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Sensor Pattern Noise Estimation Based on Improved
Locally Adaptive DCT Filtering and Weighted

Averaging for Source Camera Identification and
Verification

Ashref Lawgaly, and Fouad Khelifi, Member, IEEE

Abstract—Photo Response Non-Uniformity (PRNU) noise is a
sensor pattern noise characterizing the imaging device. It has
been broadly used in the literature for source camera iden-
tification and image authentication. The abundant information
that the sensor pattern noise carries in terms of the frequency
content makes it unique, and hence suitable for identifying
the source camera and detecting image forgeries. However, the
PRNU extraction process is inevitably faced with the presence of
image-dependent information as well as other non-unique noise
components. To reduce such undesirable effects, researchers have
developed a number of techniques in different stages of the
process, i.e., the filtering stage, the estimation stage, and the post-
estimation stage. In this paper, we present a new PRNU-based
source camera identification and verification system and propose
enhancements in different stages. First, an improved version
of the Locally Adaptive Discrete Cosine Transform (LADCT)
filter is proposed in the filtering stage. In the estimation stage, a
new Weighted Averaging (WA) technique is presented. The post-
estimation stage consists of concatenating the PRNUs estimated
from color planes in order to exploit the presence of physical
PRNU components in different channels. Experimental results
on two image datasets acquired by various camera devices have
shown a significant gain obtained with the proposed enhance-
ments in each stage as well as the superiority of the overall
system over related state-of-the-art systems.

Index Terms—Photo Response Non-Uniformity noise, Source
Camera Identification, digital image forensics.

I. INTRODUCTION

OVER the last decade, the use of digital image devices
has incredibly become widespread due to the advance

of digital technologies. Nowadays, every digital multimedia
device incorporates a camera for taking good quality pictures
at no cost. As a result, digital pictures constitute a reliable
means for testifying incidents and providing legally acceptable
evidence in courtroom. However, a digital picture can be
edited, transmitted and distributed easily with recent technolo-
gies such as Bluetooth and Internet. Therefore, knowing the
source of the image and verifying its integrity is essential in
forensic applications. The field of image forensics is concerned
with authentication, integrity verification and Source Camera
Identification (SCI) [1]. Over the last decade, a significant
number of attempts to extract features which characterize the
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camera device have been reported in the literature [1]–[27].
Fig. 1 shows the common process to produce a picture via a
digital imaging device. A digital device fingerprint could be
characterizing some of the following components; the Color
Filter Array (CFA) interpolation artifacts [2], [3], the lens
aberration noise [4], [5], sensor dust [6], Photo Response Non-
Uniformity(PRNU) noise [7]–[27].

This work addresses the problem of source camera identi-
fication and verification in image forensics based on PRNU
estimation. It is worth mentioning that the PRNU is the result
of imperfections caused by the manufacturing process due to
the lack of homogeneity of the silicon area in the imaging
sensor [28]. The noise due to sensor imperfections is a weak
signal of the same size as the output image denoted here by
K ∈ ℜω×ν , where ω × ν represent the dimension of the
sensor. Regardless of the sensor type, the final camera output
is expressed as [8] [10]

I = I0 + I0K +Θ (1)

where I0 is the original input image. I0K represents the
PRNU term and Θ is a random noise factor respectively. Note
that the effect of the sensor pattern noise K on the original
image follows a multiplicative rule. It has been reported in the
literature that the PRNU is very similar to a white Gaussian
noise and hence abundant in terms of the frequency content
and unique to every sensor allowing for reliable identification
even if the camera devices under investigation are of the same
brand and model. This also enables the investigator to verify
the authenticity of digital images and detect forgeries.

In the literature, there has been a growing body of research
devoted to source camera identification using the PRNU. The
PRNU estimation process can be divided into three stages, i.e.,
the filtering stage, the estimation stage, and finally the post-
estimation (enhancement) stage. In the filtering stage, a pattern
residual signal, also called the noise residue is obtained from
each image through the difference between the input image
and its filtered version.

r = I − F (I) (2)

where r is the noise residue containing the PRNU and F (·)
is the filtering process. In the estimation stage, the PRNU is
estimated from a set of noise residues. In the post-estimation
stage, the PRNU is enhanced further for better camera identifi-
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Fig. 1. Image acquisition process for an ordinary digital camera.

cation. The most widely known system was initially developed
by Lukas et al. [7] [8] in order to identify the origin of digital
images using the PRNU. It uses a set of images to extract a
noise residue from each image. The estimated noise residues
are then averaged to obtain a camera reference PRNU noise.
In [9] [10], the Maximum Likelihood Estimator (MLE ) was
applied to estimate the camera reference PRNU. In [10], the
authors proposed preprocessing steps to enhance the com-
monly used PRNU through Wiener filtering and zero-mean
operations. The rational is that there are artefacts which may
be shared by different cameras of the same model or brand
and this leads to a rise in false identification rates. In [11], the
authors noticed that the estimated PRNU with a commonly
used technique [8] does not have the characteristics of white
Gaussian noise. They proposed to whiten the noise residues
by using only the phase component in the Fourier domain.
The author in [12] pointed out that the PRNU obtained from
an image may be contaminated by its content especially if it
is characterized by edges, contours, and texture. His idea is
based on the assumption that the less trustworthy components
are the stronger signals components in a PRNU, and therefore
they should be attenuated. Nevertheless, attenuating strong
components from a signal may lead to reduction of the useful
PRNU components too [11]. In [13], an image sharpening
idea is used to amplify the high frequency content of PRNU
noise in images. This process can ensure a strong presence
of PRNU before estimation. In [14], the authors proposed an
improved technique based on the assumption that the large
element of the PRNU is more trustworthy and consequently
should be utilized in the matching stage, while other elements
are discarded. Another technique has been proposed in [15]
for suppressing the random noise contamination in the PRNU
noise. The aim of this approach is achieved by clustering
the PRNU pixels of similar values, the pixels of PRNU are
sorted a descending/ascending order. Next, every number of
pixels is averaged and the positions of the clustered pixels are
saved, in order to be applied noise residue of the tested image.
Theoretically, such process could generate a higher quality
reduced-size PRNU, which may lead to a more trustworthy
PRNU than its original full-size one. In [16] an approach based
on a Weighted Averaging (WA) technique to optimize PRNU
estimation was applied. The idea is based on the assumption
that images are acquired under different conditions making
the corresponding residual signals different from each other.
For instance, bright images provide better sensor pattern noise
estimation than dark images. Also, saturated pixels cause
undesirable noise in residual signals. In this approach the steps
of removing undesirable components are applied as proposed

