the error probability Pr{ŵc,s̃ 6= wc,s̃} (1 ≤ s̃ ≤ k)

goes to 0 if

Rc(s̃) ≤ I(U ;Y |S, S̃ = s̃). (A10)

– (Decoding the private message wp:) After decoding uNs̃(ŵc,s̃) and ŵc,s̃ for all 1 ≤ s̃ ≤ k, in each

component code-book V s̃, the receiver tries to find a unique sequence vNs̃ such that

(vNs̃ , uNs̃ , yNs̃ , sNs̃) ∈ TNs̃

U,V,S,Y |S̃(ε). (A11)

If there exists such a unique vNs̃ , put out the corresponding indexes îs̃, âs̃ and b̂s̃. Otherwise, i.e., if

no such sequence exists or multiple sequences have different message indices, declare a decoding error.

After the receiver obtains the index b̂s̃, he also knows ĵs̃ since it is the index of the sub-set which b̂s̃

belongs to. Thus, for 1 ≤ s̃ ≤ k, the receiver has an estimation ŵp,s̃ of the private message wp,s̃ by

letting ŵp,s̃ = (âs̃, ĵs̃). If for all 1 ≤ s̃ ≤ k, there exist unique sequences vNs̃ such that (A11) is satisfied,

the receiver declares that ŵp = (ŵp,1, ŵp,2, ..., ŵp,k) is sent. Based on the AEP, the error probability

Pr{ŵp,s̃ 6= wp,s̃} (1 ≤ s̃ ≤ k) goes to 0 if

Rp(s̃) ≤ I(V ;Y |U, S, S̃ = s̃). (A12)

• (Decoding scheme for the eavesdropper:)

– (Decoding the common message wc:) The delayed feedback state S̃ at the transmitter, is also available at

the eavesdropper. Thus once the eavesdropper receives zN and the state sequence sN , he first demultiplexes

them into outputs corresponding to the component code-books and separately decodes each component

codeword. To be specific, in each code-book U s̃, the eavesdropper has (zNs̃ , sNs̃) and tries to search a

unique uNs̃ such that (uNs̃ , zNs̃ , sNs̃) are strongly jointly typical sequences [4], i.e.,

(uNs̃ , zNs̃ , sNs̃) ∈ TNs̃

U,S,Z|S̃(ε). (A13)
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If there exists such a unique uNs̃ , put out the corresponding index w̌c,s̃. Otherwise, i.e., if no such

sequence exists or multiple sequences have different message indices, declare a decoding error. If for all

1 ≤ s̃ ≤ k, there exist unique sequences uNs̃ such that (A13) is satisfied, the eavesdropper declares that

w̌c = (w̌c,1, w̌c,2, ..., w̌c,k) is sent. Based on the AEP, the error probability Pr{w̌c,s̃ 6= wc,s̃} (1 ≤ s̃ ≤ k)

goes to 0 if

Rc(s̃) ≤ I(U ;Z|S, S̃ = s̃). (A14)

– (Given wc and wp, decoding vN :) In each component code-book V s̃ (1 ≤ s̃ ≤ k), given S̃ = s̃, sNs̃ ,

uNs̃(wc,s̃) and wp,s̃ = (as̃, js̃), the eavesdropper tries to find a unique b̌s̃ such that

(vNs̃(wc,s̃, as̃, b̌s̃), u
Ns̃(wc,s̃), z

Ns̃ , sNs̃) ∈ TNs̃

U,V,S,Z|S̃(ε). (A15)

Since the index b∗s̃ of the transmitted vNs̃ is randomly chosen from the sub-set js̃ of Bs̃ and there are

2Ns̃(I(V ;Y |U,S,S̃=s̃)−Rp(s̃)) sequences of vNs̃ in the sub-set js̃, based on the AEP, the error probability

Pr{b̌s̃ 6= b∗s̃} (1 ≤ s̃ ≤ k) goes to 0 if

I(V ;Y |U, S, S̃ = s̃)−Rp(s̃) ≤ I(V ;Z|U, S, S̃ = s̃). (A16)

Combining (A2) with (A10) and (A14), we have

Rc =

k∑
s̃=1

π(s̃)Rc(s̃)

≤
k∑
s̃=1

π(s̃) min{I(U ;Y |S, S̃ = s̃), I(U ;Z|S, S̃ = s̃)}

= min{I(U ;Y |S, S̃), I(U ;Z|S, S̃)}, (A17)

and combining (A3) with (A12), we have

Rp =

k∑
s̃=1

π(s̃)Rp(s̃)

≤
k∑
s̃=1

π(s̃)I(V ;Y |U, S, S̃ = s̃)

= I(V ;Y |U, S, S̃). (A18)

It remains to show that Re ≤ I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃) and Re ≤ Rp, see the followings.

E. Equivocation analysis:

Since the eavesdropper also knows the state SN and the delayed time d, the equivocation ∆ is bounded by

∆ =
1

N
H(W |ZN , SN ) =

1

N
H(Wc,Wp|ZN , SN )

≥ 1

N
H(Wp|ZN , SN ,Wc) ≥

1

N
H(Wp|ZN , SN ,Wc, U

N )

(a)
=

1

N
H(Wp|ZN , SN , UN ) =

1

N
H(Wp,1,Wp,2, ...,Wp,k|ZN , SN , UN )
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=
1

N

k∑
s̃=1

H(Wp,s̃|ZN , SN , UN ,Wp,1, ...,Wp,s̃−1)

≥ 1

N

k∑
s̃=1

H(Wp,s̃|ZN , SN , UN ,Wp,1, ...,Wp,s̃−1, S̃ = s̃)

(b)
=

1

N

k∑
s̃=1

H(Wp,s̃|ZNs̃ , SNs̃ , UNs̃ , S̃ = s̃)

=
1

N

k∑
s̃=1

(H(Wp,s̃, Z
Ns̃ , SNs̃ , UNs̃ , S̃ = s̃)−H(ZNs̃ , SNs̃ , UNs̃ , S̃ = s̃))

=
1

N

k∑
s̃=1

(H(Wp,s̃, Z
Ns̃ , SNs̃ , UNs̃ , V Ns̃ , S̃ = s̃)−H(V Ns̃ |Wp,s̃, Z

Ns̃ , SNs̃ , UNs̃ , S̃ = s̃)

−H(ZNs̃ , SNs̃ , UNs̃ , S̃ = s̃))

(c)
=

1

N

k∑
s̃=1

(H(ZNs̃ |SNs̃ , UNs̃ , V Ns̃ , S̃ = s̃) +H(SNs̃ , UNs̃ , V Ns̃ , S̃ = s̃)

−H(ZNs̃ |SNs̃ , UNs̃ , S̃ = s̃)−H(SNs̃ , UNs̃ , S̃ = s̃)−H(V Ns̃ |Wp,s̃, Z
Ns̃ , SNs̃ , UNs̃ , S̃ = s̃))

(d)

≥ 1

N

k∑
s̃=1

(Ns̃H(Z|S,U, V, S̃ = s̃)−H(ZNs̃ |SNs̃ , UNs̃ , S̃ = s̃) +H(SNs̃ , UNs̃ , V Ns̃ , S̃ = s̃)−H(SNs̃ , UNs̃ , S̃ = s̃)

−H(V Ns̃ |Wp,s̃, Z
Ns̃ , SNs̃ , UNs̃ , S̃ = s̃))

≥ 1

N

k∑
s̃=1

(Ns̃H(Z|S,U, V, S̃ = s̃)−Ns̃H(Z|S,U, S̃ = s̃) +H(SNs̃ , UNs̃ , V Ns̃ , S̃ = s̃)−H(SNs̃ , UNs̃ , S̃ = s̃)

−H(V Ns̃ |Wp,s̃, Z
Ns̃ , SNs̃ , UNs̃ , S̃ = s̃))

=
1

N

k∑
s̃=1

(Ns̃H(Z|S,U, V, S̃ = s̃)−Ns̃H(Z|S,U, S̃ = s̃)

+H(V Ns̃ |SNs̃ , UNs̃ , S̃ = s̃)−H(V Ns̃ |Wp,s̃, Z
Ns̃ , SNs̃ , UNs̃ , S̃ = s̃))

(e)

≥ 1

N

k∑
s̃=1

(Ns̃H(Z|S,U, V, S̃)−Ns̃H(Z|S,U, S̃ = s̃)

+Ns̃I(V ;Y |U, S, S̃ = s̃)− 1−H(V Ns̃ |Wp,s̃, Z
Ns̃ , SNs̃ , UNs̃ , S̃ = s̃))

(f)

≥ 1

N

k∑
s̃=1

(Ns̃H(Z|S,U, V, S̃ = s̃)−Ns̃H(Z|S,U, S̃ = s̃) +Ns̃I(V ;Y |U, S, S̃)− 1−Ns̃ε1)

=

k∑
s̃=1

Ns̃
N

(I(V ;Y |U, S, S̃ = s̃)− I(V ;Z|U, S, S̃ = s̃)− 1

Ns̃
− ε1)

(g)
=

k∑
s̃=1

(π(s̃)− ε
′
)(I(V ;Y |U, S, S̃ = s̃)− I(V ;Z|U, S, S̃ = s̃)− 1

Ns̃
− ε1)

= I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃)−
k∑
s̃=1

(π(s̃)− ε
′
)(

1

Ns̃
+ ε1)

−ε
′
k∑
s̃=1

(I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃)), (A19)
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where (a) is from the fact that H(Wc|UN ) = 0, (b) is from the the Markov chain (ZN1̃ , ..., ZNs̃−1 , ZNs̃+1 , ..., ZNk ,

UN1̃ , ..., UNs̃−1 , UNs̃+1 , ..., UNk , SN1̃ , ..., SNs̃−1 , SNs̃+1 , ..., SNk) → (ZNs̃ , SNs̃ , UNs̃ , S̃ = s̃) → Wp,s̃, which

implies that given the s̃-th component of the sequences ZN , UN and SN , Wp,s̃ is independent of the other parts of

