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Abstract

We analyze the distinguishability of two sources in a Neyman-Pearson set-up when an attacker is

allowed to modify the output of one of the two sources subject to a distortion constraint. By casting the

problem in a game-theoretic framework and by exploiting the parallelism between the attacker’s goal

and Optimal Transport Theory, we introduce the concept of Security Margin defined as the maximum

average per-sample distortion introduced by the attacker for which the two sources can be distinguished

ensuring arbitrarily small, yet positive, error exponents for type I and type II error probabilities. Several

versions of the problem are considered according to the available knowledge about the sources and the

type of distance used to define the distortion constraint. We compute the security margin for some classes

of sources and derive a general upper bound assuming that the distortion is measured in terms of the

mean square error between the original and the attacked sequence.
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Source Distinguishability under

Distortion-Limited Attack: an Optimal

Transport Perspective

I. INTRODUCTION

Adversarial Signal Processing (Adv-SP), sometimes referred to as adversary-aware signal processing,

is an emerging research field targeting the study of signal processing techniques explicitly thought to

withstand the attacks of one or more adversaries aiming at system failure. Adv-SP methods can be

applied to a wide variety of security-oriented applications including multimedia forensics, biometrics,

digital watermarking, steganography and steganalysis, network intrusion detection, traffic monitoring,

video-surveillance, just to mention a few [1]. Source identification is a common problem in Adv-SP, due

to its importance in several applications. In multimedia forensics, for instance, the analyst may want to

distinguish which between two sources (e.g. a photo camera and a scanner) generated a given document,

or whether a document has undergone a given processing or not. In spam filtering, e-mail messages

have to be classified either as spam or authentic messages. In 1-bit watermarking, the detector has to

decide whether a document is watermarked or not, while it is the goal of steganalysis to distinguish

between cover and stego-images. In yet other situations, the security of a system relies on the capability

of distinguishing the profile of malevolent and fair users.

In [2], a game-theoretic framework is proposed to analyze the source identification problem under

adversarial conditions. To be specific, [2] introduces the so called source identification game. The game

is played by a Defender (D) and an Attacker (A) and is defined as follows: given two discrete memoryless

sources X and Y with alphabet X and probability mass functions (pmf) PX and PY , and a test sequence

xn = (x1, x2 . . . xn), the goal of D is to decide between hypothesis H0 that xn has been drawn from X

and hypothesis H1 that xn has been generated by Y . The goal of A is to take a sequence yn generated

by Y and modify it in such a way that D classifies it as being generated by X . In doing so, D must

ensure that the type I error probability (usually referred to as false positive error probability Pfp) of

deciding for H1 when H0 holds stays below a given threshold, whereas A has to respect a distortion

constraint, limiting the amount of modifications he can introduce into yn. The payoff of the game is

the type II error probability, or false negative error probability Pfn, i.e., the probability of deciding for
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H0 when H1 holds. Of course, D aims at minimizing Pfn, while A wishes to maximize it. The above

scenario accounts for a situation in which PX corresponds to so-to-say normal conditions and PY refers

to an anomalous situation. It is the goal of the attacker to modify a sequence produced under anomalous

conditions in such a way that the defender does not recognize that the observed system exited the normal

state.

The analysis provided in [2] assumes that the defender is confined to base its analysis only on first order

statistics of xn. Under this assumption, [2] derives the asymptotic equilibrium point of the game when

the length of the test sequence tends to infinity and the false positive error probability is required to tend

to zero exponentially fast with decay rate at least equal to λ (λ is nothing but the error exponent of the

false positive error probability). Given two pmf’s PX and PY , a false positive error exponent λ, and the

maximum allowed distortion Lmax, the analysis in [2] permits to determine whether, at the equilibrium,

the false negative error probability Pfn tends to 0 or to 1 when n→∞. This, in turn, permits to define

the so-called indistinguishability region Γ(PX , λ, Lmax) as the set of pmf’s that can not be distinguished

reliably from PX when n→∞ due to the presence of the attacker. If PY ∈ Γ(PX , λ, Lmax), in fact, a

strictly positive false negative error exponent can not be achieved and the attacker is going to win the

game. A similar analysis is carried out in [3], [4] for a scenario in which PX and PY are not known,

and the statistics of the two sources are obtained through the observation of training sequences.

A. Contribution

A drawback with the analysis carried out in [2], [3], [4] is the asymmetric role of the false positive

and false negative error exponents, namely λ and ε (ε = limn→∞− 1
n logPfn). In such works, in fact, the

defender aims at ensuring a given λ, but is satisfied with any strictly positive ε. In this paper, we make

a more reasonable assumption and say that the defender wins the game, i.e. he is able to distinguish

between X and Y despite the presence of the adversary, if - at the equilibrium - both error probabilities

tend to zero exponentially fast, regardless of the particular values assumed by the error exponents. More

precisely, by mimicking Stein’s lemma [5], we analyze the behavior of Γ(PX , λ, Lmax) when λ→ 0 to

see whether, given a maximum allowable distortion Lmax, it is possible for D to simultaneously attain

strictly positive error exponents for the two kinds of error, hence permitting to reliably distinguish between

PX and PY . Having done so, we will adopt a different perspective and introduce a new distinguishability

measure, called Security Margin (SM), defined as the maximum distortion allowed to the attacker, for

which two sources can be reliably distinguished. As we will see, this is a powerful concept that permits to

summarize in a single quantity the distinguishability of two sources X and Y under adversarial conditions.
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In order to derive our main results, we look at the optimum attacker’s strategy already derived in [2]

and [4] from a new perspective, i.e. by paralleling it to optimal transport theory [6]. Doing so, in fact,

allows to derive a very intuitive and insightful interpretation of the optimum attacker’s strategy, and will

permit us to derive the SM for a wide class of pmf’s in both the discrete and the continuous case. A

fast numerical algorithm for the computation of the security margin between any two discrete pmf’s will

also be presented.

In the framework depicted above, the main results proven in this paper can be summarized as follows

1) We compute the best achievable false negative error exponent for a given distortion Lmax and for

a strictly positive, yet arbitrarily small, value of the false positive error exponent λ (Theorem 3,

Section IV-B);

2) We introduce the security margin (SM) concept as the maximum allowed distortion for which two

sources X and Y can be distinguished (in the adversarial setup defined in the paper) by ensuring

strictly positive error exponents of the two kinds and show that SM corresponds to the Earth

Mover Distance (EMD) between PX and PY (Definition 1, Section IV-B);

3) We extend the analysis to a version of the source identification game in which PX and PY are

known only through training sequences (Source Identification game with training data, SItr) and

show that the security margin does not change despite the fact that the SItr is in general more

favorable to the attacker than the SIks game where the exact statistics of the sources are perfectly

known to D and A (Theorem 6, Section V-B);

4) By relying on some results in the field of optimal transport theory, we present a number of ways

whereby the SM can be computed efficiently for both discrete and continuous sources (Section

VI);

5) We introduce a new version of the game in which the distortion constraint is expressed in terms of

maximum absolute distance between the sequence yn and the attacked sequence zn (Theorem 7,

Section VII). We then extend our analysis to the new version of the game. This is a very interesting,

yet not trivial, scenario, since in many practical applications the quality of the attacked sequence

is judged in terms of maximum distance (L∞ norm), rather than in terms of average distance.

It is worth stressing that point 4) complements and generalizes some recent studies in the field

of Multimedia security, namely [7], [8] regarding image counterforensics, and [9] related to perfect

steganography. As a matter of fact, all the solutions proposed in those papers can be seen as particular

instances of the general optimal transport problem addressed (and solved) in Section VI. Finally, point
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5) relies on a generalization of the results proven in [2], [3], [4], where the analysis was restricted to the

case of additive distortion measures. As we will show, such an analysis can be extended to the case of

L∞ distortion, opening the way to the application of our methodology to all the scenarios in which the

distortion constraint is applied uniformly to the elements of yn.

Some of the results presented in this paper have already been stated in [10]. With respect to [10],

however, the current paper contains a complete proof of all the main theorems, the extension to the case

of source identification with training data, the derivation of a fast numerical methodology to compute

the security margin between any two discrete sources, and the extension of the analysis to the case of

L∞ distortion.

The rest of this paper is organized as follows. In Section II, we introduce the notation used throughout

the paper, give some definitions and review some basic concepts in game theory. In Section III, we give

a rigorous definition of the addressed problem and summarize the main results proven in [2]. Section

IV is the core of the paper: we use optimal transport to shed new light on the addressed problem and

introduce the security margin concept. In Section V, we extend the analysis to cover the case of source

identification with training data. In Section VI, we derive the security margin for several classes of

sources, and provide an efficient algorithm to compute it when a close form solution can not be found.

Section VII extends the analysis to a situation in which the allowed distortion is defined in terms of L∞

distance. The paper ends in Section VIII, with some conclusions and highlights for future research. The

most technical proofs are given in the appendices to avoid interrupting the flow of ideas in the main

body of the paper.

