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Abstract—We introduce an attack against encrypted web traffic + sniffer
that makes use only of packet timing information on the uplirk. (attacker)

This attack is therefore impervious to existing packet padéhg

defences. In addition, unlike existing approaches this tiimg-only O_ _ _|:|_ _ _O_O
attack does not require knowledge of the start/end of web fehes

and so is effective against traffic streams. We demonstratehé client encrypted gateway
effectiveness of the attack against both wired and wirelegsaffic, tunnel

achieving mean success rates in excess of 90%. In addition to

being of interest in its own right, this timing-only attack serves to  Fig. 1: Schematic illustrating attacker of the type conside
highlight deficiencies in existing defences and so to areashere it A client machine is connected to an external network via
would be beneficial for Virtual Private Network (VPN) designers an encrypted tunnel (ssh, SSL, IPSetc). The attacker

web server

to focus further attention. can detect the time when packets traverse the tunnel in the
Keywords—traffic analysis, website fingerprinting, timing-only Uplink direction, but has no other information about therwts
attacks, network privacy. activity.

I. INTRODUCTION

In this paper we consider an attacker of the type illustrate®f the packet stream. Hence, they are potentially a praigtica
in Figure 1. The attacker can detect the time when packetgnportant class of attack against current and future VPNSs.
traverse the encrypted tunnel in the uplink direction, bag h While some work has been carried out using inter-arrivaétim
no other information about the clients’ activity. The akexs  information to classify the application (HTTP, IMA&tc) [8],
objective is to use this information to guess, with high @rob to our knowledge, there is no previous work reporting use
bility of success, the web sites which the client visits. Wa of timing information alone to construct a successful atac
distinctive about the attack considered here is that treeletr  against encrypted web traffic.
relies solely on packet timestamp information whereas the The main contributions of the present paper are as follows:
previously reported attacks against encrypted web traffieh (i) we describe an attack against encrypted web traffic that
mainly made use of observations of packet size and/or packeises packet timing information alone, (i) we demonstrh t
count information. this attack is highly effective against both wired and wess
Our interest in timing-only attacks is twofold. Firstly, gt traffic, achieving mean success rates in excess of 90% over
padding is a relatively straightforward defence againstchs  ethernet and wireless tunnels and a success rate of 58%stagain
that rely primarily on packet size, and indeed is currentlyTor traffic, (iii) we also demonstrate that the attack is efffe
either already available or being implemented in a numbeagainst traffic streamise. back to back web page fetches where
of popular VPNs [2]. Secondly, alternative attacks based othe packet boundaries between fetches are unknown.
packet counting [2], [3] are insensitive to packet padding In addition to being of interest in its own right, particuiar
defences but require partitioning of a packet stream intdn view of the powerful nature of the attack, this timing-pnl
individual web fetches in order for the number of packetsattack also serves to highlight deficiencies in existingedeés
associated with each web fetch to be determined, which magnd so to areas where it would be beneficial for VPN designers
be highly challenging in practice on links where there are ndo focus further attention. We note that, complementanhe t
clear pauses between web fetches. In contrast, packetgtiminpresent work, in [3] it is demonstrated that when the webhfetc
based attacks are not only largely unaffected by packetipgdd boundaries within a packet stream are known then an NGRAM
defences but also, as we will show, do not require partiigni approach using packet count together with uplink/downlink
direction information is also sufficient to construct areeffve
Copyright (c) 2016 IEEE. Personal use of this material isnpited. attack against encrypted web traffic despite packet padding
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be protected by a secure encrypted tunnel. Packet paddéesy do

not protect these quantities. Directing defences agalrestet - M‘ﬁfﬁgnﬂiﬁﬁfmm
two sets of packet stream features therefore seems an emport www whitefeatherhealing.com
direction for future work. § v psychotherapy-ireland.com

II. RELATED WORK

The general topic of traffic analysis has been the subject of
much interest, and a large body of literature exists. Some of |
the earliest work specifically focussed on attacks and d@efen

for encrypted web traffic appears to be that of Hintz [7], vahic 9
considers the SafeWeb encrypting proxy. In this setup (B we ®

page fetches occur sequentially with the start and end df eac 200 200 500 800

web page fetch known, and for each packet (ii) the client- Packet number

side port number, (iii) the direction (incoming/outgoiray)d . i _ i _ )

(iv) the size is observed. A web page signature is considucteFi9- 2: Time traces _of uplink traffic from 5 different Irish
consisting of the aggregate bytes received on each poducal health?relqted web sites are s_h(?wn. It can be seen that the
lated by summing packet sizes), effectively corresponding we_b site time traces e_xh|b|t distinct patterns. The trages a
the number and size of each object within the web page. In [15?h|fted vertically to avoid overlap and facilitate coman.

