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On the Role of Artificial Noise in Training and
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Abstract

This work considers the joint design of training and datangnaission in physical-layer secret
communication systems, and examines the role of artificiééen (AN) in both of these phases. In
particular, AN in the training phase is used to prevent thes@ropper from obtaining accurate channel
state information (CSI) whereas AN in the data transmisploase can be used to mask the transmission
of the confidential message. By considering AN-assisteditrg and secrecy beamforming schemes,
we first derive bounds on the achievable secrecy rate andnoatalosed-form approximation that
is asymptotically tight at high SNR. Then, by maximizing tapproximate achievable secrecy rate,
the optimal power allocation between signal and AN in bo#tining and data transmission phases is
obtained for both conventional and AN-assisted trainingeblaschemes. We show that the use of AN
is necessary to achieve a high secrecy rate at high SNR, suudeétin the training phase can be more
efficient than that in the data transmission phase when thereace time is large. However, at low
SNR, the use of AN provides no advantage since CSl is difftoudtbtain in this case. Numerical results

are presented to verify our theoretical claims.

Index Terms

Secrecy, wiretap channel, channel estimation, artifiol$ey power allocation.

I. INTRODUCTION

Information-theoretic secrecy has received renewed @stein recent years, especially in

the context of wireless communications, due to the broddeaiire of the wireless medium
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and the increasing amount of confidential data that is beiagstitted over the air. Most of
these studies stem from the seminal works by Wynetin [1] an€&iszar and Korner i [2],
where the so-called secrecy capacity was characterizedefgraded and nondegraded discrete
memoryless wiretap channels (i.e., channels consistirgyswgurce, a destination, and a passive
eavesdropper), respectively. The notion of secrecy cgpaeis introduced in these works as the
maximum achievable secrecy rate between the source ancstieation subject to a constraint
on the information attainable by the eavesdropper. Thesesswere also examined for Gaussian
channels by Leung-Yan-Cheong and Hellman(in [3], where &aussignalling was shown to
be optimal. These works show that the secrecy capacity ofetap channel increases with the
difference between the channel quality at the destinatimhthat at the eavesdropper.

In recent years, studies of the wiretap channel have also &dended to multi-antenna wire-
less systems, e.g., inl[4]4[8], where the achievable sgates were examined under different
channel assumptions and techniques were proposed to bizst thie available spatial degrees of
freedom. In particular, the work in][4] examined the secreagacity of a multiple-input single-
output (MISO) wiretap channel and showed that transmit beamng with Gaussian signalling
is optimal. However, perfect knowledge of both the main amel ¢avesdropper channel state
information (CSI) was required at the source in order to meitge the optimal beamformer. In
[5]-[8], more general results were obtained for cases witlitiple antennas at the destination.
Precoding techniques were proposed as a generalizatidmedigamforming scheme inl[4] to
higher dimensions and, thus, perfect CSI of all links wa® atxjuired to derive the optimal
precoder. On the other hand, when the eavesdropper CSI isilaide, which is often the
case in practice, the secrecy capacity and its correspgrmtimal transmission scheme are
both unknown. However, an artificial noise (AN) assistedagc beamforming scheme, where
data is beamformed towards the destination and AN is placetthé null space of the main
channel direction to jam the eavesdropper’s receptionftenadopted and was in fact shown
to be asymptotically optimal irn_[4]. Even though knowleddette eavesdropper channel is not
required in this transmission scheme, perfect knowledgbetmain channel CSl is still needed,
which can also be unrealistic due to the presence of noiskeircthannel estimation.

In practice, CSl is typically obtained through training annel estimation at the destination.
In conventional systems (without secrecy constrainta)nimg signal designs have been studied

in the literature for both single-user! [9], [10] and muleusystems [11]. In these cases, training
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is often done by having the source transmit a pilot signalrtabée channel estimation at the
destination (and CSI at the source is obtained by having #stirdhtion feedback its channel
estimate to the source). However, this approach may not\wedble for systems with secrecy
considerations since the emission of pilot signals by thecoalso enables channel estimation
at the eavesdropper (and in this way enhances its abilitynterdept the source’s message).
More recently, a secrecy enhancing training scheme, ctikediscriminatory channel estimation
(DCE) scheme, was proposed (in[[12],[13], where AN is supgreised on top of the pilot signal
in the training phase to disrupt the channel estimation eetivesdropper. These works showed
that DCE can indeed enhance the difference between the ehastimation qualities at the
destination and the eavesdropper in the training phasergéie actual data is transmitted), but
did not discuss its impact on the achievable secrecy rateardata transmission phase.

The main objective of this work is to examine the impact ofrbodnventional and DCE-type
training on the achievable secrecy rate of AN-assistecesgdreamforming schemes. Different
from previous works in the literature that focus on eithetirting or data transmission, we
consider the joint design and examine the role of AN in boththeafse phases. In this work,
the two-way DCE scheme proposed inl[13] is employed in thimitrg phase to prevent CSI
leakage to the eavesdropper, and the AN-assisted secraoyfdrening scheme is used in the
data transmission phase to mask the transmission of thedeotiil message. We first derive
bounds on the achievable secrecy rate of these schemed) af@icshown to be asymptotically
tight as the transmit power increases, and utilize them taiokrlosed-form approximations of
the achievable secrecy rate. Then, based on the approxseatecy rate expressions, optimal
power allocation policies for the pilot signal, the datansig and AN in both phases are obtained
for systems employing conventional and AN-assisted tngirichemes, respectively. We show
that the use of AN (in either training or data transmissia)often necessary to achieve a
significantly higher secrecy rate at high SNR, and that its instraining can be more efficient
than that in data transmission when the coherence time s ldowever, in the low SNR regime,
the use of AN provides no advantage in either training or d@asmission. In fact, allocating
resources for training can be strictly suboptimal in thgimee since it is difficult to obtain useful
CSI when power is scarce. Numerical results are providecetdyour theoretical claims.

The joint design of training and data transmission have beeestigated for conventional

MIMO point-to-point and multiuser scenarios (without ssmy constraints) in[[14] and [15],
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respectively. However, these issues have not been distusfere for physical layer secret
communications, where finding a reasonable approximatiothe achievable secrecy rate under
channel estimation errors, and coping with the non-Ganggieaused by the combination of AN
and channel estimation errors can be challenging. The itrgfamperfect CSI due to channel
estimation errors and limited feedback on the achievabieesg rate have been examined in
[16], [17] and [18], respectively. However, these worksus®n the achievable secrecy rate for
given estimation error statistics without considerationhow training should be performed and
how it can impact the error statistics. Moreover, CSI at tieesdropper is often assumed to be
perfect in these works to avoid the need to analyze the imgfachannel estimation error at the
eavesdropper. A preliminary study of our work was preseintgil9] for the case of conventional
training. The current work further considers the case of @dsisted training, provides rigorous
proofs of the theoretical claims, and examines the low SN$e.ca

The remainder of this paper is organized as follows. In 8adil, the system model and
the training-based transmission scheme are introduce8ettion[I], upper and lower bounds
of the achievable secrecy rate under channel estimatiaon are obtained. In Sectiofis]lV and
V] closed-form secrecy rate expressions and optimal poWlecadion policies are derived for
cases with conventional and DCE training, respectivelye @halysis of the secrecy rate with
training-based transmission scheme in the low SNR regintksisussed in Sectidn VI. Finally,

numerical results are provided in Sectlon]VIl, and a coroluss given in Sectiof VIII.

II. SYSTEM MODEL

Let us consider a wireless secret communication systenttimsiists of a source, a destination,
and an eavesdropper. The source is assumed torhardennas whereas both the destination and
the eavesdropper are assumed to have only a single antecimaTéee main and eavesdropper
channels (i.e., the channel from the source to the desimatid to the eavesdropper, respectively)
can be described by the vectdis= [hy,. .., h,,]T andg = [g1,...,g.,]", respectively, where
the entries are assumed to be independent and identicaliybdiied (i.i.d.) complex Gaussian
random variables with meanvariancess; ando?, respectively (i.e.CN (0, 07) andCN (0, o7)).

We consider a block fading scenario where the channel \@otonain constant over a coherence
interval of durationl’, but vary independently from block to block. By adopting @ning-based

transmission scheme, each coherence interval is dividedairtraining phase with duratiofy
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Fig. 1. Training-based secret transmission scheme thaisterof a training phase and a data transmission phase.

and a data transmission phase with durafignas illustrated in Figl]1. In the training phase,
pilot signals are emitted by the source (and/or the destimgto enable channel estimation at the
destination; and, in the data transmission phase, conidlenessages are transmitted utilizing
the estimated channel obtained in the previous phase.viAotjomethods proposed in [12], [13]
for training and in[[20] for data transmission, AN is util&zén the respective phases to degrade
the reception at the eavesdropper. Our goal is thus to ditertihe optimal resource allocation

between signal and AN, and examine the role of AN in these thases.