II. NOTATIONS AND DEFINITIONS

In this section we introduce the notation and definitions used throughout the paper. We will use capital

letters to indicate discrete memoryless sources (e.g. X). Sequences of length n drawn from a source

will be indicated with the corresponding lowercase letters (e.g. xn); accordingly, xi will denote the i−th

element of a sequence xn. The alphabet of an information source will be indicated by the corresponding

calligraphic capital letter (e.g. X ). The probability mass function (pmf) of a discrete memoryless source

X will be denoted by PX , while the cumulative mass function will be indicated with CX . For the sake

of simplicity, the same notation will be adopted to denote the probability density function (pdf) of a

continuous random variable X . The calligraphic letter P will be used to indicate the class of all the

probability density functions. In addition, the notation PX will be also used to indicate the probability

measure ruling the emission of sequences from a source X , so we will use the expressions PX(a) and
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PX(xn) to indicate, respectively, the probability of symbol a ∈ X and the probability that the source

X emits the sequence xn, the exact meaning of PX being always clearly recoverable from the context

wherein it is used. Finally, we will use the notation PX(A) to indicate the probability of the event A (be

it a subset of X or X n) under the probability measure PX .

Our analysis relies extensively on the concepts of type and type class defined as follows (see [5] and

[11] for more details). Let xn be a sequence with elements belonging to a finite alphabet X . The type

Pxn of xn is the empirical pmf induced by the sequence xn, i.e. ∀a ∈ X , Pxn(a) = 1
n

∑n
i=1 δ(xi, a),

where δ(xi, a) = 1 if xi = a and zero otherwise. In the following we indicate with Pn the set of types

with denominator n, i.e. the set of types induced by sequences of length n. Given P ∈ Pn, we indicate

with T (P ) the type class of P , i.e. the set of all the sequences in X n having type P .

The Kullback-Leibler (KL) divergence between two distributions P and Q on the same finite alphabet

X is defined as:

D(P ||Q) =
∑
a∈X

P (a) log
P (a)

Q(a)
, (1)

where, according to usual conventions, 0 log 0 = 0 and p log p/0 =∞ if p > 0.

A. Game theory in a nutshell

A 2-player game is defined as a 4-uple G(S1,S2, u1, u2), where S1 = {s1,1 . . . s1,n1
} and S2 =

{s2,1 . . . s2,n2
} are the set of actions (usually called strategies) the first and the second player can choose

from, and ul(s1,i, s2,j), l = 1, 2, is the payoff of the game for player l, when the first player chooses

the strategy s1,i and the second chooses s2,j . A pair of strategies (s1,i, s2,j) is called a profile. When

u1(ss1,i, s2,j) +u2(s1,i, s2,j) = 0, the game is said to be a competitive (or zero-sum) game. In the set-up

adopted in this paper, S1, S2 and the payoff functions are assumed to be known to the two players. In

addition, we assume that the players choose their strategies before starting the game without knowing

the strategy chosen by the other player (strategic game).

A common goal in game theory is to determine the existence of equilibrium points, i.e. profiles that

in some way represent a satisfactory choice for both players [12]. The most famous equilibrium notion

is due to Nash. Intuitively, a profile is a Nash equilibrium if each player does not have any interest in

changing his choice assuming the other does not change his strategy. Despite its popularity, the practical

meaning of Nash equilibrium is doubtful, since there is no guarantee that the players will end up playing

at the equilibrium. A notion with a more practical meaning is that of dominant equilibrium. A strategy

is said to be strictly dominant for one player if it is the best strategy for the player, regardless of the
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strategy chosen by the other player. In many cases dominant strategies do not exist, however when one

such strategy exists for one of the players, he will surely adopt it (at least under the assumption of

rational behavior). The other players, in turn, will choose their strategies anticipating that the first player

will play the dominant strategy. As a consequence, in a two-player game, if a dominant strategy exists

the players have only one rational choice called the only rationalizable equilibrium of the game [13].

Games with the above property are called dominance solvable games.

III. THE SOURCE IDENTIFICATION GAME WITH KNOWN SOURCES

In this section, we give a rigorous definition of the problem considered in the paper. In order to make

our treatment self-contained and ease the understanding of subsequent derivations, we also summarize the

main results proven in [2]. With respect to [2], however, we adopt a different perspective that facilitates

the interpretation of the attacker’s optimal strategy as the solution of an optimal transport problem. As a

matter of fact, this can be considered as an important contribution of this paper, since the new perspective

opens the way to the adoption of a new, more insightful, methodology to analyze the structure of the

game and the achievable performance.

A. Definition of the SIks game and equilibrium point

We start with the definition of the source identification game with known sources (SIks). Given a test

sequence xn, we indicate with H0 the hypothesis that xn has been generated by PX and with H1 the

alternative hypothesis that xn has been generated by PY . In order to define the SIks game, we need to

define the set of strategies of D and A and the payoff function.

Defender’s strategies. The set of strategies of the Defender (SD) consists of all possible acceptance

regions for H0. More precisely, by following [2], we require that D bases its analysis only on the first

order statistics of xn. This is equivalent to ask that the acceptance region for hypothesis H0, hereafter

referred to as Λn, is a union of type classes1. Since a type class is univocally defined by the empirical

pmf of the sequences it contains, Λn can be seen as a union of types P ∈ Pn. We consider an asymptotic

version of the game and require that the false positive error probability Pfp decreases exponentially with

decay rate at least equal to λ. Under the above assumptions, the space of strategies of D is given by:

SD = {Λn ∈ 2Pn : Pfp ≤ 2−λn}, (2)

where 2Pn indicates the power set of Pn.

1We use the superscript n to indicate explicitly that Λn refers to n-long sequences.
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Attacker’s strategies. Given a sequence yn drawn from Y , the goal of A is to transform it into a

sequence zn belonging to the acceptance region chosen by D. Let us indicate by n(i, j) the number of

times that the i-th symbol of the alphabet is transformed into the j-th one as a consequence of the attack.

Similarly, we indicate by SnY Z(i, j) = n(i, j)/n the relative frequency with which the i-th symbol of the

alphabet is transformed into the j-th one. In the following, we refer to SnY Z as transportation map. Once

again, we explicitly indicate that SnY Z refers to n-long sequences by adding the superscript n. For any

additive distortion measure, the overall distortion introduced by the attack can be expressed in terms of

n(i, j); in fact we have:

d(yn, zn) =
∑
i,j

n(i, j)d(i, j), (3)

where d(i, j) is the distortion introduced when the symbol i is transformed into the symbol j. Similarly,

the average per-sample distortion depends only on SnY Z :

d(yn, zn)

n
=
∑
i,j

SnY Z(i, j)d(i, j). (4)

SnY Z determines also the empirical pmf (i.e. the type) of the attacked sequence. In fact, by indicating

with Pzn(j) the relative frequency of symbol j into zn, we have:

Pzn(j) =
∑
i

SnY Z(i, j) , SnZ(j). (5)

Finally, we observe that the attacker can not change more symbols than there are in the sequence yn; as

a consequence a map SnY Z can be applied to a sequence yn only if:

SnY (i) ,
∑
j

SnY Z(i, j) = Pyn(i). (6)

Equations (5) and (6) suggest an interesting interpretation of SnY Z , which can be seen as the joint empirical

pmf between the sequences yn and zn. In the same way, SnY and SnZ correspond, respectively, to the

empirical pmf of yn and zn.

By remembering that Λn depends only on the empirical pmf of the test sequence (i.e., on its type),

and given that the empirical pmf of the attacked sequence depends on SnZ only through SnY Z , we can

define the action of the attacker as the choice of a transportation map among all admissible maps, a map

being admissible if:

SnY = Pyn (7)∑
i,j

SnY Z(i, j)d(i, j) ≤ Lmax,
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where the second condition expresses the per-letter distortion constraint the attacker is subject to, and

Lmax is the maximum allowable (average) per-letter distortion. In the following, we will refer to the set

of admissible maps as An(Lmax, Pyn). With the above definitions, the space of strategies of the attacker

is the set of all the possible ways of associating an admissible transformation map to the to-be-attacked

sequence. In the following, we will refer to the result of such an association as SnY Z(yn), or SnY Z(i, j; yn),

when we need to refer explicitly to the relative frequency with which the symbol i is transformed into

the symbol j. In the same way, SnZ(j; yn) indicates the output marginal of SnY Z(i, j; yn)2. By adopting

the above symbolism, the space of strategies for the attacker can be defined as:

SA = {SnY Z(i, j; yn) : SnY Z(i, j) ∈ An(Lmax, Pyn)}. (8)

The payoff. Having fixed the maximum false positive error probability, we adopt a typical Neyman-Pearson

approach and let the payoff correspond to the false negative error probability, that is:

uD = −uA = −
∑

yn:Sn
Z(j;yn)∈Λn

PY (yn), (9)

where PY (yn) is the probability that the source Y outputs the sequence yn.

Equilibrium point. Given the above formulation of the SIks game, the main result of [2] is summarized

by the following theorem.3

Theorem 1. Let

Λn,∗ =

{
P ∈ Pn : D(P ||PX) < λ− |X | log(n+ 1)

n

}
, (10)

and

Sn,∗Y Z(i, j; yn) = arg min
Sn

Y Z∈An(Lmax,Pyn )
D(SnZ ||PX). (11)

Then Λn,∗ is a dominant equilibrium for D and the profile (Λn,∗, Sn,∗Y Z(i, j; yn)) is the only rationalizable

equilibrium of the SIks game, which, then, is a dominance solvable game.