it is similarly assumed that the number and size of the object

in a web page can be observed and using this information a

Cl%ﬁg?:gﬁgﬂi;“;i;;ie glf Fﬁ%gﬁ;ﬁgﬁgﬁdén encrypted the tunnel pads the packets to be of equal size, so that packet

tunnel setup where (i) web page fetches occur sequential@'ﬁ%g{&g{]g}'&lg’ %fcohcr?]g(;/e;lsg ’bi}nggﬂi;g:gsﬁﬁeandﬁin

\évg?hthgcsktgtrt(i%qﬂfgg é)f (ﬁSiEeV\:j??eEggr? (fiﬁg:(?mlﬁgownznar;d fo eb fetch is embedded in a larger traffic strearﬁ. An attacker
P ' gigoing sniffing traffic on the encrypted tunnel is therefore ableydal

and (iv) the time (and so al_so the p_acke_t ordering) is obsbr\_/e abserve the direction and timing of packets through theginn
The sequence of packet inter-arrival times and packet sizes

: X €. to observe a sequence of pak&,di)}, £k = 1,2,
from a web page fetch is used to create a profile for eac heret, is the time at which thei-th packet is observed

web page in a target set and the cross correlation between an dp € {—1,1} indicates whether the packet is travelling

observed traffic sequence and the_ _stor_ed profiles is then uSﬁg the uplink or downlink direction. Our experiments on use
as a measure of similarity. A classification accuracy of 28% i f uplink, downlink and uplink+doWnIink traffic suggest tha

observed v_vhen using a set of 100 web pages, rising to 40[%’ownlink traffic provides no additional information regamrgl
when restricted to a smaller set of web pages.

) timing patterns over uplink traffic. The reason is that tharig
Most later work has adopted essentially the same mOdel%ﬁ ACKs in uplink traffic is correlated to that of downlink

Time (s)
\"lk

* kW o5

-

)

B e Lo or BaEKEI Wich means thal using only uplni alfc povides

into individual web page fetches. For example in [16] the ufficient information. Furtherm(_)r_e it may be easier for an

timing information is not consideréd in the feature set,deen eavesdr_opper 10 access unmo_dlfled l-Jplmk traffic on the first

the attack can be countered with defences such as, BuFLORP: (given the traff[c comes_lmmeo!lately from the source,

in [3] leading to a success rate of onh%. In [10], [6] hile the corresponding downlink traffic could be morphed us
: ’ ing inter-flow transformations.g.flow mixing, split and merge

Bayes C'?SSi“efS b.ased on the direction a’.“?' si_ze of packeﬁ?]). We therefore focus on an attacker that can only oleserv
are considered while in [14] an SVM classifier is proposedthe timestampgty ), k € Kop = {x € {1,2,---} : dy = —1}

In [11] classification based on direction and size of paCket%ssociated with uplink traffic

is studied using Levenshtein distance as the similarityrimet Figure 2 plots the timestamygs, } of the uplink packets sent
IL?si[r%g]Ku—?\l&g 3 a(ssgﬁizlt?gn B?r? [%f] VX;?; :pg{/ol\jcgp%?g ;crzlh[?ljuring the course of fetch_ing five different health-relatezb
A ' ; ages (see below for details of the measurement setup):-The
clajs_llpcailorf]raccu(rjact:r)]/ ofdo:c/er 80% is r%portgd for both SSI xis indicates the packet numbewithin the stream and thg
and ‘or traffic and the detences considered were generaiyis the corresponding timestamypin seconds. It can be seen
e e e anepat hese tmestamp aces are dsincycifren aheae
are ineffective. In [5] remote inference of packet sizesrfro sﬁte_, and itis t.hls observatlon thqt mouvate_s_mtergsthmher
queueing dela.y is studied timing analysis may by |§self (Wlth_out additional m_forrmm
' such as packet size, uplink/downlink packet ordemg) be
sufficient to successfully de-anomymise encrypted welfi¢raf
Il ANATOMY OF A WEB PAGE FETCH To gain insight into the differences between the packet
When traffic is carried over an encrypted tunnel, such as éimestamp sequences in Figure 2 and, importantly, whether
VPN, the packet source and destination addresses and potley are genuinely related to characteristics of each wele pa
and the packet payload are hidden. We also assume here thiather than to other factors, it is helpful to consider thecpsss
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Fig. 3: This figure represent a typical web site query. Ittsthy requesting the index page. Then as the browser pansrgyth
this page more objects are fetched in parallel. Some obijeatsalso be outsourced to 3rd party web sites which have thair
pipelines. Dynamic content may be updated at intervalspdisated in the last two lines of the figure, and connectiensl to
close in groups.

of fetching a web page in more detail. To fetch a web page  web page signature.

the client browser starts by opening a TCP connection with 4) Connection closingWhen a web page fetch is com-
the server indicated by the URL and issues an HTTP GET or  pleted, the associated TCP connections are closed. A
POST request to which the server then replies. As the client  FIN/FINACK/ACK exchange closes each connection and
parses the server response it issues additional GET/POST this burst of packets can have quite distinctive timing

requests to fetch embedded objects (images, css, setipxs which allows it to be identified. Since the number of
These additional requests may be to different servers from connections is related to the number of distinct locations
the original requeste(g. when the object to be fetched is an where objects in the web page are stored, it changes

advert or is hosted in a separate content-delivery network) between web pages.