A. Training Phase - AN-Assisted Training

In conventional point-to-point communication systemsining is typically performed by
having the source emit pilot signals to enable channel esim at the destination. Most works
in the literature on physical layer secrecy, e.gl, [4], H4@P2], inherit such an assumption and,
thus, assume that the eavesdropper can also benefit fromldhéransmission and can obtain
a channel estimate that is no worse than the destinatioaxestingly, it has been shown more
recently in [12], [13] that secrecy can be further enhancgérhbedding AN in the pilot signal
to degrade the channel estimation performance at the eayge. By doing so, the difference
between the effective channel qualities experienced byléstination and the eavesdropper can
be enhanced and, thus, a higher secrecy rate can be achitmex].we consider in particular
the two-way discriminatory channel estimation (DCE) schepnoposed in[[13]. In the DCE

scheme, training is performed in two stages, i.e., the sevand the forward training stages. In
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the reverse training stage, a pure pilot signal is sent irr¢lierse direction by the destination to
enable channel estimation at the source; in the forwarditrgistage, a pilot signal masked by
AN is emitted by the source to facilitate channel estimaabnhe destination while preventing
reliable channel estimation at the eavesdropper. Hereghibanel is assumed to be reciprocal,
that is, the reverse channel can be represented as thedsanspthe forward channel vector,
i.e., ht. Therefore, estimation of the reverse channel providestliece with information about
the forward channel. Note that DCE can also be used in naproeal channels, as shown in
[13], but is not considered here for simplicity.

Let 7, and T} be the length of the reverse and the forward training stagepgectively, where
T, + Ty = T;. In the reverse training stage, the pilot sigeale C**! with sls, = T, is first

emitted by the destination and the received signal at theceozan be written as
Yr =V Pr Srht + Vr (l)

where P, is the power of the pilot signal in the reverse training stdgeis the channel vector
from the destination to the source, awig € C7-*™ is the additive white Gaussian noise (AWGN)
matrix with entries that are i.i.d’A/(0, o). Following the procedures given in[13], the source
first computes the minimum mean square error (MMSE) estiraitee channel based on the
knowledge ofs,. The channel estimate at the source is denotet bBnd the channel estimation
error isAh, = h — h. The variance of each entry dh, can be written as

1 PT\ "
Uih,. = <_2 + ) . (2)

2
Oh o

Then, in the forward training stage, the source emits aitrgisignal with AN placed in
the null space of the estimated forward channel, he The signal transmitted in the forward
training stage is given by

Xs = /PS;+ AN, 3)

whereS; € CTr*™ is the pilot signal in the forward training stage w'ﬂﬁsf = i—fI, P; is the
power of the pilot signal in the forward training stadé;; < Cm—1xne is @ matrix whose rows
span the null space di and satisfiei\IﬁN%v1 =1,,_1, andA; € CTr*(==1 is the AN with
entries that are i.i.dCN (0, %). Hence, the total AN power in the forward training stage is

P;,. The signals received at the destination and the eaveseirapp then be written respectively
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as

yf:th+Vf: \/Pfoh—i—AfNﬁAhr—i—Vf, (4)
z; = X8+ wy=+/PSsg+ AsN;g + wy, (5)

wherev; andw; are the AWGN with entries that are i.i.dN(0,0%) at the destination and
the eavesdropper, respectively. The destination and thesdeopper are then able to compute
MMSE estimated andg of their respective channels. The channel estimation eotors are
Ah 2 h—handAg £ g — g, whose entries aré mean with variances
-1

= g rm) ©

and
-1
o3, = (Uig + 7}3?@ 1"5_2) , (7)

respectively. The channel estimdies fed back to the source for use in data transmission.

It is interesting to remark that, in the DCE scheme descrifi@olve, reverse training is first
performed to provide the source with knowledge of the chbba®veen itself and the destination
(but does not help the eavesdropper obtain information tal®ahannel from the source). This
knowledge is then used by the source to determine the AN plextin the forward training
stage so as to minimize its interference at the destinatiortonventional training, only the
forward training stage is required since AN is not utilizéal.this case, the training length is
T, = Ty (sinceT, = 0) and the forward training signal can be expressed simply as- \/?fsf.
Even though the time required for conventional trainingeissl than that of DCE (leaving more
channel uses for data transmission in each coherenceafjtettve achievable secrecy rate may

not necessarily be higher due to increased CSI leakage ¢2jet eavesdropper.

B. Data Transmission Phase - AN-Assisted Secrecy Beanmigrmi

Suppose that the source is able to obtain knowledge of thenehastimatéd through feedback
from the destination but has only statistical knowledgeheféavesdropper’s channgland also
g). Based on this channel knowledge, the source can themeuirlithe data transmission phase

an AN-assisted secrecy beamforming scheme [20] where ttebaaring signal is directed
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towards the destination while AN is placed in the null spaf:eﬁao jam the reception at the

eavesdropper. The transmit signal is thus given by

~

hf
Xa=1+/Pasa T + AgNy (8)

wheresy € CT#*! is the data-bearing signal vector whose entries are CiM(0,1), P, is the

power of the data signalN;, € C("~1*™ s the matrix that spans the null spacehodind satisfies

NHN;[1 =1I,,_1, and A, € CT+*("=1 js the AN matrix whose entries are i.i.dA (0, L=),

ne—1

Hence, the total AN power in the data transmission phade,.is
The signals received at the destination and the eavesdrappeaiven by

. . hf
va=Xsh+ X;Ah+vy=+Fy SdHhH + v/ P;sy Hﬁ” Ah + AdNﬁAh + vg, (9)

~ ~

hf hf
Zq = ng + XdAg +Wg = Pd Sdmg + Pd sdmAg + Adelg + Wy, (10)

wherev,; ~ CN(0,0°I) and w; ~ CN(0,0°I) are the AWGN vectors. The signal and AN

powers in both training and data transmission should gatisf total power constraint

A~

(PTTT+Pfo—|—Pfan+Pde—|—PaTd)/T < P. (11)

[1l. BOUNDS ON THEACHIEVABLE SECRECY RATE WITH CHANNEL ESTIMATION ERROR

In this work, we are interested in studying the impact of ANbwth training and data trans-
mission phases on the achievable secrecy rate of the schesoglskd in the previous section.
In particular, to communicate the confidential message ftbensource to the destination, we
consider a2"% nT) wiretap code that spans over the data transmission phasesasference
intervals. The code consists of an encodgithat maps the messagg ¢ W = {1,2, ..., 2""%}
to a lengthr block codewords]; and a decodet, that maps the received signg} into the
messagél € W at the destination. A secrecy rafeis said to be achievable if there exists a
sequence of2"T% nT) codes such that the average error probability at the déistingoes to
zero, i.e.,P\" £ ST D wew Pr(W # w|W = w) — 0, and the so-called equivocation rafé [4],
[23] converges to the average entropybf i.e., R 2 L H(IW|z3, h",g") — - H(W), as the
codeword lengtm — oco. Here,z; is the channel output at the eavesdropper eveoherence
intervals, andh™ andg” are the estimated channel vectors at the destination ares@mpper,

respectively, over the. coherence intervals. The equivocation rate provides a uneas the
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information obtained by the eavesdropper and is computegl line conditioning on knowledge
of both channel estimatds® andg™ at the eavesdropper (i.e., a worst case assumption).
Following the results in[2], an achievable secrecy ratenefgroposed scheme with imperfect

CSI can be written as
1 . -1 - .
R = ?I<Sd§}’d7h> - I(Sd;zd, h,g) = ff(sd;}’d‘h) - I(Sd; Zd|h7 g)7 (12)

where the equality follows from the fact thatis independent oh andg. Due to the presence of
channel estimation errors, it is difficult to express theiedible secrecy rate in a more explicit
form. However, we obtain, in the following theorem, upped dower bounds that will later be

shown to be asymptotically tight at high SNR in the cases undasideration.

Theorem 1 Suppose that channel estimation errakh and Ag are Gaussian with i.i.d. en-
tries. Then, forn, sufficiently large, the achievable secrecy rdteof the AN-assisted secrecy

beamforming scheme in Section1I-B can be bounded as

R—ARY < R< R+ ARW (13)

o Tig o, (1, Pilo = oAWIEL
T Pyo%, + P.,o%, + o2

2 2 \glhh'g
T, Pd<gg_0Ag> hll2
— E |log { 1+ — — .4
PdUAg+Pa(0§—0Ag) m“ i +P0Ag+a2

, (Pyol, + P.o%, + o)™ 1
AR®™ 2 —1og ( (2h0-2Ah " th)Td—l — TE llog (Palsall’oas + Pacan +0%)] . (15)

2 2 2 INg8l? 2 2\
(PdaAg + Poog —0p,) 25 + Paoi, + 0 )

ng—1

Ty—1

(Pa(o-Q _ UZQ)HNhg” + P UAg + 02>

g ne—1
N.o 2
H hg! +Paaig+a2>}. (16)

1
— ?E {log (Pd||sd||20'2Ag + Pa(aj — UZQ)

In the aboveh £ h/\/0} — 0%, andg £ &/, /02 — 03, are the normalized channel estimates

whose entries are all i.i.dCA(0,1). Notice thath and g are normalized so that they are

ng —

independent of the power allocation, i.&,, Py, Py,, Py, and P,.
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Details of the proof can be found in AppendiX A. This theorehnows that the achievable
secrecy rate can be bounded aroutdiven in [I3) when the aggregate of the channel estimation
error and the AN interference terms are effectively Gaussidese bounds are analogous to
those derived in[14] and [24] for conventional point-tostachannels. However, the proof of our
theorem requires large;, analysis to cope with the non-Gaussianity of the additioméde term
caused by the combination of estimation error and AN. Thenbeun Theorerill are applicable
regardless of the training scheme as long\dsand Ag are Gaussian. In the following corollary,
we show that the bounds are in fact applicable for both therexational and the AN-assisted

training schemes considered in our work.