2With regard to the input marginal, of course, we always have SnY (i; yn) = Pyn(i) ∀i.
3In this paper we use a different formulation of the theorem with respect to [2] so to adapt it to the new formalism based on

the concept of transportation map adopted here.
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B. Payoff of the SIks game at the equilibrium

Given the optimal acceptance region Λn,∗ and the optimum attacking strategy Sn,∗Y Z(yn), we can

introduce the indistinguishability region Γn(PX , λ, Lmax) as follows:

Γn(PX , λ, Lmax) = (12)

{P ∈ Pn : ∃ SnY Z ∈ An(Lmax, P ) s.t. SnZ ∈ Λn,∗}.

The indistinguishability region defines all the type classes (with denominator n) whose sequences can

be moved within Λn,∗ by the attacker. The problem with the above analysis is that it applies only to

types with denominator n and hence can not be used to decide whether the sequences generated by two

generic sources (not necessarily belonging to Pn) can be distinguished. In order to answer this question,

we can rely on the density of rational numbers in R, and let n tend to infinity. In this way we can define

the asymptotic counterpart of Γn, specifying whether two sources can eventually be distinguished for

increasing values of n [2]:

Γ(PX , λ, Lmax) = (13)

{P ∈ P : ∃ SY Z ∈ A(Lmax, P ) s.t. SZ ∈ Λ∗(PX , λ)},

where

Λ∗(PX , λ) = {P ∈ P : D(P ||PX) ≤ λ}, (14)

and where the definitions of SY Z(i, j), SZ(j) and A(Lmax, P ) are obtained immediately from those

of SnY Z(i, j), SnZ(j) and An(Lmax, P ), by relaxing the requirement that SY Z(i, j), SZ(j) and P (i) are

rational numbers with denominator n. More precisely, we can state the following theorem:

Theorem 2. For the SIks game, the error exponent of the false negative error probability at the

equilibrium is given by4:

ε = min
P∈Γ(PX ,λ,Lmax)

D(P ||PY ), (15)

leading to the following cases:

1) ε = 0, if PY ∈ Γ(PX , λ, Lmax);

2) ε 6= 0, if PY /∈ Γ(PX , λ, Lmax).

4Here and in the rest of the paper, the use of the minimum instead of the infimum is justified by the compactness of

Γ(PX , λ, Lmax) and other similar sets defined in the following.
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D(P ∗λ ||PY ) = ε

PY

P ∗λ

Γ(PX , λ, Lmax)

PX

Λ∗(PX , λ)

Fig. 1. Geometric interpretation of Γ(PX , λ, Lmax) and Λ∗(PX , λ) by the light of Theorem 2.

Given two pmf’s PX and PY , a maximum distortion Lmax and the desired false positive error exponent

λ, Theorem 2 permits to understand whether D may ever succeed to make the false negative error

probability vanishingly small and thus win the game. Then, Γ(PX , λ, Lmax) can be interpreted as the

region with the sources that cannot be reliably distinguished from PX guaranteeing a false positive error

exponent at least equal to λ in the presence of an adversary with allowed distortion Lmax, where by

reliably distinguished we mean distinguished in such a way to grant a strictly positive error exponent for

Pfn. A geometric interpretation of Theorem 2 is given in Figure 1.

IV. THE SECURITY MARGIN

In this section, we use the optimal transport interpretation of the attacker’s strategy to introduce a

measure of source distinguishability in the set-up defined by the SIks game.

A. Characterization of the indistinguishability region using Optimal Transportation

To start with, we find it convenient to rephrase the results described in the previous section as an

optimal transport problem [6].
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Let P and Q be two pmf’s defined over the same finite alphabet, and let c(i, j) be the cost of

transporting the i-th symbol into the j-th one. In one of its instances, optimal transport theory looks for

the transportation map that transforms P into Q by minimizing the average cost of the transport. By using

the notation introduced in the previous section, this corresponds to solving the following minimization

problem:

min
SY Z :SY =P,SZ=Q

∑
i,j

SY Z(i, j)c(i, j). (16)

A nice interpretation of the problem defined by equation (16) is obtained by interpreting the pmf’s P and

Q as two different ways of piling up a certain amount of earth, and c(i, j) as the cost necessary to move

a unitary amount of earth from position i to position j. In this case, the minimum cost achieved in (16)

can be seen as the minimum effort required to turn one pile into the other. Due to such a viewpoint, in

computer vision applications, the minimum in equation (16) is usually known as Earth Mover Distance

(EMD) between P and Q, [14]. However, while the definition of the EMD given in [14] refers in general

to signatures (non-normalized distributions with unequal masses), here the pilings of earth P and Q

are probability mass functions. In this case, when c(i, j) = d(i, j)p for some distance measure d (with

p ≥ 1), the EMD has a more general statistical meaning. Given two random variables with probability

distributions PX and PY , the EMD between PX and PY corresponds to the minimum expected p-th

power distance between the random variables X and Y taken over all joint probability distributions PXY

with marginal distributions respectively equal to PX and PY :

EMDdp(PX , PY ) = min
PXY :

∑
y PXY =PX∑
x PXY =PY

EXY [d(X,Y )p]. (17)

In transport theory terminology, expression (17) is the p-th power of the Wasserstein distance [15], [6]

(or the Monge-Kantorovich metric of order p [16], [17]). In particular, when c(i, j) = |i − j|2 (i.e.

d(i, j) = |i − j| and p = 2) the earth mover distance is equivalent to the squared Mallows distance

between PX and PY [18], that is

EMDL2
2
(PX , PY ) = min

PXY :
∑

y PXY =PX∑
x PXY =PY

EXY [|X − Y |2]. (18)

In the following, we will continue to refer to (16) as EMD(P,Q). We also observe that even if we

introduced the EMD by considering finite-alphabet sources, there is no need to restrict the definition in

(17) and (18) to discrete random variables. In fact, in the second part of the paper, we will extend our

analysis and use the EMD to measure the distinguishability of continuous sources.
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Optimal transport theory permits us to rewrite the indistinguishability region in a more compact and

easier-to-interpret way. In fact, it is immediate to see that equation (13) can be rewritten as:

Γ(PX , λ, Lmax) = (19)

{P ∈ P : ∃ Q ∈ Λ∗(PX , λ) s.t EMD(P,Q) ≤ Lmax},

where in the definition of the EMD c(i, j) corresponds to the distortion metric used to constraint the

strategies available to the attacker.

B. Security Margin definition

We now study the behavior of Γ(PX , λ, Lmax) when λ → 0. Doing so will allow us to investigate

whether two sources X and Y are ultimately distinguishable in the setting defined by the SIks game.

The rationale behind our analysis derives directly from equations (13) and (14). In fact, it is easy to

see that decreasing λ in the definition of SD leads to a more favorable game for the defender, since

he can adopt a smaller acceptance region and obtain a larger payoff. Stated in another way, from D’s

perspective, evaluating the behavior of the game for λ→ 0 corresponds to exploring the best achievable

false negative error exponent, when Pfp tends to 0 exponentially fast.

More formally, we start by proving the following property.

Property 1. For any two values λ1 and λ2 such that λ2 < λ1, Γ(PX , λ2, Lmax) ⊆ Γ(PX , λ1, Lmax).

Proof: The property follows immediately from equation (19) by observing that Γ(PX , λ, Lmax)

depends on λ only through the acceptance region Λ∗(PX , λ), for which we obviously have Λ∗(PX , λ2) ⊆
Λ∗(PX , λ1) whenever λ2 < λ1.

Thanks to Property 1, we can compute the limit of the false negative error exponent when λ tends to

zero, as summarized in the following theorem (somewhat resembling Stein’s Lemma [5]).

Theorem 3. Given two sources X ∼ PX and Y ∼ PY and a maximum average per-letter distortion

Lmax (defined according to an additive distortion measure), let us adopt the following definition:

Γ(PX , Lmax) = {P ∈ P : EMD(P, PX) ≤ Lmax}; (20)

then the maximum achievable false negative error exponent ε for the SIks game is

lim
λ→0

lim
n→∞

− 1

n
logPfn = min

P∈Γ(PX ,Lmax)
D(P ||PY ). (21)
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Proof: The innermost limit in (21) defines the error exponent for a fixed λ, say it ε(λ). Thanks to

equation (15), we know that

lim
n→∞

− 1

n
logPfn = ε(λ) = min

P∈Γ(PX ,λ,Lmax)
D(P ||PY ). (22)

Then, according to Property 1, the sequence ε(λ) is monotonically non decreasing as λ decreases. In

addition, since Γ(PX , Lmax) ⊆ Γ(PX , λ, Lmax) ∀λ, for any λ > 0, we have:

ε(λ) ≤ min
P∈Γ(PX ,Lmax)

D(P ||PY ). (23)

Being ε(λ) bounded from above and non-decreasing, the limit for λ → 0 exists and is finite. We must

now prove that the limit is indeed equal to minP∈Γ(PX ,Lmax)D(P ||PY ). Let P ∗0 be the point achieving

the minimum in (21) and P ∗λ the point achieving the minimum on the set Γ(PX , λ, Lmax), i.e. the point

achieving the minimum in equation (15) (see Figure 1 for a pictorial representation of P ∗λ ). Due to Lemma

1 (Appendix A), for any arbitrarily small τ , we can choose a small enough λ such that, for any P in

Γ(PX , λ, Lmax), a pmf P ′ in Γ(PX , Lmax) exists whose distance from P is lower than τ . By taking

P = P ∗λ and exploiting the continuity of the D function, we have

D(P ′||PY ) ≤ min
P∈Γ(PX ,λ,Lmax)

D(P ||PY ) + δ(τ), (24)

for some P ′ ∈ Γ(PX , Lmax) and some value δ(τ) such that δ(τ)→ 0 as τ → 0. A fortiori, relation (24)

holds for P ′ = P ∗0 and then we can write

ε(λ) = min
P∈Γ(PX ,λ,Lmax)

D(P ||PY ) (25)

≥ min
P∈Γ(PX ,Lmax)

D(P ||PY )− δ(τ).

where δ(τ) can be made arbitrarily small by decreasing λ. Equation (25), together with equation (23),

shows that we can get arbitrarily close to minP∈Γ(PX ,Lmax)D(P ||PY ), by making λ small enough, hence

proving that minP∈Γ(PX ,Lmax)D(P ||PY ) is the limit of the sequence ε(λ) as λ→ 0.