in [10]. In [17], the Principal Component Analysis (PCA)
method was used to reduce the dimensionality of the PRNU
noise and attenuate the effect of scene details on the filtering
process. The idea underlying this algorithm is that the energy
of the noise residuals characterizing the reference PRNU is
concentrated in a small subspace of the entire eigenspace,
while the remaining energy represents undesirable (image-
dependent) noise components. Therefore, by preserving only
the most important subspace (characterized by the eigenvectors
which are associated to the most significant eigenvalues)
and then conducting the inverse PCA transform, the image-
dependent noise could be significantly attenuated. In [18],
the authors showed that the use of random projections can
significantly reduce the dimension of fingerprints without
affecting the camera identification performance. The authors
adopted a compressive sensing method to represent the sensor
fingerprints space by a dictionary.

Since the filtering stage contributes significantly to the
accuracy of PRNU estimation, the influence of denoising filter
has been discussed in [29] for forgery detection and [30] for
source camera identification. The authors show that the Block-
matching and 3D filtering (BM3D) algorithm [31] outperforms
the wavelet-based Mihcak’s filter [32] which was initially
adopted in [8]. In [33], it has been shown that the accuracy
of sensor pattern noise estimation can also be improved by
removing the denoising distortions. In [19], the author pointed
out that although the wavelet-based Mihcak’s filter has been
commonly accepted in the literature for estimating the noise
residue, it may spread the details and edges of an image
creating various disturbing signals around such areas. This
leads to a decrease in correlation between the noise residue and
the right PRNU. He introduced a PRNU estimation technique
using a combination of adaptive Wiener and median filtering in
the pixel domain. This suggested filtering approach is followed
by an enhancement strategy where only the pixels with high
probabilities of significant noise residue bias are retained.
Kang et al. [20] developed a filter based on an eight-neighbor
context-adaptive interpolation algorithm. In this technique the
local regions are classified into six types: vertically edged,
horizontally edged, smooth, right-diagonal edge, left-diagonal
edge and others. The method can estimate the center-pixel
values in different local regions since it is adaptive to local
image context. Consequently, the difference between the actual
values and the predicted ones could reduce the effect of the
edges while PRNU components are preserved.

Other attempts focused on color combination to exploit the
presence of the PRNU in different color planes. Indeed, the
authors in [21] proposed a color decoupling algorithm prior
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to the filtering stage to reduce the color interpolation noise
which is caused by the CFA. In [22], three color combination
schemes were proposed to obtain the final PRNU using the
red, green and blue channels. The basic idea is to extract the
PRNU from each color channel separately and then select the
pixel with the largest magnitude. Furthermore, the similarity
between the estimated PRNU and the noise residue is another
parameter which may affect the performance of the source
camera identification system. Initially, researchers adopted the
normalized correlation as in [7]–[10] and [12]–[19]. Then,
with the aim of reducing the effect of periodic noise contami-
nation and hence enhancing the false positive rate in SCI, the
peak to correlation energy (PCE) was proposed [23] [34]. The
main idea behind PCE is to consider the correlation between
the PRNU and shifted versions of the noise residue in order to
lessen the similarity which may exist between the PRNU of a
specific camera and the noise residue of an image taken by a
different camera. In [11], the authors used an improved version
of PCE called the correlation over circular cross-correlation
norm (CCN) by taking into account the negative values of
correlation between the PRNU and noise residues estimated
from images of different cameras. The CCN has been shown to
reduce the false positive rate to half of that with PCE. In [24],
a pre-processing technique based on spectrum equalization has
been developed to decrease the false identification rate. The
idea is to equalize the magnitude spectrum of the PRNU by
detecting and suppressing the memorable peaks according to
the local characteristics because such peaks in the spectrum
are likely to be created by periodic artifacts. More recently,
the PRNU has been used to detect forgeries caused by Hue
modification [35].

As discussed earlier, the process of source camera identi-
fication and/or verification has different stages. In this paper,
we present a new PRNU-based source camera identification
and verification system and propose enhancements in different
stages of the process. First, an improved version of the
Locally Adaptive Discrete Cosine Transform (LADCT) filter
is proposed in the filtering stage. In the estimation stage, a
new weighted averaging technique is presented. The post-
estimation stage consists of combining PRNU signals where
each is estimated from a color plane in order to exploit the
presence of physical PRNU components in different chan-
nels. Experimental results on two image datasets, acquired
by various camera devices, have shown a significant gain
obtained with the proposed enhancements in each stage and the
superiority of the overall system over related state-of-the-art
systems. The rest of this paper is structured as follows; Section
II describes the proposed system and discusses its different
components in detail. Experimental results and analysis are
provided in Section III. A conclusion is drawn in Section IV.

II. PROPOSED SYSTEM

Fig. 2 illustrates the proposed source camera identification
system. First, digital images are considered in the form of sep-
arate color channels. Then, an improved version of the LADCT
de-noising filter is applied to reduce the effect of scene details
on noise residues. Next, for efficient sensor pattern noise

estimation, the obtained noise residues are averaged using the
proposed WA technique. Finally, we propose to concatenate
the PRNUs estimated from the primary color planes in order
to exploit the presence of physical PRNU components in
different color channels. In camera identification, the noise
residue of a query image is compared to all PRNUs stored
in the database. The closest PRNU corresponds to the camera
which has been used to take the image. In camera verification,
however, the similarity between the noise residue and the
PRNU of a certain camera is compared to a given threshold in
order to verify whether the image is originated by the camera.
The system’s components will be discussed in more detail in
the next subsections.