ZN , UN and SN , (c) is from the fact that H(Wp,s̃|V Ns̃) = 0, (d) is from the fact that the channel is a DMC with

transition probability PY,Z|X,S(y, z|x, s), and for each s̃, XNs̃ is i.i.d. generated according to a new DMC with

transition probability PX|U,V,S̃(x|u, v, s̃), thus we have H(ZNs̃ |SNs̃ , UNs̃ , V Ns̃ , S̃ = s̃) = Ns̃H(Z|S,U, V, S̃ = s̃),

(e) is from the fact that for given s̃, uNs̃ and sNs̃ , V Ns̃ has As̃ · Bs̃ possible values, and the encoding mapping

function gs̃ partitions Bs̃ into js̃ subsets with “nearly equal size” (see (A8)), using a similar lemma in [16], we

have

1

Ns̃
H(V Ns̃ |SNs̃ , UNs̃ , S̃ = s̃) ≥ 1

Ns̃
logAs̃ +

1

Ns̃
logBs̃ −

1

Ns̃
, (A20)

(f) is from the fact that given S̃ = s̃, sNs̃ , uNs̃(wc,s̃) and wp,s̃ = (as̃, js̃), the eavesdropper’s decoding error

probability of vNs̃ tends to zero if (A16) is satisfied, and thus, by using Fano’s inequality, we have

1

Ns̃
H(V Ns̃ |Wp,s̃, Z

Ns̃ , SNs̃ , UNs̃ , S̃ = s̃) ≤ ε1, (A21)

where ε1 → 0 as Ns̃ →∞, and (g) is from (A1).

From (A19), we have

∆ ≥ I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃)− ε2, (A22)

where ε2 is small for sufficiently large N . By the definition of Re, we can conclude that Re ≤ I(V ;Y |U, S, S̃)−

I(V ;Z|U, S, S̃).

In addition, we know that (A21) holds if (A16) is satisfied, and this implies that

Rp =

k∑
s̃=1

π(s̃)Rp(s̃)

≥
k∑
s̃=1

π(s̃)(I(V ;Y |U, S, S̃ = s̃)− I(V ;Z|U, S, S̃ = s̃))

= I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃) ≥ Re. (A23)

Thus, Re ≤ I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃) and Re ≤ Rp are proved, and the achievability proof of the region

R1 is completed. Finally, using Fourier-Motzkin elimination (see e.g., [43]) to eliminate Rc and Rp from R1, the

proof of Theorem 1 is completed.

APPENDIX B

PROOF OF THEOREM 2

In this section, we will prove Theorem 2: all the achievable (R,Re) pairs are contained in the setRout. Since Re ≤

R is obvious, we only need to prove the inequalities R ≤ I(V ;Y |S, S̃) and Re ≤ I(V ;Y |U, S, S̃)−I(V ;Z|U, S, S̃)

of Theorem 2 in the remainder of this section.
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First, define the following auxiliary random variables,

U , (Y J−1, ZNJ+1, S
N , J), V , (U,W ), S , SJ , S̃ , SJ−d, Y , YJ , Z , ZJ , (A24)

where J is a random variable uniformly distributed over {1, 2, , ..., N}, and it is independent of Y N , ZN , W and

SN .

Proof of R ≤ I(V ;Y |S, S̃): Note that

R− ε
(a)

≤ 1

N
H(W )

(b)
=

1

N
H(W |SN )

=
1

N
(I(W ;Y N |SN ) +H(W |Y N , SN ))

(c)

≤ 1

N
(I(W ;Y N |SN ) + δ(Pe))

=
1

N

N∑
i=1

(H(Yi|Y i−1, SN )−H(Yi|Y i−1, SN ,W )) +
δ(Pe)

N

≤ 1

N

N∑
i=1

(H(Yi|Si, Si−d)−H(Yi|Y i−1, ZNi+1, S
N ,W )) +

δ(Pe)

N

(d)
=

1

N

N∑
i=1

(H(Yi|Si, Si−d)−H(Yi|Y i−1, ZNi+1, S
N ,W, Si, Si−d)) +

δ(Pe)

N

(e)
=

1

N

N∑
i=1

(H(Yi|Si, Si−d, J = i)−H(Yi|Y i−1, ZNi+1, S
N ,W, Si, Si−d, J = i)) +

δ(Pe)

N

(f)
= H(YJ |SJ , SJ−d, J)−H(YJ |SJ , SJ−d,W, Y J−1, ZNJ+1, S

N , J) +
δ(Pe)

N

≤ H(YJ |SJ , SJ−d)−H(YJ |SJ , SJ−d,W, Y J−1, ZNJ+1, S
N , J) +

δ(Pe)

N
(g)
= H(Y |S, S̃)−H(Y |S, S̃, V ) +

δ(Pe)

N
(h)

≤ I(V ;Y |S, S̃) +
δ(ε)

N
, (A25)

where (a) is from (2.10), (b) is from the fact that W is independent of SN , (c) is from the Fano’s inequality, (d)

is from the fact that Si and Si−d (here Si−d = const when i ≤ d) are included in SN , and thus there exists a

Markov chain (Si, Si−d)→ (Y i−1, ZNi+1, S
N ,W )→ Yi, (e) is from the fact that J is a random variable (uniformly

distributed over {1, 2, ..., N}), and it is independent of Y N , ZN , W and SN , (f) is from J is uniformly distributed

over {1, 2, ..., N}, (g) is from the definitions in (A24), and (h) is from δ(Pe) is increasing while Pe is increasing,

and Pe ≤ ε. Then, letting ε→ 0, we have R ≤ I(V ;Y |S, S̃).

Proof of Re ≤ I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃): By using (2.9) and (2.10), we have

Re − ε
(1)

≤ 1

N
H(W |ZN , SN )

=
1

N
(H(W |SN )− I(W ;ZN |SN ))
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=
1

N
(H(W |SN )−H(W |SN , Y N ) +H(W |SN , Y N )− I(W ;ZN |SN ))

(2)

≤ 1

N
(I(W ;Y N |SN )− I(W ;ZN |SN ) + δ(Pe))

=
1

N

N∑
i=1

(I(W ;Yi|Y i−1, SN )− I(W ;Zi|ZNi+1, S
N )) +

δ(Pe)

N
, (A26)

where (1) from (2.10), and (2) is from the Fano’s inequality.

The character I(W ;Yi|Y i−1, SN ) in (A26) can be processed as

I(W ;Yi|Y i−1, SN ) = H(Yi|Y i−1, SN )−H(Yi|Y i−1, SN ,W )

= H(Yi|Y i−1, SN )−H(Yi|Y i−1, SN ,W )−H(Yi|Y i−1, ZNi+1, S
N ) +H(Yi|Y i−1, ZNi+1, S

N )

+H(Yi|Y i−1, ZNi+1, S
N ,W )−H(Yi|Y i−1, ZNi+1, S

N ,W )

= I(Yi;Z
N
i+1|Y i−1, SN )− I(Yi;Z

N
i+1|Y i−1, SN ,W ) + I(W ;Yi|Y i−1, ZNi+1, S

N ), (A27)

and the character I(W ;Zi|ZNi+1, S
N ) in (A26) can be processed as

I(W ;Zi|ZNi+1, S
N ) = H(Zi|ZNi+1, S

N )−H(Zi|ZNi+1, S
N ,W )

= H(Zi|ZNi+1, S
N )−H(Zi|ZNi+1, S

N ,W )−H(Zi|Y i−1, ZNi+1, S
N ) +H(Zi|Y i−1, ZNi+1, S

N )

+H(Zi|Y i−1, ZNi+1, S
N ,W )−H(Zi|Y i−1, ZNi+1, S

N ,W )

= I(Zi;Y
i−1|ZNi+1, S

N )− I(Zi;Y
i−1|ZNi+1, S

N ,W ) + I(W ;Zi|Y i−1, ZNi+1, S
N ). (A28)

Substituting (A27) and (A28) into (A26), and using the properties
N∑
i=1

I(Yi;Z
N
i+1|Y i−1, SN ) =

N∑
i=1

I(Zi;Y
i−1|ZNi+1, S

N ) (A29)

and
N∑
i=1

I(Yi;Z
N
i+1|Y i−1, SN ,W ) =

N∑
i=1

I(Zi;Y
i−1|ZNi+1, S

N ,W ), (A30)

we have

Re − ε
(a)

≤ 1

N

N∑
i=1

(I(W ;Yi|Y i−1, ZNi+1, S
N )− I(W ;Zi|Y i−1, ZNi+1, S

N )) +
δ(Pe)

N

(b)
=

1

N

N∑
i=1

(I(W ;Yi|Y i−1, ZNi+1, S
N , Si−d, Si)− I(W ;Zi|Y i−1, ZNi+1, S

N , Si−d, Si)) +
δ(Pe)

N

(c)
=

1

N

N∑
i=1

(I(W ;Yi|Y i−1, ZNi+1, S
N , Si−d, Si, J = i)− I(W ;Zi|Y i−1, ZNi+1, S

N , Si−d, Si, J = i)) +
δ(Pe)

N

(d)
= I(W ;YJ |Y J−1, ZNJ+1, S

N , SJ−d, SJ , J)− I(W ;ZJ |Y J−1, ZNJ+1, S
N , SJ−d, SJ , J) +

δ(Pe)

N
(e)
= I(V ;Y |U, S̃, S)− I(V ;Z|U, S̃, S) +

δ(Pe)

N
(f)

≤ I(V ;Y |U, S̃, S)− I(V ;Z|U, S̃, S) +
δ(ε)

N
, (A31)
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where (a) is from (A29) and (A30) (b) is from the fact that Si and Si−d (here Si−d = const when i ≤ d) are

included in SN , (c) is from the fact that J is a random variable (uniformly distributed over {1, 2, ..., N}), and it

is independent of Y N , ZN , W and SN , (d) is from J is uniformly distributed over {1, 2, ..., N}, (e) is from the

definitions in (A24), and (f) is from δ(Pe) is increasing while Pe is increasing, and Pe ≤ ε. Letting ε → 0, we

have Re ≤ I(V ;Y |U, S, S̃) − I(V ;Z|U, S, S̃). Now it remains to prove the equalities (A29) and (A30), see the

followings.