Figure 2 gives a geometric interpretation of Theorem 3. The figure is obtained from Figure 1 by

observing that when λ → 0 the optimum acceptance region collapses into the single pmf PX , i.e.,

Λ∗ = {PX}.
By the light of Theorem 3, Γ(PX , Lmax) is the smallest indistinguishability region for the SIks game.

Moreover, from equation (20), we see that the distinguishability of two pmf’s (in the SIks setting)

ultimately depends on their EMD. In fact, if EMD(PY , PX) > Lmax, the defender is able to distinguish X

from Y by adopting a sufficiently small λ. On the contrary, if EMD(PY , PX) ≤ Lmax, there is no positive

value of λ for which the sequences emitted by the two sources can be asymptotically distinguished.
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D(P ∗0 ||PY ) = ε

PY

Γ(PX , Lmax)

Λ∗ = {PX}
P ∗0

Fig. 2. Geometric interpretation of Γ(PX , Lmax) and P ∗
0 by the light of Theorem 3.

By adopting a different perspective, given two sources X and Y , one may ask which is the maximum

attacking distortion for which D can distinguish X and Y despite the presence of the adversary. The

answer to this question follows immediately from Theorem 3 and leads naturally to the following

definition.

Definition 1 (Security Margin). Let X ∼ PX and Y ∼ PY be two discrete memoryless sources. The

maximum average per-letter distortion for which the two sources can be reliably distinguished in the

SIks setting is called Security Margin and is given by

SM(PY , PX) = EMD(PY , PX). (26)

Interestingly, the EMD is a symmetric function of PX and PY [14], and hence the security margin does

not depend on the role of X and Y in the test, i.e. SM(PX , PY ) = SM(PY , PX). The security margin

is a powerful measure summarizing in a single quantity how securely two sources can be distinguished

(in the SIks setting).

It is worth remarking that the security margin between two sources pertains to the security of the

hypothesis test behind the source identification problem and not to its robustness, since it is measured at
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the equilibrium of the game, i.e. by assuming that both the players of the game make optimal choices. To

better exemplify the above concept, let us consider the simple case of two binary sources. Specifically,

let X and Y be two Bernoulli sources with parameters p = PX(1) and q = PY (1) respectively. Let

also assume that the distortion constraint is expressed in terms of the Hamming distance between the

sequences, that is d(i, j) = 0 when i = j and 1 otherwise. Without loss of generality let p > q. The

distortion associated to a transportation map SXY can be written as:∑
i,j

SY X(i, j)d(i, j) = SY X(0, 1) + SY X(1, 0). (27)

Since p > q, it is easy to conclude that the minimum of the above expression is obtained when

SY X(1, 0) = 0 (intuitively, if the source X outputs more 1’s than Y , it does not make any sense to

turn the 1’s emitted by Y into 0’s). As a consequence, to satisfy the constraint SX(1) = p we must let

SY X(0, 1) = p − q, yielding SM(PY , PX) = p − q, or more generally |p − q|. We can conclude that

if the attacker is allowed to introduce an average Hamming distortion larger or equal than |p− q|, then

there is no way for the defender to distinguish between the two sources. This is not the case if the output

of the source Y passes through a binary symmetric channel with crossover probability equal to |p− q|,
since the output of the channel will still be distinguishable from the sequences emitted by X . Consider,

for example, a simple case in which q = 1/2 and p > 1/2. Regardless of the crossover probability, the

output of the channel will still be a binary source with equiprobable symbols, which is distinguishable

from X given that p > 1/2. In other words, in the set up defined by the SIks game, the two sources can

not be distinguished securely in the presence of an attacker introducing a distortion equal to |p−q|, while

they can be distinguished even if the output of the source Y passes through a noisy channel introducing

the same average distortion introduced by the attacker.

V. EXTENSION TO SOURCE IDENTIFICATION WITH TRAINING DATA

In this section we extend the previous analysis to the case of source identification with training data

(SItr), in order to provide a measure of source distinguishability, in the more general setup studed in

[4]. In such a scenario, the two sources X and Y are not completely known to D and A, so they must

base their actions on the knowledge of a training sequence drawn from X (the source under the null

hypothesis). This is a very interesting scenario bringing the analysis closer to real applications, in which a

precise statistical model of the to-be-distinguished sources is usually not available. In [4], it is proven that

the source identification game with training data is more favorable to the attacker than the SIks game.

Then one could argue that in the SItr setup the security margin between the two sources is smaller,
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implying that a lower distortion is sufficient to the attacker to make the sources undistinguishable. The

remarkable result that we will prove in this section is that this is not the case, hence showing that the

ultimate distinguishability of two sources is the same for the two games.

A. The source identification game with training data (SItr)

In order to present our analysis in a self-contained way, in this section we summarize the main results

proven in [4]. Once again, we will do so by adopting a transportation theory perspective for the definition

of the attacker’s optimum strategy.

Let us start by giving a rigorous definition of the source identification game with training data.

Defender’s strategies. In the SItr game the defender must decide whether a test sequence xn has

been generated by a source X with unknown pmf by relying on the knowledge of an N -sample training

sequence tND drawn from X . This is equivalent to deciding whether to accept or not the hypothesis H0

that the test and the training sequences have been generated by the same source. In this framework, the

acceptance region Λ is defined as the set with all the pairs of sequences (xn, tND) that D classifies as

being generated by the same source. Once again, we limit the action of D to a first order analysis of xn

and tND . This is equivalent to require that the acceptance region for hypothesis H0 is a union of pairs of

type classes, or equivalently, pairs of types (P,Q), where P ∈ Pn and Q ∈ PN . As for the SIks case,

the defender must ensure that the asymptotic false positive error probability tends to zero exponentially

fast at least with a certain decay rate, however since PX is not known, the constraint must be satisfied

in a worst case sense, i.e. for all possible choices of PX . More specifically, the space of strategies of D

is given by:

SD = {Λntr ⊂ Pn × PN : max
PX∈P

Pfp ≤ 2−λn}, (28)

where P is the class of discrete memoryless sources.

Attacker’s strategies. Given a sequence yn drawn from a source Y 6= X , the goal of A is to transform

yn into a sequence zn belonging to the acceptance region chosen by D while respecting a distortion

constraint. Likewise the defender, all the information that the attacker has about X is a K-long training

sequence tKA . By using the same transportation theoretic formalism used in the previous section, the set

of strategies of the attacker consists of all the possible ways of choosing an admissible transportation

map to transform yn into zn.

SA = {SnY Z(i, j; yn, tKA ) : SnY Z(i, j) ∈ An(Lmax, Pyn)}, (29)
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where we have explicitly indicated that the choice of the transportation map now depends also on tKA ,

and where the set of admissible maps is defined as in the SIks case.

Depending on the relationship between tKA and tND , several versions of the SItr game can be defined.

Here we focus on the simplest case of equal training sequences, i.e. we assume K = N and tNA = tND ,

tN . We will see later on that our analysis can be easily extended so to cover the other cases addressed

in [4]. In addition, we force N to be a linear function of n with some proportionality constant c, i.e.

N = cn. As discussed in [4], this is the most significant case to study.

The payoff. Adopting again the Neyman-Pearson approach, the payoff corresponds to the false negative

error probability, that is:

uD = −uA = −
∑

(yn,tN )∈Xn×XN :
(Sn

Z
(j;yn,tN ),tN )∈Λn

tr

PY (yn)PX(tN ), (30)

where PX(tN ) is the probability that the source X outputs the sequence tN and Λntr is the acceptance

region of the test.

Equilibrium point. The derivation of the optimum strategy for D passes through the definition of the

generalized log-likelihood ratio function h(Pxn , PtN ) defined as ([19], [20], [4]):

h(Pxn , PtN ) = D(Pxn ||Prn+N ) + cD(PtN ||Prn+N ), (31)

where Prn+N indicates the empirical pmf of the sequence rn+N , obtained by concatenating xn and tN .

