
ar
X

iv
:1

51
1.

01
79

1v
1 

 [c
s.

IT
]  

5 
N

ov
 2

01
5

1

On the Role of Artificial Noise in Training and

Data Transmission for Secret Communications

Ta-Yuan Liu, Shih-Chun Lin, and Y.-W. Peter Hong

Abstract

This work considers the joint design of training and data transmission in physical-layer secret

communication systems, and examines the role of artificial noise (AN) in both of these phases. In

particular, AN in the training phase is used to prevent the eavesdropper from obtaining accurate channel

state information (CSI) whereas AN in the data transmissionphase can be used to mask the transmission

of the confidential message. By considering AN-assisted training and secrecy beamforming schemes,

we first derive bounds on the achievable secrecy rate and obtain a closed-form approximation that

is asymptotically tight at high SNR. Then, by maximizing theapproximate achievable secrecy rate,

the optimal power allocation between signal and AN in both training and data transmission phases is

obtained for both conventional and AN-assisted training based schemes. We show that the use of AN

is necessary to achieve a high secrecy rate at high SNR, and its use in the training phase can be more

efficient than that in the data transmission phase when the coherence time is large. However, at low

SNR, the use of AN provides no advantage since CSI is difficultto obtain in this case. Numerical results

are presented to verify our theoretical claims.

Index Terms

Secrecy, wiretap channel, channel estimation, artificial noise, power allocation.

I. INTRODUCTION

Information-theoretic secrecy has received renewed interest in recent years, especially in

the context of wireless communications, due to the broadcast nature of the wireless medium
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and the increasing amount of confidential data that is being transmitted over the air. Most of

these studies stem from the seminal works by Wyner in [1] and by Csiszar and Korner in [2],

where the so-called secrecy capacity was characterized fordegraded and nondegraded discrete

memoryless wiretap channels (i.e., channels consisting ofa source, a destination, and a passive

eavesdropper), respectively. The notion of secrecy capacity was introduced in these works as the

maximum achievable secrecy rate between the source and the destination subject to a constraint

on the information attainable by the eavesdropper. These issues were also examined for Gaussian

channels by Leung-Yan-Cheong and Hellman in [3], where Gaussian signalling was shown to

be optimal. These works show that the secrecy capacity of a wiretap channel increases with the

difference between the channel quality at the destination and that at the eavesdropper.

In recent years, studies of the wiretap channel have also been extended to multi-antenna wire-

less systems, e.g., in [4]–[8], where the achievable secrecy rates were examined under different

channel assumptions and techniques were proposed to best utilize the available spatial degrees of

freedom. In particular, the work in [4] examined the secrecycapacity of a multiple-input single-

output (MISO) wiretap channel and showed that transmit beamforming with Gaussian signalling

is optimal. However, perfect knowledge of both the main and the eavesdropper channel state

information (CSI) was required at the source in order to determine the optimal beamformer. In

[5]–[8], more general results were obtained for cases with multiple antennas at the destination.

Precoding techniques were proposed as a generalization of the beamforming scheme in [4] to

higher dimensions and, thus, perfect CSI of all links was also required to derive the optimal

precoder. On the other hand, when the eavesdropper CSI is unavailable, which is often the

case in practice, the secrecy capacity and its corresponding optimal transmission scheme are

both unknown. However, an artificial noise (AN) assisted secrecy beamforming scheme, where

data is beamformed towards the destination and AN is placed in the null space of the main

channel direction to jam the eavesdropper’s reception, is often adopted and was in fact shown

to be asymptotically optimal in [4]. Even though knowledge of the eavesdropper channel is not

required in this transmission scheme, perfect knowledge ofthe main channel CSI is still needed,

which can also be unrealistic due to the presence of noise in the channel estimation.

In practice, CSI is typically obtained through training andchannel estimation at the destination.

In conventional systems (without secrecy constraints), training signal designs have been studied

in the literature for both single-user [9], [10] and multiuser systems [11]. In these cases, training
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is often done by having the source transmit a pilot signal to enable channel estimation at the

destination (and CSI at the source is obtained by having the destination feedback its channel

estimate to the source). However, this approach may not be favorable for systems with secrecy

considerations since the emission of pilot signals by the source also enables channel estimation

at the eavesdropper (and in this way enhances its ability to intercept the source’s message).

More recently, a secrecy enhancing training scheme, calledthe discriminatory channel estimation

(DCE) scheme, was proposed in [12], [13], where AN is super-imposed on top of the pilot signal

in the training phase to disrupt the channel estimation at the eavesdropper. These works showed

that DCE can indeed enhance the difference between the channel estimation qualities at the

destination and the eavesdropper in the training phase (before the actual data is transmitted), but

did not discuss its impact on the achievable secrecy rate in the data transmission phase.

The main objective of this work is to examine the impact of both conventional and DCE-type

training on the achievable secrecy rate of AN-assisted secrecy beamforming schemes. Different

from previous works in the literature that focus on either training or data transmission, we

consider the joint design and examine the role of AN in both ofthese phases. In this work,

the two-way DCE scheme proposed in [13] is employed in the training phase to prevent CSI

leakage to the eavesdropper, and the AN-assisted secrecy beamforming scheme is used in the

data transmission phase to mask the transmission of the confidential message. We first derive

bounds on the achievable secrecy rate of these schemes, which are shown to be asymptotically

tight as the transmit power increases, and utilize them to obtain closed-form approximations of

the achievable secrecy rate. Then, based on the approximatesecrecy rate expressions, optimal

power allocation policies for the pilot signal, the data signal, and AN in both phases are obtained

for systems employing conventional and AN-assisted training schemes, respectively. We show

that the use of AN (in either training or data transmission) is often necessary to achieve a

significantly higher secrecy rate at high SNR, and that its use in training can be more efficient

than that in data transmission when the coherence time is long. However, in the low SNR regime,

the use of AN provides no advantage in either training or datatransmission. In fact, allocating

resources for training can be strictly suboptimal in this regime since it is difficult to obtain useful

CSI when power is scarce. Numerical results are provided to verify our theoretical claims.

The joint design of training and data transmission have beeninvestigated for conventional

MIMO point-to-point and multiuser scenarios (without secrecy constraints) in [14] and [15],
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respectively. However, these issues have not been discussed before for physical layer secret

communications, where finding a reasonable approximation for the achievable secrecy rate under

channel estimation errors, and coping with the non-Gaussianity caused by the combination of AN

and channel estimation errors can be challenging. The impact of imperfect CSI due to channel

estimation errors and limited feedback on the achievable secrecy rate have been examined in

[16], [17] and [18], respectively. However, these works focus on the achievable secrecy rate for

given estimation error statistics without consideration on how training should be performed and

how it can impact the error statistics. Moreover, CSI at the eavesdropper is often assumed to be

perfect in these works to avoid the need to analyze the impactof channel estimation error at the

eavesdropper. A preliminary study of our work was presentedin [19] for the case of conventional

training. The current work further considers the case of AN-assisted training, provides rigorous

proofs of the theoretical claims, and examines the low SNR case.

The remainder of this paper is organized as follows. In Section II, the system model and

the training-based transmission scheme are introduced. InSection III, upper and lower bounds

of the achievable secrecy rate under channel estimation error are obtained. In Sections IV and

V, closed-form secrecy rate expressions and optimal power allocation policies are derived for

cases with conventional and DCE training, respectively. The analysis of the secrecy rate with

training-based transmission scheme in the low SNR regime isdiscussed in Section VI. Finally,

numerical results are provided in Section VII, and a conclusion is given in Section VIII.

II. SYSTEM MODEL

Let us consider a wireless secret communication system thatconsists of a source, a destination,

and an eavesdropper. The source is assumed to havent antennas whereas both the destination and

the eavesdropper are assumed to have only a single antenna each. The main and eavesdropper

channels (i.e., the channel from the source to the destination and to the eavesdropper, respectively)

can be described by the vectorsh = [h1, . . . , hnt
]T andg = [g1, . . . , gnt

]T , respectively, where

the entries are assumed to be independent and identically distributed (i.i.d.) complex Gaussian

random variables with mean0 variancesσ2
h andσ2

g , respectively (i.e.,CN (0, σ2
h) andCN (0, σ2

g)).

We consider a block fading scenario where the channel vectors remain constant over a coherence

interval of durationT , but vary independently from block to block. By adopting a training-based

transmission scheme, each coherence interval is divided into a training phase with durationTt
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Fig. 1. Training-based secret transmission scheme that consists of a training phase and a data transmission phase.

and a data transmission phase with durationTd, as illustrated in Fig. 1. In the training phase,

pilot signals are emitted by the source (and/or the destination) to enable channel estimation at the

destination; and, in the data transmission phase, confidential messages are transmitted utilizing

the estimated channel obtained in the previous phase. Following methods proposed in [12], [13]

for training and in [20] for data transmission, AN is utilized in the respective phases to degrade

the reception at the eavesdropper. Our goal is thus to determine the optimal resource allocation

between signal and AN, and examine the role of AN in these two phases.

A. Training Phase - AN-Assisted Training

In conventional point-to-point communication systems, training is typically performed by

having the source emit pilot signals to enable channel estimation at the destination. Most works

in the literature on physical layer secrecy, e.g., [4], [20]–[22], inherit such an assumption and,

thus, assume that the eavesdropper can also benefit from the pilot transmission and can obtain

a channel estimate that is no worse than the destination. Interestingly, it has been shown more

recently in [12], [13] that secrecy can be further enhanced by embedding AN in the pilot signal

to degrade the channel estimation performance at the eavesdropper. By doing so, the difference

between the effective channel qualities experienced by thedestination and the eavesdropper can

be enhanced and, thus, a higher secrecy rate can be achieved.Here, we consider in particular

the two-way discriminatory channel estimation (DCE) scheme proposed in [13]. In the DCE

scheme, training is performed in two stages, i.e., the reverse and the forward training stages. In

March 8, 2018 DRAFT



6

the reverse training stage, a pure pilot signal is sent in thereverse direction by the destination to

enable channel estimation at the source; in the forward training stage, a pilot signal masked by

AN is emitted by the source to facilitate channel estimationat the destination while preventing

reliable channel estimation at the eavesdropper. Here, thechannel is assumed to be reciprocal,

that is, the reverse channel can be represented as the transpose of the forward channel vector,

i.e.,ht. Therefore, estimation of the reverse channel provides thesource with information about

the forward channel. Note that DCE can also be used in non-reciprocal channels, as shown in

[13], but is not considered here for simplicity.

Let Tr andTf be the length of the reverse and the forward training stages,respectively, where

Tr + Tf = Tt. In the reverse training stage, the pilot signalsr ∈ CTr×1 with s†rsr = Tr is first

emitted by the destination and the received signal at the source can be written as

Yr =
√
Pr srh

t +Vr (1)

wherePr is the power of the pilot signal in the reverse training stage, ht is the channel vector

from the destination to the source, andVr ∈ CTr×nt is the additive white Gaussian noise (AWGN)

matrix with entries that are i.i.d.CN (0, σ2). Following the procedures given in [13], the source

first computes the minimum mean square error (MMSE) estimateof the channel based on the

knowledge ofsr. The channel estimate at the source is denoted byh̃ and the channel estimation

error is∆hr = h− h̃. The variance of each entry of∆hr can be written as

σ2
∆hr

=

(
1

σ2
h

+
PrTr
σ2

)−1

. (2)

Then, in the forward training stage, the source emits a training signal with AN placed in

the null space of the estimated forward channel, i.e.,h̃. The signal transmitted in the forward

training stage is given by

Xf =
√
PfSf +AfNh̃

, (3)

whereSf ∈ CTf×nt is the pilot signal in the forward training stage withS†
fSf =

Tf

nt
I, Pf is the

power of the pilot signal in the forward training stage,N
h̃
∈ C(nt−1)×nt is a matrix whose rows

span the null space of̃h and satisfiesN
h̃
N

†

h̃
= Int−1, andAf ∈ CTf×(nt−1) is the AN with

entries that are i.i.d.CN (0,
Pfa

nt−1
). Hence, the total AN power in the forward training stage is

Pfa . The signals received at the destination and the eavesdropper can then be written respectively
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as

yf = Xfh+ vf =
√
PfSfh+AfNh̃

∆hr + vf , (4)

zf = Xfg +wf =
√
PfSfg +AfNh̃

g +wf , (5)

wherevf andwf are the AWGN with entries that are i.i.d.CN (0, σ2) at the destination and

the eavesdropper, respectively. The destination and the eavesdropper are then able to compute

MMSE estimateŝh and ĝ of their respective channels. The channel estimation errorvectors are

∆h , h− ĥ and∆g , g − ĝ, whose entries are0 mean with variances

σ2
∆h =

(
1

σ2
h

+
PfTf/nt

Pfaσ
2
∆hr

+ σ2

)−1

, (6)

and

σ2
∆g =

(
1

σ2
g

+
PfTf/nt

Pfaσ
2
g + σ2

)−1

, (7)

respectively. The channel estimateĥ is fed back to the source for use in data transmission.