in which case the client opens a TCP connection to eaclour aim is to use timing features such as these, which vary
new server in order to issue the requests. Fetching of thesgpending upon the web page fetched, to create a timing
objects may in turn trigger the fetching of further objects.signature which allows us to identify which web page is being
Note that asynchronous fetching of dynamic content usingtetched based on timing data only.

e.g.AJAX, can lead to a complex sequence of server requests

and responses even after the page has been rendered by th§/ CompaRING SEQUENCES OFPACKET TIMESTAMPS

browser. Also, typically the TCP connections to the various h i f ket ti s
servers are held open until the page is fully loaded so tha Uppose we have two se/quencles Of packet timestamps
tiy, i =1,2,---,nandt’ := {t}, j = 1,2,--- ,m. Note

they can be reused for later requests (request pipelinitigsn that for simplicity we re-label the uplink packet indicesstart

way is almost universally used by modern browsers). ; . . .
; . ; P from 1 and to increase consecutively since none of our analysis
This web fetch process is |Ilustrate_d schematlcglly in Fégu will depend on this. Note also that t¥1e sequence lengthad Yy
3. We make the following more detailed observations: .
m are not assumed to be the same. To proceed we need to

1) Connection to _thlrd-party serverngtchmg an object define an appropriate measure of the distance between such
located on a third-party server requires the opening of %equences

new TCP connection to that server, over which the HTTP
request is then sent. The TCP connection handshake ) ) )
introduces a delay (of at least one RTT) and since thé\- Network Distortion of Timestamp Sequences
pattern of these delays is related to the web page contefithe packet stream observed during a web page fetch is affecte
it can potentially assist in identifying the web page. by network events during the fetch. Changes in download
2) Pipelining of requestsMultiple objects located on the rate €.g.due to flows starting/finishing within the network)
same server lead to several GET/POST requests beirtgnd to stretch/compress the times between packets. Queuei
sent to that server, one after another. Due to the dynamiaosithin the network also affects packet timing, with queued
of TCP congestion control, this burst of back-to-backpackets experiencing both greater delay and tending to be
requests can affect the timing of the response packets inmore bunched together. Link-layer retransmission on wg=l
predictable manner that once again can potentially assidinks has a similar effect to queueing. Similarly to changes
in identifying the web page. download rate, the effect is primarily to stretch/compreses
3) Asynchronous requestsDynamic content, e.g. pre- times between packets.
fetching via AJAX, can lead to update requests to a server Packet loss introduces a “hole” in the packet stream where
with large inter-arrival times that can potentially act as athe packet ought to have arrived and also affects the timing
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Fig. 4: lllustrating impact of changes in packet loss on the
packet timestamp sequence. The bottom sequence shows the
packet sequence at connection closing of a loss-free web, fet ke _ L
while the top sequence shows the corresponding section from ! !

a different fetch of the same web page that was subject t

packet loss and exhibits TCP retransmissions and DupACK

n

%ig. 5: lllustrating a warping path. The dashed lines inttica
She warping window.

of later packets due to the action of TCP congestion control
(which reduces the send rate on packet loss) and retrarismiss . ; .
of the lost packets. For example, Figure 4 shows up"nigengthl assomate.d with two timestamp s?quences of length
measurements of packet retransmissions and duplicate ACKs and m respectively, and leCe(-) = P, — R be a

at the end of two fetches of the same web page where fOSt function so thaC;(p) is the cost of warping path

can be seen that these have the effect of stretching the tpack® € Lmn- Our interest is in the minimum cost warping path,
p*(t,t') € argminyepr  Cyp(p). In DTW the cost function

Let P!, c V! denote the set of all warping paths of

sequence. z cOS!
has the separable for@; . (p) = Zk_:l cev (D), p7) vyhere

B. Derivative Dynamic Time Warping ay @V — R, in which case optimal patp*(¢,t') be

Our interest is in a measure of the distance between packg{ﬂC'ently found using the backward recursion,

sequences which is insensitive to the types of distortion (pi,pi) carg min  Chy1 + o (p',0) 1)

introduced by the network, so that the distance betweengback (p*,p7)EV

streamg andt’ associated with fetches of the same web page Cr = Cry1 + (Piapi) (2)

at different times is measured as being small, and ideadly th _

distance between fetches of different web pages is measuredhere Vi, = (p,p’) € {(u,v) : (Pj1,Ph 1) € Vun} k =

to be large. To this end we use a variant of Dynamic Time/ — 1,/ — 2,--- and initial conditionC; = ¢ ¢ (n, m). When

Warping (DTW) [9]. DTW aims to be insensitive to differences there is more than one optimal solution at step (1), we select

between sequences which are due to stretching/compreafsing(p:, p;) uniformly at random from amongst them.