The main result of [4] is summarized by the following theorem.

Theorem 4. Let

Λn,∗tr = {(P,Q) ∈ Pn × PN : h(P,Q) < λ− κ(n, c)} , (32)

Sn,∗Y Z(i, j; yn, tN ) = arg min
Sn

Y Z∈An(Dmax,Pyn )
h(SnZ , PtN ). (33)

where κ(n, c) = |X | log(n+1)(N+1)
n . Then Λn,∗tr is a dominant equilibrium for D and the profile (Λn,∗tr , S

n,∗
Y Z(i, j; yn, tN ))

is the only rationalizable equilibrium of the SItr game with equal training sequences, which, then, is a

dominance solvable game [13].

As for the SItr game, by letting n tend to infinity and by exploiting the density of rational numbers

in the real line, we can study the asymptotic distinguishability of sequences emitted by any two sources.

To express the final result of the above procedure, we need to introduce some definitions. First of all we
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need to extend the h function so to make it work on general pmf’s. We let:

hc(P,Q) = D(P ||U) + cD(Q||U); (34)

U =
1

1 + c
P +

c

1 + c
Q,

which permits us to define the following sets:

Λ∗tr(Q,λ) = {P ∈ P : hc(P,Q) ≤ λ}, (35)

and

Γtr(Q,λ, Lmax) = {P ∈ P : ∃R ∈ Λ∗tr(Q,λ) (36)

s.t. EMD(P,R) ≤ Lmax}.

The following theorem, proved in [4], states that the indistinguishability region of the SItr game is given

by Γtr(PX , λ, Lmax), where PX is the true distribution of the source X .

Theorem 5. For the SItr game with equal training sequences available to the players, the error exponent

of the false negative error probability at the equilibrium is given by:

εtr(λ) = min
R

[
c · D(R||PX) + min

P∈Γtr(R,λ,Lmax)
D(P ||PY )

]
(37)

leading to the following cases:

1) εtr(λ) = 0, if PY ∈ Γtr(PX , λ, Lmax);

2) εtr(λ) 6= 0, if PY /∈ Γtr(PX , λ, Lmax).

From the above theorem we see that the sources that cannot be asymptotically distinguished from PX

are those inside Γtr(PX , λ, Lmax). The geometrical interpretation is similar to the one given in Figure

1 for Theorem 2 where now the acceptance region is given by Λ∗tr(PX , λ) and the indistinguishability

region is Γtr(PX , λ, Lmax).

We point out that the only difference with respect to the case of known sources consists in the

asymptotic acceptance region Λ∗tr(PX , λ), which is strictly larger than Λ∗(PX , λ), given that hc function

is always lower than D (see [4] for the proof). As a consequence, it is straightforward to argue that

Γtr(PX , λ, Lmax) ⊃ Γ(PX , λ, Lmax).
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B. Security margin for the SItr game

We now study the behavior of the SItr game when λ → 0 so to investigate the best achievable

performance for the defender in the case of training-based decision. To start with, we observe that the

divergence and the hc function share a similar behavior, in that they are convex functions and both

D(P ||Q) and hc(P,Q) are equal to zero if and only if P = Q. This permits to extend Property 1 to the

set Γtr yielding:

Property 2. For any two values λ1 and λ2 such that λ2 < λ1, Γtr(PX , λ2, Lmax) ⊆ Γtr(PX , λ1, Lmax).

In a similar way, Lemma 1 can be extended to the set Γtr(R, λ, Lmax) (Appendix A).

We are now ready to prove the counterpart of Theorem 3 for the SItr game.

Theorem 6. Given two sources X ∼ PX and Y ∼ PY and a maximum allowable average per-letter

distortion Lmax (defined according to an additive distortion measure), the maximum achievable false

negative error exponent for the SItr game is

lim
λ→0

εtr(λ) = min
R

[
c · D(R||PX) + min

P∈Γ(R,Lmax)
D(P ||PY )

]
, (38)

where Γ(R,Lmax) is defined as in (20) by replacing PX with R5.

Proof: The proof goes along the same line of the proof of Theorem 3. From Property 2, we see

immediately that ε(λ) is non-increasing when λ decreases, since the innermost minimization in equation

(37) is taken over a smaller set when λ decreases. Then, by the same token, we have:

εtr(λ) ≤ min
R

(
cD(R||PX) + min

P∈Γ(R,Dmax)
D(P ||PY )

)
. (39)

This implies that limλ→0 ε(λ) exists and is finite. Given that Lemma 1 still holds for the set Γtr(R, λ, Lmax) ∀R,

we can reason as in the proof of Theorem 3 to conclude that:

min
P∈Γtr(R,λ,Lmax)

D(P ||PY ) ≥ min
P∈Γ(R,Lmax)

D(P ||PY )− δ(τ), (40)

where δ(τ) can be made arbitrarily small by decreasing λ. By adding the term cD(R||PX) to both sides

of (40) we obtain:

cD(R||PX) + min
P∈Γtr(R,λ,Lmax)

D(P ||PY ) ≥ (41)

cD(R||PX) + min
P∈Γ(R,Lmax)

D(P ||PY )− δ(τ).

5Note that when λ tends to 0, we do not need anymore to differentiate between the SIks and SItr games in the definition

of Γ(R,Lmax).
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Given that (41) holds for any R ∈ P , we can write:

εtr(λ) = min
R

[
cD(R||PX) + min

P∈Γtr(R,λ,Lmax)
D(P ||PY )

]
(42)

≥ min
R

[
cD(R||PX) + min

P∈Γ(R,Lmax)
D(P ||PY )

]
− δ(τ),

which concludes the proof due to the arbitrariness of δ(τ).

A consequence of Theorem 6 is that limλ→0 ε(λ) = 0 if and only if PY ∈ Γ(PX , Lmax), which then

can be seen as the smallest indistinguishability region for the SItr game. We conclude that the smallest

indistinguishability regions for the two cases are the same thus implying that the security margin for the

SItr setting, say SMtr, is the same of the SIks game, that is

SMtr(PX , PY ) = EMD(PX , PY ). (43)

We remark that, for any allowed distortion Lmax < EMD(PX , PY ), the minimum value of the false

positive error exponent (λ) which allows the defender to take a reliable decision in the SItr setting is

lower than that in the SIks setting. However, the difference between the two settings regards the decay

rate of the error probabilities, not the ultimate distinguishability of the sources.

We conclude this section with a brief discussion on the SItr game with different training sequences

(tND 6= tKA ). Such a scenario provides a more realistic model in which the attacker is not able to compute

exactly the acceptance region adopted by the Defender. It is known from [4] that, as long as the length

of both sequences grows linearly with n, the indistinguishability region is equal to that of the game with

equal training sequences. By relying on this result, it is not difficult to prove that the security margin

remains the same even for such version of the game.

VI. SECURITY MARGIN COMPUTATION

In this section we address the problem of the actual computation of the security margin for two generic

sources. By following the analysis given so far, we focus on the case of discrete sources, however at the

end of the section we extend the analysis so to cover continuous sources as well.

Given two discrete sources X ∼ PX and Y ∼ PY , the computation of the security margin requires the

evaluation of EMD(PX , PY ). A closed form solution can be found only in some simple cases (see Section

VI-A1 and VI-A2). More generally, the EMD between two sources can be computed by resorting to

numerical analysis, and in fact, due to its wide use as a similarity measure in computer vision applications,

several efficient algorithms have been proposed (see [21] for example). In the following, we describe
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a fast iterative algorithm for the computation of the EMD between any two sources assuming that the

distortion (or cost) function has the general form:

d(i, j) = |i− j|p, (44)

with p ≥ 1. This is a case of great interest for p = 1 and p = 2, according to which the distortion

between yn and the attacked sequence zn corresponds, respectively, to the L1 and L2
2 distance.

A. Hoffman’s greedy algorithm for computing SM

Let us assume that X and Y are discrete sources with alphabets X and Y . The transportation problem

we have to solve for computing SM(PY , PX), i.e. EMD(PY , PX), is known in modern literature as

Hitchcock transportation problem [22]6, which, in turn, can be formulated as a linear programming

problem in the following way:

EMD(PX , PY ) = min
SXY

∑
i,j

d(i, j)SXY (i, j), (45)

where SXY must satisfy the linear constraints:∑
j

SXY (i, j) = PX(i) ∀i ∈ X

∑
i

SXY (i, j) = PY (j) ∀j ∈ Y

SXY (i, j) ≥ 0 ∀i, j, (46)

and where, by referring to the original Monge formulation7, SXY (i, j) denotes the quantity of soil shipped

from location (source) i to location (sink) j and d(i, j) is the cost for shipping a unitary amount of soil

from i to j.