Corollary 1 The bounds in Theored 1 hold when either conventional or #disted training

(i.e., DCE) schemes with linear MMSE estimation is adoptethe training phase.

The corollary can be shown as follows. In the conventioraahtng scheme, no AN interference
exists in the received forward training signals[ih (4) anddpd, thus, the estimation errdth
(and alsoAg) is indeed Gaussian and independenthofvhen employing the linear MMSE
estimation (which is also the optimal MMSE estimation irstbase)[25]. However, this is not the
case in AN-assisted training since the AN interfereAgdN; Ah, in (4) is non-Gaussian. Yet, by
applying Lemméall in AppendixJA, we can also show tAgiN; Ah, is asymptotically Gaussian
asn; — oo since Ah, is again Gaussian as a result of the MMSE estimation at thecsou
These bounds are utilized in Sectigng IV &and V to derive th@xad power allocation between
pilot, data, and AN usage in cases with conventional and Adistéed training, respectively.

IV. AN-A SSISTEDSECRECY BEAMFORMING WITH CONVENTIONAL TRAINING IN THE
HiIGH SNR REGIME

In this section, we first consider the case where AN is onlyliagpn the data transmission
phase, but not in the training phase. We first derive an appei®e secrecy rate expression based
on the bounds given in the previous section, and use it tordete the optimal power allocation

between the pilot signal in the training phase and the dataA&hin the data transmission phase.

A. Asymptotic Approximation of the Achievable Secrecy Rate

In conventional training (i.e., in the case where AN is nolizdd in the training phase), no

reverse training is needed and the forward training sigaallwe written asX; = |/P;S;. We
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assume that the training length is equal to the number obmnéinantennas, i.el; = Ty =
ns, which was shown to be optimal for conventional point-taApesystems without secrecy
constraints[[14]. Without AN, the signals received at thetih@tion and the eavesdropper in the

training phase can be written as

yf:\/Pfoh%—vf, (17)
Zf:\/Pfog—i-Wf, (18)

By employing MMSE estimation at the destination, the chaesémation error variances ifhl(6)
and [7) reduce to

2 2
2 00

= =2 19

UAh Pfo,}ZL _|_ 0,2 ( )

and

2 2
2 949

= 20

Tag Pfag + 02’ (20)

respectively. The signal model in the data transmissios@hamains the same as/in (8), (9), and
(10). Let us denote the achievable secrecy rate in this d¢aseif the case with conventional
training) by R...,. Then, by Theorern]1 and Corollary 1, we know that

Rconv - AR(l)

conv

S RCOI’IV S RCOHV _'_ AR(U) (21)

conv’?

where Reone, AR, and AR, are given by[(T4)[(15), an@ {1L6) witk,, ando3 , substituted
by (I9) and [(2D).

Let P*(P) £ (P;(P), P;(P), P;(P)) be the optimal power allocation (i.e., the power alloca-
tion that maximizes the achievable secrecy ratg,,) under power constrain®. To derive the
optimal power allocation, it is often necessary to obtaireaplicit expression of the achievable
secrecy rate, which is difficult to do in our case as remarkethé previous section. However,
we show in the following that the achievable secrecy ratesufi(P), i.e., R.on (P*(P)), can
be closely approximated b¥...,(P*(P)), for P sufficiently large. The dependence @his
often neglected in the following for notational simpliciffo express the result, note that two

functions f and g are asymptotically equivalent (denoted Py= g) if lim, .. f(x)/g(x) = 1.

Theorem 2 The maximum achievable secrecy ratg,,, (P*) under conventional training is

asymptotically equivalent t&COHV(P*) (i.e., Reonv(P*) = Reony (P*)) as P — oc.
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Moreover, we can show that, to achieve the maximum achievabtrecy rate, the powers
assigned to all components, including the pilot in the trggrnphase and the signal and AN in
the data transmission phase, should scale at least linedtyP (i.e., should not vanish with

respect toP as P — oo). The result can be stated as follows.

Corollary 2 P;(P) = Q(P), P;(P) = Q(P), and P;(P) = Q(P), where f(x) = Q(g(x))
denotes the fact that there exigts> 0 such thatk,g(x) < f(z) for all x sufficiently large[[28].

The proofs of Theorein 2 and Corolldry 2 can be found in AppeBtiNotice that, due to the
total power constraint i (11), all power components @fé°), wheref(z) = O(g(z)) indicates
that there existd, > 0 such thatf(z) < kqg(x) for all = sufficiently large. That is, all power
components increase at most linearly with Hence, combined with Corollafy 2, it follows that
the powers assigned to training, data, and AN should alesedctly linearly withP. In this case,

2

the channel estimation error variances uriBércan be written as3%, = % = ;‘3—; +o(3)
f“h
2 o 0'20'2 _ . . . o
and o}, = FrorTa® = P* - +0(%), where f(z) = o(g(z)) indicates thatlim f(z)/g(x) = 0

and, for P sufficiently Iarge, the achievable secrecy rate can be appeted as

Pj(op +o(1))|[h]]”
(P;+ Pr) (F +0 (%)) +02

~ T
Rconv (P*) :?dE IOg 1+

e
Pj(02+0(1))Ebh
_dap o1+ ! L 22)
(Pi+P;) (Fr+0 ($)) +Pi(03 + o 1) T 407
_ *gThh g
_Ta Pjoy|h| it mE
_?E log <P;+P; . 1) > — —E log ”Nhg”2 +o(1). (23)
P; CL ne—1
This follows from the fact thatP; (P) + P;(P))/ P; (P 1) sincePj(P)+ P (P) = O(P)

by the total power constraint anfl; (P) = Q(P) by Corollaryll

Notice that the approximate secrecy rate givef in (23)thtriccreases withP;, which implies
that one can always achieve a higher secrecy rate by inngetss power used for training. This is
because the increase of training power benefits the dastirat reducing both the effective noise
due to channel estimation error and the AN interference;redsonly the channel estimation
error is reduced at the eavesdropper. Therefore, the totaémpconstraint should be satisfied

with equality at the optimal point, i.eP; Ty + P;T; + P Ty = PT.
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In fact, for anye > 0 and forn, sufficiently large, it can be further shown that
PPy
P;+P;

Pr+Px
(—dp* + 1) o2
i

The derivations can be found in Appendik C. This lower bourm/igles an explicit description

+ %E log (o7 |R[*(1 —€))] + %ent +o(1) (24)

of the relation between the achievable secrecy rate andawerpallocated to each component.

B. Joint Power Allocation between Training and Data Trarssion

In this subsection, we propose a power allocation for thet gilgnal, the data signal, and AN
with the goal of maximizing the achievable secrecy rate. e\®y, instead of using the achievable
secrecy ratdi..,, (Whose expression is unknown) as the objective functionpme@ose a power
allocation policy based on the maximization of this loweubd. More specifically, let us first
setP, = (PT — P/Ty — Pj1,)/T, since the total power constraint must be satisfied. Then, by
removing all the terms that are irrelevant to the optimmatand by the fact that the logarithm

is a monotonically increasing function, we formulate thevpo allocation problem as follows:

Py(PT—P;Ty—PyT,)

(PT—P;Ty) N
%’z}% PT—P,T; 1 - JCOHV(Pf7 Pd) (25a)
PrTy
subjectto Py > 0,P; >0 (25b)
PT—Pfo—PTd>O. (25C)

Notice that the power®s, FP;, and P, = (PT — P;Ty — P,1,)/T, are constrained to be greater
than zero due to Corollafy 2.

By taking the first-order derivative of.,,,, and setting it to zero, we get the solution

PT\/T; PTVT; )

P}, Pp) = : (26)
) (n (VT + V) 203 (/T + V)
To verify that(PJf, Pz) is indeed the optimal solution of (25), it remains to be shdhat the

Hessian matrix at the poiritP;, P;), i.e.,

T}+wa /T+T, Ty

_ 2 Dk x\ _ 2PTT, PT
HJconv - v JCOHV(Pf7 Pd) - Tf d 2Td 9 (27)
~PT - PT
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is negative semi-definite. Sindd ;__ is real and symmetric, this follows from the fact that all

principal minors ofH ; __ are positive i.e.,

2
(=1)" det ([Hu,, Jqy.y) = — det (‘ 2PTT,

TR TTT; T3
- p272 - p277

due to Sylvester's criterion_[27]. Hence, the proposed poaldbcation that maximizes the

(—1)*det ([Hy.,.J1.23,01,2) = det (Hy,,.) >0

approximate secrecy rate in_(24) is given in the followingdtem.

Proposition 1 The power allocation that maximizes the approximate sgcrate in (24) is

( PT\/T; PTVT, PT/T; ) (28)
Ty ( .

B L) =\ 3 (T + V) 200 (/T + T 20 (T + V)

The effectiveness of this solution compared to the optinoavgr allocationP* (i.e., the one
that maximizes the achievable secrecy r&tg,,) will be verified numerically in Sectioh M.
This solution indicates that, with conventional trainirtige ratio between the energy used for
training and that for data transmission, i.8;7;/(P;T; + P;Ty), should be equal tg/T;/T;.
Recall that7; is equal ton, whereasl, increases with the coherence time. Hence, as the
coherence time increases, more and more energy shoulddmatalll to the data transmission
phase to support the increasing number of channel usesoMeErave can also see frofn (28) that
equal power should be allocated to data and AN in the datariresion phase. It is interesting
to observe that the solution does not depend on the chanriehvass; ando? since, for P
sufficiently large, the AWGN terms are negligible and, thihg, SNR at both the destination and
the eavesdropper are determined by the ratio between theireceived data and AN powers,
which experience the same channel gains when arriving at ribgpective receivers.