time and so can be expected to at least partly accommodate A common choice of element-wise cost is the Euclidean

the effects of changes in download rate, queueing detay  norm c; ¢ (p',p’) = (t,; — t/,)?. However, in our data we
We define a warping patip to be a sequence of pairs, found that this cost can fead to all the elements of one

{wp,pi)} k=1,2,-- ,lwith (pi,p) € V:={1,--- ,n}x  sequence that are beyond the last element of the other segjuen

{1,---,m} satisfying boundary conditiong! = 1 = P, being matched to that single element. For this reason and als

p;' = n, p = m and step-wise ConStrain(%HaPiH) c to improve ro_busjness to noise on t_he t|mestamp values (in
Vo o= {(uv) s uw e {phpi +1}n{l,...,n}v € addition to misalignment of their indices), following [9]ew
PP . instead use the following element-wise cost

{pl,pi. +1}n{l,...,m}}, k = 1,---,l — 1. That is, a o ‘ ‘

warping path maps points from one timestamp sequence to cev (', p7) = (De(p?) — Dy (p7))? 3)

another such that the start and end points of the sequences
match (due to the boundary conditions) and the points areshere D;(i) = (ti*ti’)gt”*ti*), i~ = max{i — 1,1} and
monotonically increasing (due to the step-wise constsqint i+ = min{i + 1,|¢|}. Observe thatD;(i) is akin to the
This is illustrated schematically in Figure 5, where the twoderivative of sequence at indexi. Further, we constrain
timestamp sequences to be compared are indicated to the I¢ffte warping path to remain within windowing distanee
and above the matrix and the bold line indicates an examplef the diagonal i(e. within the dashed lines indicated on
warping path. Figure 5) by settingC(p) = +oo for pathsp € P!, for

mn
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f'.. the setup shown in Figure 7 there are five subpathsl);

0 %0 % 70w 0 4 % (2,2),(2,3); (3,4),(4,4),(5,4); (6,5); (7,6). Two of these
(b) Derivative cost subpaths consist of more than one pair of points, namely

i ) . (2,2),(2,3) and (3,4),(4,4),(5,4), and these correspond,
Fig. 6: Example DTW alignment and warping paths betweenespectively, to the vertical section and the horizontatiea

two sequences vs cost functiep, used, windoww = 0.1.  on the corresponding warping path shown in Figure 7b.
In this example the lengthof the warping path is 73 when a  Formally, defines; := 0 < Ky < -+ < Kp_1 < Ky == 1

Euclidean cost is used and 54 with the derivative cost. such that for eachs = 1,---,r — 1 (i) either p, = pj,

Vki, ky € {FLS + 1,--- 7I<L“3+1].’ or p?ﬂl = pgfz Vkq, kQE

{ks + 1,--- ,ksy1} and (ii) eitherxsy; = [ or condition

which |pi — p/| > max{wmin{n,m},|m — n|} for any (i) is violated for somek:, ks € {rs,---,Ksy1 + 1} ie.

ke{l,--- 1} each subsequence is maximal. Note that # p; for all
Figure 6b illustrates the alignment of points between twok = 1,--- .1 (due to warping path step-wise constraints) and

sequences obtained using this approach and for comparisé@ in condition (i) it is not possible for bothj, andp; to be
Figure 6a shows the corresponding result when using Euconstant. We are now is a position to define thedistance
clidean cost. The figure shows the warping paths on the rightneasure between timestamp sequertcasdt’, namely:

hand side and an alternative visualisation of the mapping

_ K — K
between points in the sequences on the left-hand side. @bser 2s€ (L 1) Kol °

A Kst1—ks>1
that when Euclidean cost is used the warping path tends to ¢(t,t) == n+m (4)
assign many points on one curve to a single point on th(\a/vhere ke s = 1,--- .1 are the constant subsequences in

other curve. As noted in [9] this is known to be a feature of
Euclidean cost. In comparison, use of the derivative destan
tends to mitigate this effect and select a warping path wit
fewer horizontal and vertical sections.

minimal warping pathp*(¢,t’). It can be seen that(p) takes
pyalues in interval0, 1], and is0 when sequencesandt’ are
identical (in which case the warping patHies on the diagonal
in Figure 5). For the example in Figure 7 tiedistancep(p)
is (24 3)/13 = 0.385.