A Transportation Problem (TP) like the one defined by equations (45) and (46) is a particular minimum

cost flow problem [24] which, being linear, can be solved through the simplex method [25]. In general, the

solution of TP depends on the cost function d(·, ·), however there are some classes of cost functions for

which the solution can be found through a simple greedy algorithm. Specifically, the algorithm proposed

by A.J. Hoffman in 1963 [26], allows to solve the transportation problem whenever d(·, ·) satisfies the

so called Monge property [27], that is when:

d(i, j) + d(r, s) ≤ d(i, s) + d(r, j), (47)

6This is the discrete version of the Monge-Kantorovich mass transportation problem [15].
7Monge is considered the founding father of optimal transport [23].
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∀(i, j, r, s) such that 1 ≤ i < r ≤ |X | and 1 ≤ j < s ≤ |Y|.
It is easy to verify that Monge property is satisfied by any cost function of the form in (44), and, more in

general, by any convex function of the quantity |i− j|. The iterative procedure proposed by Hoffman to

solve the optimal transport problem is known as north-west corner (NWC) rule [26] and can be described

as follows. Take the bin of X with the smallest value and start moving its elements into the bin with

the smallest value in Y . When the smallest bin of Y is filled, go on with the second smallest bin in Y .

Similarly, when the smallest bin in X is emptied, go on with the second smallest bin in X . The procedure

is iterated until all the bins in X have been moved into those of Y . Let ilow (iup) and jlow (jup) denote

the lower (upper) non-empty bins of X and Y respectively. A pseudocode description of the NWC rule

is given below.

1) Initialize: i := ilow, j := jlow.

2) Set SXY (i, j) := min{PX(i), PY (j)}.
3) Adjust the ‘supply’ distribution PX(i) := PX(i)−SXY (i, j) and the ‘demand’ distribution PY (j) :=

PY (j)− SXY (i, j).

If PX(i) = 0 then i := i+ 1 and if PY (j) = 0 then j := j + 1.

4) If j < jup or PY (jup) > 0 go back to Step 2).

The above procedure is described graphically in Figure 3. In the figure, we chose two distributions

with disjoint supports for sake of clarity, however the procedure is valid regardless of how the two

distributions are spread along the real line. Interestingly, the NWC rule does not depend explicitly on

the cost matrix, so the transportation map obtained through it is the same regardless of the Monge cost.

According to Hoffman’s greedy algorithm, when the cost function satisfies Monge’s property, the EMD

can be computed in linear running time: the number of elementary operations, in fact, is at most equal

to |X |+ |Y|8. This represents a dramatic simplification with respect to the complexity required to solve

a general Hitchcock transportation problem (see for example [28]).

As detailed below, in some cases, it is possible to derive a closed form expression for the security

margin.

8For sake of simplicity, the iterative algorithm described by the pseudocode spans all the bins between the minimum and the

maximum non-empty bins. However, only the values i ∈ X and j ∈ Y must be considered given that for all the empty bins i

and j we have SXY (i, j) = 0.
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PX

PY

X Y

SNWC
XY (i, j)

Fig. 3. Graphical representation of the north-west corner rule for the earth mover transportation problem (Monge problem).

PX and PY are two generic earth piles (source and sink) X and Y , while SNWC
XY (i, j) denotes the amount of earth moved from

location i to j.

1) Uniform sources with different cardinalities: Let X and Y be two uniform pmf’s with alphabets

X and Y such that |X | = α|Y|, with α ∈ N. In this case, thanks to Hoffman’s algorithm we can express

SM(PX , PY ) in closed form:

SMLp
p
(PX , PY ) =

1

|Y|

|X |−1∑
i=0

α−1∑
j=0

(|ilow − jlow| − j − (α− 1)i)p, (48)

The formula implicitly assumes that jlow > ilow, the extension to the case in which such a relationship

does not hold being immediate.

2) Security Margin under the L1 distance: If the distortion function corresponds to the L1 distance,

the EMD (and hence the security margin) assumes a particularly simple form. Specifically, by applying

the flow decomposition principle [29], it is easy to see that the security margin between P and Q can

be calculated as follows:

SML1
(P,Q) =

max{iup,jup}∑
i=min{ilow,jlow}

∣∣∣∣∣
i∑

s=1

(P (s)−Q(s))

∣∣∣∣∣ . (49)

B. Continuous sources

The analysis carried out in the previous sections is limited to discrete sources. When continuous sources

are considered, we can quantize the probability density functions (pdf’s) of the sources and apply the

analysis for discrete sources. By letting the quantization step tend to zero, the EMD between PX and PY

can still be regarded as the security margin between the two sources. In this case, a general expression
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for the SM can be derived by considering the continuous transportation problem (CTP), known as

Monge-Kantorovic formulation of the mass transportation problem:

SM(PX , PY ) = min
SXY (x,y)

∫ ∫
c(x, y)SXY (x, y)dxdy, (50)

subject to the constraints ∫
SXY (x, y)dx = PY (y) (51)∫
SXY (x, y)dy = PX(x)

SXY (x, y) ≥ 0 ∀x, y,

where c is a continuous cost function c(x, y) : X × Y → R. If c(x, y) satisfies the continuous Monge

property [27], that is if:

c(x, y) + c(x′, y′) ≤ c(x′, y) + c(x, y′), (52)

for all x ≤ x′, y ≤ y′, the optimum transportation map corresponds to the Hoeffding distribution [17]

defined as follows. Let CX(x) and CY (y) be the cumulative distributions of X and Y respectively, and

let CXY (x, y) be the cumulative transportation map, that is:

CXY (x, y) =

∫ x

−∞

∫ y

−∞
SXY (u, v)dudv. (53)

The optimum transportation map is obtained by letting:

C∗XY (x, y) = min{CX(x), CY (y)}, ∀(x, y) ∈ R2, (54)

which generalizes the NWC rule. Given the optimum transportation map, one can compute SM(PY , PX)

by evaluating the integral in (50).In general, however, finding a closed form expression is not an easy

task.

A particularly simple and insightful formula can be obtained when the cost function corresponds to

the squared Euclidean distance. Let us assume, then, that c(x, y) = (x− y)2 (in this case SM(PX , PY )

corresponds to the squared Mallows distance - see equation (18) - and let X and Y be two continuous

sources with means µX and µY , variances σX and σY and covariance covXY . As shown in [30]

(decomposition theorem), the expectation in (18) can be rewritten as follows:

EXY [(X − Y )2] =(µX − µY )2 + (σX − σY )2 (55)

+ 2[σXσY − covXY ],
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where the three terms express, respectively, the difference in location, spread and shape between the

variables X and Y [31]. Interestingly, the covariance covXY is the only term in (55) which depends

on the joint pdf of X and Y . Then, in order to find the security margin, we only have to compute the

maximum covariance over all the possible joint pdf’s:

SML2
2
(PX , PY ) =(µX − µY )2 + (σX − σY )2 (56)

+ 2[σXσY − max
PXY :

∑
y PXY =PX∑
x PXY =PY

covXY ].

By assuming that X and Y are independent, i.e. PXY = PXPY , we have covXY = 0, hence permitting

us to derive a general upper bound for the security margin:9

SML2
2
(PX , PY ) ≤ (µX − µY )2 + σ2

X + σ2
Y . (57)

When PX and PY have the same form, for instance when the random variables X and Y are both

distributed according to a Gaussian or a Laplacian distribution, the security margin assumes a particularly

simple expression. In this case, in fact, it is possible to turn PX into PY by imposing a deterministic

relationship between X and Y , namely Y = σY

σX
X + (µY − σY

σX
µX). In this way the covariance term

is maximum and equal to σXσY , and hence the contribution of the shape term in the security margin

vanishes, yielding:

SML2
2
(PX , PY ) = (µX − µY )2 + (σX − σY )2. (58)

This is a remarkable, and somewhat surprising, result stating that the distinguishability of two sources

belonging to the same class depends only on their means and variances, regardless of their particular pdf.

VII. THE SECURITY MARGIN WITH L∞ DISTANCE

We conclude the paper by extending the definition of the Security Margin to the case in which the

distortion measure constraining the attacker is expressed in terms of the maximum absolute distance

between the samples of yn and zn, that is to the case in which the distortion is measured by relying on

the L∞ distance.

The interest in this case is motivated by the importance that the L∞ distance has in applications where

the perceptual distortion between the sequence yn and the attacked sequence zn must be taken into

account. This is the case, for instance, in image forensics applications [32], [33], [34], [3], [7], wherein

the attacker is interested in hiding the true source of an image. In this case, the use of a distortion measure

9We point out that relation (55), as well as the upper bound in (57), holds for the discrete case too.
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based on the L∞ distance ensures that the attacked image is perceptually similar to the original one. In

our analysis, we will refer to the case of known sources, the extension to the SItr case being immediate.

A. The SIks game with L∞ distance

We start by observing that the adoption of the L∞ distance requires that the SIks game is, partly,

redefined due to the non-additive nature of the distortion constraint. In this case, in fact, it does not make

any sense to define the distortion constraint in terms of average per-letter distortion and let the overall

allowed distortion to increase with n.

Similarly to the previous cases, it is possible to express the distortion constraint by limiting the set

of transportation maps the attacker can choose from. More specifically, we observe that the maximum

distance between the two sequences yn and zn can be rewritten as follows:

dL∞(yn, zn) = max
j
|zj − yj | = max

(i,j):Sn
Y Z(i,j)6=0

|i− j|. (59)

By using the above formula in the definition of the set of admissible maps (i.e. in the second line of

(7)), we can still define the set of strategies of the attacker as the set of rules associating an admissible

map to the to-be-attacked sequence, as in (29). In the following, we will refer to the set of admissible

maps resulting from the use of the dL∞ distance as AnL∞(Lmax, Pyn).