Proof:

Using the chain rule, the left parts of (A29) and (A30) can be re-written as
N∑
i=1

I(Yi;Z
N
i+1|Y i−1, SN ) =

N∑
i=1

N∑
j=i+1

I(Yi;Zj |Y i−1, SN , ZNj+1), (A32)

and
N∑
i=1

I(Yi;Z
N
i+1|Y i−1, SN ,W ) =

N∑
i=1

N∑
j=i+1

I(Yi;Zj |Y i−1, SN , ZNj+1,W ). (A33)

The right parts of (A29) and (A30) can be re-written as
N∑
i=1

I(Zi;Y
i−1|ZNi+1, S

N ) =

N∑
i=1

i−1∑
j=1

I(Yj ;Zi|Y j−1, SN , ZNi+1)

=

N∑
j=1

j−1∑
i=1

I(Yi;Zj |Y i−1, SN , ZNj+1)

=

N∑
j=i+1

N∑
i=1

I(Yi;Zj |Y i−1, SN , ZNj+1), (A34)

and
N∑
i=1

I(Zi;Y
i−1|ZNi+1, S

N ,W ) =

N∑
i=1

i−1∑
j=1

I(Yj ;Zi|Y j−1, SN , ZNi+1,W )

=

N∑
j=1

j−1∑
i=1

I(Yi;Zj |Y i−1, SN , ZNj+1,W )

=

N∑
j=i+1

N∑
i=1

I(Yi;Zj |Y i−1, SN , ZNj+1,W ). (A35)

By checking (A32)-(A35), it is easy to see that (A29) and (A30) hold, and the proof is completed.

The proof of Theorem 2 is completed.

APPENDIX C

PROOF OF (2.15)

Replacing V N by XN , and letting Wc, UN be constants, the achievability of (2.15) is along the lines of the

direct proof of Theorem 1 (see Appendix A), and thus we only need to show the converse proof of (2.15). Since
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Re ≤ R is obvious, it remains to show that R ≤ I(X;Y |S, S̃) and Re ≤ I(X;Y |S, S̃) − I(X;Z|S, S̃), see the

followings.

Note that

R− ε ≤ 1

N
H(W ) ≤ 1

N
(I(W ;Y N |SN ) + δ(Pe))

(a)

≤ 1

N
(I(XN ;Y N |SN ) + δ(Pe))

=
1

N

N∑
i=1

(H(Yi|Y i−1, SN )−H(Yi|Y i−1, SN , XN )) +
δ(Pe)

N

≤ 1

N

N∑
i=1

(H(Yi|Si, Si−d)−H(Yi|Y i−1, SN , XN )) +
δ(Pe)

N

(b)
=

1

N

N∑
i=1

(H(Yi|Si, Si−d)−H(Yi|Si, Xi)) +
δ(Pe)

N

(c)
=

1

N

N∑
i=1

(H(Yi|Si, Si−d)−H(Yi|Si, Xi, Si−d)) +
δ(Pe)

N

(d)
= H(YJ |SJ , SJ−d, J)−H(YJ |SJ , SJ−d, XJ , J) +

δ(Pe)

N
(e)

≤ H(YJ |SJ , SJ−d)−H(YJ |SJ , SJ−d, XJ) +
δ(Pe)

N
(f)

≤ I(X;Y |S, S̃) +
δ(ε)

N
, (A36)

where (a) is from H(W |XN ) = 0, (b) is from the Markov chain (Y i−1, Si−1, SNi+1, X
i−1, XN

i+1)→ (Si, Xi)→ Yi,

(c) is from the Markov chain Si−d → (Si, Xi) → Yi, (d) is from the fact that J is a random variable (uniformly

distributed over {1, 2, ..., N}), and it is independent of Y N , ZN , W and SN , (e) is from the Markov chains

(J, SJ−d)→ (SJ , XJ)→ YJ and SJ−d → (SJ , XJ)→ YJ , and (f) is from the definitions in (A24), X , XJ and

the fact that δ(Pe) ≤ δ(ε). Then, letting ε→ 0, we have R ≤ I(X;Y |S, S̃).

Similarly, note that

Re − ε
(1)

≤ H(W |ZN , SN )

N

=
1

N
(H(W |ZN , SN )−H(W |ZN , SN , Y N ) +H(W |ZN , SN , Y N ))

(2)

≤ 1

N
(I(W ;Y N |ZN , SN ) + δ(Pe))

≤ 1

N
(H(Y N |ZN , SN )−H(Y N |ZN , SN ,W,XN ) + δ(Pe))

(3)
=

1

N
(H(Y N |ZN , SN )−H(Y N |ZN , SN , XN ) + δ(Pe))

=
1

N
(I(XN ;Y N |ZN , SN ) + δ(Pe))

(4)
=

1

N
(H(XN |ZN , SN )−H(XN |Y N , SN ) +H(XN |SN )−H(XN |SN ) + δ(Pe))

=
1

N
(I(XN ;Y N |SN )− I(XN ;ZN |SN ) + δ(Pe))



31

,
(5)

≤ 1

N
(I(XN ;Y N |SN )− I(XN ;ZN |SN ) + δ(ε)), (A37)

where (1) is from (2.10), (2) is from Fano’s inequality, (3) is from the fact that H(W |XN ) = 0, (4) is from the

Markov chain XN → (Y N , SN )→ ZN , and (5) is from the fact that Pe ≤ ε and δ(Pe) is increasing while Pe is

increasing.

The character I(XN ;Y N |SN )− I(XN ;ZN |SN ) in (A81) can be further bounded by

1

N
I(XN ;Y N |SN )− I(XN ;ZN |SN )

(a)
=

1

N

N∑
i=1

(H(Yi|Y i−1, SN )−H(Yi|Xi, Si)−H(Zi|Zi−1, SN ) +H(Zi|Xi, Si))

(b)
=

1

N

N∑
i=1

(H(Yi|Y i−1, SN , Zi−1)−H(Yi|Xi, Si)−H(Zi|Zi−1, SN ) +H(Zi|Xi, Si))

(c)

≤ 1

N

N∑
i=1

(H(Yi|Si, Si−d, SN , Zi−1)−H(Yi|Xi, Si, Si−d)−H(Zi|Zi−1, Si, Si−d, SN ) +H(Zi|Xi, Si, Si−d))

(d)

≤ 1

N

N∑
i=1

(H(Yi|Si, Si−d)−H(Yi|Xi, Si, Si−d)−H(Zi|Si, Si−d) +H(Zi|Xi, Si, Si−d))

=
1

N

N∑
i=1

(I(Xi;Yi|Si, Si−d)− I(Xi;Zi|Si, Si−d))

(e)
= I(XJ ;YJ |SJ , SJ−d, J)− I(XJ ;ZJ |SJ , SJ−d, J)

(f)

≤ I(XJ ;YJ |SJ , SJ−d)− I(XJ ;ZJ |SJ , SJ−d)
(g)
= I(X;Y |S, S̃)− I(X;Z|S, S̃), (A38)

where (a) is from the Markov chains (Y i−1, Si−1, SNi+1, X
i−1, XN

i+1)→ (Si, Xi)→ Yi and (Zi−1, Si−1, SNi+1, X
i−1,

XN
i+1)→ (Si, Xi)→ Zi, (b) is from the Markov chain Yi → (Y i−1, SN )→ Zi−1, (c) is from the Markov chains

Si−d → (Xi, Si)→ Yi and Si−d → (Xi, Si)→ Zi, and the fact that Si and Si−d are a part of SN (here note that

Si−d = const if i ≤ d), (d) is from

H(Yi|Si, Si−d, SN , Zi−1)−H(Zi|Zi−1, Si, Si−d, SN ) ≤ H(Yi|Si, Si−d)−H(Zi|Si, Si−d), (A39)

(e) is from the fact that J is a random variable (uniformly distributed over {1, 2, ..., N}), and it is independent of

Y N , ZN , W and SN , (f) is from the Markov chains (J, SJ−d) → (SJ , XJ) → YJ , SJ−d → (SJ , XJ) → YJ ,

(J, SJ−d)→ (SJ , XJ)→ ZJ , SJ−d → (SJ , XJ)→ ZJ and the fact that

H(YJ |SJ , SJ−d, J)−H(ZJ |SJ , SJ−d, J) ≤ H(YJ |SJ , SJ−d)−H(ZJ |SJ , SJ−d), (A40)

and (g) is from the definitions in (A24) and X , XJ . Here note that the proof of (A40) is analogous to that of

(A39), and thus we only need to prove the above (A39), see the followings.

Proof of (A39):
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Proof: Note that (A39) is equivalent to

I(Zi;Z
i−1, SN |Si, Si−d) ≤ I(Yi;S

N , Zi−1|Si, Si−d). (A41)

Since

I(Zi;Z
i−1, SN |Si, Si−d) = H(Zi−1, SN |Si, Si−d)−H(Zi−1, SN |Si, Si−d, Zi)

≤ H(Zi−1, SN |Si, Si−d)−H(Zi−1, SN |Si, Si−d, Zi, Yi)
(1)
= H(Zi−1, SN |Si, Si−d)−H(Zi−1, SN |Si, Si−d, Yi)

= I(Yi;S
N , Zi−1|Si, Si−d), (A42)

where (1) is from the Markov chain (Zi−1, SN )→ (Si, Si−d, Yi)→ Zi. Then it is easy to see that (A41) is proved,

and thus the proof of (A39) is completed.