Furthermore, by[(23), we can observe that the achievabtesecate increases without bound
as P increases. However, this is not always the case when AN istilated in either training
or data transmission as to be shown in our simulations. Thidiés that AN is necessary (at
least in the data transmission phase) to achieve a secréeythat increases without bound
with respect toP. However, when the coherence time is large, the energyai#dcto training
becomes negligible and almost half the total energy is atext to AN in the data transmission

phase (according td_(28)). That is, only half the energy fistle transmit the actual message.
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However, if AN is further applied in the training phase (améan the DCE scheme [12], [13]),
the difference between the effective channel qualitiehatdestination and at the eavesdropper
can be enhanced, even before the data is actually trandmilthe proportion of AN needed in

the data transmission phase can then be reduced. This issgestin the following section.

V. AN-ASSISTEDSECRECY BEAMFORMING WITH DCE (I.E., AN-ASSISTED TRAINING IN

THE HIGH SNR REGIME

In this section, we consider the case where AN is used in duthtriaining and the data
transmission phases. This refers to the DCE and the ANtadss&crecy beamforming schemes
described in Sectioris THA arld !B, respectively. Simitarthe previous section, we first derive
an approximate expression of the achievable secrecy rdtéhan propose an efficient algorithm

for determining the power allocation between pilot, datad &N in both phases.

A. Asymptotic Approximation of the Achievable Secrecy Rate

Following Sectior]l, let the length of the reverse and thewfrd training signals be equal
to the number of antennas at the destination and the so@sgeatively. That is, we sé&f. = 1
and Ty = n,. To distinguish fromR,,,, in the previous section, we uskpcr to denote the
achievable secrecy rate of the system considered herela8inmtdy TheoreniIl, we can obtain

upper and lower bounds dtpcr as
Rpcg — ARS)CE < Rpce < Rpee + AR](D%E (29)

where the terms are given by {14),115), ahd (16) wit) and o3, equal to [6) and[{7).
Let P* = (P7, P}, P;, Py, Py) be the optimal power allocation that maximizes the achilevab
secrecy rateRpcg. Similar to the case with conventional training, we can atbow that

Rpce(P*) can be closely approximated Wypcx(P*), for P sufficiently large.

Theorem 3 The maximum achievable secrecy rétgcg(P*) under DCE training is asymptot-

ically equivalent toRpcg(P*) (i.e., Rpcr(P*) = Rpcr(P*)) as P — .

The scaling of the optimal power allocation can also be eefrias follows.

Corollary 3 P;(P) = Q(P) and P;(P) = Q(P), and that eitherP; (P) = Q(P) or P;(P) =
Q(P). Moreover, we have’:(P) = Q(P; (P)).
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The proofs of the theorem and the corollary can both be fonrippendixX(D. The corollary
shows that, to achieve the maximum acheivable secrecythetgyower allocated to the forward
pilot signal in the training phase and the message-beamgmaglisin the data transmission phase,
i.e., P;(P) and P;(P), should both increase linearly witR, and so should the power of at
least one of the AN terms (either in the training or data tnaission phases, or both). Moreover,
the reverse training power;(P) should scale at least as fast as the AN powgy(P) in the
training phase. This is because, with larger AN pow&(F), more power should be invested
in reverse training to ensure more accurate placement ofrAthie forward training stage.

By Corollary[3, the channel estimation error varianced )naigd [7) can be written as

o202
0%, = <P* e i ) = %i (1 + LU’%) (1+0(1) =o(1),  (30)

* 2
P* 02+P 2+U2+P*0h f U2+Prgh

since P7(P) = Q(P; (P)) and P;(P) = (P), and
) P} o, +o%o; Pj ol +0°
789 = P;os+ 0%+ Pjo; B P; +P;

(1+0(1)), (31)

5 g2402 . .
respectively. Notice that, ii (81), the ratfg}i—;; is at leastO(1), but may also be(1) if P;
does not scale as fast &. Then, for P sufficiently large, the achievable secrecy rate can be

approximated as

Pi(oj + 0( )]
(Pj+P:) 2 <1+ )(1 +o(1)) + o2

- T,
RDCE :TdE log 1+

02+P 0
_lag log | 1+ Fi (P}‘“D*(H (1>>) R (32)
* * o . N

T (P +-Po) [T (1 o(1))] P [ e (1-+-0(1))] INSEE 4
_Lig |1, PiPi(0® + Proy)oy||h|*/o?

|\ B (o7 + Picf + Piof) + Pl + Pich)

* Dk Thth
T, Pipro2ehhe
~7 B [log 1+ ST +o(1). (33)

(Pj+Py)(Pio2+0?)+PrPro2 NGBl 4 52 (pr 1 pr)
Following the approach used to obtaln](24) (c.f. Apperidix @@ can show that, for any
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¢ > 0 and forn, sufficiently large, the second term in_{33) can be approxahats

* Dk 2§TET§
Tag o [ 14 AT ey
g (Pi + Po) (P00 +0%) + PiPjoj(L =€) + 0*(P}, + Pf) T
* D* ZETETE
L ACHITT T
|l e, +o(l 34
7 |log |1+ (P; + Py)(Pfo2 + 0%) + P;Pjo2(1 —¢) + Tem—i-o( ) (34)

P* p* 2—TET— H 2
where e, = E|log (1+(P*+P* i Pfoq8 hh g/|[hll
d a

><P?f§+02>+P;P;ag||Nﬁ§|2/(m—1>w2<p;a+p;)> ‘A?] Pr(A%) — 0 as
n, — oo and A5 2 {||N;g|?/(n, — 1) — 1| > ¢'}. The equality holds since, by Corollary
B, either P} (P) = Q(P) or P;(P) = Q(P). Then, by further applying Jensen’s inequality to
[B4), we obtain from[(33) the following lower bound dthcg:
7 T, PiPi(c? + P 2 T 21112
Rpcr Z—dlog d f<g %) 4+ 2R [log Al }
T (Pj+P;) (0 +Pro2+ Py o}) +Pj(0*+Pro2) |~ T 2

Td P;P}ko'2 Td
R ; €, 1ol 35
! Og< TP+ o+ PP (=) ) T T +o(1)  (35)

It is worthwhile to note that, in this case, the length of thetadtransmission phase 1§ =

T — T, — Ty, which is different from that in the conventional case.

B. Joint Power Allocation between Training and Data Trarssion

Similar to the case with conventional training, we detemnine optimal power allocation by
maximizing the lower bound if (35). By the fact that the lathan is a monotonically increasing
function and by removing all the terms that are irrelevanthi optimization, we formulate the
power allocation problem as follows:

Pdpf(0'2 + PTO'}%)
max
Pr,Py Py, Pa,Pa (Py+P,) (02+ P.oj+ Py,0% )+ Py(02+ P,o})
y (Pd—i-Pa)(PfaO';—i‘O'z)+PanO'§(1—6,)
(Pd—i-Pa)(PfaUS—FUZ)—'—PanO';(l—6/)—|—Pdpf0'§

= JDCE(PMvaPfavpvaa) (36a)
subject toP, > 0, Py >0, P, > 0,P; > 0,F, > 0, (36b)
P.T, + Pfo + Pfan + P/, + P, = PT. (36C)
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Notice that the approximate secrecy rate expressioh ih f(8®ws from Corollary[3 where
it was shown that at least one of the two AN powers (eitRer( ) or P;(P), or both) scale
linearly with P. However, by the proof of Theorem 3 in Appendix D, we know ttie same
asymptotic secrecy rate can also be achieved by having aémpoomponents’,, Py, Py, , Py,

and P, scale linearly withP. In this case, the objective function can be further appnaxted as
~ PTPde (Pd+Pa)Pf +Pan(1—€,)
J PT7P 7Pa7P 7Pa - : - . 37
pes( B Py Fro FaFa) (Py+P,)(P;+P)+P.P; (Py+P,)P;+P,P;(1—¢)+PyP; 37)

Moreover, in [36), the total power constraint is replacedhvan equality in [(38c) since the

objective function increases monotonically with respectf (regardless of whethefpcg or
Jbcr is considered). This is because the increase of reversnmgapower does not benefit
the eavesdropper and can be set as large as possible. Hpthesgroblem is nonconvex and,
thus, is difficult to solve efficiently. To obtain an efficiesblution for this problem, we take a
successive convex approximation (SCA) approach where imetle problem into a sequence of
geometric programming (GP) problems using the monomial@a@mation and the condensation
method, similar to that done in_[28] and [12]. In the followinwe describe the procedures of
the SCA algorithm briefly using/pcr, as the objective function. The same can be done with
Jpce as well. Further details can be found in[28] ahd![12].