C. F-Distance Measure

Given two timestamp sequences, the warping path is a mapping V- DE-ANONYMISING WEB FETCHESOVER AN
between them. With reference to Figure 5, sections of the ETHERNET TUNNEL
warping path which lie parallel to the diagonal correspondin this section we present measurements of web page queries
to intervals over which the two sequences are well matchedarried out over an ethernet tunnel and evaluate the agcurac
Sections of the warping path that are parallel to the x- or ywith which the web page being fetched can be inferred using
axes correspond to intervals over which the two sequenees avnly packet timing data. The entire project including cqdes
poorly matched. This suggests using the fraction of theallver scripts and datasets for all measurement campaigns isbleil
warping path which is parallel to the x- or y-axes as a digancat [4]. The first dataset consists of home pages of each of the
measure, which we refer to as titedistance. top Irish health, financial and legal web sites as ranked by
In more detail, letp = {(p},p})}, k¥ = 1,---,1 be a www.alexa.com under its Regional/Europe/Ireland catggor
derivative DTW warping path relating timestamp sequenceslovember 2014. We prune the pages that fail to load and then
t and t’, obtained as described in the previous section. Weor each of the top 100 sites we carry out 100 fetches of the
partition the warping path into a sequence of subpaths withiindex page yielding a total of 10,000 individual web page
each of which eithep}, or p], remain constant and we count fetches in a dataset. For comparison we collected two such
the subpaths which are longer than one. For example, fadatasets, one where the pages of each web site are fetched



consecutively over an hour and a second where the pages
are fetched each hour over a period of five days. In these 1
datasets the browser cache is flushed between each fetch
that the browser always starts in a fresh state. In additon,
third dataset was collected consisting of the same 10,000 we
fetches but now without flushing of the browser cache betweer
fetches. The web pages were fetched over a period spannin
November 2014 to January 2015. vat i r - webdri ver

script on Firefox 36.0 was used to perform the web page
0 }

fetches andcpdumpto record the timestamps and direction 02 o1 o6
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(uplink/downlink) of all packets traversing the tunnelhaltigh Distance from website 33 pistance from website 19
only packet timestamps on the uplink were actually used. @) (b)
Fig. 8: Scatter plots for 4 different web pages usihg
A. Hardware/Software Setup distance measurg. In (a) two relatively distinct web pages

The network setup consists of a client that routes traffiheo t are compared while the web pages in (b) are relatively simila
internet over a gigabit ethernet LAN. The client machine is a

Sony VGN-Z11MN laptop with an Intel core 2 duo 2.26GHz

CPU and 4GB of memory. It is running Ubuntu Linux 14.04

LTS Precise. distribution obtained in this way. When presented with a new

timestamp sequengewe calculate the probability; () of this
B. Classifying Measured Timestamp Sequences sequence belonging to web pagand select the web page for
We use theF-distance measure(-,-) described in Section Which this probability is greatest.
IV to compare measured uplink timestamp sequences, with
windowing parametet = 0.2 unless otherwise stated.

Figure 8 shows example scatter plots obtained using this 100 — — —
distance measure. In more detail, from the Bebf measured [ WDHH Q w [ I uu w M \HM DL [ H W[ 7 W mw w
timestamp sequences for th¢h web site we select a sequence o 80 | l ! ! ?” ! ‘r‘ |
t; which minimisesZteTi ¢(t,t;) and then uset; as the % v
exemplar for thei-th web page. In Figure 8 we then plot & 607 1
o(t,t;) for each of the timestamp sequendemeasured for 2
web pagei and also for timestamp sequences measured for & 40 ﬁ |
another web page. In the example in Figure 8a it can be @ 20 | n |
seen that the distance measure is indeed effective at siegara
the measured timestamp sequences of the two web pages ol ‘ ‘ Mean refe -
considered into distinct clusters, so potentially providia 0 20 40 60 80 100
basis for accurately classifying timestamp sequences Hy we Website index
page. Figure 8b shows an example of a scatter plot where the (a) Minimum Mean
separation between the two web pages is less distinct and so
classification can be expected to be less reliable. As we will
see, examples of this latter sort turn out to be fairly rare. 100 r [ ' ' 1

We considered two approaches for usifg, ) to classify HH o U DH ﬁ U HH ﬁ } % Hﬁ
timestamp sequence&’-Nearest Neighbours and Naive Bayes & 80 H U o [ eu |
Classification. 2 6 i é e

1) K-Nearest Neighbourdn this method, for each web page E T I R
1 we sort the measured timestamp sequenttesT; used for 40
training in ascending order of sum-distar)cg . #(t, t') and 8
select the tog to use as exemplars to represent this web page.” 20
When presented with a new timestamp sequence, its distance t Mdanl fatel F-fl-L
the exemplars for all of the training web pages is calculatedl 0 0 2‘0 zio - 8‘0 100

these distances are sorted in ascending order. Classifiaati
then carried out by majority vote amongst the tpmatches.
2) Naive Bayes ClassifierFor each web pagé from the (b) Minimum Variance
measured timestamp sequen@ésised for training we select
t; € argminger, Y 4o, (2, t’) (in addition we also consider
selectingt; to minimise the variance of the distange see
below) and then fit a Beta distribution to the empirical distr
bution of ¢(t,¢;) for t € T;. Let p;(-) denote the probability

Website index

Fig. 10: Naive Bayes classification performance, no browser
caching.
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Fig. 9: K-Nearest Neighbours classification performance, no broesehing.