It is interesting to remark that, in the DCE scheme describedabove, reverse training is first

performed to provide the source with knowledge of the channel between itself and the destination

(but does not help the eavesdropper obtain information about its channel from the source). This

knowledge is then used by the source to determine the AN placement in the forward training

stage so as to minimize its interference at the destination.In conventional training, only the

forward training stage is required since AN is not utilized.In this case, the training length is

Tt = Tf (sinceTr = 0) and the forward training signal can be expressed simply asXf =
√
PfSf .

Even though the time required for conventional training is less than that of DCE (leaving more

channel uses for data transmission in each coherence interval), the achievable secrecy rate may

not necessarily be higher due to increased CSI leakage [22] to the eavesdropper.

B. Data Transmission Phase - AN-Assisted Secrecy Beamforming

Suppose that the source is able to obtain knowledge of the channel estimatêh through feedback

from the destination but has only statistical knowledge of the eavesdropper’s channelg (and also

ĝ). Based on this channel knowledge, the source can then utilize in the data transmission phase

an AN-assisted secrecy beamforming scheme [20] where the data-bearing signal is directed
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towards the destination while AN is placed in the null space of ĥ to jam the reception at the

eavesdropper. The transmit signal is thus given by

Xd =
√
Pd sd

ĥ†

‖ĥ‖
+AdNĥ

(8)

wheresd ∈ CTd×1 is the data-bearing signal vector whose entries are i.i.d.CN (0, 1), Pd is the

power of the data signal,N
ĥ
∈ C(nt−1)×nt is the matrix that spans the null space ofĥ and satisfies

NĥN
†

ĥ
= Int−1, andAd ∈ CTd×(nt−1) is the AN matrix whose entries are i.i.d.CN (0, Pa

nt−1
).

Hence, the total AN power in the data transmission phase isPa.

The signals received at the destination and the eavesdropper are given by

yd = Xdĥ+Xd∆h+ vd =
√
Pd sd‖ĥ‖+

√
Pd sd

ĥ†

‖ĥ‖
∆h+AdNĥ∆h+ vd, (9)

zd = Xdĝ +Xd∆g +wd =
√
Pd sd

ĥ†

‖ĥ‖
ĝ +

√
Pd sd

ĥ†

‖ĥ‖
∆g +AdNĥg +wd, (10)

wherevd ∼ CN (0, σ2I) and wd ∼ CN (0, σ2I) are the AWGN vectors. The signal and AN

powers in both training and data transmission should satisfy the total power constraint

(PrTr + PfTf + PfaTf + PdTd + PaTd)/T ≤ P. (11)

III. B OUNDS ON THEACHIEVABLE SECRECY RATE WITH CHANNEL ESTIMATION ERROR

In this work, we are interested in studying the impact of AN inboth training and data trans-

mission phases on the achievable secrecy rate of the scheme described in the previous section.

In particular, to communicate the confidential message fromthe source to the destination, we

consider a(2nTR, nT ) wiretap code that spans over the data transmission phases ofn coherence

intervals. The code consists of an encoderφn that maps the messageW ∈ W , {1, 2, ..., 2nTR}
to a length-n block codewordsnd and a decoderψn that maps the received signalyn

d into the

messageŴ ∈ W at the destination. A secrecy rateR is said to be achievable if there exists a

sequence of(2nTR, nT ) codes such that the average error probability at the destination goes to

zero, i.e.,P (n)
e , 1

2nTR

∑
w∈W Pr(Ŵ 6= w|W = w) → 0, and the so-called equivocation rate [4],

[23] converges to the average entropy ofW , i.e.,R(n)
e , 1

nT
H(W |znd , ĥn, ĝn) → 1

nT
H(W ), as the

codeword lengthn → ∞. Here,znd is the channel output at the eavesdropper overn coherence

intervals, and̂hn and ĝn are the estimated channel vectors at the destination and eavesdropper,

respectively, over then coherence intervals. The equivocation rate provides a measure of the
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information obtained by the eavesdropper and is computed here by conditioning on knowledge

of both channel estimateŝhn and ĝn at the eavesdropper (i.e., a worst case assumption).

Following the results in [2], an achievable secrecy rate of the proposed scheme with imperfect

CSI can be written as

R =
1

T
I(sd;yd, ĥ)− I(sd; zd, ĥ, ĝ) =

1

T
I(sd;yd|ĥ)− I(sd; zd|ĥ, ĝ), (12)

where the equality follows from the fact thatsd is independent of̂h andĝ. Due to the presence of

channel estimation errors, it is difficult to express the achievable secrecy rate in a more explicit

form. However, we obtain, in the following theorem, upper and lower bounds that will later be

shown to be asymptotically tight at high SNR in the cases under consideration.

Theorem 1 Suppose that channel estimation errors∆h and ∆g are Gaussian with i.i.d. en-

tries. Then, fornt sufficiently large, the achievable secrecy rateR of the AN-assisted secrecy

beamforming scheme in Section II-B can be bounded as

R̃−∆R(l) ≤ R ≤ R̃ +∆R(u) (13)

where

R̃ ,
Td
T
E

[
log

(
1 +

Pd(σ
2
h − σ2

∆h)‖h‖2
Pdσ2

∆h + Paσ2
∆h + σ2

)]

− Td
T
E



log



1 +
Pd(σ

2
g − σ2

∆g)
g†hh

†
g

‖h‖2

Pdσ2
∆g + Pa(σ2

g − σ2
∆g)

‖N
ĥ
g‖2

nt−1
+ Paσ2

∆g + σ2







 , (14)

∆R(u) ,
1

T
log

(
(Pdσ

2
∆h + Paσ

2
∆h + σ2)

Td

(Paσ2
∆h + σ2)

Td−1

)
− 1

T
E
[
log
(
Pd‖sd‖2σ2

∆h + Paσ
2
∆h + σ2

)]
, (15)

and

∆R(l) ,
1

T
E


log




(
Pdσ

2
∆g + Pa(σ

2
g − σ2

∆g)
‖N

ĥ
g‖2

nt−1
+ Paσ

2
∆g + σ2

)Td

(
Pa(σ2

g − σ2
∆g)

‖N
ĥ
g‖2

nt−1
+ Paσ2

∆g + σ2
)Td−1







− 1

T
E

[
log

(
Pd‖sd‖2σ2

∆g + Pa(σ
2
g − σ2

∆g)
‖Nĥg‖2
nt − 1

+ Paσ
2
∆g + σ2

)]
. (16)

In the above,h , ĥ/
√
σ2
h − σ2

∆h andg , ĝ/
√
σ2
g − σ2

∆g are the normalized channel estimates

whose entries are all i.i.d.CN (0, 1). Notice thath and g are normalized so that they are

independent of the power allocation, i.e.,Pr, Pf , Pfa , Pd, andPa.
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Details of the proof can be found in Appendix A. This theorem shows that the achievable

secrecy rate can be bounded aroundR̃ given in (14) when the aggregate of the channel estimation

error and the AN interference terms are effectively Gaussian. These bounds are analogous to

those derived in [14] and [24] for conventional point-to-point channels. However, the proof of our

theorem requires largent analysis to cope with the non-Gaussianity of the additionalnoise term

caused by the combination of estimation error and AN. The bounds in Theorem 1 are applicable

regardless of the training scheme as long as∆h and∆g are Gaussian. In the following corollary,

we show that the bounds are in fact applicable for both the conventional and the AN-assisted

training schemes considered in our work.

Corollary 1 The bounds in Theorem 1 hold when either conventional or AN-assisted training

(i.e., DCE) schemes with linear MMSE estimation is adopted in the training phase.

The corollary can be shown as follows. In the conventional training scheme, no AN interference

exists in the received forward training signals in (4) and (5) and, thus, the estimation error∆h

(and also∆g) is indeed Gaussian and independent ofĥ when employing the linear MMSE

estimation (which is also the optimal MMSE estimation in this case) [25]. However, this is not the

case in AN-assisted training since the AN interferenceAfNh̃∆hr in (4) is non-Gaussian. Yet, by

applying Lemma 1 in Appendix A, we can also show thatAfNh̃∆hr is asymptotically Gaussian

as nt → ∞ since∆hr is again Gaussian as a result of the MMSE estimation at the source.

These bounds are utilized in Sections IV and V to derive the optimal power allocation between

pilot, data, and AN usage in cases with conventional and AN-assisted training, respectively.

IV. AN-A SSISTEDSECRECY BEAMFORMING WITH CONVENTIONAL TRAINING IN THE

HIGH SNR REGIME

In this section, we first consider the case where AN is only applied in the data transmission

phase, but not in the training phase. We first derive an approximate secrecy rate expression based

on the bounds given in the previous section, and use it to determine the optimal power allocation

between the pilot signal in the training phase and the data and AN in the data transmission phase.

A. Asymptotic Approximation of the Achievable Secrecy Rate

In conventional training (i.e., in the case where AN is not utilized in the training phase), no

reverse training is needed and the forward training signal can be written asXf =
√
PfSf . We

March 8, 2018 DRAFT
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assume that the training length is equal to the number of transmit antennas, i.e.,Tt = Tf =

nt, which was shown to be optimal for conventional point-to-point systems without secrecy

constraints [14]. Without AN, the signals received at the destination and the eavesdropper in the

training phase can be written as

yf =
√
PfSfh+ vf , (17)

zf =
√
PfSfg +wf , (18)

By employing MMSE estimation at the destination, the channel estimation error variances in (6)

and (7) reduce to

σ2
∆h =

σ2
hσ

2

Pfσ
2
h + σ2

(19)

and

σ2
∆g =

σ2
gσ

2

Pfσ2
g + σ2

, (20)

respectively. The signal model in the data transmission phase remains the same as in (8), (9), and

(10). Let us denote the achievable secrecy rate in this case (i.e., in the case with conventional

training) byRconv. Then, by Theorem 1 and Corollary 1, we know that

R̃conv −∆R(l)
conv ≤ Rconv ≤ R̃conv +∆R(u)

conv, (21)

whereR̃conv, ∆R(l)
conv, and∆R(u)

conv are given by (14), (15), and (16) withσ2
∆h andσ2

∆g substituted

by (19) and (20).

Let P∗(P ) , (P ∗
f (P ), P

∗
d (P ), P

∗
a (P )) be the optimal power allocation (i.e., the power alloca-

tion that maximizes the achievable secrecy rateRconv) under power constraintP . To derive the

optimal power allocation, it is often necessary to obtain anexplicit expression of the achievable

secrecy rate, which is difficult to do in our case as remarked in the previous section. However,

we show in the following that the achievable secrecy rate under P∗(P ), i.e.,Rconv(P∗(P )), can

be closely approximated bỹRconv(P∗(P )), for P sufficiently large. The dependence onP is

often neglected in the following for notational simplicity. To express the result, note that two

functionsf andg are asymptotically equivalent (denoted byf
.
= g) if limx→∞ f(x)/g(x) = 1.