For convenience, let us consider equivalently the minitiopaof the inverse of the objective

function, i.e.,

[(Pa+P,)(Pr,+P)+ P.Pf|[(Py+ Po) Py, A+ PaPr(1—€ )+ Py Py
PrPde[(Pd—i—Pa)Pfa—FPan(l —6,)]

Notice that the denominator of;/,; is a posynomial function that can be lower-bounded as

P.P S P,P &2 1—¢)P,P &3
P.P;Py[(Py+P,)P;+P,Pr(1—€)] > P, PP, ( dg f“) ( : fa) (%) (39)
1 2 3

for any &, &, & > 0, where the right-hand-side is a monomial function. By sitlosg the

jB(IJE(Prvpf»Pfa»Pd»Pa) = . (38)

term with its monomial lower bound, we obtain a standard Géblem that is solvable in
polynomial time. In the SCA algorithm, this is done iterati until the solution converges.
In particular, suppose th&" ", PV, P~ P~ P~V is the solution obtained in the
(i — 1)-th iteration. Then, in the-th iteration, the denominator of . is replaced by the

monomial function

£ el 52
PP\ [ P.Py, 1—)P,P\ "
PP Py ( ! (i)fa> ( k ) (#) 7 (40)
& & &3
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Wheref((f) _ Py—l)P}i—l) +P£i—1)PJg—1) (- EI)Pa(Z Np 51 _ z 1)P;2—1)/§((]z')’ 522') —
PP el andel!) = (1 ¢)PETVPETY el The algorlthm is guaranteed to converge
to a stationary point of the problern [28]. The proceduressam@marized in Algorithni]1 and
the resulting solution is denoted B = (P, P}, P}, P, PY).

Algorithm 1 Power Allocation for AN-Assisted Training and Data Transsnon
1 Initialize: Give an initial set of feasible value(sP(0 PP, pyY PCEO),PéO)) and a conver-

gence threshold, > 0. Set iteration numbei := 0.

2: repeat
3 =1+ 1;
4 Set 5((]2 _ P(z l)PJE )+ P(z 1)P(z 1) + (1 o 6/)Pa(i—1)PJEi—1)’ §§z) _ chl_l)PJEi_l)/&(]Z),

&) = POVPIY ), andel) = (1— )PP e,
5. Find (P,fi),P}i), PJEZ),Pd("), Pf)) by solving the GP problem

i [(Pd+Pa)(Pfa+Pr)+P Pf][(Pd+P )Py, +P,Pr(1—¢€)+ PPy
PrPrPrsPaPs PPy Py(PyPy, J€0)8" (P, Py, J6567 (1 — €) P, Py g6

subjectto FP.>0,P;>0,P;, >0,P;>0,F, >0,

P.T, + Pfo + Pfan + P, + P,1, = PT.

Tt (PO PO PO PO PO b (P plimh) plEb pli-) pli-b)

JDCE<Pr(z 1) P(z 1) P(z 1) P(L 1) P(z 1)
7. Output (P, P, Pf, P;, Pr) = <P;>7P;Z>’Pjgi>7pé>7péi>) _

6: until

< €p.

C. Comparison with the Conventional Training Case

It is worthwhile to remark that, compared to the conventidraning scheme in the previous
section, the DCE scheme requires an additional symbol gp@nidhe training phase for reverse
training. This results in a smaller pre-log factor and, flausignificant loss in secrecy rate at high
SNR. However, in the following corollary, we show that the B&cheme can always achieve a

higher secrecy rate as long as the coherence time is sufficieng.

Corollary 4 LetP*

conv

be the solution given i28). Then, forP andn, sufficiently large, there

March 8, 2018 DRAFT



20

existsP = (Pr, Pfa7 Pf, Pd, Pa) such thatRDCE(P) > RCOHV(P:OHV) if

2
T > max {M, 22log,, (m) + 1} + ny. 41

u; 402

The proof can be found in Appendxl E. Corollary 4 implies thlaé DCE scheme can
outperform conventional training whéhnis sufficiently large, even though an additional channel
use is occupied by reverse training. This is because, witlk D@ining, the effective channel
qualities at the destination and the eavesdropper aredglneall-discriminated in the training
phase and thus a larger portion of energy can be allocatedttordther than AN in the data
transmission. Therefore, the achievable secrecy rateedD@E scheme increases faster than that
of conventional training as the coherence time increasese Mat Corollary 4 provides only a
sufficient condition on the coherence tirfie The advantage of DCE can actually be observed

for much smaller values df' as shown in our simulations.

VI. SECRECY RATE IN THE Low SNR REGIME

In this section, we examine the achievable secrecy ratetanddrresponding optimal power
allocation in the low SNR regime, i.e., in the case whete— oco.

Let u,(h) £ /Pys,|h| +\/Esd|‘h”Ah+AdN Ah be the summation of all terms other than
the AWGN iny, of (@). Then, we have

I(su; yalh) = / F(B) (s yalh = h)dh 42)

/f Sd7 ur ) -+ Vd)dh (43)

204
whereG(x,y) = E[|[Ely[x] — E[y]|*] andA(x;y) = tr{E [cov?(y[x)] —cov?(y)}. The equality
in (44) follows from the asymptotic expression of the mutudbrmation given in[[29, Theorem

/ f(k [loge s (1) + 2B A sy u (B) + ofo ) | dh, (ad)

1]. By direct calculation ofG(s,, u,(h)) and A(s4, u,(h)), and by taking the expectation over

h, it can be shown that

. loge
I(s4;yaqlh) = g (PdePfoUh + Pioa, T /2) +o(o™ ). (45)
Similarly, we have
~ loge
I(sq; 240, g) = U—i (PATuPy Tyt fny + Pioh T3/2) + o(a ™). (46)
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Notice that the first term ir.(45) is larger than that[inl(46)abfactor ofn; due to the processing

gain provided by transmit beamforming. By combining theahove obtain the following result.

Theorem 4 In the low SNR regime, the achievable secrecy rate of thaitrgibased transmis-
sion schemes is

loge )
Ry = —To'4 (PdePfo(O';lL — O'g/nt) + PjTj(aih — gig)/Q) + 0(0’ 4). (47)

Notice that the above secrecy rate does not depend on the Wisirg in the data transmission
phase, and that}, — o; ando}, — 0. aso” — oo regardless of the AN powePy, in the
training phase. Hence, the same asymptotic secrecy rateeachieved even without the use
of AN and, thus, all power can be allocated to the transmissioeither the pilot or the data
signals. However, it should be noted that the secrecy raf@dndecays a$/o* which is much
worse than that achievable when the noncoherent trangmissiheme, previously proposed
in [30] for conventional point-to-point channels (withosgcrecy constraints), is employed. In
fact, by directly applying the transmission schemelin [3D}He wiretap channel model under
consideration, we can achieve a secrecy rate that decaya®hlo?. This is because the secrecy
beamforming and AN-assisted training and data transnmissibemes considered in this paper
all rely on accurate channel knowledge, which is difficultolotain at low SNR, whereas the
noncoherent transmission schemelin [30] does not. This slioat one can actually do better

without training in the low SNR regime.

VII. NUMERICAL RESULTS

In this section, we verify numerically our theoretical ol and compare the achievable
secrecy rates of different training and power allocationesees. Unless mentioned otherwise,
the number of antennas at the source,is= 16, the coherence interval i8 = 480, the forward
training length isI’; = 16, and the reverse training lengths = 1 (when considering the DCE
scheme). The transmit SNR is defined /44> and the channel variances arg = o = 0.5.

In Fig. @, we show the approximate achievable secrecy fatg.(P: ) of the conven-

tional training case withP*

conv

being the proposed power allocation given inl(28) (labeled

as “Reony (Proposed)”) and compare it with the maximum valmgx RCOHV(P) obtained via
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Fig. 2. The achievable secrecy rafeo,, with different power allocations versus SNR.

exhaustive search (i.e.f%gOnv (Exhaustive)”). We can see that the approximate solutigargin
(28) is indeed near optimal at high SNR and yields ablodB improvement over the case with
equal power allocation among all components (i.&,.., (Equal)”). Moreover, by comparing
Reony (P2, ) with the optimized upper and lower bound%x{éwnv(?) + AR (P)} and
mgx{éwnv(P) — ARY.(P)}, respectively, (i.e., Reony + AR, (Exhaustive)” and Reon, —
AR, (Exhaustive)”), we can also see that the approximate sgcate expressiol&conv(ﬁ;nv)
indeed closely approximates the maximum achievable secaéeR...., (P~ ) (i.e., Theoreni2),

whereP*

¥ . 1S the power allocation that maximizég,,,, , sincemgx{RCOHV(P)—AREQnV (P)} <
Reon(Piane) < maxc{ Reony (P)+A R (P)} and R (P ) & max{ Reons (P) = ARG (P)} =
mgX{RCOHV(P) + AR, (P)} at high SNR, as shown in Fif] 2.