Substituting (A38) into (A81), and letting ε → 0, Re ≤ I(X;Y |S, S̃) − I(X;Z|S, S̃) is proved. The converse

and entire proof of (2.15) is completed.

APPENDIX D

PROOF OF THEOREM 3

Rate splitting, block Markov coding, multiplexing random binning, and the idea of using the delayed receiver’s

channel output feedback as a secret key [42] are combined to show the achievability of Rfi in Theorem 3. The

outline of the proof is as follows. Notations and definitions are given in Subsection D-A, the construction of

the code-books are shown in Subsection D-B, the encoding and decoding schemes are respectively introduced in

Subsection D-C and Subsection D-D, and the equivocation analysis is shown in Subsection D-E.

A. Definitions

• The state takes values in S = {1, 2, ..., k} and the steady state probability π(l) > 0 for all l ∈ S. Let Ns̃

(1 ≤ s̃ ≤ k) be the number satisfying

Ns̃ = N(π(s̃)− ε
′
), (A43)

where 0 ≤ ε′ < min{π(s̃); s̃ ∈ {1, 2, ..., k}} and ε
′ → 0 as N →∞.

• The message W = (W1, ...,Wn) is transmitted through n blocks, and similar to the definitions in Appendix A,

the uniformly distributed message W is divided into a common message Wc and a private message Wp (W =

(Wc,Wp)), and W , Wc and Wp take values in the sets {1, 2, ..., 2nNR}, {1, 2, ..., 2nNRc} and {1, 2, ..., 2nNRp},

respectively. Here R = Rc +Rp. In the remainder of this section, we first prove

Rfi� = {(Rc, Rp, Re) : 0 ≤ Re ≤ Rp,

Rc ≤ min{I(U ;Y |S, S̃), I(U ;Z|S, S̃)},

Rp ≤ I(V ;Y |U, S, S̃),

Re ≤ [I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃)]+ +H(Y |V,Z, S, S̃)}, (A44)
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is achievable. Then, using Fourier-Motzkin elimination to eliminate Rc and Rp from Rfi�, Rfi is directly

obtained.

• In order to prove Rfi� is achievable, it is sufficient to show the following two cases are achievable.

– (Case 1:) for the case that I(V ;Y |U, S, S̃) ≥ I(V ;Z|U, S, S̃), we only need to show that (Rc =

min{I(U ;Y |S, S̃), I(U ;Z|S, S̃)}, Rp = I(V ;Y |U, S, S̃), Re = I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃) +Rf )

is achievable, where

Rf = min{H(Y |V,Z, S, S̃), I(V ;Z|U, S, S̃)}. (A45)

– (Case 2:) for the case that I(V ;Y |U, S, S̃) < I(V ;Z|U, S, S̃), we only need to show that (Rc =

min{I(U ;Y |S, S̃), I(U ;Z|S, S̃)}, Rp = I(V ;Y |U, S, S̃), Re = R∗f ) is achievable, where

R∗f = min{H(Y |V,Z, S, S̃), I(V ;Y |U, S, S̃)}. (A46)

• Define

Rp,1 = [I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃)]+, (A47)

and

Rp = Rp,1 +Rp,2. (A48)

• In block i (1 ≤ i ≤ n), the message Wi is divided into k sub-messages, i.e., Wi = (Wi,1, ...,Wi,k),

where Wi,s̃ = (Wi,s̃,c,Wi,s̃,p,1,Wi,s̃,p,2) (1 ≤ s̃ ≤ k), Wi,s̃,c, Wi,s̃,p,1 and Wi,s̃,p,2 take values in the sets

{1, 2, ..., 2Ns̃Rc(s̃)}, {1, 2, ..., 2Ns̃Rp,1(s̃)} and {1, 2, ..., 2Ns̃Rp,2(s̃)}, respectively, and Ns̃ satisfies (A43). Here

Rc(s̃) = min{I(U ;Y |S, S̃ = s̃), I(U ;Z|S, S̃ = s̃)}, (A49)

Rp,1(s̃) = [I(V ;Y |U, S, S̃ = s̃)− I(V ;Z|U, S, S̃ = s̃)]+, (A50)

Rp,2(s̃) = Rp(s̃)−Rp,1(s̃)

= I(V ;Y |U, S, S̃ = s̃)− [I(V ;Y |U, S, S̃ = s̃)− I(V ;Z|U, S, S̃ = s̃)]+

= min{I(V ;Y |U, S, S̃ = s̃), I(V ;Z|U, S, S̃ = s̃)}. (A51)

Note that Rc(s̃), Rp,1(s̃) and Rp,2(s̃) are the transmission rates Rc, Rp,1 and Rp,2 for a given s̃, respectively.

Furthermore, it is easy to see that
k∑
s̃=1

π(s̃)Rc(s̃) = Rc,

k∑
s̃=1

π(s̃)Rp,1(s̃) = Rp,1,

k∑
s̃=1

π(s̃)Rp,2(s̃) = Rp,2. (A52)

From the above definitions, it is easy to see that Wc = (W1,1,c, ...,W1,k,c,W2,1,c, ...,W2,k,c, ...,Wn,1,c, ...,Wn,k,c)

and Wp = (Wp,1,Wp,2), where Wp,1 = (W1,1,p,1, ...,W1,k,p,1,W2,1,p,1, ...,W2,k,p,1, ...,Wn,1,p,1, ...,Wn,k,p,1)

and Wp,2 = (W1,1,p,2, ...,W1,k,p,2,W2,1,p,2, ...,W2,k,p,2, ...,Wn,1,p,2, ...,Wn,k,p,2).
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• The transmission rate R∗c of the common message Wc is denoted by

R∗c =
H(Wc)

nN
=

∑n
i=1

∑k
s̃=1H(Wi,s̃,c)

nN
=

∑n
i=1

∑k
s̃=1Ns̃Rc(s̃)

nN

(a)
=

∑n
i=1

∑k
s̃=1N(π(s̃)− ε′)Rc(s̃)

nN

=

k∑
s̃=1

(π(s̃)− ε
′
)Rc(s̃)

=

k∑
s̃=1

π(s̃)Rc(s̃)− ε
′
k∑
s̃=1

Rc(s̃), (A53)

where (a) is from (A43). From (A49) and (A53), it is easy to see that R∗c tends to be Rc while ε
′ → 0.

Similarly, the transmission rate R∗p of the private message Wp tends to be Rp while ε
′ → 0.

• Let Ũi (1 ≤ i ≤ n) be the random vector with length N for block i and Un = (Ũ1, ..., Ũn). Similarly,

Sn = (S̃1, ..., S̃n), V n = (Ṽ1, ..., Ṽn), Xn = (X̃1, ..., X̃n), Y n = (Ỹ1, ..., Ỹn) and Zn = (Z̃1, ..., Z̃n). The

specific values of the above random vectors are denoted by lower case letters.

B. Construction of the code-books

Fix the joint probability mass function PUV SS̃XY Z(u, v, s, s̃, x, y, z) satisfying (2.19).

• Construction of UN : Construct k code-books U s̃ of UN for all s̃ ∈ S. In each code-book U s̃, randomly

generate 2Ns̃Rc(s̃) i.i.d. sequences uNs̃ according to the probability mass function PU |S̃(u|s̃), and index these

sequences as uNs̃(i), where 1 ≤ i ≤ 2Ns̃Rc(s̃).

• Construction of V N : Construct k code-books V s̃ of V N for all s̃ ∈ S. In each code-book V s̃, randomly

generate 2Ns̃(Rp(s̃)+Rc(s̃)) i.i.d. sequences vNs̃ according to the probability mass function PV |U,S̃(v|u, s̃). Index

these sequences of the code-book V s̃ as vNs̃(is̃, as̃, bs̃), where 1 ≤ is̃ ≤ 2Ns̃Rc(s̃), as̃ ∈ As̃ = {1, 2, ..., As̃},

bs̃ ∈ Bs̃ = {1, 2, ..., Bs̃},

As̃ = 2Ns̃[I(V ;Y |U,S,S̃=s̃)−I(V ;Z|U,S,S̃=s̃)]+ , (A54)

and

Bs̃ = 2Ns̃I(V ;Z|U,S,S̃=s̃). (A55)

From (A51) and (A55), it is easy to see that 2Ns̃Rp,2(s̃) ≤ Bs̃. Thus we partition Bs̃ into 2Ns̃Rp,2(s̃) bins, and

each bin has 2Ns̃(I(V ;Z|U,S,S̃=s̃)−Rp,2(s̃)) elements.

• Construction of XN : For each s̃, the sequence xNs̃ is i.i.d. generated according to a new discrete memoryless

channel (DMC) with transition probability PX|U,V,S̃(x|u, v, s̃). The inputs of this new DMC are uNs̃ and vNs̃ ,

while the output is xNs̃ .
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C. Encoding scheme

The codeword in each block has length N . Let Ls̃ be the number of times during the N symbols for which

the delayed feedback state at the transmitter is S̃ = s̃. Every time that the corresponding delayed state is S̃ = s̃,

the transmitter chooses the next symbols of uN and vN from the component code-books U s̃ and V s̃, respectively.

Since Ls̃ is not necessarily equivalent to Ns̃, an error is declared if Ls̃ < Ns̃, and the codes are filled with zero

if Ls̃ > Ns̃. Since the state process is stationary and ergodic limN→∞
Ls̃

N = Pr{S̃ = s̃} in probability. Thus, we

have

Pr{Ls̃ < Ns̃} → 0, as N →∞. (A56)

For the i-th block (1 ≤ i ≤ n), the transmitted message is wi = (wi,1,c, wi,1,p,1, wi,1,p,2, ..., wi,k,c, wi,k,p,1, wi,k,p,2).

The encoding scheme is considered into two steps. First, for block 1 ≤ i ≤ 2d, the encoding scheme is as follows.

• (Choosing ũi:) In each component code-book U s̃ (1 ≤ s̃ ≤ k), the transmitter chooses ũNs̃
i (wi,s̃,c) as the

s̃-th component codeword of the transmitted ũi. The transmitted codeword ũi is obtained by multiplexing the

different component codewords.