A. Improved Locally Adaptive DCT filter

The Discrete Cosine Transform (DCT) has been broadly
adopted in applications of image processing including feature
extraction, quality assessment, filtering, and compression [36].
The Locally Adaptive DCT filter (LADCT) has a range of
advantages exceeding other filters that operate on full images,
such as wavelets and is meant to perform well on images
affected by image-dependent noise including the multiplicative
noise [37]. This gives a good reason for adopting this filter
because the PRNU is also multiplicative. The LADCT filter
operates on sliding blocks (local action filter), which could
offer more information about the local effect of noise on
the image in a better fashion [38]. Furthermore, it performs
well on different noise models such as Poisson and film-grain
types [39]. Finally, averaging multiple de-noised estimates for
each pixel in the block will overcome the problem of under-
shoots and overshoots which occur around the neighborhood
of discontinuities as a result of the Gibbs Phenomenon [40]
and this is directly related to the problem of scene details in the
estimated sensor pattern noise. The authors in [37] introduced
the LADCT filter for a type of noise that contaminates the
signal through a multiplicative rule. They used a sliding block
window to obtain de-noised estimates of neighboring and
overlapping blocks. The multiple estimates are then averaged
to suppress artifacts caused by undershoots and overshoots
around the highly textured regions. The threshold for each
block depends on the local mean of the block and the local
noise variance. This filter was referred to as LADCT1 in [37]
and is improved here. Since we are concerned with the
extraction of PRNU, which is a multiplicative noise, for source
camera identification, we take advantage of the LADCT1 filter.
To the best of our knowledge, this filter has not been used in
the field of image forensics. The main steps of LADCT1 are
summarized below.

1) The image is first divided into blocks of u × u pixels.
Let S be a horizontal or vertical shift (S = 1) between
two consecutive blocks. According to [37], the best
performance of the filter can be achieved when u = 8
and S = 1 (This is why number 1 is included in the
notation of LADCT1).

2) For each block b whose upper left corner is at (m, l),
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Fig. 2. Proposed source camera identification and verification system.

DCT coefficients are computed as

B(p, q) = c(p) c(q) ×
u−1∑
m=0

u−1∑
l=0

b(m, l) cos(
(2m+ 1)pπ

2u
) cos(

(2l + 1)qπ

2u
) (3)

where

c(i) =

{ √
2
u if 1 ≤ i ≤ u− 1

1√
u

i = 0

3) A threshold is computed for each block as

T = k σ b (4)

where k = 2.6 is a constant which controls the threshold
value. b refers to the local mean of the block and σ
represents the noise standard deviation.

4) Hard thresholding is applied on each DCT coefficient as

B′(p, q) =

{
B(p, q) if |B(p, q)| > T
0 Otherwise (5)

where B′(p, q) is the result of thresholding B(p, q).
5) The processed blocks are reconstructed in the pixel

domain using the inverse DCT as

b′(m, l) = c(p) c(q) ×
u−1∑
p=0

u−1∑
q=0

B′(p, q) cos(
(2m+ 1)pπ

2u
) cos(

(2l + 1)qπ

2u
) (6)

6) The final estimate for a pixel at (m, l) is computed by
averaging the multiple estimates at the same location
which were obtained from overlapping blocks due to
the shifting process.

It is worth mentioning that the conventional LADCT1 filter
uses the same threshold on blocks that are characterized with a
similar statistical mean regardless of their textural information
(see (4)). However, the filtering process inevitably removes a
portion of the image content along with the SPN and because
natural images are not stationary, it is sensible to set a varying
threshold, especially across blocks of small size (8×8), which
depends on their textural content that has been removed by
the filter. In order to adjust the LADCT1 filter for PRNU
estimation, we propose an improved version of the filter in
the following.

As illustrated by Fig. 3, we introduce two improvements
of LADCT1. The first improvement is based on estimating
the noise variance for every block independently using the
threshold as described above (Steps 1-6). This is to estimate a
block-dependent threshold which will be used in another stage
of the LADCT1 filtering. The proposed method for estimating
a threshold for each block consists of two phases as follows.
Let us define an estimate of the sensor pattern noise K as

K̂ =

∑N
i=1(Ii − f(Ii))∑N

i=1 f(Ii)
(7)

where Ii is the ith observed image and f(Ii) represents
its filtered version with the conventional LADCT1 where
σ2 = 0.002. Denote by nK the estimation noise for K where
K̂ = K + nK . In practice, the estimation noise nK is more
significant than the actual K since the correlation between
various estimates of k̂ obtained from different sets of images
of the same camera is normally very small (i.e. less than 0.2).
Given a block b, let us consider only the dominant portion of
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Fig. 3. Extraction of noise residues corresponding to a single color plane for PRNU estimation based on improved LADCT1.

noise in the model given in (1) as

Ib ≈ I0b + I0bKb (8)

If I0bKb is viewed as an additive noise, the block-dependent
threshold Tb can be given as [41]

Tb = k σb (9)

where k is a constant which can be determined empirically
(see (4)). σ2

b is the additive noise variance which can be
expressed approximately as1

σ2
b ≈ E[b2]σ2

Kb
(10)

where σ2
Kb

represents the variance of K within the block b. It
follows

Tb = k
√
E[b2] σKb

(11)

However, the estimate of σ2
Kb

cannot be obtained from (7)
because of the significance of nK as mentioned earlier. Indeed,

σ2
K̂

= σ2
K + σ2

nK
(12)

and likewise
σ2
K̂b

= σ2
Kb

+ σ2
nKb

(13)

where σnKb
represents the standard deviation of nK within

the block b. To overcome this issue, we instead take into
account the local presence of textural image content nKb

in
the estimate of K̂ by the conventional filter. The following
threshold is proposed for each block b

Tb = k
√
E[b2] σ

σK̂
σK̂b

(14)

where σ is the noise standard deviation as used in (4). The
idea underlying this threshold value is based on the fact
that the statistical variance of the estimated noise may vary
significantly across blocks. Therefore, blocks in which the
estimated noise K̂b has high variance should be filtered with
a relatively small threshold in the DCT domain to retain the
image content because the high activity in such blocks is likely

1In (10), the second moment of the observed image block Ib is assumed
to be equal to that of the original image block I0b .

to be from edges and texture (i.e. nKb
). On the other hand, a

low variance estimate of noise in a block could well represent
the actual sensor pattern noise and thus should be filtered out
with a relatively large threshold. σK̂ is used in the ratio as a
reference to measure the extent to which the estimated noise
has high or low activity in a specific block. Finally, the second
moment in (14) enables us to exploit bright regions more than
dark ones since the multiplicative nature of the sensor pattern
noise makes its presence stronger in bright regions. As for
the second method of enhancement, it is worth noting that the
LADCT1 filter was initially used [37] in just one direction.
This is sensible for image de-noising purposes since the size
of the filtered image has to be the same as the original one.
In our application, however, we can have two versions of the
filtered image and hence two PRNUs each estimated in one
direction (horizontal and vertical). The rationale behind this
process is to increase the size of the PRNU camera reference
and noise residue in order to reduce to probability of false
alarms (i.e. reduce the similarity between PRNUs and noise
residues of different cameras). Indeed, there could be some
components of the PRNU that are hard to estimate in the
horizontal direction but estimable in the vertical direction and
vice versa. We refer to the combination of the PRNU estimates
in the horizontal and vertical directions as LADCTHV

1 .