C. Experimental Results

100 i
We begin by presenting results for the dataset where pages ar H" Wwvw
fetched consecutively and the browser cache is flushed batwe 80 ﬁ
fetches. Figure 9 details the measured classification acgur
using the K-NN approach, for various values @&. We use 1
10-fold cross validation, where the 100 samples of each webg
site are divided into 10 random subsets and for each subse¥ 40 | |
we use the remaining 90 samples as the training data to fing
the exemplars and use the 10 samples in the subset as the
validation data. The rates for these 10 subsets for each web 0 ) ) Mean rate -
site are summarized and displayed in the figure. Each of the 0 20 40 60 80 100
boxes indicate theé5%, 50% and75% quartiles and the lines
indicate the maximum and minimum values. The mean success
rates forK =1, K =3 and K =5 are95.01%, 94.97% and  Fig. 11: K-Nearest Neighbour classification performance, with
94.98% respectively. These results for uplink traffic comparesbrowser caching using exemplars for each sitéd{ = 5.
to a maximum success rate 82.5% when using packet
timestamps on the downlink for the classification, indicgti
that use of uplink or downlink timestamps has little effeot o
the performance of this classification attack. The resuiés a entered again shortly after the full page is fetched, sihee t
also compared for a subset & web sites selected randomly cached copy of an object has not yet expired the cached copy
from the currentl 00, see Table I, which also confirms that the will be used when rendering the web page and it will not be
effect of population size is minor. fetched over the network by the browser. But the browser can
For comparison, the success rates when web pages apg forced to reload the web page by pressing F5 where it then
fetched hourly over 5 days af®.88%, 90.72% and90.74%.  sends a request for the objects and the server may eithen retu
Observe that there is a small (about 5%) reduction in succes¥ abbreviated NOT MODIFIED response if the cached object
rate, which we assume is associated with the time-varying nds in fact still fresh or return the full object if it has cheed)
ture of some of the web sites. We discuss the effect of conteriItimately a full refresh can be induced by pressing Ctrl+F5
and speed variability on the performance in Section VII. ~ Which requests for the full version of the web page as if no
Figure 10 plots the corresponding results obtained usingbject is cached before. Hence, the network traffic gengrate
the naive Bayes approach. Performance is calculated whey a Visit to a web page may differ considerably depending
the exemplar for each web page is selected to minimise then whether it has been visited recently (so the cache is)fresh
mean and the variance of the distance. The mean success ra@g10t.
are 85.2% and 56.3% respectively. Since the performance is Classification of cached web pages can be expected to be
consistently worse than that of tié-NN classifier we do not more challenging than for non-cached pages since there is
consider the naive Bayes approach further in the rest of thkess network traffic and so less data upon which to base
paper. the classification decision. Figure 11 presents the medsure
classification accuracy when browser caching is enableid. Th
. . data is for the case where requests that reply with NOT
D. Standard vs. Cached: Different Versions of Same Web Pag@opIFIED use the cached content, which is probably the
On first visiting a new web page a browser requests all of thenost common form of caching used in practice. It can be
objects that form the web page. However, on subsequens visiseen that regardless of the small size of the network traffic i
many objects may be cachedy.images, css and js filestc. In ~ this setup, the overall success rate for identifying webepag
the Mozilla browser, when the address of a web page is simplyemains in excess af5%.

rate (%)
(2]
o

20 1

Website index



E. Web Pages Outside the Training Set 1

The experiments in the previous two sections are conducte@
with the assumption that the adversary knows that the Wem 0.8 1
page that the user has visited is among the set of web pages fgg

L S e Mq@ i i%? ijgzmlwéi i

outside of the adversary’s training database, then we can usg 0.4
the following approach to first classify whether a measured8

packet timestamp sequentés associated with a web site in é 02T Website is included |
the training set or not. 5 ‘ Website is excluded =
Recall that, as discussed in Section V-B1, for each web page 0 20 40 60 80 100

¢ in the training set we hav8 exemplar packet timestamp Website index
sequences that are used f@r-Nearest Neighbour classifica-
tion. Given a packet timestamp sequemoge useK-Nearest Fig. 12: Distribution of theF-distance between the measured
Neighbour classification to estimate the nearest web pgge  packet timestamp sequences in the training dataset and the
within the training set and lef},;,(t) denote the minimum exemplar packet sequences for the best guess. Data is shown
F-distance between the exemplars for this web page and tHer when sequences of each web site are within the training
measured timestamp sequence. We can then use this valdataset and for when they are removed. Ethernet channel, no
as the basis for a simple classifier. Namely, whép;,,(¢) browser caching.
is greater than a specified threshold (which may depend on
w(t)) then we estimate as lying outside the training set, and
when F,,,;,,(t) is below the threshold then we estimdteas
lying within the training set. It remains to select an appraie Py e—v
threshold for each web page in the training set. \M‘
For every timestamp sequenten the training set Figure
12 plots the distribution of",,;,(t) vs the index of the web
site for whicht is measured. This figure is a box and whiskers
plot with the min, max and quartiles shown. For every web site
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we then remove its data from the training set and repeatthe s , , v v v 7 [ ISR S S

calculation. The distribution of these values is also shawn el %0 C T S
. .. . resholding percentile x (%, resholding percentile x (%)

Figure 12. It can be seen that, unsurprisingly, fhelistance (a) Mean (b) Standard Deviation

is consistently higher when a web site is excluded from the
training set. We select the threshold for classificationryad Fig. 13: Mean and standard deviation of false negative and
separate these two sets of value. Namely, we take the averafiise positive error rates vs the choicefofdistance threshold
of the = percentile of the lower values and th¢00 — =)  (specified via design parametey.
percentile of the upper values as our threshold, wtere
x < 100 is a design parameter.