• (Choosing ṽi:) In each component code-book V s̃ (1 ≤ s̃ ≤ k), the transmitter chooses ṽNs̃
i (i∗s̃, a

∗
s̃, b
∗
s̃) as the

s̃-th component codeword of the transmitted ṽi, where i∗s̃ = wi,s̃,c, a∗s̃ = wi,s̃,p,1, and b∗s̃ is randomly chosen

from the bin wi,s̃,p,2 of Bs̃. The transmitted codeword ṽi is obtained by multiplexing the different component

codewords.

Second, for block 2d+ 1 ≤ i ≤ n, the encoding scheme is as follows.

• The choosing of ũi for block 2d+ 1 ≤ i ≤ n is the same as that in block 1 ≤ i ≤ 2d.

• (Generation of the key:) In block 2d+1 ≤ i ≤ n, the transmitter has already known s̃i−2d, and it is used to mul-

tiplex the component codewords ũi−d, ṽi−d and vectors s̃i−d, x̃i−d ỹi−d and z̃i−d. Once the transmitter receives

the delayed feedback ỹi−d and s̃i−d, he first demultiplexes them into ỹN1

i−d, ỹN2

i−d,..., ỹNk

i−d and s̃N1

i−d, s̃N2

i−d,...,s̃Nk

i−d.

Then, when the transmitter receives ỹNj

i−d (1 ≤ j ≤ k), he gives up if ỹNj

i−d /∈ T
Nj

Y |V,S,S̃(ṽ
Nj

i−d, s̃
Nj

i−d, s̃ = j). It

is easy to see that for s̃ = j, the probability for giving up at the i − d-th block tends to 0 as N → ∞ (here

Nj = N(π(j)− ε′)). In the case ỹNj

i−d ∈ T
Nj

Y |V,S,S̃(ṽ
Nj

i−d, s̃
Nj

i−d, s̃ = j), generate a mapping

gi,j : ỹ
Nj

i−d → {1, 2, ..., 2
NjRf (j)} (A57)

for case 1, and

gi,j : ỹ
Nj

i−d → {1, 2, ..., 2
NjR

∗
f (j)} (A58)

for case 2. Here note that

Rf (j) = min{H(Y |V,Z, S, S̃ = j), I(V ;Z|U, S, S̃ = j)}, (A59)

R∗f (j) = min{H(Y |V,Z, S, S̃ = j), I(V ;Y |U, S, S̃ = j)}. (A60)
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Define a random variable K∗i,j = gi,j(Ỹ
Nj

i−d) (2d+ 1 ≤ i ≤ n), which is uniformly distributed over {1, 2, ...,

2NjRf (j)} or {1, 2, ..., 2NjR
∗
f (j)}, and K∗i,j is independent of Ũi, Ṽi, S̃i, X̃i Ỹi, Z̃i and Wi. Here note that

K∗i,j is used as a secret key shared by the transmitter and the receiver, and k∗i,j is a specific value of K∗i,j .

Reveal the mapping gi,j to the transmitter, receiver and the eavesdropper.

• (Choosing ṽi:) From (A51), (A59) and (A60), it is easy to see that Rp,2(j) ≥ Rf (j) for case 1, and

Rp,2(j) ≥ R∗f (j) for case 2. Thus, for block 2d + 1 ≤ i ≤ n and s̃ = j (1 ≤ j ≤ k), divide the

component message wi,j,p,2 into w∗i,j,p,2 and w∗∗i,j,p,2, i.e., wi,j,p,2 = (w∗i,j,p,2, w
∗∗
i,j,p,2), where w∗i,j,p,2 ∈

{1, 2, ..., 2NjRf (j)}, w∗∗i,j,p,2 ∈ {1, 2, ..., 2Nj(Rp,2(j)−Rf (j))} for case 1, and w∗i,j,p,2 ∈ {1, 2, ..., 2NjR
∗
f (j)},

w∗∗i,j,p,2 ∈ {1, 2, ..., 2Nj(Rp,2(j)−R∗f (j))} for case 2. For both cases, in each component code-book V s̃ (1 ≤

s̃ ≤ k), the transmitter chooses ṽNs̃
i (i∗s̃, a

∗
s̃, b
∗
s̃) as the s̃-th component codeword of the transmitted ṽi, where

i∗s̃ = wi,s̃,c, a∗s̃ = wi,s̃,p,1, and b∗s̃ is randomly chosen from the bin (w∗i,j,p,2 ⊕ k∗i,j , w∗∗i,j,p,2) of Bs̃, where ⊕ is

the modulo addition over {1, 2, ..., 2NjRf (j)} for case 1 and {1, 2, ..., 2NjR
∗
f (j)} for case 2. Here note that since

K∗i,j and W ∗i,j,p,2 are independent and uniformly distributed over the same alphabet, K∗i,j ⊕W ∗i,j,p,2 is also

independent of K∗i,j and W ∗i,j,p,2, and it is also uniformly distributed over the same alphabet as that of K∗i,j

and W ∗i,j,p,2. The transmitted codeword ṽi is obtained by multiplexing the different component codewords.

D. Decoding scheme

• (Decoding scheme for the receiver:)

– (Decoding the common message wi,c for block 1 ≤ i ≤ n:) The delayed feedback state S̃ at the

transmitter, which is used to multiplex the component codewords, is also available at the receiver. For

block 1 ≤ i ≤ n, once the receiver receives ỹi and the state sequence s̃i, he first demultiplexes them into

outputs corresponding to the component code-books and separately decodes each component codeword.

To be specific, in each code-book U s̃, the receiver has (ỹNs̃
i , s̃Ns̃

i ) and tries to search a unique ũNs̃
i such

that

(ũNs̃
i , ỹNs̃

i , s̃Ns̃
i ) ∈ TNs̃

UY S|S̃(ε). (A61)

If there exists such a unique ũNs̃
i , put out the corresponding index ŵi,s̃,c. Otherwise, i.e., if no such

sequence exists or multiple sequences have different message indices, declare a decoding error. If for

all 1 ≤ s̃ ≤ k, there exist unique sequences ũNs̃
i satisfying (A61), the receiver declares that ŵi,c =

(ŵi,1,c, ŵi,2,c, ..., ŵi,k,c) is sent in block i. Based on the AEP and (A49), it is easy to see that the error

probability Pr{ŵi,s̃,c 6= wi,s̃,c} (1 ≤ s̃ ≤ k) goes to 0.

– (Decoding the private message wi,p for block 1 ≤ i ≤ 2d:) After decoding ũNs̃
i for all 1 ≤ s̃ ≤ k, in

each component code-book V s̃, the receiver tries to find a unique sequence ṽNs̃
i such that

(ṽNs̃
i , ũNs̃

i , ỹNs̃
i , s̃Ns̃

i ) ∈ TNs̃

V UY S|S̃(ε). (A62)

If there exists such a unique ṽNs̃
i , put out the corresponding indexes î∗s̃ , â∗s̃ and b̂∗s̃ . Otherwise, i.e., if no

such sequence exists or multiple sequences have different message indices, declare a decoding error. For
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block 1 ≤ i ≤ 2d, after the receiver obtains the index b̂∗s̃ , he also knows ŵi,s̃,p,2 since it is the index of the

bin which b̂∗s̃ belongs to. Thus, for 1 ≤ s̃ ≤ k, the receiver has an estimation ŵi,s̃,p of the private message

wi,s̃,p by letting ŵi,s̃,p = (â∗s̃, ŵi,s̃,p,2). If for all 1 ≤ s̃ ≤ k, there exist unique sequences ṽNs̃
i such that

(A62) is satisfied, the receiver declares that ŵi,p = (ŵi,1,p, ŵi,2,p, ..., ŵi,k,p) is sent for block i. Based on

the AEP and Rp(s̃) = I(V ;Y |U, S, S̃ = s̃), it is easy to see that the error probability Pr{ŵi,s̃,p 6= wi,s̃,p}

(1 ≤ s̃ ≤ k) goes to 0.

– (Decoding the private message wi,p for block 2d + 1 ≤ i ≤ n:) For block 2d + 1 ≤ i ≤ n and

1 ≤ s̃ ≤ k, after decoding ũNs̃
i , first, the receiver tries to find a unique sequence ṽNs̃

i satisfying (A62).

If there exists such a unique ṽNs̃
i , put out the corresponding indexes î∗s̃ , â∗s̃ and b̂∗s̃ . Otherwise, i.e., if

no such sequence exists or multiple sequences have different message indices, declare a decoding error.

After the receiver obtains the index b̂∗s̃ , he also knows (ŵ∗i,s̃,p,2⊕ k∗i,s̃, ŵ∗∗i,s̃,p,2) since it is the index of the

bin which b̂∗s̃ belongs to. Then, note that the receiver knows the secret key k∗i,s̃, and thus he can directly

obtain ŵi,s̃,p,2 = (ŵ∗i,s̃,p,2, ŵ
∗∗
i,s̃,p,2) from (ŵ∗i,s̃,p,2 ⊕ k∗i,s̃, ŵ∗∗i,s̃,p,2) and the key k∗i,s̃. Thus for 1 ≤ s̃ ≤ k,

the receiver has an estimation ŵi,s̃,p of the private message wi,s̃,p by letting ŵi,s̃,p = (â∗s̃, ŵi,s̃,p,2). If

for all 1 ≤ s̃ ≤ k, there exist unique sequences ṽNs̃
i such that (A62) is satisfied, the receiver declares

that ŵi,p = (ŵi,1,p, ŵi,2,p, ..., ŵi,k,p) is sent for block 2d + 1 ≤ i ≤ n. Based on the AEP and Rp(s̃) =

I(V ;Y |U, S, S̃ = s̃), it is easy to see that the error probability Pr{ŵi,s̃,p 6= wi,s̃,p} (1 ≤ s̃ ≤ k) goes to

0.