B. Weighted Averaging

The WA technique relies on the principle of unknown
signal estimation from noisy observations [42] [43]. As dis-
cussed earlier, the PRNU is estimated using N images Ii,
i = 1, 2 · · · , N . Denote by L the number of samples of
each image rearranged in one direction (i.e. vertically or
horizontally). In view of (1) and (2), the corresponding noise
residue can be expressed as

ri(j) ≈ I0i (j)K(j) + Φi(j) (15)
j = 1, 2 · · · , L

where Φi is an independent noise. For the sake of demon-
stration, let us assume that the images used for estimating the
PRNU represent smooth regions describing the same color
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information such as blue sky content (i.e., the variance of
I0i (j) is extremely small σ2

I0
i (j)

≪ 1). This may not be
true in practice but the development given below remains
valid to some extent as will be shown in experiments on
natural images of various content. Let ξ be a constant so that
ξ = 1

NL

∑N
i=1

∑L
j=1 I

0
i (j). It follows

ri(j) ≈ ξK(j) + Ψi(j)

= s(j) + Ψi(j) (16)

where s(j) = ξK(j) and

Ψi(j) = Φi(j)−K(j)(ξ − I0i (j))

≈ Φi(j) (17)

Here we are mainly interested in the sensor pattern noise
K. In view of (16) and (17), the problem of estimating the
PRNU from a set of N images can be seen as an estimation
of an unknown signal s(j) with j = 1, 2 · · · , L in a
noisy environment, i.e., using N noisy observations. The ith

observation ri is the sum of a signal s and a random noise
Ψi with zero mean and a variance for each observation equal
to σ2

i . The conventional method to estimate s consists of
averaging the observations [44]

ŝ(j) =
1

N

N∑
i=1

ri(j) (18)

In the rest of the paper, this technique is referred to as constant
averaging because each observation is equally multiplied by
the same weight which is a constant factor of 1/N. Most
state-of-the-art systems use the idea of constant averaging for
estimating the PRNU; this is based on the assumption that
each noise residue is a noisy observation of the PRNU because
images are acquired under different conditions, making the
corresponding noise residues distinct from each other. For
example, bright images provide better PRNU estimation than
dark images. Also, saturated pixels raise estimation errors
in residual signals [8]. However, constant averaging is not
optimal if the noise variance σ2

i changes from one observation
to another. Theoretically speaking, the WA technique offers
the closest estimation to the actual signal in terms of the
mean squared error [42] [45]. The estimated signal with WA
is described as

ŝ(j) =
N∑
i=1

wiri(j) (19)

where wi is a weight corresponding to the ith noise residue
ri. The optimal weight for the ith observation is given
by (See Appendix A)

wi =
1

σ2
i

 1∑N
k=1

1
σ2
k

 (20)

Obviously, the weights depend on the variance of undesirable
noise Ψi in each observation. As proposed in [42], the esti-
mated noise variance can be computed as

σ2
i =

∑L
j=1(n̂i(j)− n̄i)

2

L
(21)

with
n̂i(j) = ri(j)− r̄(j) (22)

where n̄i denotes the mean of the estimated noise n̂i and
r̄(j) = 1

N

∑N
i=1 ri(j) represents the average signal. The

estimated PRNU term with WA can be computed as

PRNU(j) =

N∑
i=1

wiri(j) (23)

C. Color PRNU concatenation

A challenging task for estimating the PRNU consists of the
color channel to take into consideration at each pixel location.
This is because of the three primary colors (Red, Green and
Blue), the sensor exhibits a physical noise pattern in one
color component only at each pixel location, while the other
components are estimated through interpolation involving the
neighboring pixels [8]. Some PRNU estimation techniques,
such as [19], [25], rely on the gray scale version of images to
extract the PRNU. Alternatively, the authors in [8], [17], [26]
estimated the PRNU from each channel separately and then
combined them linearly to derive a color-to-luminance PRNU.
The common rule for calculating the Luminance component
Y is

Y = 0.30 IR + 0.59 IG + 0.11 IB (24)

where IR, IG, and IB represent the red, green, and blue
channels respectively. Other techniques use only the green
channel in order to extract the PRNU as it contains more
physical PRNU information when compared to the other
channels [11] [27]. However, the linear combination of color
channels with fixed weights would include some interpolation
noise if a certain color location does not correspond to the
physical light information. Indeed, the combination of three
PRNU estimates may have an adversary effect on performance
because only one estimate corresponds to the actual PRNU
component while the two other estimates represent noise.
The noise estimates may cancel the actual one due to the
linear combination. On the other hand, if the green channel
only is used, the physical PRNU information which could
exist in other color components (red and blue) is not taken
into account. In [22], a non-linear combination is applied by
extracting the PRNU from each color channel separately, and
then the largest coefficient in magnitude at each location is
chosen. In this work, the PRNU is estimated from each channel
separately and then the resulting PRNUs are concatenated to
form a color PRNU. Similarly, a color noise residue can be
obtained from the test image through concatenation of the
three noise residues, each corresponding to a color plane. This
way the physical information characterizing the PRNU can be
exploited efficiently.

D. CCN similarity measure

Finally, the proposed system performs the Circular Correla-
tion Norm (CCN) as proposed in [11] to measure the similarity
between the PRNU x and the noise residue y estimated from
a query image. For a ω×ν query image, the size of the PRNU
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is ω′ × ν′ where ω′ = 2ω and ν′ = 3ν. The CCN measure is
defined as

CCN(x, y) =
ψxy(0, 0)√

1
ω′×ν′−|A|

∑
m1,m2 /∈A ψ

2
xy(m1,m2)

(25)

where A is a small neighbor area typically of size 11 × 11
around the central point at (0, 0), |A| is the number of pixels in
A, and ψxy(m1,m2) represents the circular cross-correlation
expressed as

ψxy(m1,m2) =

∑ω′−1
i=0

∑ν′−1
j=0 x(i, j)y(i⊕m1, j ⊕m2)

ω′ × ν′
(26)

where ⊕ is the modulo addition with i ⊕ m1 = (i + m1)
mod ω′ and j ⊕m2 = (j +m2) mod ν′.