Theorem 2 The maximum achievable secrecy rateRconv(P∗) under conventional training is

asymptotically equivalent tõRconv(P∗) (i.e.,Rconv(P∗)
.
= R̃conv(P∗)) asP → ∞.
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Moreover, we can show that, to achieve the maximum achievable secrecy rate, the powers

assigned to all components, including the pilot in the training phase and the signal and AN in

the data transmission phase, should scale at least linearlywith P (i.e., should not vanish with

respect toP asP → ∞). The result can be stated as follows.

Corollary 2 P ∗
f (P ) = Ω(P ), P ∗

d (P ) = Ω(P ), and P ∗
a (P ) = Ω(P ), wheref(x) = Ω(g(x))

denotes the fact that there existsk1 > 0 such thatk1g(x) ≤ f(x) for all x sufficiently large [26].

The proofs of Theorem 2 and Corollary 2 can be found in Appendix B. Notice that, due to the

total power constraint in (11), all power components areO(P ), wheref(x) = O(g(x)) indicates

that there existsk2 > 0 such thatf(x) ≤ k2g(x) for all x sufficiently large. That is, all power

components increase at most linearly withP . Hence, combined with Corollary 2, it follows that

the powers assigned to training, data, and AN should all scale exactly linearly withP . In this case,

the channel estimation error variances underP∗ can be written asσ2
∆h =

σ2
h
σ2

P ∗
f
σ2
h
+σ2 = σ2

P ∗
f

+ o
(
1
P

)

and σ2
∆g =

σ2
gσ

2

P ∗
f
σ2
g+σ2 = σ2

P ∗
f

+ o
(
1
P

)
, wheref(x) = o(g(x)) indicates thatlim

x→∞
f(x)/g(x) = 0,

and, forP sufficiently large, the achievable secrecy rate can be approximated as

R̃conv(P∗)=
Td
T
E


log


1 +

P ∗
d (σ

2
h + o(1))‖h‖2

(P ∗
d + P ∗

a )
(

σ2

P ∗
f

+o
(
1
P

))
+σ2






− Td
T
E


log


1+

P ∗
d (σ

2
g+o(1))

g†hh
†
g

‖h‖2

(P ∗
d +P

∗
a )
(

σ2

P ∗
f

+o
(
1
P

))
+P ∗

a (σ
2
g + o(1))

‖N
ĥ
g‖2

nt−1
+σ2




 (22)

=
Td
T
E


log P ∗

d σ
2
h‖h‖2(

P ∗
d
+P ∗

a

P ∗
f

+ 1
)
σ2


− Td

T
E


log


1 +

P ∗
d
g†hh

†
g

‖h‖2

P ∗
a
‖N

ĥ
g‖2

nt−1




+ o(1). (23)

This follows from the fact that(P ∗
d (P )+P

∗
a (P ))/P

∗
f (P ) = O(1) sinceP ∗

d (P )+P
∗
a (P ) = O(P )

by the total power constraint andP ∗
f (P ) = Ω(P ) by Corollary 2.

Notice that the approximate secrecy rate given in (23) strictly increases withP ∗
f , which implies

that one can always achieve a higher secrecy rate by increasing the power used for training. This is

because the increase of training power benefits the destination by reducing both the effective noise

due to channel estimation error and the AN interference; whereas only the channel estimation

error is reduced at the eavesdropper. Therefore, the total power constraint should be satisfied

with equality at the optimal point, i.e.,P ∗
f Tf + P ∗

dTd + P ∗
aTd = PT .
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In fact, for anyǫ > 0 and fornt sufficiently large, it can be further shown that

R̃conv ≥ Td
T

log

P ∗
d
P ∗
a

P ∗
a+P ∗

d(
P ∗
d
+P ∗

a

P ∗
f

+ 1
)
σ2

+
Td
T
E
[
log
(
σ2
h‖h‖2(1− ǫ)

)]
+
Td
T
ǫnt

+ o(1) (24)

The derivations can be found in Appendix C. This lower bound provides an explicit description

of the relation between the achievable secrecy rate and the power allocated to each component.

B. Joint Power Allocation between Training and Data Transmission

In this subsection, we propose a power allocation for the pilot signal, the data signal, and AN

with the goal of maximizing the achievable secrecy rate. However, instead of using the achievable

secrecy rateRconv (whose expression is unknown) as the objective function, wepropose a power

allocation policy based on the maximization of this lower bound. More specifically, let us first

setPa = (PT − PfTf − PdTd)/Td since the total power constraint must be satisfied. Then, by

removing all the terms that are irrelevant to the optimization and by the fact that the logarithm

is a monotonically increasing function, we formulate the power allocation problem as follows:

max
Pf ,Pd

Pd(PT−PfTf−PdTd)

(PT−PfTf )

PT−PfTf

PfTd
+ 1

, Jconv(Pf , Pd) (25a)

subject to Pf > 0, Pd > 0 (25b)

PT − PfTf − PTd > 0. (25c)

Notice that the powersPf , Pd, andPa = (PT − PfTf −PdTd)/Td are constrained to be greater

than zero due to Corollary 2.

By taking the first-order derivative ofJconv and setting it to zero, we get the solution

(P̂ ∗
f , P̂

∗
d ) =

(
PT
√
Tf

Tf
(√

Tf +
√
Td
) , PT

√
Td

2Td
(√

Tf +
√
Td
)
)
. (26)

To verify that (P̂ ∗
f , P̂

∗
d ) is indeed the optimal solution of (25), it remains to be shownthat the

Hessian matrix at the point(P̂ ∗
f , P̂

∗
d ), i.e.,

HJconv = ∇2Jconv(P̂
∗
f , P̂

∗
d ) =


 −T 2

f
+Tf

√
TfTd

2PTTd
− Tf

PT

− Tf

PT
−2Td

PT


 , (27)
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is negative semi-definite. SinceHJconv is real and symmetric, this follows from the fact that all

principal minors ofHJconv are positive i.e.,

(−1)1 det
(
[HJconv ]{1},{1}

)
= − det

(
−
T 2
f + Tf

√
TfTd

2PTTd

)
> 0

(−1)2 det
(
[HJconv ]{1,2},{1,2}

)
= det (HJconv) =

T 2
f + Tf

√
TfTd

P 2T 2
−

T 2
f

P 2T 2
> 0

due to Sylvester’s criterion [27]. Hence, the proposed power allocation that maximizes the

approximate secrecy rate in (24) is given in the following theorem.

Proposition 1 The power allocation that maximizes the approximate secrecy rate in (24) is

(P̂ ∗
f , P̂

∗
d , P̂

∗
a ) =

(
PT
√
Tf

Tf
(√

Tf +
√
Td
) , PT

√
Td

2Td
(√

Tf +
√
Td
) , PT

√
Td

2Td
(√

Tf +
√
Td
)
)
. (28)

The effectiveness of this solution compared to the optimal power allocationP∗ (i.e., the one

that maximizes the achievable secrecy rateRconv) will be verified numerically in Section VII.

This solution indicates that, with conventional training,the ratio between the energy used for

training and that for data transmission, i.e.,P̂ ∗
f Tf/(P̂

∗
dTd + P̂ ∗

aTd), should be equal to
√
Tf/Td.

Recall thatTf is equal tont whereasTd increases with the coherence time. Hence, as the

coherence time increases, more and more energy should be allocated to the data transmission

phase to support the increasing number of channel uses. Moreover, we can also see from (28) that

equal power should be allocated to data and AN in the data transmission phase. It is interesting

to observe that the solution does not depend on the channel variancesσ2
h and σ2

g since, forP

sufficiently large, the AWGN terms are negligible and, thus,the SNR at both the destination and

the eavesdropper are determined by the ratio between their own received data and AN powers,

which experience the same channel gains when arriving at their respective receivers.

Furthermore, by (23), we can observe that the achievable secrecy rate increases without bound

asP increases. However, this is not always the case when AN is notutilized in either training

or data transmission as to be shown in our simulations. This implies that AN is necessary (at

least in the data transmission phase) to achieve a secrecy rate that increases without bound

with respect toP . However, when the coherence time is large, the energy allocated to training

becomes negligible and almost half the total energy is allocated to AN in the data transmission

phase (according to (28)). That is, only half the energy is left to transmit the actual message.
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However, if AN is further applied in the training phase (as done in the DCE scheme [12], [13]),

the difference between the effective channel qualities at the destination and at the eavesdropper

can be enhanced, even before the data is actually transmitted. The proportion of AN needed in

the data transmission phase can then be reduced. This is discussed in the following section.

V. AN-A SSISTEDSECRECY BEAMFORMING WITH DCE (I .E., AN-ASSISTED) TRAINING IN

THE HIGH SNR REGIME

In this section, we consider the case where AN is used in both the training and the data

transmission phases. This refers to the DCE and the AN-assisted secrecy beamforming schemes

described in Sections II-A and II-B, respectively. Similarto the previous section, we first derive

an approximate expression of the achievable secrecy rate and then propose an efficient algorithm

for determining the power allocation between pilot, data, and AN in both phases.

A. Asymptotic Approximation of the Achievable Secrecy Rate

Following Section II, let the length of the reverse and the forward training signals be equal

to the number of antennas at the destination and the source, respectively. That is, we setTr = 1

and Tf = nt. To distinguish fromRconv in the previous section, we useRDCE to denote the

achievable secrecy rate of the system considered here. Similarly by Theorem 1, we can obtain

upper and lower bounds ofRDCE as

R̃DCE −∆R
(l)
DCE ≤ RDCE ≤ R̃DCE +∆R

(u)
DCE, (29)

where the terms are given by (14), (15), and (16) withσ2
∆h andσ2

∆g equal to (6) and (7).

Let P∗ , (P ∗
r , P

∗
f , P

∗
fa
, P ∗

d , P
∗
a ) be the optimal power allocation that maximizes the achievable

secrecy rateRDCE. Similar to the case with conventional training, we can alsoshow that

RDCE(P∗) can be closely approximated bỹRDCE(P∗), for P sufficiently large.

Theorem 3 The maximum achievable secrecy rateRDCE(P∗) under DCE training is asymptot-

ically equivalent toR̃DCE(P∗) (i.e.,RDCE(P∗)
.
= R̃DCE(P∗)) asP → ∞.

The scaling of the optimal power allocation can also be derived as follows.

Corollary 3 P ∗
f (P ) = Ω(P ) andP ∗

d (P ) = Ω(P ), and that eitherP ∗
fa
(P ) = Ω(P ) or P ∗

a (P ) =

Ω(P ). Moreover, we haveP ∗
r (P ) = Ω(P ∗

fa
(P )).
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The proofs of the theorem and the corollary can both be found in Appendix D. The corollary

shows that, to achieve the maximum acheivable secrecy rate,the power allocated to the forward

pilot signal in the training phase and the message-bearing signal in the data transmission phase,

i.e., P ∗
f (P ) and P ∗

d (P ), should both increase linearly withP , and so should the power of at

least one of the AN terms (either in the training or data transmission phases, or both). Moreover,

the reverse training powerP ∗
r (P ) should scale at least as fast as the AN powerP ∗

fa(P ) in the

training phase. This is because, with larger AN powerP ∗
fa(P ), more power should be invested

in reverse training to ensure more accurate placement of AN in the forward training stage.