In Fig.[3, we show the approximate achievable secrecy Ratg:(P;) of the DCE training
case WithﬁgCE being the proposed solution obtained by Algorithm 1 (i.Bpéx (Proposed)”)
and compare it with the maximum valuagx }?DCE(P) obtained via exhaustive search (i.e.,
“Rpcr (Exhaustive)”). Again, the secrecy rate obtained with thheppsed solution rapidly
converges towards the maximum value obtained via exhausgarch as the transmit SNR

increases. A7 dB improvement is also observed when compared to the caseegital power
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Fig. 3. The achievable secrecy rafe cg with different power allocations versus SNR.

allocation. Moreover, since the optimized upper and IomMm§x{RDCE(P)+AR§éE(P)}
andmgx{RDCE(P) —ARS’CE(P)} maintains a constant difference as the transmit SNR ineseas
and, by Fig[B,Rpce(P; ) maintains between the two bounds, it follows that the déffiee
between the approximate and the actual rates, Rgee(Ppop) — Roce(Phor), WherePs . is
the power allocation that maximizdg,cr, becomes negligible compared &hcr(Phog)-

In Fig.[4, we compare the (approximate) achievable secraty of different transmission
schemes, namely, the case with conventional training {he.case where AN is utilized only in
the data transmission phase), the case with DCE trainirdyttea case where no AN is used in
either training or data transmission. Recall thhat=T"— Ty — T, whereT, = 1 in the case with
DCE training and i$) otherwise. We can observe that DCE training yields the besbpnance
even though an additional channel use is required for reveesning. Moreover, we can see
that, when AN is not used in either training and data transiois the achievable secrecy rate
becomes bounded as the transmit SNR increases, regartilgbstber we are looking aR,.ax
or the upper bound?,,ax + ARffé)AN. This indicates that the use of AN is critical to achieve
good secrecy rate performance in the high SNR regime.

In Fig.[8, we verify the effect of coherence time on the achide secrecy rate of the different

schemes. Here, the transmit SNR is fixed3atdB. The DCE scheme with suboptimal power

March 8, 2018 DRAFT



24

14

—B— Rpep (Proposed)
A Reono (Proposed)

=]

121

m
g 10H" O Ruoan + ARS?AN (Exhaustive)
(]
% —Q— Rpoan (Exhaustive)
<
S o0
s
) ]
g
g 0 %
w .
o
o)
2]
0 | | | |
0 5 10 15 20 25 30 35

Transmit SNR(dB)
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Fig. 5. The achievable secrecy rate with different scheneesug coherence time.

allocation refers to the power allocation used to prove tifictent condition in Corollary 4. The
suboptimal solution performs significantly worse than theppsed solution, but was sufficient
to yield the condition in Corollar{l4. In fact, with the proged power allocation, DCE is able
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to outperform conventional training with a coherence tinfieooly 70, which is considerably
smaller than the value50 required by the suboptimal power allocation. Yet, the faisestill
smaller than the valug58.25 predicted by Corollary14, where the result is more consemat
Moreover, by comparing betwee,c (Proposed)” and B, (Proposed)”, we can also see
that the advantage of utilizing AN in the training phase @ases as the coherence time increases.
This is because, by applying AN in the training phase, we diacate less energy to AN in the

data transmission phase and, thus, more energy to the acassage-bearing signal.

VIIl. CONCLUSION

In this paper, we examined the impact of both conventional AN-assisted training on
the achievable secrecy rate of the AN-assisted secrecyfbeamg scheme. Bounds on the
achievable secrecy rate were first derived and then utitaedbtain a closed-form approximation
that is shown to be asymptotically tight at high SNR. The appnate expression was then
adopted as the objective function to determine the powecation between pilot signals, data
signals, and AN in both training and data transmission phalse asymptotically optimal closed-
form solution was obtained for the case with conventiorgihtng whereas a successive convex
approximation approach was proposed for the case with D@iRitig. Furthermore, in the low
SNR regime, we showed that AN provides no gains in secreeyanatl, thus, is not needed in
either training or data transmission. Numerical simulaiavere provided to verify the tightness

of the bounds and the advantages of DCE over conventionalriga

APPENDIX A

PROOF OFTHEOREM[

Here, we first derive upper and lower bounds I¢,; y,|h) and I(s,; z4|h, &), and apply
them directly to obtain the desired bounds oy which is the difference of the two quantities.
The derivations of the upper and lower bounds are shown anly (,;y,|/h) whereas that of

I(sq4; z4/h, &) can be obtained similarly.

A. Lower Bound of/(s,; y4|h)

To derive the lower bound of(sy; y4|h), let us write
I(s4; yalh) = h(salh) = A(sqlya, ), (48)
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where h(sq[h) = h(ss) = Tylog(re) and h(salya,h) < By [1og ((ﬂe)Td Ciyis )] since

Gaussian maximizes entropy. He®€,, represents the covariance matrix @fgiven b, and

|A| represents the determinant &f. Moreover, for any estimatg, of s, giveny, and h,
we haveC,  ; < E (84 — 84)(sa — 84)T], where A < B denotes thatd — B is semi-

E,,y. i [(Sa — Sa)(sa — 84)1] ‘ Therefore, fors: =

salya,h
negative definite, and thu@smd’ﬁ‘ <

CdedmC;j‘ﬁyd (i.e., the LMMSE ofs, giveny, while assuming thah is known), we have
Ey,, [1og <(7T€)Td csd‘ydﬁ‘)}
< By, [By i [log ((re)™ |E, 1y, 5 [(5a = 85)(sa = 3511 )| (49)
T -1
<E; [log ((7T6) d Csdm — Csdyd‘];ICinl}AICded“;1 )] (50)
Py|[h|”

=E; . .

log ((we)Td Ir, —

T, )] ) (51)

Py||h|2 + Pyod, + P.od, + o2

where the last inequality follows from Jensen’s inequalitgnce, by combinind (48) ant_(51),

we have .
: Pyl h[f?
I(sq;yalh) > T4E; |1 1 52
(Sd7yd| ) = Ldgh Og( + Pdo_ih_i_Pao_gAh_i_oa ( )
B. Upper Bound off (s; y4|h)
To obtain the upper bound, we instead write
I(s4; Yd|f1) = h(Yd‘ﬁ) — h(yadlsa, fl) (53)

whereh(y,|/h) < Ej [log <(7T6)Td Cyd‘ﬁ))] since Gaussian maximizes entropy arfst,|s;, h) =
h(v/Py SdHB‘TTHAh + A N Ah + v4|sy, h) by @). Notice thath(y|ss, h) is difficult to evaluate
since A;N; Ah is non-Gaussian. Hence, we resort to the following latganalysis.

Lemma 1 Let A be atx (n—1) matrix with entries being i.i.dCA (0, -£5), N be a(n—1) xn
semi-unitary matrix such thaNINT = I, and Ah be ann x 1 vector with entries being i.i.d.
CN(0,0%,). Then,ANAh converges in distribution to a Gaussian vector with entfesng

i.i.d. CN(0, Pok,) asn — oc.

Proof: Let {N}, ; denote thei, j)-th entry of matrixN and letAh; denote thej-entry of

vector Ah. Then, we can define the vectbr2 NAh whosei-th entry can be written ab; =
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>_;{N}:;Ah;. Note thatb is a Gaussian vector with entries that are i.i.d. with meamd vari-
anceoy,, since, regardless of the value B, E[b;b;|N] = >, 5> {N}, ;{N}; [E[Ah;Ahj] =
o3y, fori =k, and0, otherwise. Then, it follows by central limit theorem thhet-th entry of
vectorANAh = Ab,i.e.,> {A}i;b; = \/_ > . {A}i;b;where{A};; £ n — T{A};; ~
CN (0, P), converges in distribution to a Gaussian random variabté wiean0 and variance
Pa}y,, asn — oo. Moreover, sincey . >~ E[{A}; jb;{A}, b] =0 fori # k (i.e., the entries
of Ab are uncorrelated), it follows thakb converges in distribution to a Gaussian vector with
entries that are i.i.dCA(0, Po3,,), asn — oo. |

By Lemmall (withn = n,, t = Ty, and P = P,), we know thatA;N; Ah is asymptotically

Gaussian as; — oo if Ah is Gaussian as well. Hence, foy sufficiently large, we have

I yalh) < By, [log ()™ |Cy 4 )| = B [log (7)™ | Cy )] (54)
‘ (PdHleZ+Pd0'2Ah—|—PaO'Zh+O'2> ITd
=E,; |log (55)
)Pdaihsdsjﬁ—(Paa?AhjLa?)ITd
B N T,
(PallBI+ Pao, + Pacd+0%) * (Packy+ Facy, +02)7
:Efl 10g - (56)
(Paody+ Paody, +0?)Te <(P o%,+o2)" %jq% )
Py[]|?
= T,E; |log | 1 TAR™. 57
“™h og( +PdU2Ah+Pa02Ah+U2 * 7
Similarly, it also holds, forAg Gaussian ana, sufficiently large, that
 &'hhig
T,E [log | 1+ ”N HHhH2 < I(sg; Zd|f1> g)
Pyok, + Po28- + Pood, + 02
gihhtg
4R )
<TyE llog | 1+ TNE +TAR (58)
Pyoi, + Pa, hg + P,o}, + 02

By combining the above bounds fdts,; y4|h) and I(s,; z4|h, &), we obtain the bounds of the

achievable secrecy rate in Theorem 1.
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APPENDIX B

PROOF OFTHEOREM[2/AND COROLLARY 2
A. Proof of Theorer] 2

Let us consider the linear power allocati®h = (P, Pay, Pay) = (af P, BaP, B, P) for some
positive constanta, 34, andj, such thatow, PTy + 8,PT,; + B, PT; < PT. Then, by Theorem
[, it follows that

éconv (Pl) ARconv (Pl) < Rconv (P*) < éconv (P*) + ARconv (P*) . (59)

Hence, to obtain Theoreim 2, it is sufficient to show tﬁ@JmV(Pl) —ARElo)nv(Pl) = ECOHV(P*) +
ARGn(P*), .8 Reons (P*) = Reons (P*) + ARG (P*), and lim ARG (P*)/ Reon(P7) = 0.