III. EXPERIMENTAL RESULTS

In this section, a number of experiments have been con-
ducted to assess the performance of the proposed system. The
evaluation has been conducted using two different datasets;
our dataset and the Dresden Dataset [46]. Tables I and II list
the cameras used in each dataset with the technical properties
of each camera sensor. In this experimental evaluation, each

TABLE I
DIGITAL CAMERAS IN OUR DATASET.

Brand Resolution Sensor Images
Canon IXUS115HS-1 4000× 3000 1/2.3”, CMOS 250
Canon IXUS115HS-2 4000× 3000 1/2.3”, CMOS 250

Canon G10 4416× 3312 1/1.7”, CCD 250
Fujifilm S2950-1 4288× 3216 1/2.3”, CCD 250
Fujifilm S2950-2 4288× 3216 1/2.3”, CCD 250

Nikon Coolpix L330-1 5152× 3864 1/2.3”, CCD 250
Nikon Coolpix L330-2 5152× 3864 1/2.3”, CCD 250

Panasonic DMC TZ20-1 4320× 3240 1/2.33”, CMOS 250
Panasonic DMC TZ20-2 4320× 3240 1/2.33”, CMOS 250

Samsung pl120-1 4320× 3240 1/2.33”, CCD 250
Samsung pl120-2 4320× 3240 1/2.33”, CCD 250

Samsung L301 4000× 3000 1/2.3”, CCD 250
Sony DSC HX200V 4896× 3672 1/2.3”, CMOS 250

TABLE II
DIGITAL CAMERAS IN DRESDEN DATASET.

Brand Resolution Sensor Images
AgfaPhoto DC-733s 3072× 2304 1/2.5”, CCD 281
AgfaPhoto DC-830i 3264× 2448 1/1.8”, CCD 363

Kodak M1063-0 3664× 2748 1/2.33”, CCD 464
Kodak M1063-1 3664× 2748 1/2.33”, CCD 458
Nikon D200-0 3872× 2592 372.9 mm2, CCD 372
Nikon D200-1 3872× 2592 372.9 mm2, CCD 380

Panasonic DMC-FZ50-0 3648× 2736 1/1.8”, CCD 265
Panasonic DMC-FZ50-1 3648× 2736 1/1.8”, CCD 415

Sony DSC-H50-0 3456× 2592 1/2.33”, CCD 284
Sony DSC-H50-1 3456× 2592 1/2.33”, CCD 257

PRNU is estimated from 50 natural images captured by the
same sensor. To measure the effect of the image size on
performance, the extraction of PRNU has been carried out
by considering cropped blocks from the images with different
sizes,i.e., 128 × 128, 256 × 256 and 512 × 512. The blocks
are taken from the center of each image without affecting its
content.

A. Analysis of the system’s components
Since there are three contributions in the proposed system,

i.e. improvement of the LADCT1 filter, weighted averaging,
and color combination, it is sensible to assess each part
separately to highlight the improvements gained at each stage.
As mentioned earlier, 50 images have been used to estimate
the PRNU while the remaining ones are used as test images.
A pattern noise residue is estimated from each test image and
compared with the extracted PRNUS. For fair comparison,
however, the normal correlation coefficient is used at the
matching stage in this section since it was adopted in related
competing techniques. This also enables us to measure the gain
obtained when the CCN is used, instead, in subsection III-B. In
the identification experiments, the False Negative Rate (FNR)
and False Positive Rate (FPR) are computed to evaluate the
performance. Denote by yji the noise residue of a test image
i taken by a camera Cj whose PRNU is xj . Let ρ(yji ) be the
closest PRNU to yji according to the similarity measure used.
Given M different cameras where Nj is the number of test
images per camera Cj , the FNR for the jth camera is defined
as

FNR(j) = 100× Prob(ρ(yji ) ̸= xj) (27)
i ∈ {1, 2, · · · , Nj}

Likewise, the FPR for the jth camera is given by

FPR(j) = 100× Prob(ρ(yki ) = xj |yki ̸∈ Cj) (28)
k ∈ {1, 2, · · · ,M} ; i ∈ {1, 2, · · · , Nj}

The overall FNR and FPR given as FNR= 1
M

∑M
j=1 FNR(j)

and FPR= 1
M

∑M
j=1 FPR(j), respectively, are used in our

identification experiments.
1) Enhanced LADCT1 filtering: In this part, the advantage

of the proposed enhancements to the conventional LADCT1

filter for camera identification is demonstrated. The perfor-
mance LADCT1 and its improved versions are evaluated. Note
that the constant averaging is used to obtain the PRNU in
this part as we are concerned with the filtering process only.
With regards to the conventional LADCT1, the noise variance
for each image block is constant. In order to get the optimal
parameter setting for LADCT1, we tested different values for
the noise variance σ2 (see (4)). On both datasets, table III
shows that the best results can be achieved with a value2 of
σ2 = 0.002. Table IV depicts the identification performance
obtained when using LADCT1 in two directions, i.e., hori-
zontal and vertical which is referred here to as LADCTHV

1 as
well as the gain of the proposed enhancement with block-based
noise variance (i.e. using (14) ). For the sake of comparison,
three other filters used in the literature for PRNU estimation
have been listed, namely the wavelet-based Mihcak’s filter [8],
[32], the BM3D filter [31], and the predictive filter based on
eight-neighbor context-adaptive interpolation (PCAI8) [20]. It
can be seen that the proposed enhancements significantly re-
duce the FNR and FPR when compared with the conventional

2This optimal value ( σ2 = 0.002) is very likely to be the same on datasets
with different cameras. Otherwise, the forensic analyst may create two sub-
sets from the available images. One sub-set to estimate the PRNU and another
sub-set (i.e., a validation sub-set) to find σ.
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TABLE III
OVERALL FNR AND FPR RESULTS IN (%) ON BOTH DATASETS WITH VARIOUS σ2 .