By Corollary 3, the channel estimation error variances in (6) and (7) can be written as

σ2
∆h =

σ2
h

(
P ∗
fa

σ2
h
σ2

σ2+P ∗
r σ

2
h

+ σ2
)

P ∗
fa

σ2
h
σ2

σ2+P ∗
r σ

2
h

+ σ2 + P ∗
f σ

2
h

=
σ2

P ∗
f

(
1 +

P ∗
fa
σ2
h

σ2 + P ∗
r σ

2
h

)
(1 + o(1)) = o(1), (30)

sinceP ∗
r (P ) = Ω(P ∗

fa
(P )) andP ∗

f (P ) = Ω(P ), and

σ2
∆g =

P ∗
fa
σ4
g + σ2σ2

g

P ∗
fa
σ2
g + σ2 + P ∗

f σ
2
g

=
P ∗
fa
σ2
g + σ2

P ∗
fa
+ P ∗

f

(1 + o(1)), (31)

respectively. Notice that, in (31), the ratio
P ∗
fa

σ2
g+σ2

P ∗
fa

+P ∗
f

is at leastO(1), but may also beo(1) if P ∗
fa

does not scale as fast asP ∗
f . Then, forP sufficiently large, the achievable secrecy rate can be

approximated as

R̃DCE=
Td
T
E


log


1+

P ∗
d (σ

2
h + o(1))‖h‖2

(P ∗
d +P

∗
a )

σ2

P ∗
f

(
1+

P ∗
fa

σ2
h

σ2+P ∗
r σ

2
h

)
(1 + o(1)) + σ2







−Td
T
E


log


1+

P ∗
d

(
P ∗
f
σ2
g

P ∗
fa
+P ∗

f

(1 + o(1))
)

g†hh
†
g

‖h‖2

(P ∗
d +P

∗
a )
[
P ∗
fa
σ2
g+σ

2

P ∗
fa
+P ∗

f

(1+o(1))
]
+P ∗

a

[
P ∗
f
σ2
g

P ∗
fa
+P ∗

f

(1+o(1))
]
‖N

ĥ
g‖2

nt−1
+σ2





 (32)

=
Td
T
E

[
log

(
P ∗
dP

∗
f (σ

2 + P ∗
r σ

2
h)σ

2
h‖h‖2/σ2

(P ∗
d + P ∗

a )
(
σ2 + P ∗

r σ
2
h + P ∗

fa
σ2
h

)
+ P ∗

f (σ
2 + P ∗

r σ
2
h)

)]

−Td
T
E



log



1+
P ∗
dP

∗
f σ

2
g
g†hh

†
g

‖h‖2

(P ∗
d +P

∗
a )(P

∗
fa
σ2
g+σ

2)+P ∗
aP

∗
f σ

2
g
‖N

ĥ
g‖2

nt−1
+σ2(P ∗

fa
+P ∗

f )







+o(1). (33)

Following the approach used to obtain (24) (c.f. Appendix C), we can show that, for any
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ǫ′ > 0 and fornt sufficiently large, the second term in (33) can be approximated as

Td
T
E


log


1 +

P ∗
dP

∗
f σ

2
g
g†hh

†
g

‖h‖2

(P ∗
d + P ∗

a )(P
∗
fa
σ2
g + σ2) + P ∗

aP
∗
f σ

2
g(1− ǫ′) + σ2(P ∗

fa
+ P ∗

f )




+

Td
T
ǫ′nt

=
Td
T
E


log


1 +

P ∗
dP

∗
f σ

2
g
g†hh

†
g

‖h‖2

(P ∗
d + P ∗

a )(P
∗
fa
σ2
g + σ2) + P ∗

aP
∗
f σ

2
g(1− ǫ′)




+

Td
T
ǫ′nt

+ o(1) (34)

where ǫ′nt
, E

[
log

(
1+

P ∗
d
P ∗
f
σ2
gg

†hh
†
g/||h||2

(P ∗
d
+P ∗

a )(P
∗
fa
σ2
g+σ

2)+P ∗
aP

∗
f
σ2
g‖Nĥ

g‖2/(nt−1)+σ2(P ∗
fa
+P ∗

f
)

) ∣∣∣∣Ac
ǫ′

]
Pr(Ac

ǫ′) → 0 as

nt → ∞ and Ac
ǫ′ , {|‖N

ĥ
g‖2/(nt − 1)− 1| > ǫ′}. The equality holds since, by Corollary

3, eitherP ∗
fa
(P ) = Ω(P ) or P ∗

a (P ) = Ω(P ). Then, by further applying Jensen’s inequality to

(34), we obtain from (33) the following lower bound oñRDCE:

R̃DCE ≥Td
T

log

(
P ∗
dP

∗
f (σ

2 + P ∗
r σ

2
h)

(P ∗
d +P

∗
a )
(
σ2+P ∗

r σ
2
h+P

∗
fa
σ2
h

)
+P ∗

f (σ
2+P ∗

r σ
2
h)

)
+
Td
T
E

[
log

σ2
h‖h‖2
σ2

]

− Td
T

log

(
1 +

P ∗
dP

∗
f σ

2
g

(P ∗
d +P

∗
a )(P

∗
fa
σ2
g + σ2)+P ∗

aP
∗
f σ

2
g(1− ǫ′)

)
+
Td
T
ǫ′nt

+o(1) (35)

It is worthwhile to note that, in this case, the length of the data transmission phase isTd =

T − Tr − Tf , which is different from that in the conventional case.

B. Joint Power Allocation between Training and Data Transmission

Similar to the case with conventional training, we determine the optimal power allocation by

maximizing the lower bound in (35). By the fact that the logarithm is a monotonically increasing

function and by removing all the terms that are irrelevant tothe optimization, we formulate the

power allocation problem as follows:

max
Pr,Pf ,Pfa ,Pd,Pa

PdPf (σ
2 + Prσ

2
h)

(Pd+Pa) (σ2+Prσ
2
h+Pfaσ

2
h)+Pf(σ2+Prσ

2
h)

× (Pd+Pa)(Pfaσ
2
g+σ

2)+PaPfσ
2
g(1−ǫ′)

(Pd+Pa)(Pfaσ
2
g+σ

2)+PaPfσ2
g(1−ǫ′)+PdPfσ2

g

, JDCE(Pr,Pf ,Pfa ,Pd,Pa) (36a)

subject toPr > 0, Pf > 0, Pfa > 0, Pd > 0, Pa > 0, (36b)

PrTr + PfTf + PfaTf + PdTd + PaTd = PT. (36c)
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Notice that the approximate secrecy rate expression in (35)follows from Corollary 3 where

it was shown that at least one of the two AN powers (eitherP ∗
fa
(P ) or P ∗

a (P ), or both) scale

linearly with P . However, by the proof of Theorem 3 in Appendix D, we know thatthe same

asymptotic secrecy rate can also be achieved by having all power componentsPr, Pf , Pfa , Pd,

andPa scale linearly withP . In this case, the objective function can be further approximated as

J̃DCE(Pr,Pf ,Pfa ,Pd,Pa)=
PrPfPd

(Pd+Pa)(Pfa+Pr)+PrPf

· (Pd+Pa)Pfa+PaPf(1−ǫ′)
(Pd+Pa)Pfa+PaPf (1−ǫ′)+PdPf

. (37)

Moreover, in (36), the total power constraint is replaced with an equality in (36c) since the

objective function increases monotonically with respect to Pr (regardless of whetherJDCE or

J̃DCE is considered). This is because the increase of reverse training power does not benefit

the eavesdropper and can be set as large as possible. However, this problem is nonconvex and,

thus, is difficult to solve efficiently. To obtain an efficientsolution for this problem, we take a

successive convex approximation (SCA) approach where we turn the problem into a sequence of

geometric programming (GP) problems using the monomial approximation and the condensation

method, similar to that done in [28] and [12]. In the following, we describe the procedures of

the SCA algorithm briefly using̃JDCE as the objective function. The same can be done with

JDCE as well. Further details can be found in [28] and [12].

For convenience, let us consider equivalently the minimization of the inverse of the objective

function, i.e.,

J̃−1
DCE(Pr,Pf ,Pfa ,Pd,Pa)=

[(Pd+Pa)(Pfa+Pr)+PrPf ][(Pd+Pa)Pfa+PaPf(1−ǫ′)+PdPf ]

PrPfPd[(Pd+Pa)Pfa+PaPf(1−ǫ′)]
. (38)

Notice that the denominator of̃J−1
DCE is a posynomial function that can be lower-bounded as

PrPfPd[(Pd+Pa)Pfa+PaPf(1−ǫ′)] ≥ PrPfPd

(
PdPfa

ξ1

)ξ1 (PaPfa

ξ2

)ξ2 ((1− ǫ′)PaPf

ξ3

)ξ3

(39)

for any ξ1, ξ2, ξ3 ≥ 0, where the right-hand-side is a monomial function. By substituting the

term with its monomial lower bound, we obtain a standard GP problem that is solvable in

polynomial time. In the SCA algorithm, this is done iteratively until the solution converges.

In particular, suppose that(P (i−1)
r , P

(i−1)
f , P

(i−1)
fa

, P
(i−1)
d , P

(i−1)
a ) is the solution obtained in the

(i − 1)-th iteration. Then, in thei-th iteration, the denominator ofJ−1
DCE is replaced by the

monomial function

PrPfPd

(
PdPfa

ξ
(i)
1

)ξ
(i)
1
(
PaPfa

ξ
(i)
2

)ξ
(i)
2
(
(1− ǫ′)PaPf

ξ
(i)
3

)ξ
(i)
3

, (40)
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whereξ(i)0 = P
(i−1)
d P

(i−1)
fa

+ P
(i−1)
a P

(i−1)
fa

+ (1− ǫ′)P
(i−1)
a P

(i−1)
f , ξ(i)1 = P

(i−1)
d P

(i−1)
fa

/ξ
(i)
0 , ξ(i)2 =

P
(i−1)
a P

(i−1)
fa

/ξ
(i)
0 , andξ(i)3 = (1 − ǫ′)P

(i−1)
a P

(i−1)
f /ξ

(i)
0 . The algorithm is guaranteed to converge

to a stationary point of the problem [28]. The procedures aresummarized in Algorithm 1 and

the resulting solution is denoted bŷP∗ = (P̂ ∗
r , P̂

∗
f , P̂

∗
fa
, P̂ ∗

d , P̂
∗
a ).

Algorithm 1 Power Allocation for AN-Assisted Training and Data Transmission

1: Initialize: Give an initial set of feasible values
(
P

(0)
r , P

(0)
f , P

(0)
fa
, P

(0)
d , P

(0)
a

)
and a conver-

gence thresholdǫ0 > 0. Set iteration numberi := 0.

2: repeat

3: i := i+ 1;

4: Set ξ(i)0 = P
(i−1)
d P

(i−1)
fa

+ P
(i−1)
a P

(i−1)
fa

+ (1 − ǫ′)P
(i−1)
a P

(i−1)
f , ξ(i)1 = P

(i−1)
d P

(i−1)
fa

/ξ
(i)
0 ,

ξ
(i)
2 = P

(i−1)
a P

(i−1)
fa

/ξ
(i)
0 , andξ(i)3 = (1− ǫ′)P

(i−1)
a P

(i−1)
f /ξ

(i)
0 .

5: Find
(
P

(i)
r , P

(i)
f , P

(i)
fa
, P

(i)
d , P

(i)
a

)
by solving the GP problem

min
Pr,Pf ,Pfa ,Pd,Pa

[(Pd+Pa)(Pfa+Pr)+PrPf ][(Pd+Pa)Pfa+PaPf(1−ǫ′)+PdPf ]

PrPfPd(PdPfa/ξ
(i)
1 )ξ

(i)
1 (PaPfa/ξ

(i)
2 )ξ

(i)
2 [(1− ǫ′)PaPf/ξ

(i)
3 ]ξ

(i)
3

subject to Pr > 0, Pf > 0, Pfa > 0, Pd > 0, Pa > 0,

PrTr + PfTf + PfaTf + PdTd + PaTd = PT.