The classification error rate vs the threshold parameter
used is shown in Figure 13a. Two error rates are shown, firstignd the Tor gateway) of a Tor channel. Similar to before, in
the fraction of web pages which are outwith the training segach case we collected packet timestamp data for 100 fetches
but which are classified as lying within it (which we referto i 0f the home pages of each of the top 100 Irish health, financial
this section as false positives) and secondly the fractiamed  and legal web sites as ranked by www.alexa.com.
pages which are within the training set but which are classifi
as lying outw_ith_ it (which we refer to as false negatives)eTh 5  Femtocell Traffic
standard deviations of these error rates across the wels page . . .
is also shown in Figure 13b. It can be seen that thresholding fémtocell is an eNodeB cellular base station with a small
with z = 90 yields equal error false negative and false positivePhysical footprint (similar to a WiFi access point) and lied
rates of abou8.0%, which is close to the complement of the C€ll size (typically about 30m radius). Itis intended to noye

reported success rate reported in the preceding section.  cellular coverage indoors, filling in coverage holes and im-
proving download rates, while also offloading traffic frone th

macrocell network. Wired backhaul to the cellular opemtor
VI MEASUREMENTRESULTS FOROTHER CHANNELS network is via a user supplied network connectog.a home
In this section we extend consideration from ethernet to @SL line. Since femtocells are usually user installed, ptals
number of different network channels. Namely, we consideaccess to the backhaul connection is straightforward ared it
packet timestamp measurements taken from a commercial simple matter to route backhaul traffic via a sniffer. Mebil
femtocell carrying cellular wireless traffic, from a timited  operators are, of course, aware of this and backhaul traffic
wired UDP channel (of interest as a potential defence againss therefore secured via use of an IPSec encrypted tunnel. In
timing analysis) and from the first hopd. between the client the setup considered here, the femtocell backhaul is over a
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Fig. 14: FemtocellK -Nearest Neighbours classification per- (2) Slot size: 1ms
formance, no browser caching; = 5.
100 x : : ; -
I EIRNTIR T
o . s 80 q ﬁ 1
university gigabit ethernet connection and we usgadump S
to log packets passing over this link. £ 60 H A1t 1 R L
1) Hardware/Software SetupThe client computer is the é %
same Sony laptop used for the ethernet measurements. It 40 j 1
now uses a Huawei K3770 HSPA USB Broadband Dongle US)
to connect wirelessly to the internet via a Femotcell. The 20 1 1
femtocell is a commercial Alcatel-Lucent 9361 Home Cell Mean rate |
V2-V device. The femtocell wired backhaul is connected to %, 0 20 s 20 100

a campus network via a NetGear EN 108 TP Ethernet hub.
A monitor computer which is running on a AMD Athlone
64 X2 Dual Core Proc 5000+ CPU and 4GB memory is also (b) Slot size: 10ms
connected to this hub and logs all packets. The client ang: CTime. _ ; P
monitor computers both run Ubuntu Linux 14.04 LTS Precise?icl)% ;2&3%3%%“?% tgrnor\lNdé(erl\l Ce;gﬁ%gNg%hbours classifica
2) Results:In contrast to the relatively clean ethernet chan- ' T
nel considered in Section V-C, we found that traffic passing
over the wireless femtocell link is often distorted by fasto

such as wireless and cellular noise, encoding/decodiraysdgl :
cellular control plane traffietc These distortions typically tunnel- The server, which has an AMD Athlone 64 X2 Dual

appear as shifts along the-axis of the packet timestamp COre€ Proc 5000+ and 4GB memory, fetches these UDP packets
pgﬁerns and/or as delgys in theaxis. Thepmeasured perforFi using the PREROUTING hook, extracts the paylo_ad and sends
mance using ak-NN classifier using3 exemplars for each eém by via the FORWARD hook to the outgoing ethernet
site andK — 5 is shown in Figure 14. The mean SuCcessmterface. S|m|_IarIy, incoming pacl_<ets from the interne¢ a
rate is 91.8%, which compares with the mean success ratncapsulated into UDP pf’:\ckets via FORWARD hook on the
of 95% observed in Section V-C when using a clean ethernef€'ver and sent to the client which captures them using the
channel. It can be seen that use of the wireless channeltends” REROUTING hook, extracts the payload and forwards this
reduce the classification accuracy, as might be expectetbdueto the application layer.
the additional loss/delay over the wireless hop. Howeves, t  2) Results: Figure 15 shows the measured performance
reduction in accuracy is minor. using aK-NN classifier where3 exemplars are chosen from
each site and< = 5. The overall success rate 8% when
) the tunnel slot size idms and63% when the tunnel slot size
B. Time Slotted UDP Tunnel is increased tol0ms. We also considered slot sizes larger
We developed a custom tunnel usingptables, than 10ms, but since we found such that large slot sizes
netfilter and netfilter-queue. The tunnel tended adversely affect browser performance (and so would
transports packets over a UDP channel in a time slottetlkely be problematic in practice) we do not include them
fashion and the slot size is a configurable parameter. here. This performance compares with a success ra®s%f