Our Dataset Dresden Dataset
FNR FPR FNR FPR

σ2 128 256 512 128 256 512 128 256 512 128 256 512
0.012 42.38 19.81 9.50 3.53 1.65 0.79 55.80 31.06 12.13 6.20 3.45 1.35
0.007 35.54 16.42 8.81 2.96 1.37 0.73 48.12 24.40 8.31 5.35 2.71 0.92
0.004 32.96 14.77 7.81 2.75 1.24 0.65 41.64 18.99 5.56 4.63 2.11 0.62
0.002 29.50 14.62 7.38 2.46 1.22 0.62 36.47 16.28 5.41 4.05 1.79 0.60
0.001 30.15 14.73 7.42 2.48 1.24 0.62 37.00 16.60 5.41 4.14 1.85 0.61

TABLE IV
OVERALL FNR AND FPR RESULTS IN (%) ON BOTH DATASETS WITH DIFFERENT FILTERS.

Our Dataset Dresden Dataset
FNR FPR FNR FPR

Filter 128 256 512 128 256 512 128 256 512 128 256 512
Wavelet-based [8], [32] 24.96 12.15 7.08 2.10 1.06 0.61 30.48 11.40 2.95 3.37 1.20 0.37

BM3D [31] 27.85 13.00 7.08 2.38 1.04 0.61 34.64 14.65 3.00 3.97 1.55 0.40
PCAI8 [20] 43.58 22.15 9.92 3.47 1.91 0.85 44.93 23.53 6.81 4.92 2.89 0.95

Conventional (i.e. (4)) 29.50 14.62 7.38 2.46 1.22 0.62 36.47 16.28 5.41 4.05 1.79 0.60
LADCTH

1 with (14) 27.96 13.58 7.12 2.33 1.13 0.59 33.14 13.77 4.69 3.68 1.53 0.52
LADCTHV

1 with (4) 24.85 12.77 6.92 2.07 1.06 0.58 29.71 11.21 3.00 3.30 1.25 0.40
LADCTHV

1 with (14) 23.65 12.04 6.77 1.97 1.00 0.56 25.75 9.52 2.90 2.86 1.06 0.32

LADCT1 filter. With such enhancements, the proposed filter
outperforms other competing filters. Interestingly, BM3D and
PCAI8 perform worse than the wavelet-based Mihcak’s filter.
These findings are actually in perfect agreement with those
obtained in [24] (page 134, Fig. 5). This can be justified by
the fact that, in the original papers [20], [30] where these
filters were shown to outperform the wavelet-based Mihcak’s
filter, blue sky images were used to estimate the PRNU. This
suggests that the filters are very sensitive to the content of
images used. It is, however, worth noting that the assumption
on the availability of blue sky images may not be realistic in
practical forensic applications.

Since most of the computational complexity in PRNU
estimation is due to the filtering process, the computational
cost of the filters is evaluated here. The average running
time on a test image of size 512 × 512 is compared. All
the source codes were implemented in MATLAB and run on
a platform of an Intel Core Duo i7 − 4770 CPU 3.40GHz
with 16 GB of memory. We used the authors’ implementation
of the wavelet-based Mihcak’s filter and BM3D while we
implemented the other filters. The results in (ms) are depicted
in Table V. The computational cost of the proposed filter is low

TABLE V
CPU TIMES OF DIFFERENT FILTERING OPERATIONS.

Filter CPU Time (ms)
BM3D [31] 4344
PCAI8 [20] 3155

Wavelet-based [8], [32] 851
LADCTHV

1 1505

in comparison with PCAI8 and BM3D but is slightly higher
than that of the wavelet-based filter. It is, however, worth
mentioning that the main computational component in our
proposed filter is the DCT and inverse DCT applied on 8× 8
image blocks. Therefore, one can explore some parallelism to
run these transforms on image blocks of different locations
simultaneously since each block DCT (or inverse block DCT)

does not depend on the result of other block DCTs (or inverse
block DCTs).

2) Weighted averaging vs constant averaging: In the rest
of the paper, the improved LADCT1 filter, i.e., LADCTHV

1

with the proposed block-based adaptive threshold as given
in (14) is used unless otherwise stated. In this section, the
efficiency of the WA technique is illustrated. It is worth
noting that only the green channel is used for the PRNU and
noise residue estimation in this section. The analysis of color
combination methods will be discussed in the next experiment.
The results depicted in Table VI show that the WA LADCTHV

1

offers a clear improvement over the constant averaging-based
PRNU estimation with the LADCTHV

1 filter for both datasets.
This is true for all image sizes. As can be seen, significant
enhancements are obtained especially on the Dresden dataset
with image size 128×128 and 256×256, where the decrease
in FNR and FPR reaches 15% and 30% respectively. However,
smaller improvements have been achieved on our dataset.

3) Color PRNU evaluation: Here we adopt the WA tech-
nique discussed earlier. Different methods for combining color
channels in PRNU estimation are assessed. That is, the green
channel-based PRNU as suggested in [11] [27], the luminance
image-based PRNU estimation as mentioned in [19] [25],
the luminance PRNU method as proposed in [8] [17] [26],
and finally the color combination scheme developed in [22].
Note that the authors in [22] developed three schemes but
scheme 3 is used here because it has been found to deliver the
best performance. The results shown in Table VII reveal an
interesting finding in that the PRNU extracted from gray level
images seems to offer better source camera identification than
that of the green channel in both datasets. Also, it is clear that
the combination of the three RGB channels as proposed in [22]
outperforms the methods which use the green channel only,
the Luminance image and the luminance PRNU. Finally, the
proposed color concatenation achieves the best performance
among the tested methods.
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TABLE VI
OVERALL FNR AND FPR RESULTS IN (%) ON BOTH DATASETS WITH CONSTANT AND WEIGHTED AVERAGING METHODS.

Our Dataset Dresden Dataset
FNR FPR FNR FPR

Averaging 128 256 512 128 256 512 128 256 512 128 256 512
Constant 23.65 12.04 6.77 1.97 1.00 0.56 25.75 9.52 2.90 2.86 1.06 0.32
Weighted 23.58 11.12 6.69 1.96 0.92 0.55 21.69 6.62 1.79 2.41 0.74 0.20

TABLE VII
OVERALL FNR AND FPR RESULTS IN (%) ON BOTH DATASETS WITH DIFFERENT COLOR COMBINATION METHODS.