• (Decoding scheme for the eavesdropper:)

– (Decoding the common message wi,c for block 1 ≤ i ≤ n:) The delayed feedback state S̃ at the

transmitter, which is used to multiplex the component codewords, is also available at the eavesdropper.

For block 1 ≤ i ≤ n, once the eavesdropper receives z̃i and the state sequence s̃i, he first demultiplexes

them into outputs corresponding to the component code-books and separately decodes each component

codeword. To be specific, in each code-book U s̃, the eavesdropper has (z̃Ns̃
i , s̃Ns̃

i ) and tries to search a

unique ũNs̃
i such that

(ũNs̃
i , z̃Ns̃

i , s̃Ns̃
i ) ∈ TNs̃

UZS|S̃(ε). (A63)

If there exists such a unique ũNs̃
i , put out the corresponding index w̌i,s̃,c. Otherwise, i.e., if no such

sequence exists or multiple sequences have different message indices, declare a decoding error. If for

all 1 ≤ s̃ ≤ k, there exist unique sequences ũNs̃
i satisfying (A63), the receiver declares that w̌i,c =

(w̌i,1,c, w̌i,2,c, ..., w̌i,k,c) is sent in block i. Based on the AEP and (A49), it is easy to see that the error

probability Pr{w̌i,s̃,c 6= wi,s̃,c} (1 ≤ s̃ ≤ k) goes to 0.

– (For block 1 ≤ i ≤ n, given z̃i, ũi, s̃i and wi,p,1, decoding ṽi:) In each component code-book V s̃

(1 ≤ s̃ ≤ k), given s̃Ns̃
i , ũNs̃

i (wi,s̃,c), z̃Ns̃
i and wi,s̃,p,1, the eavesdropper tries to find a unique b̌∗s̃ such that

(ṽNs̃
i (wi,s̃,c, wi,s̃,p,1, b̌

∗
s̃), ũ

Ns̃
i (wi,s̃,c), z̃

Ns̃
i , s̃Ns̃

i ) ∈ TNs̃

UV SZ|S̃(ε). (A64)
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Since there are 2Ns̃I(V ;Z|U,S,S̃=s̃) possible values of b̌∗s̃ (see (A55)), based on the AEP, the error probability

Pr{b̌∗s̃ 6= b∗s̃} → 0. (A65)

– (For block 2d + 1 ≤ i ≤ n, given ṽi−d, z̃i−d and s̃i−d, the eavesdropper’s equivocation about the

secret key:) For block 2d + 1 ≤ i ≤ n and S̃ = s̃, even the eavesdropper knows ṽNs̃
i , without the

secret key k∗i,s̃ he still can not obtain wi,s̃,p,2, and this is because wi,s̃,p,2 = (w∗i,s̃,p,2⊕ k∗i,s̃, w∗∗i,s̃,p,2). The

eavesdropper can guess k∗i,s̃ from ṽNs̃

i−d, z̃Ns̃

i−d and s̃Ns̃

i−d, and his equivocation about the secret key k∗i,s̃ can

be bounded by the following balanced coloring lemma introduced by Ahlswede and Cai [42].

Lemma 1: (Balanced coloring lemma) Given S̃ = s̃, for any ε, δ > 0, sufficiently large Ns̃, all Ns̃-

type PV SS̃Y (v, s, s̃, y) and all ṽNs̃

i−d, s̃
Ns̃

i−d ∈ TNs̃

V S|S̃ (2d + 1 ≤ i ≤ n), there exists a γ- coloring

c : TNs̃

Y |V,S,S̃(ṽNs̃

i−d, s̃
Ns̃

i−d, s̃) → {1, 2, .., γ} of TNs̃

Y |V,S,S̃(ṽNs̃

i−d, s̃
Ns̃

i−d, s̃) such that for all joint Ns̃-type

PV SS̃Y Z(v, s, s̃, y, z) with marginal distribution PV SS̃Z(v, s, s̃, z) and
|TNs̃

Y |V,S,S̃,Z
(ṽ

Ns̃
i−d,s̃

Ns̃
i−d,s̃,z̃

Ns̃
i−d)|

γ > 2Ns̃ε,

ṽNs̃

i−d, s̃
Ns̃

i−d, z̃
Ns̃

i−d ∈ T
Ns̃

V SZ|S̃ ,

|c−1(k)| ≤
|TNs̃

Y |V,S,S̃,Z(ṽNs̃

i−d, s̃
Ns̃

i−d, s̃, z̃
Ns̃

i−d)|(1 + δ)

γ
, (A66)

for k = 1, 2, ..., γ, where c−1 is the inverse image of c.

Proof: See [42, p. 260].

Lemma 1 shows that given S̃ = s̃, if ṽNs̃

i−d, s̃Ns̃

i−d, ỹNs̃

i−d and z̃Ns̃

i−d are jointly typical, for given ṽNs̃

i−d, s̃Ns̃

i−d

and z̃Ns̃

i−d, the number of ỹNs̃

i−d ∈ TNs̃

Y |V,S,S̃,Z(ṽNs̃

i−d, s̃
Ns̃

i−d, s̃, z̃
Ns̃

i−d) for a certain color k (k = 1, 2, ..., γ),

which is denoted as |c−1(k)|, is upper bounded by
|TNs̃

Y |V,S,S̃,Z
(ṽ

Ns̃
i−d,s̃

Ns̃
i−d,s̃,z̃

Ns̃
i−d)|(1+δ)

γ . By using Lemma 1,

it is easy to see that the typical set TNs̃

Y |V,S,S̃,Z(ṽNs̃

i−d, s̃
Ns̃

i−d, s̃, z̃
Ns̃

i−d) maps into at least

|TNs̃

Y |V,S,S̃,Z(ṽNs̃

i−d, s̃
Ns̃

i−d, s̃, z̃
Ns̃

i−d)|
|TNs̃

Y |V,S,S̃,Z
(ṽ

Ns̃
i−d,s̃

Ns̃
i−d,s̃,z̃

Ns̃
i−d)|(1+δ)

γ

=
γ

1 + δ
(A67)

colors. On the other hand, the typical set TNs̃

Y |V,S,S̃,Z(ṽNs̃

i−d, s̃
Ns̃

i−d, s̃, z̃
Ns̃

i−d) maps into at most γ colors. Thus,

given S̃ = s̃, Ṽ Ns̃

i−d, Z̃Ns̃

i−d, S̃Ns̃

i−d, the eavesdropper’s equivocation H(K∗i,s̃|Ṽ
Ns̃

i−d, S̃
Ns̃

i−d, Z̃
Ns̃

i−d) about the

secret key K∗i,s̃ is lower bounded by

H(K∗i,s̃|Ṽ
Ns̃

i−d, S̃
Ns̃

i−d, Z̃
Ns̃

i−d, S̃ = s̃) ≥ log
γ

1 + δ
. (A68)

Here note that in our encoding scheme, γ = 2Ns̃Rf (s̃) for case 1, and γ = 2Ns̃R
∗
f (s̃) for case 2, see (A57)

and (A58). Then, it is easy to see that (A68) can be re-written as follows. For case 1,

H(K∗i,s̃|Ṽ
Ns̃

i−d, S̃
Ns̃

i−d, Z̃
Ns̃

i−d, S̃ = s̃) ≥ Ns̃Rf (s̃)− log(1 + δ), (A69)

and for case 2,

H(K∗i,s̃|Ṽ
Ns̃

i−d, S̃
Ns̃

i−d, Z̃
Ns̃

i−d, S̃ = s̃) ≥ Ns̃R∗f (s̃)− log(1 + δ). (A70)
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Now it remains to show that Re = I(V ;Y |U, S, S̃) − I(V ;Z|U, S, S̃) + Rf ) for case 1 and Re = R∗f for case

2, see the followings.

E. Equivocation analysis:

Equivocation analysis for case 1: For all blocks, the equivocation ∆ is bounded by

∆ =
1

nN
H(W |Zn, Sn) =

1

nN
H(Wc,Wp|Zn, Sn)

≥ 1

nN
H(Wp|Zn, Sn,Wc) ≥

1

nN
H(Wp|Zn, Sn,Wc, U

n)

(a)
=

1

nN
H(Wp|Zn, Sn, Un) =

1

nN
H(W1,p, ...,Wn,p|Zn, Sn, Un)

=
1

nN

n∑
i=1

H(Wi,p|Zn, Sn, Un,W1,p, ...,Wi−1,p)

=
1

nN
(

2d∑
i=1

H(Wi,p|Zn, Sn, Un,W1,p, ...,Wi−1,p)

+

n∑
i=2d+1

H(Wi,p|Zn, Sn, Un,W1,p, ...,Wi−1,p))

(b)
=

1

nN
(

2d∑
i=1

H(Wi,p|Z̃i, S̃i, Ũi) +

n∑
i=2d+1

H(Wi,p|Z̃i, S̃i, Ũi, Z̃i−d, S̃i−d, Ũi−d))

(c)

≥ 1

nN

n∑
i=2d+1

H(Wi,p|Z̃i, S̃i, Ũi, Z̃i−d, S̃i−d, Ũi−d)

=
1

nN

n∑
i=2d+1

k∑
s̃=1

H(Wi,s̃,p|Wi,1,p, ...,Wi,s̃−1,p, Z̃i, S̃i, Ũi, Z̃i−d, S̃i−d, Ũi−d)

(d)
=

1

nN

n∑
i=2d+1

k∑
s̃=1

H(Wi,s̃,p|Z̃Ns̃
i , S̃Ns̃

i , ŨNs̃
i , Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ũ
Ns̃

i−d)

=
1

nN

n∑
i=2d+1

k∑
s̃=1

H(Wi,s̃,p,1,Wi,s̃,p,2|Z̃Ns̃
i , S̃Ns̃

i , ŨNs̃
i , Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ũ
Ns̃

i−d)