Specifically, by substituting®, into CI:Q) and [(2D), we can express the channel estimation
7ic” 7 :aP‘l-O( ). Then,

error variances as3;, = —tr— = +0(%) and 03, = il

ayPoi+o? chP P ajPo2+o?

it follows that

. T, P(o? h|?
(Ba+ Bu)P (ap+o( ))+o?
T BaP(o)+0(1)) 8
— 4R tog |1+ L ~ (60)
(BatBa) P (a * to(L ))wa (02 + o(1)) sl 2
Tug [ SePoRIRI 0P| T [, PR o) 1)
T Pl g2 po(1)| T B, P2 B o (p)
_ g'hh's
T B,Po?||h? T BaBgrs
:?dE 616 allbll : ;E log 1+% +o(1) (62)
(1) B
Ty
=T log P+ ¢1 + o(1), (63)
where p—
— g'hh'g
e 2 Lip {10, Baoilbl* | Tap log [ 14 TR (64)
TIIN-s2
T <Bd%f5a+1> 0.2 T /Ba”l:thgi‘
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is a finite constant that is independent®f and

ARCOHV(PI)
1 [(ﬁd"‘ﬁa) (ﬁ +o ( )) + 5. P ( _|_0(1)) Hl:;h_§1||2 42 Ty
= ?E log

|:BaP (a§+0(1)) I\Nhgll + B P (W-i-o (%))4_0—2
) %E{bg {(ﬁdHSdewa)P (o:v—ZPJrO @)) +5GP(U§+0(1))HTL1\?37_EF+02}} (65)

1 (6013 T +0(P)>Td 1
— 15 f1og gN” - [ (ﬂap 2 [N h_ng +0<P>)] _o(1).  (66)
(BuPo3 a5 +o(P)

Hence,

) T
Reone (P)) — ARY. (P)) = Td log P + ¢1 + o(1). (67)

conv

Moreover, by [I4) and(15), we can write

RCOHV(P*) _'_ A"RCOHV(,])*>
(@) T, Py h|?
S —E |:10g<1+ (20h UAh)H || ):|
T PioX,+Pr O‘Ah—l—a‘
1 * * 1 *
+ T log (PdO‘Ah + P aAh +o ) d—?E [log(Pd ||Sd||202Ah)] (68)
®) Ty / 2 2 2 112 1 * 2 2
< TEDO%U{? P (20Ah+1+(gh_0Ah>HhH ))} - TE [log(PstdH UAh)] (69)
T, 1 .
=T log P — 7 log (Pd aih) + ¢, (70)

wherec, £ (1/T)E [log((k’ (202Ah+1+(a,%—aih)||ﬁ||2))Td /||sd||2)} is a finite constant. The
inequality in (a) follows by eliminating the negative terf®...., (P*) in (I4) and by eliminating
some positive parts in the denominator of the first term a$ agein the second term ak R\,
in (I8); and (b) is obtained by upper-boundifg, F,, ando? by k’P, wherek’ is chosen such
that ¥’ P > max{P,, P,,c*}. By (B9), [6T), and[{70), it follows thaf;c%, = O(1) (since
otherwise the upper bound in_{70) would be smaller than theddound in[(67)). This implies

that AR, (P*) is a finite constant and, thus, we can write
T _
Reone (P*) + ARG, (P") < 7 E[log (1+ Pi (o} —o&,) [B]*)] + AR, (PT)  (71)

T
< leogP+c'2+0(1), (72)
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for some constant, 2 %R [log k' (07 — 0%, + 1)|[h]?] + AR (P*). By combining [67) and
(72), we obtain the desired restton, (P;) — ARG (P) = Reony (P*)+ AR (P*). Moreover,
sinceARlY, (P*) is finite, we havePlim AR (P*)/ Reony (P*) =0, which completes the proof.

B. Proof of Corollary( 2

The proof of the corollary relies on the fact that

RCOHV(PI) - ARU) (Pl) S Rconv (P*) + AR(U)

conv conv

(P7) (73)

for any linear power allocatiof?;.

Specifically, let us first consider the upper bound

@T, —

Reone(P*) < [log (1 + Pioi|[h|*/0%)] + ARG, (74)
)T,
<7 log (1+ Fjoi/o®) + ARG, (75)

where (a) is obtained by eliminating the negative term&ig,. () and by lower-bounding the
denominator of the first term by?, and (b) follows from Jensen’s inequality. By the argument
below [70), we know that’;0%, = O(1), and thus, R\ (P*) = O(1). Then, together with
(73) and [(67), we havéslog (1 + Pjo7/0?) + O(1) > Ztlog P + ¢; + o(1), which implies
that P;(P) = Q(P). Moreover, sinceP;o3, = Pjo;0/(Pjo; + o) = O(1), it also follows
that P;(P) = Q(P;(P)) = Q(P). Furthermore, since3, /o, = %732@ = 0O(1), we
know that Pyo},, = (Pioi,)(03,/0A,) = O(1). Therefore, the achievable secrecy rate can be

upper-bounded as

Rconv S Rconv + ARé’ZI)jV (76)
< &E log (1 + PioZ||hl||?/c?
S 7 [og( + Pjo,|h[*/o )}
e
P(52_g2 )Ehhg
_Lag g [14 (7~ 90) I +AR™) (77)
T Pja&%—P;(aE—a&)%+P;<72Ag+02
* _TETE *
o T _ T Pro28 218 4 o(Pr)
@ 4R [log(1+ o[ /0%)] - 4B |log | 14+ —— P —— ) | L ARW, (78)
T T Pro2 b2 4 o(Py)
*7TETE *
T, T, PrE&=f +o(Py)
= og P — Z9E |log [ 1+ = BI° + 5+ o(1), (79)
T T L INGE] .
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where ¢; = (T,/T)E [log (o7|h]?/0)] + ARl is a finite constant and (a) holds since
Pjoi, = O(1) and P;oi, = O(1). From [79), we can observe that the second term is a
negative finite constant only iP(P) = Q(P;(P)) which implies thatP*(P) = Q(P).

APPENDIX C
PROOF OF(24) IN SECTION[V]

By the weak law of large numbers (WLLN), we know tHa@¥; g||*/(n;—1) — 1 in probability

asn; — oo. That is, for anye > 0, we havePr(A.) — 1 (and, thusPr(A¢) — 0) asn; — oo,

where A, £ { ”1::3—_@1”2 — 1‘ < e}. Therefore, forn, sufficiently large, the second expectation

term in [23) can be written as

+ghh'g +g'hh'g
d |h|? d |h|? c c
E lOg 1 + *HTIEHQ Ae Pl" (Ae) + E log 1 + *”ThEHQ AE PI‘ (AE)
a (ne—1) a (ng—1)
i «g'hh'g «g'hh'g
d |2 d || c c
<E|log |1+ Pri—o) Ac| Pr(Ao) +E |log | 1+ —N.gl AZ| Pr(AS)  (80)
| a (ng—1)
<E |log |1+ 20 . 81
where
+g'hh'g
e 2F [log [ 14— | 4e| pr(ac 82
ne g + B ||NBEH2 € I'( e) . ( )
a (n¢—1)

Notice thate,, — 0 asn; — oo since the expectation inside_{82) is finite. Then, by apglyin
Jensen’s inequality to the first term in{81), we have

PR P Pr+ P
d |2 d a d
E (1 14+ — <1 1+ —2 ) <1 B 83
VMR- S °g< +P;<1—e>>— Og(P:(l—a)) (83)
Finally, by (23) and[(83), we have
T PP;P;* T. T
~ d w+ Py d 211112 d
Reony > T log (P;erj . 1) > + ?E [log (ah||h|| (1-— 6))} + T e +o(1) (84)
P
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APPENDIX D

PROOF OFTHEOREM[3 AND COROLLARY

A. Proof of Theorerl3

The proof of Theoreri]3 is an extension of the proof of Thedreim Appendix[B and, thus,
is explained more concisely in the following.

Specifically, let us also consider a linear power allocator= (Priy Priy Proyy Pag, Pay) =
(a,P,afP, ay, P, BaP, B, P), wherea,, ay, ay,, B4, and 3, are positive constants chosen such
that the total power constraint in_(11) is satisfied. SimitaAppendiXB, it is sufficient to show
here thatRpcg(P) — ARY.L(P) = Rpce(P*) + ARY..(P*) and ARY..(P*) = O(1).