Our Dataset Dresden Dataset
FNR FPR FNR FPR

Method 128 256 512 128 256 512 128 256 512 128 256 512
Green plane [11] [27] 23.58 11.12 6.69 1.96 0.92 0.55 21.69 6.62 1.79 2.41 0.74 0.20

Luminance image [19] [25] 23.35 10.73 6.42 1.95 0.89 0.54 20.10 6.09 1.64 2.23 0.68 0.18
Luminance PRNU [8] [17] [26] 22.46 10.40 6.40 1.87 0.90 0.52 19.28 5.60 1.60 2.14 0.60 0.20

RGB scheme 3 [22] 22.46 10.58 6.30 1.87 0.88 0.52 18.31 5.41 1.55 2.03 0.60 0.17
Color concatenation 21.35 10.20 6.10 1.78 0.85 0.52 14.40 4.15 1.45 1.72 0.51 0.16

B. Comparison with state-of-the-art systems

In this section, the proposed system, referred here to
as Color LADCTHV

1 +WA, is assessed in comparison with
existing state-of-the- art systems, namely Basic PRNU [8],
the Maximum Likelihood Estimator MLE3 [10], Phase
PRNU [11], Color Decoupling estimator (CD PRNU) [21],
wavelet-based Mihcak’s filter followed by Weighted Aver-
aging (Wavelet+WA) [16], and Wiener-median PRNU [19].
The comparative analysis covers three different aspects, i.e.,
source camera identification, source camera verification, and
the purity of PRNU estimation. It is worth mentioning that
CCN has been used in the proposed system as described in
subsection II-D.

1) Source camera identification: In source camera identifi-
cation, the forensic analyst possesses a number of cameras
and the objective is to identify the camera used to take a
picture. Here, it is assumed that the picture has been taken
by one of the cameras available. Therefore, a test image is
assigned to a specific camera if the corresponding PRNU
provides the highest similarity when compared with the noise
residue extracted from that image as described earlier in
section III-A. The results of FNR and FPR on our dataset and
the Dresden dataset are depicted in Table VIII. As can be seen,
the proposed system provides the best performance on the two
datasets for all image sizes. The difference is more significant
on the Dresden Dataset with clear enhancements to FPR and
FNR exceeding 50% when compared with other techniques.
If one takes the Basic PRNU technique [8] as a reference
point, the Wiener-median PRNU technique [19] does not bring
clear improvements. It is, however, worth highlighting some
improvements with larger size images which suggest that the
technique is sensitive to the image size.

2) Source camera verification: The task of the forensic
analyst in source camera verification is to verify whether
a source camera has been used to acquire a given picture.
Because a threshold must be set in order to reach such a
decision, one can use a range of values in order to measure
the performance of the system, i.e., the False Acceptance
Rate (FAR) and the True Acceptance Rate (TAR), for each

3We note that the MLE technique [10] delivered adversary results for σ = 5
as opposed to the best performance shown here with σ = 3.

threshold value as will be described later. This leads us to
what is known in the literature as the Receiver Operating
Characteristics (ROC) curve. Again, 50 images per camera
are used to estimate the PRNU while the remaining images
are used in the testing. In this experiment, 23 cameras (our
dataset combined with the Dresden dataset) have been used
to calculate the values of similarity between each source
camera PRNU and the noise residues extracted from images of
different cameras. This enables us to calculate FAR as follows.
Denote by CCN(xj , yki ) the measure of similarity between
the PRNU xj of a camera Cj and the noise residue yki of an
image i taken by the camera Ck. Given M different cameras
and Nj test images per camera Cj , the FAR for each threshold
T can be determined as

FAR(T ) = Prob(CCN(xj , yk
i ) > T |yk

i ̸∈ Cj) (29)
(k, j) ∈ {1, 2, · · · ,M} ; i ∈ {1, 2, · · · , Nj}

On the other hand, the values of similarity between each source
camera PRNU and the noise residues extracted from images of
the same camera have been calculated and compared against
the same threshold value T to determine TAR as

TAR(T ) = Prob(CCN(xj , yj
i ) > T ) (30)

j ∈ {1, 2, · · · ,M} ; i ∈ {1, 2, · · · , Nj}

It is worth mentioning here that the process of removing the
shared component is conducted as proposed in [10] to reduce
the correlation between the PRNUs extracted from different
cameras. The ROC curve performance of the proposed system
along with that of existing state-of-the-art techniques are dis-
played in Fig. 4, 5, and 6 for various image sizes respectively.
In practical applications, it is extremely important to ensure

a sufficiently low FAR (the ROC performance against low
FPR is more critical); consequently, the horizontal axis of
all the ROC curves is adjusted to illustrate the detail of the
ROC at low FAR accordingly. The experimental results show
that the proposed system performs better than its competitors.
This is true for all image sizes. In Tables IX and X, the
TAR at fixed values of FAR (10−2 and 10−3) are depicted.
As can be seen, the systems perform differently in source

camera verification when compared to the results of source
camera identification. Indeed, the CD PRNU technique is
outperformed by the basic PRNU technique. Interestingly, the
Wiener-median PRNU technique appears significantly more
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TABLE VIII
OVERALL FNR AND FPR RESULTS IN (%) ON BOTH DATASETS WITH DIFFERENT TECHNIQUES.

Our Dataset Dresden Dataset
FNR FPR FNR FPR

Technique 128 256 512 128 256 512 128 256 512 128 256 512
Basic PRNU [8] 24.15 11.27 6.88 2.06 0.94 0.58 29.90 10.53 2.51 3.26 1.13 0.28

MLE [10] 23.54 11.04 6.35 1.96 0.91 0.53 28.45 10.34 2.46 3.16 1.12 0.27
Phase PRNU [11] 23.27 11.00 6.31 1.94 0.92 0.53 28.45 10.10 2.03 3.14 1.12 0.23
CD PRNU [21] 23.88 10.21 5.81 1.99 0.85 0.50 31.25 10.48 2.32 3.50 1.10 0.26

Wavelet+WA [16] 22.31 10.58 6.23 1.89 0.90 0.54 23.72 7.44 1.69 2.62 0.92 0.20
Wiener-median PRNU [19] 29.15 13.08 6.38 2.43 1.09 0.52 30.00 10.92 2.37 3.33 1.21 0.26

Color LADCTHV
1 +WA 21.27 9.85 5.46 1.77 0.82 0.48 14.11 3.96 0.93 1.74 0.70 0.10
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Fig. 4. Overall ROC curves with image size 128× 128.
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TABLE IX
TAR AT FAR=10−2 .