6: until
J−1
DCE

(
P

(i)
r ,P

(i)
f

,P
(i)
fa

,P
(i)
d

,P
(i)
a

)
−J−1

DCE

(
P

(i−1)
r ,P

(i−1)
f

,P
(i−1)
fa

,P
(i−1)
d

,P
(i−1)
a

)

J−1
DCE

(
P

(i−1)
r ,P

(i−1)
f

,P
(i−1)
fa

,P
(i−1)
d

,P
(i−1)
a

) < ǫ0.

7: Output (P̂ ∗
r , P̂

∗
f , P̂

∗
fa
, P̂ ∗

d , P̂
∗
a ) =

(
P

(i)
r , P

(i)
f , P

(i)
fa
, P

(i)
d , P

(i)
a

)
.

C. Comparison with the Conventional Training Case

It is worthwhile to remark that, compared to the conventional training scheme in the previous

section, the DCE scheme requires an additional symbol period in the training phase for reverse

training. This results in a smaller pre-log factor and, thus, a significant loss in secrecy rate at high

SNR. However, in the following corollary, we show that the DCE scheme can always achieve a

higher secrecy rate as long as the coherence time is sufficiently long.

Corollary 4 Let P̂∗
conv be the solution given in(28). Then, forP andnt sufficiently large, there
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existsP = (Pr, Pfa, Pf , Pd, Pa) such thatR̃DCE(P) > R̃conv(P̂∗
conv) if

T ≥ max

{
(4nt + 10)2

nt
, 22 log10

(
Pσ2

hnt

4σ2

)
+ 1

}
+ nt. (41)

The proof can be found in Appendix E. Corollary 4 implies thatthe DCE scheme can

outperform conventional training whenT is sufficiently large, even though an additional channel

use is occupied by reverse training. This is because, with DCE training, the effective channel

qualities at the destination and the eavesdropper are already well-discriminated in the training

phase and thus a larger portion of energy can be allocated to data rather than AN in the data

transmission. Therefore, the achievable secrecy rate of the DCE scheme increases faster than that

of conventional training as the coherence time increases. Note that Corollary 4 provides only a

sufficient condition on the coherence timeT . The advantage of DCE can actually be observed

for much smaller values ofT as shown in our simulations.

VI. SECRECY RATE IN THE LOW SNR REGIME

In this section, we examine the achievable secrecy rate and the corresponding optimal power

allocation in the low SNR regime, i.e., in the case whereσ2 → ∞.

Let ur(ĥ) ,
√
Pdsd‖ĥ‖+

√
Pdsd

ĥ†

‖ĥ‖
∆h+AdNĥ∆h be the summation of all terms other than

the AWGN in yd of (9). Then, we have

I(sd;yd|ĥ) =
∫

ĥ

f(ĥ)I(sd;yd|ĥ = ĥ)dĥ (42)

=

∫

ĥ

f(ĥ)I(sd;ur(ĥ) + vd)dĥ (43)

=

∫

ĥ

f(ĥ)

[
log e

σ2
G(sd,ur(ĥ)) +

log e

2σ4
∆(sd,ur(ĥ)) + o(σ−4)

]
dĥ, (44)

whereG(x,y) , E [‖E[y|x]− E[y]‖2] and∆(x;y) , tr{E [cov2(y|x)]−cov2(y)}. The equality

in (44) follows from the asymptotic expression of the mutualinformation given in [29, Theorem

1]. By direct calculation ofG(sd,ur(ĥ)) and∆(sd,ur(ĥ)), and by taking the expectation over

ĥ, it can be shown that

I(sd;yd|ĥ) =
log e

σ4

(
PdTdPfTfσ

4
h + P 2

d σ
4
∆hT

2
d /2
)
+ o(σ−4). (45)

Similarly, we have

I(sd; zd|ĥ, g) =
log e

σ4

(
PdTdPfTfσ

4
g/nt + P 2

d σ
4
∆gT

2
d /2
)
+ o(σ−4). (46)
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Notice that the first term in (45) is larger than that in (46) bya factor ofnt due to the processing

gain provided by transmit beamforming. By combining the above, we obtain the following result.

Theorem 4 In the low SNR regime, the achievable secrecy rate of the training-based transmis-

sion schemes is

Rs =
log e

Tσ4

(
PdTdPfTf (σ

4
h − σ4

g/nt) + P 2
dT

2
d (σ

4
∆h − σ4

∆g)/2
)
+ o(σ−4). (47)

Notice that the above secrecy rate does not depend on the AN powerPa in the data transmission

phase, and thatσ2
∆h → σ2

h andσ2
∆g → σ2

g as σ2 → ∞ regardless of the AN powerPfa in the

training phase. Hence, the same asymptotic secrecy rate canbe achieved even without the use

of AN and, thus, all power can be allocated to the transmission of either the pilot or the data

signals. However, it should be noted that the secrecy rate in(47) decays as1/σ4 which is much

worse than that achievable when the noncoherent transmission scheme, previously proposed

in [30] for conventional point-to-point channels (withoutsecrecy constraints), is employed. In

fact, by directly applying the transmission scheme in [30] to the wiretap channel model under

consideration, we can achieve a secrecy rate that decays only as1/σ2. This is because the secrecy

beamforming and AN-assisted training and data transmission schemes considered in this paper

all rely on accurate channel knowledge, which is difficult toobtain at low SNR, whereas the

noncoherent transmission scheme in [30] does not. This shows that one can actually do better

without training in the low SNR regime.

VII. N UMERICAL RESULTS

In this section, we verify numerically our theoretical claims and compare the achievable

secrecy rates of different training and power allocation schemes. Unless mentioned otherwise,

the number of antennas at the source isnt = 16, the coherence interval isT = 480, the forward

training length isTf = 16, and the reverse training length isTr = 1 (when considering the DCE

scheme). The transmit SNR is defined asP/σ2 and the channel variances areσ2
h = σ2

g = 0.5.

In Fig. 2, we show the approximate achievable secrecy rateR̃conv(P̂∗
conv) of the conven-

tional training case withP̂∗
conv being the proposed power allocation given in (28) (labeled

as “R̃conv (Proposed)”) and compare it with the maximum valuemax
P

R̃conv(P) obtained via
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Fig. 2. The achievable secrecy ratẽRconv with different power allocations versus SNR.

exhaustive search (i.e., “̃Rconv (Exhaustive)”). We can see that the approximate solution given in

(28) is indeed near optimal at high SNR and yields about4 dB improvement over the case with

equal power allocation among all components (i.e., “R̃conv (Equal)”). Moreover, by comparing

R̃conv(P̂∗
conv) with the optimized upper and lower boundsmax

P
{R̃conv(P) + ∆R

(u)
conv(P)} and

max
P

{R̃conv(P) −∆R
(l)
conv(P)}, respectively, (i.e., “̃Rconv + ∆R

(u)
conv (Exhaustive)” and “̃Rconv −

∆R
(l)
conv (Exhaustive)”), we can also see that the approximate secrecy rate expressioñRconv(P̂∗

conv)

indeed closely approximates the maximum achievable secrecy rateRconv(P∗
conv) (i.e., Theorem 2),

whereP∗
conv is the power allocation that maximizesRconv, sincemax

P
{R̃conv(P)−∆R

(l)
conv(P)} ≤

Rconv(P∗
conv) ≤ max

P
{R̃conv(P)+∆R

(u)
conv(P)} andR̃conv(P̂∗

conv) ≈ max
P

{R̃conv(P)−∆R
(l)
conv(P)} ≈

max
P

{R̃conv(P) + ∆R
(u)
conv(P)} at high SNR, as shown in Fig. 2.

In Fig. 3, we show the approximate achievable secrecy rateR̃DCE(P̂∗
DCE) of the DCE training

case withP̂∗
DCE being the proposed solution obtained by Algorithm 1 (i.e. “R̃DCE (Proposed)”)

and compare it with the maximum valuemax
P

R̃DCE(P) obtained via exhaustive search (i.e.,

“R̃DCE (Exhaustive)”). Again, the secrecy rate obtained with the proposed solution rapidly

converges towards the maximum value obtained via exhaustive search as the transmit SNR

increases. A7 dB improvement is also observed when compared to the case with equal power
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Fig. 3. The achievable secrecy ratẽRDCE with different power allocations versus SNR.

allocation. Moreover, since the optimized upper and lower boundsmax
P

{R̃DCE(P)+∆R
(u)
DCE(P)}

andmax
P

{R̃DCE(P)−∆R
(l)
DCE(P)} maintains a constant difference as the transmit SNR increases

and, by Fig. 3,R̃DCE(P̂∗
DCE) maintains between the two bounds, it follows that the difference

between the approximate and the actual rates, i.e.,R̃DCE(P̂∗
DCE)−RDCE(P∗

DCE), whereP∗
DCE is

the power allocation that maximizesRDCE, becomes negligible compared toRDCE(P∗
DCE).

In Fig. 4, we compare the (approximate) achievable secrecy rate of different transmission

schemes, namely, the case with conventional training (i.e., the case where AN is utilized only in

the data transmission phase), the case with DCE training, and the case where no AN is used in

either training or data transmission. Recall thatTd = T −Tf −Tr whereTr = 1 in the case with

DCE training and is0 otherwise. We can observe that DCE training yields the best performance

even though an additional channel use is required for reverse training. Moreover, we can see

that, when AN is not used in either training and data transmission, the achievable secrecy rate

becomes bounded as the transmit SNR increases, regardless of whether we are looking at̃RnoAN

or the upper bound̃RnoAN + ∆R
(u)
noAN. This indicates that the use of AN is critical to achieve

good secrecy rate performance in the high SNR regime.

In Fig. 5, we verify the effect of coherence time on the achievable secrecy rate of the different

schemes. Here, the transmit SNR is fixed at30 dB. The DCE scheme with suboptimal power
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Fig. 5. The achievable secrecy rate with different schemes versus coherence time.

allocation refers to the power allocation used to prove the sufficient condition in Corollary 4. The

suboptimal solution performs significantly worse than the proposed solution, but was sufficient

to yield the condition in Corollary 4. In fact, with the proposed power allocation, DCE is able
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to outperform conventional training with a coherence time of only 70, which is considerably

smaller than the value250 required by the suboptimal power allocation. Yet, the latter is still

smaller than the value358.25 predicted by Corollary 4, where the result is more conservative.

Moreover, by comparing between “R̃DCE (Proposed)” and “̃Rconv (Proposed)”, we can also see

that the advantage of utilizing AN in the training phase increases as the coherence time increases.

This is because, by applying AN in the training phase, we can allocate less energy to AN in the

data transmission phase and, thus, more energy to the actualmessage-bearing signal.

VIII. C ONCLUSION

In this paper, we examined the impact of both conventional and AN-assisted training on

the achievable secrecy rate of the AN-assisted secrecy beamforming scheme. Bounds on the

achievable secrecy rate were first derived and then utilizedto obtain a closed-form approximation

that is shown to be asymptotically tight at high SNR. The approximate expression was then

adopted as the objective function to determine the power allocation between pilot signals, data

signals, and AN in both training and data transmission phases. An asymptotically optimal closed-

form solution was obtained for the case with conventional training whereas a successive convex

approximation approach was proposed for the case with DCE training. Furthermore, in the low

SNR regime, we showed that AN provides no gains in secrecy rate and, thus, is not needed in

either training or data transmission. Numerical simulations were provided to verify the tightness

of the bounds and the advantages of DCE over conventional training.

APPENDIX A

PROOF OFTHEOREM 1

Here, we first derive upper and lower bounds ofI(sd;yd|ĥ) and I(sd; zd|ĥ, ĝ), and apply

them directly to obtain the desired bounds forR, which is the difference of the two quantities.

The derivations of the upper and lower bounds are shown only for I(sd;yd|ĥ) whereas that of

I(sd; zd|ĥ, ĝ) can be obtained similarly.