Passing to the analysis of the indistinguishability region, it is easy to see that relation (12) continues

to hold by replacing An(Lmax, Pyn) with AnL∞(Lmax, Pyn). In fact, the dominant strategy for the

defender does not depend on the set of strategies available to the attacker. The asymptotic version of

ΓnL∞(PX , λ, Lmax) can also be defined as in (13), namely:

ΓL∞(PX , λ, Lmax) = (60)

{P ∈ P : ∃ SY Z ∈ AL∞(Lmax, P ) s.t. SZ ∈ Λ∗(PX , λ)},

where AL∞(Lmax, P ) is the asymptotic counterpart of AnL∞(Lmax, P ). The next step requires the ex-

tension of Theorem 2 to the SIks game with L∞ distance, that is we need to prove that the set in

(60) contains all the sources that can not be distinguished from X because of the attack, even when the

length of the observed sequence tends to infinity. This is a critical step since such theorem was proved

in [5] by assuming an additive distortion measure, which clearly is not the case when the L∞ distance

is adopted. Roughly speaking, we need to prove that when n → ∞ the elements of ΓnL∞(PX , λ, Lmax)

are dense in ΓL∞(PX , λ, Lmax) (in which case Theorem 2 can be proven in a way similar to Sanov’s

Theorem [5]). More formally, we need to prove that for any PY ∈ ΓL∞(PX , λ, Lmax) and any δ > 0, a
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pmf Qn ∈ ΓnL∞(PX , λ, Lmax) exists such that the distance between PY and Qn is smaller than δ. The

proof requires only some minor modifications with respect to the proof given in [2] (Lemma 2 in the

Appendix) and is skipped for sake of brevity.

B. Security Margin for the SIks game with L∞ distance

As a next step, we must study the behavior of the indistinguishability region of the test when λ→ 0

(to determine the smallest indistinguishability region). As we will see, even if the adoption of the dL∞

distance prevents a direct formulation of the problem in terms of EMD, the distinguishability between

two sources X and Y is still closely related to the optimal transportation map between PX and PY . The

basis for such a connection is rooted in the following property.

Property 3. Given two distributions P and Q, the transportation map SNWC
PQ obtained by applying the

NWC rule to P and Q is a solution of the problem

min
SY Z :SY =P,SZ=Q

(
max

(i,j)∈SY Z(i,j) 6=0
|i− j|

)
. (61)

Proof: Let S∗ 6= SNWC
PQ be a generic transformation mapping P into Q. Given that S∗ 6= SNWC

PQ there

exists at least one quadruple of bins (t, r, v, s), with t < r and v < s, for which, S∗(t, s) > 0 and

S∗(r, v) > 0. Let us assume, without loss of generality, that S∗(t, s) ≤ S∗(r, v). We now define a new

map S′ which is obtained from S∗ by letting:

S′(t, v) = S∗(t, v) + S∗(t, s) (62)

S′(t, s) = 0

S′(r, v) = S∗(r, v)− S∗(t, s)

S′(r, s) = S∗(r, s) + S∗(t, s).

Since max{|t− s|, |r − v|} > max{|t− v|, |r − s|}, the maximum distortion introduced by S′ is lower

than or equal to that introduced by S∗, that is:

max
(i,j)∈S∗(i,j)6=0

|i− j| ≥ max
(i,j)∈S′(i,j) 6=0

|i− j|. (63)

We now inspect S′, if there is another quadruple of bins (t′, r′, v′, s′) satisfying the same properties of

(t, r, v, s), we let S∗ = S′ and iterate the above procedure. The process ends when no quadruple of bins

with the required properties exists and hence when S′ = SNWC
PQ . Since at each step the distortion introduced

by the new map does not increase, the above procedure proves that SNWC
PQ introduces a distortion lower
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than or equal to that introduced by any other S∗ mapping P into Q, thus proving that SNWC
PQ achieves

the minimum in (61).

Thanks to Property 3, the set ΓL∞(PX , λ, Lmax) in (60) can be rewritten as follows:

ΓL∞(PX , λ, Lmax) = {P ∈ P : ∃ Q ∈ Λ∗(PX , λ) s.t (64)

max
(i,j):SNWC

PQ (i,j)6=0
|i− j| ≤ Lmax}.

By letting λ tend to 0, we obtain the smallest indistinguishability region, thus extending Theorem 3 to

the SIks game with dL∞ distance.

Theorem 7. Given two sources X ∼ PX and Y ∼ PY and a maximum allowable per-letter distortion

Lmax, and given:

Γ(PX , Lmax) = {P ∈ P : max
(i,j)∈SNWC

PPX

|i− j| ≤ Lmax}, (65)

the maximum achievable false negative error exponent ε for the SIks game with L∞ distance is

lim
λ→0

lim
n→∞

− 1

n
logPfn = min

P∈ΓL∞ (PX ,Lmax)
D(P ||PY ). (66)

Proof: The proof relies on the extension of Property 1 and Lemma 1 to the L∞ case. The extension

of Property 1 is immediate since, once again, the indistinguishability region depends on λ only through

Λ∗(PX , λ), whose form does not depend on the particular norm adopted to express the distortion

constraint. The extension of Lemma 1 requires some more care and is proven in Appendix B. For

the rest, the theorem can be proven by reasoning as in the proof of Theorem 3.

As a consequence of Theorem 7, the distinguishability of two sources depends again on the optimum

transportation map between the pmf’s of the two sources. Specifically, given the sources X and Y , the

defender is able to distinguish between them in this adversarial setting, only if

max
(i,j)∈SNWC

PY PX

|i− j| > Lmax. (67)

Condition (67) can be used to determine the maximum attacking distortion for which D is able to

distinguish the sources X and Y , i.e. SM(PX , PY ).

Definition 2 (Security Margin for the L∞ case). Let X ∼ PX and Y ∼ PY be two discrete memoryless

sources. The maximum distortion for which the two sources can be reliably distinguished in the SIks

setting with L∞ distance is given by

SML∞(PY , PX) = max
(i,j):SNWC

PY PX
(i,j)6=0

|i− j|, (68)
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where SNWC
PY PX

is obtained by applying the NWC rule to map PY into PX .

Even if we proved Theorem 7 for the case of known sources, it is possible to extend it to the SItr

game. The proof goes along the same lines used for the SIks case and is omitted for sake of brevity.

VIII. CONCLUSIONS

By interpreting the attacker’s optimum strategy in the SIks (and SItr) game as the solution of an

optimum transport problem, we introduced the concept of security margin, a single measure summarizing

the distinguishability of two sources under adversarial conditions. We also described an efficient algorithm

to compute the security margin between several classes of sources. By relying on the security margin

concept, we can understand who between the attacker and the defender is going to win the source

identification game under asymptotic conditions. Among the practical applications of our analysis we

mention image forensics, wherein the defender is interested in distinguishing images produced by different

devices, and intrusion detection, in which the defender is willing to distinguish normal and anomalous

behaviors. In the first case, knowing the SM between the statistics ruling the emission of images from

different sources permits to compute the amount of distortion required to make the images produced by

the two sources indistinguishable. In the latter case, the SM determines how much an intruder must

deviate from the intended, anomalous, behavior to make its presence undetectable by the analyst.
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APPENDIX

A. Behavior of Γ(PX , λ, Lmax) and Γtr(R, λ, Lmax) for λ→ 0.

We start by studying the behavior of Γ(PX , λ, Lmax) when λ → 0. More specifically, we show that

for small values of λ the set Γ(PX , λ, Lmax) approaches Γ(PX , Lmax) smoothly.

As a first step, we highlight the following property.

Property 4. EMD(P,Q) is a continuous and convex function of P and Q.

Proof: Property 4 follows immediately if we look at the EMD as the solution of a Linear Program-

ming (LP) problem (see Section VI-A), wherein P and Q are the known terms of the linear constraints.

In fact, it is a known result in operations research that the minimum of the objective function of an LP

problem is a continuous and convex function of the known terms of the linear constraints [35].

By exploiting the continuity of the divergence and the continuity and convexity of the EMD, we now

show that when λ tends to 0, the set Γ(PX , λ, Lmax) tends to Γ(PX , Lmax) regularly. More precisely,

the following lemma holds.

Lemma 1. Let X ∼ PX be an information source and Lmax the maximum allowable average per-letter
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Γ(PX , Lmax)

τ

PX

P ′

P ′′
Γτ (PX , Lmax)

Fig. 4. Graphical representation of the set Γτ (PX , Lmax).

distortion in the SIks game. The set Γ(PX , λ, Lmax), defined in (19), satisfies the following property:

∀τ > 0,∃λ > 0 s.t. ∀P ∈ Γ(PX , λ, Lmax) (A1)

∃P ′ ∈ Γ(PX , Lmax) s.t. P ∈ B(P ′, τ),

where Γ(PX , Lmax) is defined as in (20) and B(P ′, τ) is a ball centered in P ′ with radius τ .