(e)
=

1

nN

n∑
i=2d+1

k∑
s̃=1

(H(Wi,s̃,p,1|Z̃Ns̃
i , S̃Ns̃

i , ŨNs̃
i )

+H(Wi,s̃,p,2|Wi,s̃,p,1, Z̃
Ns̃
i , S̃Ns̃

i , ŨNs̃
i , Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ũ
Ns̃

i−d)), (A71)

where (a) is from the definition Wi,p = (Wi,1,p,Wi,2,p, ...,Wi,k,p) (1 ≤ i ≤ n), (b) is from the Markov chains

Wi,p → (Z̃i, S̃i, Ũi) → (W1,p, ...,Wi−1,p, Z̃
i−1, Z̃ni+1, Ũ

i−1, Ũni+1, S̃
i−1, S̃ni+1) for block 1 ≤ i ≤ 2d, and Wi,p →

(Z̃i, S̃i, Ũi, Z̃i−d, S̃i−d, Ũi−d)→ (W1,p, ...,Wi−1,p, Z̃
i−d−1, Z̃i−1i−d+1, Z̃

n
i+1, Ũ

i−d−1, Ũ i−1i−d+1, Ũ
n
i+1, S̃

i−d−1, S̃i−1i−d+1, S̃
n
i+1)

for block 2d + 1 ≤ i ≤ n, (c) is from the fact that when n and N tend to infinity, 1
nN

∑2d
i=1H(Wi,p|Z̃i, S̃i, Ũi)

tends to zero, and thus we can drop it, (d) is from the Markov chain Wi,s̃,p → (Z̃Ns̃
i , S̃Ns̃

i , ŨNs̃
i , Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ũ
Ns̃

i−d)→

(Wi,1,p, ...,Wi,s̃−1,p, Z̃
N1
i , ..., Z̃

Ns̃−1

i , Z̃
Ns̃+1

i , ..., Z̃Nk
i , ŨN1

i , ..., Ũ
Ns̃−1

i , Ũ
Ns̃+1

i , ..., ŨNk
i , S̃N1

i , ..., S̃
Ns̃−1

i , S̃
Ns̃+1

i , ..., S̃Nk
i ,

Z̃N1

i−d, ..., Z̃
Ns̃−1

i−d , Z̃
Ns̃+1

i−d , ..., Z̃Nk

i−d, Ũ
N1

i−d, ..., Ũ
Ns̃−1

i−d , Ũ
Ns̃+1

i−d , ..., ŨNk

i−d, S̃
N1

i−d, ..., S̃
Ns̃−1

i−d , S̃
Ns̃+1

i−d , ..., S̃Nk

i−d), which implies
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the s̃-th component of the private message Wi,p is only related with the s̃-th component of Ũi, S̃i, Z̃i, Ũi−d, S̃i−d

and Z̃i−d, and (e) is from the Markov chain Wi,s̃,p,1 → (Z̃Ns̃
i , S̃Ns̃

i , ŨNs̃
i )→ (Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ũ
Ns̃

i−d).

Now it remains for us to bound the conditional entropies H(Wi,s̃,p,1|Z̃Ns̃
i , S̃Ns̃

i , ŨNs̃
i ) and H(Wi,s̃,p,2|Wi,s̃,p,1, Z̃

Ns̃
i ,

S̃Ns̃
i , ŨNs̃

i , Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ũ
Ns̃

i−d) in (A71), see the followings.

The conditional entropy H(Wi,s̃,p,1|Z̃Ns̃
i , S̃Ns̃

i , ŨNs̃
i ) can be bounded by

H(Wi,s̃,p,1|Z̃Ns̃
i , S̃Ns̃

i , ŨNs̃
i ) ≥ H(Wi,s̃,p,1|Z̃Ns̃

i , S̃Ns̃
i , ŨNs̃

i , S̃ = s̃)

= H(Wi,s̃,p,1, Z̃
Ns̃
i , S̃Ns̃

i , ŨNs̃
i , S̃ = s̃)−H(Z̃Ns̃

i , S̃Ns̃
i , ŨNs̃

i , S̃ = s̃)

= H(Ṽ Ns̃
i ,Wi,s̃,p,1, Z̃

Ns̃
i , S̃Ns̃

i , ŨNs̃
i , S̃ = s̃)−H(Ṽ Ns̃

i |Wi,s̃,p,1, Z̃
Ns̃
i , S̃Ns̃

i , ŨNs̃
i , S̃ = s̃)−H(Z̃Ns̃

i , S̃Ns̃
i , ŨNs̃

i , S̃ = s̃)

(f)
= H(Z̃Ns̃

i |Ṽ
Ns̃
i , S̃Ns̃

i , ŨNs̃
i , S̃ = s̃) +H(Ṽ Ns̃

i ,Wi,s̃,p,1, S̃
Ns̃
i , ŨNs̃

i , S̃ = s̃)

−H(Ṽ Ns̃
i |Wi,s̃,p,1, Z̃

Ns̃
i , S̃Ns̃

i , ŨNs̃
i , S̃ = s̃)−H(Z̃Ns̃

i , S̃Ns̃
i , ŨNs̃

i , S̃ = s̃)

(g)
= Ns̃H(Z|V,U, S, S̃ = s̃) +H(Ṽ Ns̃

i |S̃
Ns̃
i , ŨNs̃

i , S̃ = s̃)−H(Z̃Ns̃
i |S̃

Ns̃
i , ŨNs̃

i , S̃ = s̃)

−H(Ṽ Ns̃
i |Wi,s̃,p,1, Z̃

Ns̃
i , S̃Ns̃

i , ŨNs̃
i , S̃ = s̃)

≥ Ns̃H(Z|V,U, S, S̃ = s̃) +H(Ṽ Ns̃
i |S̃

Ns̃
i , ŨNs̃

i , S̃ = s̃)−Ns̃H(Z|U, S, S̃ = s̃)

−H(Ṽ Ns̃
i |Wi,s̃,p,1, Z̃

Ns̃
i , S̃Ns̃

i , ŨNs̃
i , S̃ = s̃)

(h)

≥ Ns̃I(V ;Y |U, S, S̃ = s̃)− 1−Ns̃I(V ;Z|U, S, S̃ = s̃)−H(Ṽ Ns̃
i |Wi,s̃,p,1, Z̃

Ns̃
i , S̃Ns̃

i , ŨNs̃
i , S̃ = s̃)

(i)

≥ Ns̃I(V ;Y |U, S, S̃ = s̃)− 1−Ns̃I(V ;Z|U, S, S̃ = s̃)−Ns̃ε1, (A72)

where (f) is from the fact that H(Wi,s̃,p,1|Ṽ Ns̃
i ) = 0, (g) is also from H(Wi,s̃,p,1|Ṽ Ns̃

i ) = 0 and the fact that the

channel is a DMC with transition probability PY,Z|X,S(y, z|x, s), and for each s̃, XNs̃ is i.i.d. generated according

to a new DMC with transition probability PX|U,V,S̃(x|u, v, s̃), thus we have H(Z̃Ns̃
i |Ṽ

Ns̃
i , S̃Ns̃

i , ŨNs̃
i , S̃ = s̃) =

Ns̃H(Z|V,U, S, S̃ = s̃), (h) is from the fact that for given s̃, ũNs̃
i and s̃Ns̃

i , Ṽ Ns̃
i has As̃ ·Bs̃ possible values, using

a similar lemma in [16], we have

H(Ṽ Ns̃
i |S̃

Ns̃
i , ŨNs̃

i , S̃ = s̃) ≥ logAs̃ + logBs̃ − 1
(1)
= Ns̃I(V ;Y |U, S, S̃ = s̃)− 1, (A73)

where (1) is from (A54) and (A55), and (i) is from the fact that given s̃, wi,s̃,p,1, z̃Ns̃
i , s̃Ns̃

i and ũNs̃
i , the eavesdropper’s

decoding error probability of ṽNs̃
i tends to zero (see (A65)), then, by using Fano’s inequality, we have

1

Ns̃
H(Ṽ Ns̃

i |Wi,s̃,p,1, Z̃
Ns̃
i , S̃Ns̃

i , ŨNs̃
i , S̃ = s̃) ≤ ε1, (A74)

where ε1 → 0 as Ns̃ →∞.

The conditional entropy H(Wi,s̃,p,2|Wi,s̃,p,1, Z̃
Ns̃
i , S̃Ns̃

i , ŨNs̃
i , Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ũ
Ns̃

i−d) can be bounded by

H(Wi,s̃,p,2|Wi,s̃,p,1, Z̃
Ns̃
i , S̃Ns̃

i , ŨNs̃
i , Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ũ
Ns̃

i−d)

≥ H(Wi,s̃,p,2|Wi,s̃,p,1, Z̃
Ns̃
i , S̃Ns̃

i , ŨNs̃
i , Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ũ
Ns̃

i−d,W
∗
i,s̃,p,2 ⊕K∗i,s̃, S̃ = s̃, Ṽ Ns̃

i , Ṽ Ns̃

i−d)

(j)
= H(Wi,s̃,p,2|Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ũ
Ns̃

i−d,W
∗
i,s̃,p,2 ⊕K∗i,s̃, S̃ = s̃, Ṽ Ns̃

i−d)
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(k)
= H(Wi,s̃,p,2|Z̃Ns̃

i−d, S̃
Ns̃

i−d,W
∗
i,s̃,p,2 ⊕K∗i,s̃, S̃ = s̃, Ṽ Ns̃

i−d)

= H(K∗i,s̃|Z̃
Ns̃

i−d, S̃
Ns̃

i−d,W
∗
i,s̃,p,2 ⊕K∗i,s̃, S̃ = s̃, Ṽ Ns̃

i−d)

(l)
= H(K∗i,s̃|Z̃

Ns̃

i−d, S̃
Ns̃

i−d, Ṽ
Ns̃

i−d, S̃ = s̃)

(m)

≥ Ns̃Rf (s̃)− log(1 + δ), (A75)

where (j) is from the Markov chain Wi,s̃,p,2 → (Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ũ
Ns̃

i−d,W
∗
i,s̃,p,2⊕K∗i,s̃, S̃ = s̃, Ṽ Ns̃

i−d)→ (Wi,s̃,p,1, Z̃
Ns̃
i , S̃Ns̃

i ,

ŨNs̃
i , Ṽ Ns̃

i ), (k) is from the fact that H(ŨNs̃

i−d|Ṽ
Ns̃

i−d) = 0, (l) is from the Markov chain W ∗i,s̃,p,2 ⊕ K∗i,s̃ →

(Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ṽ
Ns̃

i−d, S̃ = s̃)→ K∗i,s̃, and (m) is from (A69).