A. Lower Bound ofI(sd;yd|ĥ)

To derive the lower bound ofI(sd;yd|ĥ), let us write

I(sd;yd|ĥ) = h(sd|ĥ)− h(sd|yd, ĥ), (48)
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whereh(sd|ĥ) = h(sd) = Td log(πe) and h(sd|yd, ĥ) ≤ Eĥ,yd

[
log
(
(πe)Td

∣∣∣Csd|yd,ĥ

∣∣∣
)]

since

Gaussian maximizes entropy. Here,Ca|b represents the covariance matrix ofa given b, and

|A| represents the determinant ofA. Moreover, for any estimatêsd of sd given yd and ĥ,

we haveCsd|yd,ĥ
4 Esd|yd,ĥ

[
(sd − ŝd)(sd − ŝd)

†
]
, whereA 4 B denotes thatA − B is semi-

negative definite, and thus
∣∣∣Csd|yd,ĥ

∣∣∣ ≤
∣∣∣Esd|yd,ĥ

[
(sd − ŝd)(sd − ŝd)

†
]∣∣∣. Therefore, forŝLd =

C
sdyd|ĥ

C−1

yd|ĥ
yd (i.e., the LMMSE ofsd givenyd while assuming that̂h is known), we have

Eĥ,yd

[
log
(
(πe)Td

∣∣∣Csd|yd,ĥ

∣∣∣
)]

≤ E
ĥ

[
E
yd|ĥ

[
log
(
(πe)Td

∣∣∣Esd|yd,ĥ

[
(sd − ŝLd )(sd − ŝLd )

†
]∣∣∣
)]]

(49)

≤ Eĥ

[
log
(
(πe)Td

∣∣∣Csd|ĥ
−Csdyd|ĥ

C−1

yd|ĥ
Cydsd|ĥ

∣∣∣
)]

(50)

= Eĥ

[
log

(
(πe)Td

∣∣∣∣∣ITd
− Pd‖ĥ‖2
Pd‖ĥ‖2 + Pdσ

2
∆h + Paσ

2
∆h + σ2

ITd

∣∣∣∣∣

)]
, (51)

where the last inequality follows from Jensen’s inequality. Hence, by combining (48) and (51),

we have

I(sd;yd|ĥ) ≥ TdEĥ

[
log

(
1 +

Pd‖ĥ‖2
Pdσ2

∆h + Paσ2
∆h + σ2

)]
. (52)

B. Upper Bound ofI(sd;yd|ĥ)

To obtain the upper bound, we instead write

I(sd;yd|ĥ) = h(yd|ĥ)− h(yd|sd, ĥ) (53)

whereh(yd|ĥ) ≤ Eĥ

[
log
(
(πe)Td

∣∣∣Cyd|ĥ

∣∣∣
)]

since Gaussian maximizes entropy andh(yd|sd, ĥ) =
h(
√
Pd sd

ĥ†

‖ĥ‖
∆h +AdNĥ∆h+ vd|sd, ĥ) by (9). Notice thath(yd|sd, ĥ) is difficult to evaluate

sinceAdNĥ
∆h is non-Gaussian. Hence, we resort to the following largent analysis.

Lemma 1 LetA be at×(n−1) matrix with entries being i.i.d.CN
(
0, P

n−1

)
, N be a(n−1)×n

semi-unitary matrix such thatNN† = I, and ∆h be ann × 1 vector with entries being i.i.d.

CN (0, σ2
∆h). Then,AN∆h converges in distribution to a Gaussian vector with entriesbeing

i.i.d. CN (0, Pσ2
∆h) as n→ ∞.

Proof: Let {N}i,j denote the(i, j)-th entry of matrixN and let∆hj denote thej-entry of

vector∆h. Then, we can define the vectorb , N∆h whosei-th entry can be written asbi =
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∑
j{N}i,j∆hj . Note thatb is a Gaussian vector with entries that are i.i.d. with mean0 and vari-

anceσ2
∆h since, regardless of the value ofN, E[bib

∗
k|N] =

∑
j

∑
ℓ{N}i,j{N}∗k,ℓE [∆hj∆h∗

ℓ ] =

σ2
∆h, for i = k, and0, otherwise. Then, it follows by central limit theorem that the i-th entry of

vectorAN∆h = Ab, i.e.,
∑

j{A}i,jbj =
1√

(n−1)

∑
j{A}i,jbj where{A}i,j ,

√
n− 1{A}i,j ∼

CN (0, P ), converges in distribution to a Gaussian random variable with mean0 and variance

Pσ2
∆h, asn→ ∞. Moreover, since

∑
j

∑
ℓ E[{A}i,jbj{A}k,ℓbℓ] = 0 for i 6= k (i.e., the entries

of Ab are uncorrelated), it follows thatAb converges in distribution to a Gaussian vector with

entries that are i.i.d.CN (0, Pσ2
∆h), asn→ ∞.

By Lemma 1 (withn = nt, t = Td, andP = Pa), we know thatAdNĥ
∆h is asymptotically

Gaussian asnt → ∞ if ∆h is Gaussian as well. Hence, fornt sufficiently large, we have

I(sd;yd|ĥ) ≤ E
ĥ

[
log
(
(πe)Td

∣∣∣Cyd|ĥ

∣∣∣
)]

− E
ĥ

[
log
(
(πe)Td

∣∣∣Cyd|sd,ĥ

∣∣∣
)]

(54)

= Eĥ



log

∣∣∣
(
Pd‖ĥ‖2+Pdσ

2
∆h+Paσ

2
∆h+σ

2
)
ITd

∣∣∣
∣∣∣Pdσ2

∆hsds
†
d+(Paσ2

∆h+σ
2)ITd

∣∣∣



 (55)

= Eĥ


log

(
Pd‖ĥ‖2+Pdσ

2
∆h+Paσ

2
∆h+σ

2
)Td

(Pdσ
2
∆h+Paσ

2
∆h +σ

2)Td

(Pdσ2
∆h+Paσ2

∆h +σ
2)Td

(
(Paσ2

∆h+σ
2)

Td

∣∣∣Pdσ
2
∆h

sds
†
d

Paσ2
∆h

+σ2 +ITd

∣∣∣
)


 (56)

= TdEĥ

[
log

(
1 +

Pd‖ĥ‖2
Pdσ2

∆h + Paσ2
∆h + σ2

)]
+ T∆R(u). (57)

Similarly, it also holds, for∆g Gaussian andnt sufficiently large, that

TdE


log


1 +

Pd
ĝ†ĥĥ†ĝ

‖ĥ‖2

Pdσ2
∆g + Pa

‖N
ĥ
ĝ‖2

nt−1
+ Paσ2

∆g + σ2




 ≤ I(sd; zd|ĥ, ĝ)

≤ TdE



log



1 +
Pd

ĝ†ĥĥ†ĝ

‖ĥ‖2

Pdσ2
∆g + Pa

‖N
ĥ
ĝ‖2

nt−1
+ Paσ2

∆g + σ2







+ T∆R(l) (58)

By combining the above bounds forI(sd;yd|ĥ) andI(sd; zd|ĥ, ĝ), we obtain the bounds of the

achievable secrecy rate in Theorem 1.
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APPENDIX B

PROOF OFTHEOREM 2 AND COROLLARY 2

A. Proof of Theorem 2

Let us consider the linear power allocationPl , (Pf,l, Pd,l, Pa,l) = (αfP, βdP, βaP ) for some

positive constantsαf , βd, andβa such thatαfPTf + βdPTd+βaPTd ≤ PT . Then, by Theorem

1, it follows that

R̃conv(Pl)−∆R(l)
conv(Pl)≤Rconv(P∗)≤R̃conv(P∗)+∆R(u)

conv(P∗). (59)

Hence, to obtain Theorem 2, it is sufficient to show thatR̃conv(Pl)−∆R
(l)
conv(Pl)

.
= R̃conv(P∗)+

∆R
(u)
conv(P∗), i.e.,Rconv(P∗)

.
= R̃conv(P∗) +∆R

(u)
conv(P∗), and lim

P→∞
∆R

(u)
conv(P∗)/Rconv(P∗) = 0.

Specifically, by substitutingPl into (19) and (20), we can express the channel estimation

error variances asσ2
∆h =

σ2
h
σ2

αfPσ2
h
+σ2 = σ2

αfP
+ o

(
1
P

)
andσ2

∆g =
σ2
gσ

2

αfPσ2
g+σ2 = σ2

αfP
+ o

(
1
P

)
. Then,

it follows that

R̃conv(Pl)=
Td
T
E



log



1 + βdP (σ
2
h + o(1))‖h‖2

(βd + βa)P
(

σ2

αfP
+o
(
1
P

))
+σ2









− Td
T
E




log


1+

βdP (σ
2
g+o(1))

g†hh
†
g

‖h‖2

(βd+βa)P
(

σ2

αfP
+o
(
1
P

))
+βaP (σ2

g + o(1))
‖N

ĥ
g‖2

nt−1
+σ2







 (60)

=
Td
T
E


log βdPσ

2
h‖h‖2+o(P )

σ2(βd+βa)
αf

+σ2+o(1)


−Td

T
E


log


1+

βdPσ
2
g
g†hh

†
g

‖h‖2
+o(P )

βaPσ2
g
‖N

ĥ
g‖2

nt−1
+o(P )




 (61)

=
Td
T
E


log βdPσ

2
h‖h‖2(

βd+βa

αf
+ 1
)
σ2


− Td

T
E


log


1 +

βd
g†hh

†
g

‖h‖2

βa
‖N

ĥ
g‖2

nt−1




+ o(1) (62)

=
Td
T

logP + c1 + o(1), (63)

where

c1 ,
Td
T
E


log βdσ

2
h‖h‖2(

βd+βa

αf
+ 1
)
σ2


− Td

T
E


log


1 +

βd
g†hh

†
g

‖h‖2

βa
‖N

ĥ
g‖2

nt−1




 (64)
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is a finite constant that is independent ofP , and

∆R(l)
conv(Pl)

=
1

T
E





log

[
(βd+βa)P

(
σ2

αfP
+o
(
1
P

))
+βaP

(
σ2
g+o(1)

) ‖N
ĥ
g‖2

nt−1
+σ2

]Td

[
βaP

(
σ2
g+o(1)

) ‖N
ĥ
g‖2

nt−1
+βaP

(
σ2

αfP
+o
(
1
P

))
+σ2

]Td−1






− 1

T
E

{
log

[
(βd‖sd‖2+βa)P

(
σ2

αfP
+o

(
1

P

))
+βaP

(
σ2
g+o(1)

)‖Nĥg‖2
nt−1

+σ2

]}
(65)

=
1

T
E


log

(
βaPσ

2
g
‖N

ĥ
g‖2

nt−1
+o(P )

)Td

(
βaPσ2

g
‖N

ĥ
g‖2

nt−1
+o(P )

)Td−1


− 1

T
E

[
log

(
βaPσ

2
g

‖N
ĥ
g‖2

nt−1
+o(P )

)]
= o(1). (66)

Hence,

R̃conv(Pl)−∆R(l)
conv(Pl) =

Td
T

logP + c1 + o(1). (67)

Moreover, by (14) and (15), we can write

R̃conv(P∗) + ∆R(u)
conv(P∗)

(a)

≤ Td
T
E

[
log

(
1+

P ∗
d (σ

2
h−σ2

∆h)‖h‖2
P ∗
d σ

2
∆h+P

∗
aσ

2
∆h+σ

2

)]

+
1

T
log
(
P ∗
d σ

2
∆h + P ∗

aσ
2
∆h + σ2

)Td− 1

T
E
[
log
(
P ∗
d ‖sd‖2σ2

∆h

)]
(68)

(b)

≤ Td
T
E
[
log
(
k′P

(
2σ2

∆h+1+(σ2
h−σ2

∆h)‖h‖2
))]