Technique 128× 128 256× 256 512× 512
Basic PRNU [8] 0.5660 0.7113 0.7608

MLE [10] 0.5730 0.8081 0.9286
Phase PRNU [11] 0.5878 0.7839 0.9317
CD PRNU [21] 0.3079 0.6460 0.7392

Wavelet+WA [16] 0.5929 0.8178 0.9283
Wiener-median PRNU [19] 0.5251 0.7906 0.9214

Color LADCTHV
1 +WA 0.6238 0.8227 0.9317

powerful than CD PRNU and Basic PRNU on images of size
256 × 256 and 512 × 512 and close to the phase PRNU.
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Fig. 6. Overall ROC curves with image size 512× 512.

TABLE X
TAR AT FAR=10−3 .

Technique 128× 128 256× 256 512× 512
Basic PRNU [8] 0.3358 0.4230 0.5289

MLE [10] 0.3527 0.6578 0.8965
Phase PRNU [11] 0.4480 0.6772 0.8970
CD PRNU [21] 0.0300 0.1480 0.3947

Wavelet+WA [16] 0.3116 0.6728 0.8734
Wiener-median PRNU [19] 0.3827 0.6820 0.8850

Color LADCTHV
1 +WA 0.4647 0.7321 0.9026

Surprisingly, CD PRNU performs worse than the Basic PRNU
and MLE in camera verification. Note that CD PRNU has been
shown in [21] to outperform MLE in a number of PRNU-
based image authentication experiments but these were slightly
different from ours. Indeed, in the ROC curves plotted in [21],
the authors estimated the values of TAR and FAR for an
individual camera by varying a certain threshold. This is a
single camera verification problem and such a different setting
could justify the different performance here since our varying
threshold is applied to multiple cameras in order to estimate
the overall TAR and FAR. In this context, it is worth noting
that experiments on single and multiple camera verification
were conducted by Swaminathan et al. in [47] where it was
shown that the performance of their system differs in each
experiment. Overall, the results of source camera verification
confirm the superiority of the proposed system.

3) Purity of the PRNU: In this experiment, we aim to
quantify the purity of the estimated PRNU with the proposed
system as well as with other competing systems. The idea
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underlying this experiment is that the similarity between
PRNUs extracted from the same sensor must be equal to the
highest possible value while the similarity between PRNU’s
estimated from different cameras must be minimum because
the actual PRNUs are statistically independent and similar to
a white Gaussian noise. Five PRNUs have been estimated
for each digital camera where each uses 50 different images.
Different block size values have been considered (64 × 64,
128× 128 and 256× 256). Similar to sub-section III-B2, we
have combined our dataset with the Dresden dataset to obtain
a consistent number of similarity measures. These measures
have been collected by comparing each PRNU with all other
PRNUs. The Equal Error Rate (EER) has been adopted in this
experiment to illustrate the purity of PRNU estimation for each
technique. The EER defines the point in percentage where the
false rejection rate (i.e., 100(1 − TAR)) becomes equal to
the false acceptance rate. This can be determined by finding a
threshold T ∗ so that FAR(T ∗) = 100(1−TAR(T ∗)). As can
be seen in Table XI, the proposed system offers the smallest
EER values. Interestingly, PRNU estimation with the Basic

TABLE XI
EER (%) ILLUSTRATING THE PURITY OF ESTIMATED PRNUS.

Technique 64× 64 128× 128 256× 256
Basic PRNU [8] 2.62 2.60 2.18

MLE [10] 2.20 1.31 0.007
Phase PRNU [11] 2.54 0.87 0
CD PRNU [21] 3.09 0.90 0

Wavelet+WA [16] 2.28 1.83 0
Wiener-median PRNU [19] 2.64 0.95 0

Color LADCTHV
1 +WA 2.17 0.51 0

PRNU technique and MLE is less accurate than that with
other competing techniques for the block size of 128 × 128
and 256× 256. This suggests that the estimation of the noise
residue from individual images plays a crucial role in source
camera identification and verification.

IV. CONCLUSION

In this paper, an efficient source camera identification and
verification system has been introduced. The idea uses an
improved locally adaptive DCT Filter followed by a weighted
averaging method to exploit the content of images carrying
the PRNU efficiently. Furthermore, since the physical PRNU
is present in all color planes, the estimated color PRNUs have
been concatenated for better matching. The system has been
thoroughly assessed where the gain obtained with each of
its components has been highlighted through intensive exper-
iments on two different image datasets considering various
image sizes. Finally, an experimental analysis covering three
application scenarios in digital image forensics has shown
the superiority of the proposed system over state-of-the-art
techniques.
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APPENDIX A
PROOF OF (20)

First, to obtain an unbiased estimation, the weights are
assumed to sum up to 1; that is [45]

N∑
k=1

wk = 1 (31)

Let us define the Mean Square Error (MSE) as

e =
1

L

L∑
j=1

(ŝ(j)− s(j))2 (32)

where ŝ is the estimated version of s as given by (19). In a
matrix form, the MSE can be expressed as

e = E[(WTX − s)2]

= WTE[XXT ]W + E[s2]− 2WTE[sX] (33)

where T is the transpose operation. X = [x1, x2, · · · , xN ]T

and W = [w1, w2, · · · , wN ]T . The gradient of the MSE in
respect to W is

∆W (e) = 2E[XXT ]W − 2E[sX] (34)

Minimizing the MSE leads to the following estimate

E[XXT ]W ∗ = E[sX] (35)

Under the assumption that the noise Ψi is centered (i.e., zero
mean) and independent of the signal s, we obtain

E[XXT ] = UTE[s2]U +


σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

N

 (36)

where U = [1, 1, · · · , 1] and E[sX] = E[s2]UT . From (35)
and (36), it follows

w∗
1σ

2
1 = w∗

2σ
2
2 = · · · = w∗

Nσ
2
N (37)

In view of (31) and (37), the weights can be deduced as

w∗
i =

1

σ2
i

 1∑N
k=1

1
σ2
k

 (38)
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