By substituting?; into (@) and IU) we can write the channel estimation erroravees as

9 2
Th (Pfa m +o ) (ay, + a,)o?

oAn = 7 = P~ +o(P7h), (85)
Pfa 02+P 2 + o2 —I—PfIO' QpOf
Py, 102 + o2 a0
o= s = — - o(1). (86)

Pfavlog + 02 + PfJO’; ayg, +ay
Thus, we have

BaP(0F + o(1)) ||
(Ba+ Ba) 220 4 o(1) + o

2 ,Jr—'l‘,
Qfoy g'hh'g
Bal (af Fay T 0(1)) e

~ T,
Rpce(Pr) ITdE log [ 1+

Ty
T flee| Ir 2 o703 N2
(B + B) P (222554 0(1)) 4 B, P (522781 0(1)) B 4 2
(87)
T, Po?|h|?
_Lig | 1g Ba Zh|—LQ||U
T (Ba + Ba) f‘;T + 02
Ty ﬁdafg”H”z
— 7 |log [ 1+ 0 ez | | +o) (88)
d _'_ /Ba)afa _'_ /Baaf nt—1
Ty
= log P + ¢4 + o(1). (89)
wherec, £ 4R |log 2 L 5 — TR |log [ 1 + facy T'ET']; = | |. More-
T (Bar+Ba) LoD o2 ’ (BartBa)org, +Bacry o bE]

over, by substituting?, into (18), it can also be shown thmRDCE(Pl) = O(1). Hence, we
haveﬁDCE(Pl) ARDCE(Pl) L IOgP + O( )
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Furthermore, by following the derivations I {68)-[70)cén also be shown th#}; 0%, = O(1)
and, thus,Rpc(P*) + AR (P*) < Ltlog P+ O(1). Hence, it follows thatRpcg(P;) —
ARG (Py) = Rocs(P) + ARGs(PY).

B. Proof of Corollary( 3

The proofs of P;(P) = Q(P) and P;(P) = Q(P) are the same as those in Appenfix B
for the case with conventional training. Hence, we proveetteat eitherP;, (P) = Q(P) or
Py (P)=Q(P), and thatP}(P) = Q(P;,(P)).

First, let us recall that
Pio? — Pjo? (Pj’faaihr + 02)

P;a;‘; + P}ZUZAhT + 02

— 0(1). (90)

Due to the total power constraint, it holds thBfoj + P;ox, + o> = O(P). Therefore,
together with the fact thaP;(P) = Q(P), it follows that P; 03, = O(1). Then, by [2), we
,’jfa% — O(1), which implies thatP; (P) = Q(P;, (P)).

Finally, to show thatP; (P) = Q(P) or P;(P) = Q(P), let us rewrite the upper bound of

2 —
have P’} oy, =

the achievable secrecy rate as follow:
Rpce + AR (91)

T J—
< ZVE [log (1 + Pjof B[]

—t_
Filo} — ok, "i”
Prod, + Pilog — 0X,) 55 4P NOA, T O
* g'hh'g
T, T, Pi(og—0k)55
= log Py — —*E |log | 1+ — e +O(1). (93)
Prod,+Pi(os—0k,) 25+ Proi,+o°

The last equality comes from the fact tmRS‘%E(P*) = O(1) since Pjo%, = O(1). Then, by
the fact thatRpcp (P*) + ARSes(P*) > Rpos(P) — ARSL:(P) = Zlog P+ 0O(1), it follows
that the second term i (P3) must BE1). This implies that term inside the logarithm must be

O(1). By substitutingaig with (7) and usindgl’; = n,, this term can be written more explicitly
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as

7 T—
(2 2 \g'hh'g
Pd (O'g - UAg) R

% 2 2 2\ IINggl? 2
PdUAg+Pj(Ug—UAg) +P*0Ag+a

ne—1

* 4gThhg
Pde 9 |h|?

(Pi + Pi)oj(Pjucy + %) + PiPoySiEs + 0*(Fluoy + 0+ o3F))

Since P;(P) = Q(P) and P;(P) = Q(P), it is necessary to have eithét;(P) = Q(P) or
P;,(P) = Q(P) (or both) in order for this term to scale ay1). This completes the proof.

APPENDIX E

PROOF OFCOROLLARY [IN SECTION[V]

To distinguish between the conventional and the DCE casts)d denote the power al-
location in the conventional case & = (I, P,;, P,) and that in the DCE case a8 =
(Qr, Qy., Qr, Qu, Qo). The approximate achievable secrecy réggnv(ﬁ*) is given by [ZB) and
the optimal power allocatio* in the conventional case is given in{28). Corollaty 4 is v
by showing that a lower bound cffDCE(Q*), where Q* is the optimal power allocation in the
DCE case, is greater than an upper boundi’&tv(ﬁ*) if the condition in [41) is satisfied.

To obtain an upper bound faR...,(P*), let us first note, by WLLN, that|N;g|//(n, —
1) - 1 and g?,rTHBch:/||B||2 — 1 in probability asn; — 1. Therefore, by definingd! £

{|H(1:thg1H -1 < |EhbE 1| €}, the expectation inside second term bf](23) can be

P o
P*E hh g
lo d_ &)
& INLEI?
P* h
@ (ng—1)

log <1 + Fia- €)> + €, , wheree, — 0 asn; — oo. By substituting this into[(23), we have

A/

Pr(A)+E

lower bounded byE [log < ( ) A¢| Pr(A¢) =

P (1+e)
T, Pjo?||h|? T, Py(1— T,
Reone(P*) < Z2E |log 1o bl “og [ 1+ Fil=e) _ “2e +o(1)  (94)
T (P e 4 P ) T Pr(1+¢) T
+1 a
Py
T — P 21hll2(1
Tnt log ! +E {log M] +e o +o(l). (95)
o

sincel; =T — Ty =T —n, in the conventional training based scheme ﬁgd: ]5; (c.f. (28)).
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To obtain a lower bound fof%DCE(Q*), we consider the power allocation poli€¥ defined
such thatQt = ZLP; = 20 Pt, Q% = (1 — )P}, Q% = 1P}, Q) = P, and Q% = P}, where
7 is a constant in0,1). Since Q* is an arbitrarily chosen power allocation policy, it follsw
that Rpcg(Q*) > Rper(QF). Notice thatQ! is similar toP*, but with  portion of the training
energy moved to the reverse pilot signal and to AN in the ingiphase. It is also worthwhile
to note that, even though the power allocated to signal andrmtde data transmission phase,
ie., Q) = P;, andQ! = P, are the same, the total energy expended in the data trasismis
phase is smaller than that in the conventional training dhasbeme sincé, =7 —n; — 1 in
this case (i.e., an additional channel use is spent for seveaining). Hence, the total energy
consumed byQ! is actually strictly less than the constraiRf .

By the fact that all power components @ scale linearly withP as in?* and by substituting
O into (39), we have

. T—ny —1 Px o?|/hl? 2—y—(1—n)¢
Rpce(Q%)> 7 log 257 1+d +E {log h0-2 — log —ote +e€,, p+o(1)
4 _lbm g 7
Pr ni(1=y)
T—n —1 P; ap |k 2=y
> T log 2F 1o +1+E logT —logTE/Jrem +o(1).  (96)

Py ne(1-7)

By (@8) and [(9B), the difference betweé}ﬂ)CE(Q*) and Rconv(ﬁ*) can be lower bounded as

EDCE ( Q*) - Rconv (75*)

o (2L 4 1)
T—n, —1 <P* 1
p e A logAf——logj—log@—v)—i-e’
T ﬂ 1+n: + 1 1 — € m
Py ne(1-7)
1 P:o?|n|2(1 20 T
_ ?E IOg dth ||A ( + 6)/0 . TntEZt + 0(1) (97)
2P
T—n;—1 2<\/ T—n; +1) 1+e€ ,
- log — 1(+nt)+1_1Og1_€/_10g(2_7)+6m
T—n¢ ne(1—v
1 PTo?||h|?(1 2l T -
—E |log TulhlI*( +€)/UQ — nte',i +o(1) (98)
T 4 (g + VT =) "
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The expectation inside the second term[off (98) can be upperdsal as

21175112 2 21175112 2
PToj||h|*(1+¢€)/c <E |log PToj||h|]*(1+e€) <log Popng(1+e) . (99)
4 (Y + VT —m)’ AT o> 402

where the last inequality follows from Jensen’s inequalityerefore, the differencéDCE(Q*) —

E |lo

Reony(P*) can be further bounded as

RDCE ( Q*> — Rconv (75*)

>T—nt—1 log 2 < Tom T 1) 1 log Poing(1+€)
O —_—— -
- T g n T 402
( T—n¢ ntl(—’l_—fy) + ]‘) (2 - 7) g
T—n;—1 14+4e¢ T—my—1 T —ny
T log ot €, — 7 e, +o(1) (100)

When P andn, are sufficiently large, we can choose arbitrary small > 0 such that,,, €, ,

ando(1) can be neglected. Hence, f&DCE(Q*) — Rconv(ﬁ*) > 0, it is sufficient to have

2(mt VT —mns) 1o 7) > log (sznt)

(101)

T—n,—1)lo
( ! ) g(1+nt+(1—7) (T —ngn; 2—7 402

By selectingy = 1/2, the term inside the logarithm on the left-hand-side candveritten as

4nt—|—4\/ (T—nt)nt (127745—'—2\/ (T—nt)nt)—i—l()\/ (T—nt)nt (102)

6(1+n0) -3/ (T—no)ne 18(1+1)+9v/(T— o),
Notice that, if12n; + 2/(T — ny)n; > 20(1 + ny), i.e., if

4 10)?
T > M +ny, (103)

Uz

the left-hand-side of[(101) is lower bounded (¥ — n; — 1)log (10/9). Therefore, we have

Rpce(QF) — Reony (P*) > 0 if (T —1—ny)logy, (10/9) > log,, (Po?n,/40?), which yields the
sufficient condition
Po3n
T > 22log;, <ﬁ) +14n (104)

since (log;,(10/9))~! < 22. By (103) and[(104), we obtain the result [n](41).
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