− 1

T
E
[
log
(
P ∗
d ‖sd‖2σ2

∆h

)]
(69)

=
Td
T

logP − 1

T
log
(
P ∗
d σ

2
∆h

)
+ c2, (70)

where c2 , (1/T )E
[
log
((
k′
(
2σ2

∆h+1+(σ2
h−σ2

∆h)‖h‖2
))Td

/‖sd‖2
)]

is a finite constant. The

inequality in (a) follows by eliminating the negative term of R̃conv(P∗) in (14) and by eliminating

some positive parts in the denominator of the first term as well as in the second term of∆R(u)
conv

in (15); and (b) is obtained by upper-boundingPd, Pa, andσ2 by k′P , wherek′ is chosen such

that k′P ≥ max{Pd, Pa, σ
2}. By (59), (67), and (70), it follows thatP ∗

d σ
2
∆h = O(1) (since

otherwise the upper bound in (70) would be smaller than the lower bound in (67)). This implies

that∆R(u)
conv(P∗) is a finite constant and, thus, we can write

R̃conv(P∗) + ∆R(u)
conv(P∗) ≤ Td

T
E
[
log
(
1+P ∗

d (σ
2
h−σ2

∆h)‖h‖2
)]
+∆R(u)

conv(P∗) (71)

≤ Td
T

logP + c′2 + o(1), (72)
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for some constantc′2 ,
Td

T
E
[
log k′(σ2

h − σ2
∆h + 1)‖h‖2

]
+∆R

(u)
conv(P∗). By combining (67) and

(72), we obtain the desired resultR̃conv(Pl)−∆R
(l)
conv(Pl)

.
= R̃conv(P∗)+∆R

(u)
conv(P∗). Moreover,

since∆R(u)
conv(P∗) is finite, we havelim

P→∞
∆R

(u)
conv(P∗)/Rconv(P∗)=0, which completes the proof.

B. Proof of Corollary 2

The proof of the corollary relies on the fact that

R̃conv(Pl)−∆R(l)
conv(Pl) ≤ R̃conv(P∗) + ∆R(u)

conv(P∗) (73)

for any linear power allocationPl.

Specifically, let us first consider the upper bound

Rconv(P∗)
(a)

≤ Td
T
E
[
log
(
1 + P ∗

d σ
2
h‖h‖2/σ2

)]
+∆R(u)

conv (74)

(b)

≤Td
T

log
(
1 + P ∗

d σ
2
h/σ

2
)
+∆R(u)

conv, (75)

where (a) is obtained by eliminating the negative terms inR̃conv(P) and by lower-bounding the

denominator of the first term byσ2, and (b) follows from Jensen’s inequality. By the argument

below (70), we know thatP ∗
d σ

2
∆h = O(1), and thus,R(u)

conv(P∗) = O(1). Then, together with

(73) and (67), we haveTd

T
log (1 + P ∗

d σ
2
h/σ

2) + O(1) ≥ Td

T
logP + c1 + o(1), which implies

that P ∗
d (P ) = Ω(P ). Moreover, sinceP ∗

d σ
2
∆h = P ∗

d σ
2
hσ

2/(P ∗
f σ

2
h + σ2) = O(1), it also follows

that P ∗
f (P ) = Ω(P ∗

d (P )) = Ω(P ). Furthermore, sinceσ2
∆g/σ

2
∆h =

(P ∗
f
σ2
h
+σ2)/σ2

h

(P ∗
f
σ2
g+σ2)/σ2

g
= O(1), we

know thatPdσ
2
∆g = (Pdσ

2
∆h)(σ

2
∆g/σ

2
∆h) = O(1). Therefore, the achievable secrecy rate can be

upper-bounded as

Rconv≤ R̃conv +∆R(u)
conv (76)

≤ Td
T
E
[
log
(
1 + P ∗

d σ
2
h‖h‖2/σ2

)]

− Td
T
E


log


1+

P ∗
d (σ

2
g−σ2

∆g)
g†hh

†
g

‖h‖2

P ∗
dσ

2
∆g+P

∗
a (σ

2
g−σ2

∆g)
‖N

ĥ
g‖2

nt−1
+P ∗

aσ
2
∆g+σ

2




+∆R(u)

conv (77)

(a)
=
Td
T
E
[
log
(
1+P ∗

dσ
2
h‖h‖2/σ2

)]
−Td
T
E


log


1+

P ∗
d σ

2
g
g†hh

†
g

‖h‖2
+o(P ∗

d )

P ∗
aσ

2
g
‖N

ĥ
g‖2

nt−1
+o(P ∗

d )




+∆R(u)

conv (78)

=
Td
T

logP ∗
d − Td

T
E



log



1 +
P ∗
d
g†hh

†
g

‖h‖2
+ o(P ∗

d )

P ∗
a
‖N

ĥ
g‖2

nt−1
+ o(P ∗

d )







+ c3 + o(1), (79)
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where c3 = (Td/T )E
[
log
(
σ2
h‖h‖2/σ2

)]
+ ∆R

(u)
conv is a finite constant and (a) holds since

P ∗
d σ

2
∆g = O(1) and P ∗

aσ
2
∆g = O(1). From (79), we can observe that the second term is a

negative finite constant only ifP ∗
a (P ) = Ω(P ∗

d (P )) which implies thatP ∗
a (P ) = Ω(P ).

APPENDIX C

PROOF OF(24) IN SECTION IV

By the weak law of large numbers (WLLN), we know that‖N
ĥ
g‖2/(nt−1) → 1 in probability

asnt → ∞. That is, for anyǫ > 0, we havePr(Aǫ) → 1 (and, thus,Pr(Ac
ǫ) → 0) asnt → ∞,

whereAǫ ,
{∣∣∣‖Nĥ

g‖2

nt−1
− 1
∣∣∣ ≤ ǫ

}
. Therefore, fornt sufficiently large, the second expectation

term in (23) can be written as

E



log



1 +
P ∗
d
g†hh

†
g

‖h‖2

P ∗
a
‖N

ĥ
g‖2

(nt−1)




∣∣∣∣∣Aǫ



Pr (Aǫ) + E



log



1 +
P ∗
d
g†hh

†
g

‖h‖2

P ∗
a
‖N

ĥ
g‖2

(nt−1)




∣∣∣∣∣A

c
ǫ



Pr (Ac
ǫ)

≤ E


log


1 +

P ∗
d
g†hh

†
g

‖h‖2

P ∗
a (1− ǫ)



∣∣∣∣∣Aǫ


Pr (Aǫ) + E


log


1 +

P ∗
d
g†hh

†
g

‖h‖2

P ∗
a
‖N

ĥ
g‖2

(nt−1)



∣∣∣∣∣A

c
ǫ


Pr (Ac

ǫ) (80)

≤ E


log


1 +

P ∗
d
g†hh

†
g

‖h‖2

P ∗
a (1− ǫ)




+ ǫnt

. (81)

where

ǫnt
, E


log


1 +

P ∗
d
g†hh

†
g

‖h‖2

P ∗
a
‖N

ĥ
g‖2

(nt−1)



∣∣∣∣∣A

c
ǫ


Pr (Ac

ǫ) . (82)

Notice thatǫnt
→ 0 asnt → ∞ since the expectation inside (82) is finite. Then, by applying

Jensen’s inequality to the first term in (81), we have

E


log


1 +

P ∗
d
g†hh

†
g

‖h‖2

P ∗
a (1− ǫ)




 ≤ log

(
1 +

P ∗
d

P ∗
a (1− ǫ)

)
≤ log

(
P ∗
a + P ∗

d

P ∗
a (1− ǫ)

)
(83)

Finally, by (23) and (83), we have

R̃conv ≥ Td
T

log

P ∗
d
P ∗
a

P ∗
a+P ∗

d(
P ∗
d
+P ∗

a

P ∗
f

+ 1
)
σ2

+
Td
T
E
[
log
(
σ2
h‖h‖2(1− ǫ)

)]
+
Td
T
ǫnt

+ o(1) (84)
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APPENDIX D

PROOF OFTHEOREM 3 AND COROLLARY 3

A. Proof of Theorem 3

The proof of Theorem 3 is an extension of the proof of Theorem 2in Appendix B and, thus,

is explained more concisely in the following.

Specifically, let us also consider a linear power allocationPl , (Pr,l, Pf,l, Pfa,l, Pd,l, Pa,l) =

(αrP, αfP, αfaP, βdP, βaP ), whereαr, αf , αfa , βd, and βa are positive constants chosen such

that the total power constraint in (11) is satisfied. Similarto Appendix B, it is sufficient to show

here thatR̃DCE(Pl)−∆R
(l)
DCE(Pl)

.
= R̃DCE(P∗) + ∆R

(u)
DCE(P∗) and∆R(u)

DCE(P∗) = O(1).

By substitutingPl into (6) and (7), we can write the channel estimation error variances as

σ2
∆h =

σ2
h

(
Pfa,l

σ2
h
σ2

σ2+Pr,lσ
2
h

+ σ2
)

Pfa,l
σ2
h
σ2

σ2+Pr,lσ
2
h

+ σ2 + Pf,lσ
2
h

=
(αfa + αr)σ

2

αrαf
P−1 + o(P−1), (85)

σ2
∆g =

Pfa,lσ
4
g + σ2

g

Pfa,lσ
2
g + σ2 + Pf,lσ2

g

=
αfaσ

2
g

αfa + αf
+ o(1). (86)

Thus, we have

R̃DCE(Pl) =
Td
T
E



log



1 +
βdP (σ

2
h + o(1))‖h‖2

(βd + βa)
(αfa+αr)σ2

αrαf
+ o(1) + σ2









− Td
T
E


log


1+

βdP
(

αfσ
2
g

αfa+αf
+ o(1)

)
g†hh

†
g

‖h‖2

(βd + βa)P
(

αfaσ
2
g

αfa+αf
+o(1)

)
+βaP

(
αfσ2

g

αfa+αf
+o(1)

)
‖N

ĥ
g‖2

nt−1
+σ2






(87)

=
Td
T
E


log


 βdPσ

2
h‖h‖2

(βd + βa)
(αfa+αr)σ2

αrαf
+ σ2






− Td
T
E


log


1 +

βdαf
g†hh

†
g

‖h‖2

(βd + βa)αfa + βaαf
‖N

ĥ
g‖2

nt−1




+ o(1) (88)

=
Td
T

logP + c4 + o(1). (89)

wherec4 ,
Td

T
E

[
log

(
βdσ

2
h
‖h‖2

(βd+βa)
(αfa

+αr)σ2

αrαf
+σ2

)]
− Td

T
E

[
log

(
1 +

βdαf
g†hh

†
g

‖h‖2

(βd+βa)αfa+βaαf

‖N
ĥ
g‖2

nt−1

)]
. More-

over, by substitutingPl into (16), it can also be shown that∆R(l)
DCE(Pl) = O(1). Hence, we

haveR̃DCE(Pl)−∆R
(l)
DCE(Pl) =

Td

T
logP +O(1).
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Furthermore, by following the derivations in (68)-(70), itcan also be shown thatP ∗
d σ

2
∆h = O(1)

and, thus,R̃DCE(P∗) + ∆R
(u)
DCE(P∗) ≤ Td

T
logP + O(1). Hence, it follows thatR̃DCE(Pl) −

∆R
(l)
DCE(Pl)

.
= R̃DCE(P∗) + ∆R

(u)
DCE(P∗).

B. Proof of Corollary 3

The proofs ofP ∗
f (P ) = Ω(P ) and P ∗

d (P ) = Ω(P ) are the same as those in Appendix B

for the case with conventional training. Hence, we prove here that eitherP ∗
fa(P ) = Ω(P ) or

P ∗
a (P ) = Ω(P ), and thatP ∗

r (P ) = Ω(P ∗
fa(P )).