Proof: Throughout the proof we will refer to Figure 4 where all the sets and quantities involved in

the proof are sketched. For any τ > 0, we consider the set:

Γτ (PX , Lmax) = (A2)

{P : ∃P ′ ∈ Γ(PX , Lmax) s.t. P ∈ B(P ′, τ)}.

With such a definition, we can rephrase (A2) as follows:

∀τ > 0, ∃λ > 0 s.t. Γ(PX , λ, Lmax) ⊆ Γτ (PX , Lmax). (A3)

For sake of simplicity, we will prove a slightly stronger version of the lemma by means of the following

two-step proof. First, we will show that a subset of Γτ (PX , Lmax) exists having the following form:

Γsubτ (PX , Lmax) = {P : EMD(P, PX) ≤ Lmax + δ(τ)}, (A4)

for some δ(τ) > 0. Then, we will prove that for small enough λ, any P ∈ Γ(PX , λ, Lmax) belongs to

Γsubτ (PX , Lmax).

To start with, let P ′ be any point on B(Γ(PX , Lmax)), the boundary of Γ(PX , Lmax). Among all the

the points on the boundary of the ball of radius τ and centered in P ′, consider the one, name it P ′′,
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lying along the direction given by the line joining PX and P ′ and falling outside Γ(PX , Dmax) (see

Figure 4). By the convexity of the EMD (Property 4) and since EMD = 0 if and only if P = PX ,

we conclude that EMD(P ′′, PX) > EMD(P ′, PX). Since P ′ lies on the boundary of Γ(PX , Lmax) we

know that EMD(P ′′, PX) = Lmax + µ, where µ = µ(P ′, τ) is a strictly positive quantity. We now show

that the first part the proof holds by letting δ(τ) = minP ′∈B(Γ(PX ,Lmax)) µ(P ′, τ). To this purpose, let

P be any point in set Γsubτ (PX , Lmax) for the above choice of δ(τ). If P ∈ Γ(PX , Lmax), then, by

definition, P also belongs to Γτ (PX , Lmax). On the other side, if P lies outside Γ(PX , Lmax), let us

denote by P ∗ the point lying on the boundary of the set Γ(PX , Lmax) along the line joining P and

PX , and let P ∗∗ be the point where the same line crosses the ball B(P ∗, τ) outside Γ(PX , Lmax). Now,

EMD(P, PX) ≤ Lmax+ δ(τ) ≤ EMD(P ∗∗, PX) by construction. Because of the convexity of EMD, then

P ∈ B(P ∗, τ) as required.

Let us now pass to the second part of the proof. First, we notice that set Γ(PX , λ, Lmax) depends on λ

only through the acceptance region Λ∗(PX , λ). If λ is small, due to the continuity of the divergence, for

any Q ∈ Λ∗(PX , λ) we will have Q ∈ B(PX , κ(λ)) for some κ(λ) such that κ(λ) → 0 when λ → 0.

Let, then, P be a pmf in Γ(PX , λ, Lmax). By definition, a Q ∈ Λ∗(PX , λ) exists s.t. EMD(P,Q) ≤
Lmax. If λ is small, due to the proximity of Q to PX and the continuity of the EMD we have that

EMD(P, PX) <EMD(P,Q) + η(λ) ≤ Lmax + η(λ) with η(λ) approaching 0 when λ→ 0. In particular,

if λ is small enough η(λ) < δ(τ) and hence P ∈ Γsubτ (PX , Lmax) which in turn is entirely contained in

Γτ (PX , Lmax) thus completing the proof.

In the same way, we can prove that Lemma 1 holds also when Γ(PX , λ, Lmax) is replaced by

Γtr(R, λ, Lmax) and Γ(PX , Lmax) by Γ(R,Lmax) with a generic R instead of PX . To be convinced

about that, it is sufficient to note that the only difference between Γ and Γtr relies on the test function

which defines the acceptance region, respectively the divergence and the hc function. Since the hc function

is still a continuous and convex function and, likewise D, is equal to zero if and only if its arguments

are identical, the proof that we used for Lemma 1 still holds.

B. Behavior of ΓL∞(PX , λ, Lmax) for λ→ 0.

We prove that when λ → 0, ΓL∞(PX , λ, Lmax) approaches ΓL∞(PX , Lmax) regularly, in the sense

stated by the following lemma.

Lemma 2 (Extension of Lemma 1 to the L∞ case). Let X ∼ PX be an information source and Lmax the

maximum per-sample distortion allowed to the attacker. The set ΓL∞(PX , λ, Lmax), defined in Section
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VII, satisfies the following property:

∀τ > 0,∃λ > 0 s.t., ∀P ∈ ΓL∞(PX , λ, Lmax) (A5)

∃P ′ ∈ ΓL∞(PX , Lmax) s.t. P ∈ B(P ′, τ),

where B(P ′, τ) is a ball centered in P ′ with radius τ .

Proof: We will prove the lemma by assuming that the distance defining the ball B(P ′, τ) is the L1

distance, extending the proof to other distances being straightforward.

For a fixed τ > 0, let P be a pmf in ΓL∞(PX , λ, Lmax) for some λ. This means that at least one

pmf Q ∈ Λ∗(PX , λ) exists, such that P can be mapped into Q with maximum shipment distance lower

than or equal to Lmax. From equation (14) and by exploiting the continuity of the divergence function,

we argue that Q ∈ B(PX , γ(λ)) for some positive γ(λ), and where γ(λ) → 0 as λ → 0. Accordingly,

PX can be written as PX(j) = Q(j) + γ(j), ∀j, where
∑

j∈X |γ(j)| < γ(λ). Note that, by construction,∑
j γ(j) = 0 and γ(j)→ 0 when λ→ 0. Let SPQ be an admissible map bringing P into Q (such a map

surely exists by construction). We prove the lemma by explicitly building a pmf P ′ and a new admissible

transportation map S′, such that, P ′ is arbitrarily close to P (for a small enough λ) and S′ maps P ′ into

PX . We start by introducing two new quantities, namely γ+(j), defined as follows:

γ+(j) = γ(j) if PX(j)−Q(j) ≥ 0 (A6)

γ+(j) = 0 if PX(j)−Q(j) < 0,

and γ−(j) defined as

γ−(j) = −γ(j) if PX(j)−Q(j) < 0 (A7)

γ−(j) = 0 if PX(j)−Q(j) ≥ 0.

A graphical interpretation of γ+ and γ− is given in Figure 5. Clearly,
∑

j γ
−(j) =

∑
j γ

+(j). With

the above definitions, we can look at the demand distribution Q as consisting of two amounts: the mass

distribution D, with D(j) = min{PX(j), Q(j)}, and γ−. According to the superposition principle, the

map SPQ can then be split into two sub-maps: one which satisfies the demand of D (let us call it SDPQ),

and one that satisfies the demand of γ− (let us call it SγPQ). The same distinction can be made in the
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Q

PX
γ− γ+

j

D

Fig. 5. Geometric interpretation of γ+, γ− and D(j).

source distribution, as follows:

P (i) =
∑
j

SPQ(i, j) (A8)

=
∑
j

SDPQ(i, j) +
∑
j

SγPQ(i, j) = PD(i) + Pγ(i),

where PD and Pγ are the masses in the source distribution which are used to satisfy the mass demand

pertaining to D and γ− according to mapping SPQ. Then,
∑

i PD(i) = D and
∑

i Pγ(i) = γ−. In order

to construct the pmf P ′ we are looking for, we simply remove from P the amount of mass Pγ used to

fill γ− and redistribute it according to γ+. Specifically, we have

P ′(i) = PD(i) + γ+(i) (A9)

S′(i, j) = SDPQ(i, j) + γ+(j)δ(i, j), (A10)

where δ(i, j) is equal to 1 if i = j and 0 otherwise. It is easy to see that applying the transportation map

S′(i, j) to P ′ yields PX . Besides, from the procedure adopted to build S′, it is evident that

max
(i,j):S′(i,j) 6=0

|i− j| ≤ max
(i,j):SPQ(i,j)6=0

|i− j| ≤ Lmax, (A11)

(the only new shipments introduced are from a bin to itself). In addition, the distance between P ′ and P

is, by construction, lower than γ(λ), which can be made arbitrarily small by decreasing λ, thus completing

the proof of the lemma.

September 18, 2018 DRAFT


	I Introduction
	I-A Contribution

	II Notations and definitions
	II-A Game theory in a nutshell

	III The source identification game with known sources
	III-A Definition of the SIks game and equilibrium point
	III-B Payoff of the SIks game at the equilibrium

	IV The security margin
	IV-A Characterization of the indistinguishability region using Optimal Transportation
	IV-B Security Margin definition

	V Extension to source identification with training data
	V-A The source identification game with training data (SItr)
	V-B Security margin for the SItr game

	VI Security margin computation
	VI-A Hoffman's greedy algorithm for computing SM
	VI-A1 Uniform sources with different cardinalities
	VI-A2 Security Margin under the L1 distance

	VI-B Continuous sources

	VII The Security Margin with L distance
	VII-A The SIks game with L distance
	VII-B Security Margin for the SIks game with L distance

	VIII Conclusions
	References
	Appendix
	A Behavior of (PX, ,Lmax) and tr(R, ,Lmax) for 0.
	B Behavior of L(PX, ,Lmax) for 0.