Substituting (A72) and (A75) into (A71), we have

∆ ≥ 1

nN

n∑
i=2d+1

k∑
s̃=1

[Ns̃I(V ;Y |U, S, S̃ = s̃)− 1−Ns̃I(V ;Z|U, S, S̃ = s̃)−Ns̃ε1 +Ns̃Rf (s̃)− log(1 + δ)]

=
1

nN

n∑
i=2d+1

k∑
s̃=1

[Ns̃(I(V ;Y |U, S, S̃ = s̃)− I(V ;Z|U, S, S̃ = s̃) +Rf (s̃)− ε1)− 1− log(1 + δ)]

(n)
=

1

nN

n∑
i=2d+1

k∑
s̃=1

[N(π(s̃)− ε
′
)(I(V ;Y |U, S, S̃ = s̃)− I(V ;Z|U, S, S̃ = s̃) +Rf (s̃)− ε1)− 1− log(1 + δ)]

=
n− 2d

nN

k∑
s̃=1

[Nπ(s̃)(I(V ;Y |U, S, S̃ = s̃)− I(V ;Z|U, S, S̃ = s̃) +Rf (s̃))−Nπ(s̃)ε1

−Nε
′
(I(V ;Y |U, S, S̃ = s̃)− I(V ;Z|U, S, S̃ = s̃) +Rf (s̃)) +Nε

′
ε1 − 1− log(1 + δ)]

(o)
= I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃) +Rf −

2d

n
(I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃) +Rf )− n− 2d

n
ε1

k∑
s̃=1

π(s̃)

−n− 2d

n
ε
′
k∑
s̃=1

(I(V ;Y |U, S, S̃ = s̃)− I(V ;Z|U, S, S̃ = s̃) +Rf (s̃))

+
n− 2d

n
k(ε
′
ε1 −

1 + log(1 + δ)

N
), (A76)

where (n) is from (A43), and (o) is from (A59). Thus, choosing sufficiently large n and N (here note that ε
′

and

ε1 tend to zero while N →∞), ∆ ≥ I(V ;Y |U, S, S̃)− I(V ;Z|U, S, S̃) +Rf − ε is proved.

Equivocation analysis for case 2: For the case 2, (A47) implies that the private message Wi,p,1 = (Wi,1,p,1, ...,Wi,k,p,1)

of block i is a constant, and thus the conditional entropy H(Wi,s̃,p,1|Z̃Ns̃
i , S̃Ns̃

i , ŨNs̃
i ) of (A71) satisfies

H(Wi,s̃,p,1|Z̃Ns̃
i , S̃Ns̃

i , ŨNs̃
i ) = 0. (A77)

Moreover, using (A70), the last step of (A75) can be re-written by

H(Wi,s̃,p,2|Wi,s̃,p,1, Z̃
Ns̃
i , S̃Ns̃

i , ŨNs̃
i , Z̃Ns̃

i−d, S̃
Ns̃

i−d, Ũ
Ns̃

i−d)

≥ Ns̃R∗f (s̃)− log(1 + δ). (A78)
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Substituting (A77) and (A78) into (A71), we have

∆ ≥ 1

nN

n∑
i=2d+1

k∑
s̃=1

(Ns̃R
∗
f (s̃)− log(1 + δ))

=
1

nN

n∑
i=2d+1

k∑
s̃=1

(N(π(s̃)− ε
′
)R∗f (s̃)− log(1 + δ))

=
n− 2d

nN
(N

k∑
s̃=1

π(s̃)R∗f (s̃)−Nε
′
k∑
s̃=1

R∗f (s̃)− k log(1 + δ))

(1)
=

n− 2d

n
R∗f −

n− 2d

n
ε
′
k∑
s̃=1

R∗f (s̃)− n− 2d

n

log(1 + δ)

N
k, (A79)

where (1) is from (A60). Thus, choosing sufficiently large n and N (here note that ε
′

tends to zero while N →∞),

∆ ≥ R∗f − ε is proved.

Thus, the achievability proof of Rfi� for both cases are completed. Finally, using Fourier-Motzkin elimination

to eliminate Rc and Rp from Rfi�, Rfi is obtained. The proof of Theorem 3 is completed.

APPENDIX E

PROOF OF THEOREM 4

Since Re ≤ R is obvious, we only need to prove the inequalities R ≤ I(V ;Y |S, S̃) and Re ≤ H(Y |Z,U, S, S̃).

Define the auxiliary random variables U , V , X , S, S̃, Y and Z the same as those in (A24). Then it is easy to see that

the proof of R ≤ I(V ;Y |S, S̃) is exactly the same as that in (A36). Now it remains to show Re ≤ H(Y |Z,U, S, S̃),

see the followings.

By using (2.9) and (2.10), we have

Re − ε
(1)

≤ 1

N
H(W |ZN , SN )

=
1

N
(H(W |ZN , SN )−H(W |ZN , SN , Y N ) +H(W |ZN , SN , Y N ))

(2)

≤ 1

N
I(W ;Y N |ZN , SN ) +

δ(Pe)

N

≤ 1

N
H(Y N |ZN , SN ) +

δ(Pe)

N

=
1

N

N∑
i=1

H(Yi|Y i−1, ZN , SN ) +
δ(Pe)

N

(3)

≤ 1

N

N∑
i=1

H(Yi|Y i−1, ZNi+1, S
N , Zi, Si, Si−d) +

δ(Pe)

N

(4)
= H(Y |U,Z, S, S̃) +

δ(Pe)

N
(5)

≤ H(Y |U,Z, S, S̃) +
δ(ε)

N
, (A80)

where (1) from (2.10), and (2) is from the Fano’s inequality, (3) is from the fact that Si and Si−d (here Si−d = const

when i ≤ d) are included in SN , (4) is from the definitions in (A24) and the fact that J is a random variable
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(uniformly distributed over {1, 2, ..., N}), and it is independent of Y N , ZN , W and SN , and (5) is from δ(Pe) is

increasing while Pe is increasing, and Pe ≤ ε.

Letting ε→ 0, Re ≤ H(Y |Z,U, S, S̃) is proved, and the proof of Theorem 4 is completed.

APPENDIX F

PROOF OF (2.21)

A. Achievability proof of (2.21)

Replacing V N by XN , and letting Wc, UN be constants, the achievability of Rfi∗ is along the lines of the proof

of Theorem 3 for case 1, where

Rfi∗ = {(R,Re) : 0 ≤ Re ≤ R,

R ≤ I(X;Y |S, S̃),

Re ≤ I(X;Y |S, S̃)− I(X;Z|S, S̃) +H(Y |X,Z, S, S̃)}.

Here note that since Z is a degraded version of Y ,

I(X;Y |S, S̃)− I(X;Z|S, S̃) +H(Y |X,Z, S, S̃)

= H(X|S, S̃)−H(X|S, S̃, Y )−H(X|S, S̃) +H(X|S, S̃, Z) +H(Y |X,Z, S, S̃)

(1)
= H(X|S, S̃, Z)−H(X|S, S̃, Y, Z) +H(Y |X,Z, S, S̃)

= I(X;Y |S, S̃, Z) +H(Y |X,Z, S, S̃)

= H(Y |S, S̃, Z),

where (1) is from the Markov chain X → (S, S̃, Y ) → Z. Thus, it is easy to see that Rfi∗ = Rf∗, and the

achievability of (2.21) is completed.

B. Converse proof of (2.21)

Since Re ≤ R is obvious and the proof of R ≤ I(X;Y |S, S̃) is exactly the same as that in Appendix C (see

(A36)), it remains to show that Re ≤ H(Y |S, S̃, Z), see the followings.

Note that

Re − ε
(1)

≤ H(W |ZN , SN )

N

=
1

N
(H(W |ZN , SN )−H(W |ZN , SN , Y N ) +H(W |ZN , SN , Y N ))

(2)

≤ 1

N
(I(W ;Y N |ZN , SN ) + δ(Pe))

≤ 1

N
(H(Y N |ZN , SN ) + δ(Pe))

(3)
=

1

N

N∑
i=1

H(Yi|Y i−1, ZN , SN , Si, Si−d) +
δ(Pe)

N
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≤ 1

N

N∑
i=1

H(Yi|Zi, Si, Si−d) +
δ(Pe)

N

(4)
=

1

N

N∑
i=1

H(Yi|Zi, Si, Si−d, J = i) +
δ(Pe)

N

(5)
= H(YJ |ZJ , SJ , SJ−d, J) +

δ(Pe)

N
(6)

≤ H(YJ |ZJ , SJ , SJ−d) +
δ(ε)

N
(7)
= H(Y |Z, S, S̃) +

δ(ε)

N
, (A81)

where (1) is from (2.10), (2) is from Fano’s inequality, (3) is from the fact that Si and Si−d (here Si−d = const

when i ≤ d) are included in SN , (4) and (5) are from the fact that J is a random variable (uniformly distributed

over {1, 2, ..., N}), and it is independent of Y N , ZN , W and SN , (6) is from Pe ≤ ε and δ(Pe) is increasing while

Pe is increasing, and (7) is from the definitions in (A24).

Letting ε→ 0, Re ≤ H(Y |Z, S, S̃) is proved. The converse and entire proof of (2.21) is completed.
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