First, let us recall that

P ∗
d σ

2
∆h =

P ∗
d σ

2
h

(
P ∗
fa
σ2
∆hr

+ σ2
)

P ∗
f σ

2
h + P ∗

fa
σ2
∆hr

+ σ2
= O(1). (90)

Due to the total power constraint, it holds thatP ∗
f σ

2
h + P ∗

fa
σ2
∆hr

+ σ2 = O(P ). Therefore,

together with the fact thatP ∗
d (P ) = Ω(P ), it follows that P ∗

faσ
2
∆hr

= O(1). Then, by (2), we

haveP ∗
fa
σ2
∆hr

=
P ∗
fa

σ2
h
σ2

P ∗
r σ

2
h
+σ2 = O(1), which implies thatP ∗

r (P ) = Ω(P ∗
fa
(P )).

Finally, to show thatP ∗
fa
(P ) = Ω(P ) or P ∗

a (P ) = Ω(P ), let us rewrite the upper bound of

the achievable secrecy rate as follow:

R̃DCE +∆R
(u)
DCE (91)

≤ Td
T
E
[
log
(
1 + P ∗

d σ
2
h‖h‖2

)]

− Td
T
E


log


1 +

P ∗
d (σ

2
g − σ2

∆g)
g†hh

†
g

‖h‖2

P ∗
d σ

2
∆g + P ∗

a (σ
2
g − σ2

∆g)
‖N

ĥ
g‖2

nt−1
+ P ∗

aσ
2
∆g + σ2




+∆R

(u)
DCE (92)

=
Td
T

logP ∗
d − Td

T
E



log



1 +
P ∗
d (σ

2
g − σ2

∆g)
g†hh

†
g

‖h‖2

P ∗
d σ

2
∆g+P

∗
a (σ

2
g−σ2

∆g)
‖N

ĥ
g‖2

nt−1
+P ∗

aσ
2
∆g+σ

2







+O(1). (93)

The last equality comes from the fact that∆R
(u)
DCE(P∗) = O(1) sinceP ∗

d σ
2
∆h = O(1). Then, by

the fact thatR̃DCE(P∗)+∆R
(u)
DCE(P∗) ≥ R̃DCE(Pl)−∆R

(l)
DCE(Pl) =

Td

T
logP +O(1), it follows

that the second term in (93) must beO(1). This implies that term inside the logarithm must be

O(1). By substitutingσ2
∆g with (7) and usingTf = nt, this term can be written more explicitly
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as

P ∗
d (σ

2
g − σ2

∆g)
g†hh

†
g

‖h‖2

P ∗
d σ

2
∆g + P ∗

a (σ
2
g − σ2

∆g)
‖N

ĥ
g‖2

nt−1
+ P ∗

aσ
2
∆g + σ2

=
P ∗
dP

∗
f σ

4
g
g†hh

†
g

‖h‖2

(P ∗
d + P ∗

a )σ
2
g(P

∗
faσ

2
g + σ2) + P ∗

aP
∗
f σ

4
g
‖N

ĥ
g‖2

nt−1
+ σ2(P ∗

faσ
2
g + σ2 + σ2

gP
∗
f )
.

SinceP ∗
f (P ) = Ω(P ) and P ∗

d (P ) = Ω(P ), it is necessary to have eitherP ∗
a (P ) = Ω(P ) or

P ∗
fa(P ) = Ω(P ) (or both) in order for this term to scale asO(1). This completes the proof.

APPENDIX E

PROOF OFCOROLLARY 4 IN SECTION V

To distinguish between the conventional and the DCE cases, let us denote the power al-

location in the conventional case asP = (Pf , Pd, Pa) and that in the DCE case asQ =

(Qr, Qfa , Qf , Qd, Qa). The approximate achievable secrecy rateR̃conv(P̂∗) is given by (23) and

the optimal power allocation̂P∗ in the conventional case is given in (28). Corollary 4 is proved

by showing that a lower bound of̃RDCE(Q∗), whereQ∗ is the optimal power allocation in the

DCE case, is greater than an upper bound ofR̃conv(P̂∗) if the condition in (41) is satisfied.

To obtain an upper bound for̃Rconv(P̂∗), let us first note, by WLLN, that‖Nĥḡ‖2/(nt −
1) → 1 and ḡ†h̄h̄†ḡ/‖h̄‖2 → 1 in probability asnt → 1. Therefore, by definingA′

ǫ ,

{|‖Nĥ
ḡ‖2

(nt−1)
− 1| ≤ ǫ, |g†hh

†
g

‖h‖2
− 1| ≤ ǫ}, the expectation inside second term of (23) can be

lower bounded byE

[
log
(
1 +

P̂ ∗
d
(1−ǫ)

P̂ ∗
a (1+ǫ)

) ∣∣∣∣∣A
′
ǫ

]
Pr (A′

ǫ)+E

[
log

(
1 +

P̂ ∗
d

g†hh
†
g

‖h‖2

P̂ ∗
a

‖N
ĥ
g‖2

(nt−1)

) ∣∣∣∣∣A
′
ǫ
c

]
Pr (A′

ǫ
c) =

log
(
1 +

P̂ ∗
d
(1−ǫ)

P̂ ∗
a (1+ǫ)

)
+ ǫ′′nt

, whereǫ′′nt
→ 0 asnt → ∞. By substituting this into (23), we have

R̃conv(P̂∗) ≤ Td
T
E


log

P̂ ∗
d σ

2
h‖h‖2(

P̂ ∗
d
+P̂ ∗

a

P̂ ∗
f

+ 1

)
σ2


− Td

T
log

(
1 +

P̂ ∗
d (1− ǫ)

P̂ ∗
a (1 + ǫ)

)
− Td
T
ǫ′′nt

+ o(1) (94)

=
T − nt

T




log

P̂ ∗
d

2

(
2P̂ ∗

d

P̂ ∗
f

+ 1

) + E

[
log

σ2
h‖h‖2(1 + ǫ)

σ2

]
+ ǫ′′nt





+ o(1). (95)

sinceTd = T −Tf = T −nt in the conventional training based scheme andP̂ ∗
d = P̂ ∗

a (c.f. (28)).
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To obtain a lower bound for̃RDCE(Q∗), we consider the power allocation policyQ♯ defined

such thatQ♯
r =

γTf

2Tr
P̂ ∗
f = γnt

2
P̂ ∗
f , Q♯

f = (1 − γ)P̂ ∗
f , Q♯

fa
= γ

2
P̂ ∗
f , Q♯

d = P̂ ∗
d , andQ♯

a = P̂ ∗
a , where

γ is a constant in(0, 1). SinceQ♯ is an arbitrarily chosen power allocation policy, it follows

that R̃DCE(Q∗) ≥ R̃DCE(Q♯). Notice thatQ♯ is similar toP̂∗, but with γ portion of the training

energy moved to the reverse pilot signal and to AN in the training phase. It is also worthwhile

to note that, even though the power allocated to signal and ANin the data transmission phase,

i.e., Q♯
d = P̂ ∗

d , andQ♯
a = P̂ ∗

a , are the same, the total energy expended in the data transmission

phase is smaller than that in the conventional training based scheme sinceTd = T − nt − 1 in

this case (i.e., an additional channel use is spent for reverse training). Hence, the total energy

consumed byQ♯ is actually strictly less than the constraintPT .

By the fact that all power components inQ♯ scale linearly withP as inP̂∗ and by substituting

Q♯ into (35), we have

R̃DCE(Q♯)≥ T−nt −1

T




log

P̂ ∗
d

2P̂ ∗
d

P̂ ∗
f

1+nt

nt(1−γ)
+1

+ E

[
log

σ2
h‖h‖2
σ2

]
− log

2−γ−(1−γ)ǫ′
1−ǫ′+ǫ′γ +ǫ′nt




+o(1)

≥ T−nt −1

T




log

P̂ ∗
d

2P̂ ∗
d

P̂ ∗
f

1+nt

nt(1−γ)
+1

+ E

[
log

σ2
h‖h‖2
σ2

]
− log

2−γ
1−ǫ′+ǫ

′
nt




+o(1). (96)

By (95) and (96), the difference betweeñRDCE(Q∗) andR̃conv(P̂∗) can be lower bounded as

R̃DCE(Q∗)−R̃conv(P̂∗)

≥ T−nt −1

T


log

2

(
2P̂ ∗

d

P̂ ∗
f

+ 1

)

2P̂ ∗
d

P̂ ∗
f

1+nt

nt(1−γ)
+ 1

− log
1 + ǫ

1− ǫ′
− log(2− γ) + ǫ′nt




− 1

T
E


log

P̂ ∗
dσ

2
h‖h‖2(1 + ǫ)/σ2

2

(
2P̂ ∗

d

P̂ ∗
f

+ 1

)


− T − nt

T
ǫ′′nt

+ o(1) (97)

=
T−nt −1

T


log

2
(√ nt

T−nt
+ 1
)

√
nt

T−nt

1+nt

nt(1−γ)
+ 1

− log
1 + ǫ

1− ǫ′
− log(2− γ) + ǫ′nt




− 1

T
E

[
log

PTσ2
h‖h‖2(1 + ǫ)/σ2

4
(√

nt +
√
T − nt

)2

]
− T − nt

T
ǫ′′nt

+ o(1) (98)
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The expectation inside the second term of (98) can be upper bounded as

E

[
log

PTσ2
h‖h‖2(1+ǫ)/σ2

4
(√

nt +
√
T − nt

)2

]
≤E

[
log

(
PTσ2

h‖h‖2(1+ǫ)
4Tσ2

)]
≤ log

(
Pσ2

hnt(1+ǫ)

4σ2

)
, (99)

where the last inequality follows from Jensen’s inequality. Therefore, the differencẽRDCE(Q∗)−
R̃conv(P̂∗) can be further bounded as

R̃DCE(Q∗)− R̃conv(P̂∗)

≥T−nt−1

T
log

2
(√ nt

T−nt
+ 1
)

(√ nt

T−nt

1+nt

nt(1−γ)
+ 1
)
(2− γ)

− 1

T
log

Pσ2
hnt(1+ǫ)

4σ2

− T−nt−1

T
log

1 + ǫ

1− ǫ′
+
T−nt−1

T
ǫ′nt

− T − nt

T
ǫ′′nt

+ o(1) (100)

WhenP andnt are sufficiently large, we can choose arbitrary smallǫ, ǫ′ > 0 such thatǫnt
, ǫ′nt

,

ando(1) can be neglected. Hence, for̃RDCE(Q∗)− R̃conv(P̂∗) > 0, it is sufficient to have

(T − nt − 1) log




2
(
nt +

√
(T − nt)nt

)

1 + nt + (1− γ)
√

(T − nt)nt

· 1− γ

2− γ



 > log

(
Pσ2

hnt

4σ2

)
(101)

By selectingγ = 1/2, the term inside the logarithm on the left-hand-side can be rewritten as

4nt+4
√
(T−nt)nt

6(1+nt)+3
√
(T−nt)nt

=
(12nt+2

√
(T−nt)nt)+10

√
(T−nt)nt

18(1+nt)+9
√
(T−nt)nt

. (102)

Notice that, if12nt + 2
√
(T − nt)nt ≥ 20(1 + nt), i.e., if

T ≥ (4nt + 10)2

nt

+ nt, (103)

the left-hand-side of (101) is lower bounded by(T − nt − 1) log (10/9). Therefore, we have

R̃DCE(Q∗)− R̃conv(P∗) > 0 if (T − 1− nt) log10 (10/9) > log10 (Pσ
2
hnt/4σ

2), which yields the

sufficient condition

T ≥ 22 log10

(
Pσ2

hnt

4σ2

)
+ 1 + nt (104)

since(log10(10/9))
−1 ≤ 22. By (103) and (104), we obtain the result in (41).
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