1) Hardware/Software SetupThe experimental setup is over a plain ethernet tunnel. As might be expected, time-
identical to that used in Section V apart from the use of aslotting decreases the classification success rate siragd#
customised tunnel. On the client computer all web traffic istiming “noise”. However, even with a relatively large slot
captured using the OUTPUiet fi | t er hook, encapsulated size of 10ms the impact on performance is not proportional
into UDP packets and sent to a server at the other side of the the sacrifice we make in terms of delay and throughput

Website index



(with such a large slot size we are capping the downlink
throughput to150KB/s). This approach therefore appears to
be unappealing as a practical defence against the timiageba
attack considered here. Of course more sophisticated tyfpes
defence may be more effective, but we leave consideration of
those to future work as they likely involve complex tradésof
between network performance and resistance to attack #at w
lack space to address here. 0 : : : ]
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Sample index
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C. Tor Network (a) Mean RTT for packets of each sample

In this section we consider measurements of web page queries
over the Tor network. Tor is an overlay network of tunneld tha W ey -~
aims to improve privacy and security on the internet.

1) Hardware/Software Setupfhe experimental setup is the
same as in Section V except that the traffic from the client
browser, Mozilla Firefox 36.0 is proxified over Tor v0.2.5.1
Note that we also explored use of the Tor browser but found
that a significant subset of the web sites failed to load, dime
out or required a CAPTCHA to be solved for each page fetch )
which created complications when scripting fetches. We als 0 20 S“gmpm m,fgx 80 100
investigated using Firefox with Tor pluggable transposisch
as obfsdetc) but we found that using these add-ons had a

huge impact on delay such that most web sites fail to loagtig. 16: Mean and max RTTs measured during 100 fetches

even after 5 minutes. As befOI‘e, the browser cache is ﬂush% the web page www.medicalcouncil.ie. Changes due to Tor

between fetches. _ _ _ rerouting are evident. The max RTT in (b) is in fact the idle
2) Randomised RoutingTor uses randomised routing of time between when the last packet is received until the beows

traffic over its overlay network in an attempt to make linkdfg  js closed, hence why it is significantly larger than the mean
network activity between source and destination more ditfic RTT plotted in (a).

It can be expected that rerouting will have a significant iotpa

on the timestamp sequence measured during a web fetch
since changes in path propagation have a direct impact on
the time between an outgoing request and receipt of the

Max RTT (s)
= BN
° @9 9

o

(=)

(b) Max RTT for packets of each sample

corresponding server response, and also impact TCP dysamic + Vanilla Firefox ’
since congestion window growth slows with increasing RTT. o Firefox over Tor :
Differences in loss rate, queueing delaic along different o
routes are also likely to impact measured timestamp segsenc D

The impact of Tor rerouting on measured RTT is illustrated o
in Figure 16, which plots the mean and max delay between = } *
sending of a TCP data packet and receipt of the corresponding
TCP ACK for repeated fetches of the same web page (although f""-r—
this information is not available to an attacker, in ourgests i -
of course available for validation purposes). Abrupt, saibigal 0 200 200 600
changes in the mean RTT are evident, especially in Figure 16b Packet number

These changes persist for a period of time as Tor only pegorm

rerquting perjodically. . . Fig. 17: Time traces of uplink traffic measured when fetching
Figure 17 illustrates the impact of Tor on the packet timesyy\\\y medicalcouncil.ie . Measurements are shown both when

tamps measured during a web page fetch. . using vanilla Firefox and when using Firefox with the Tor
3) Results: Figure 18 details the measured CIaSS|f|cat|onp|ugin.

accuracy using theé(-NN approach, wher8 exemplars are

chosen from each site and a window size »f = 0.2

is used to accommodate the warping between samples. The

mean success rate §.2% which compares with the mean

success rate d95.0% when using a clean ethernet channel.

As might be expected, use of the Tor network significantlyrepresent a significant compromise in privacy. We note also
reduces classification accuracy. However, the succesfate that this compares favourable with thé.6% rate reported by
56.2% compares with a baseline success ratel%f for a  Panchenkeet al in [14] against Tor traffic using packet size
random classifier over 100 web sites and so still is likely toand direction information.



Number of | Database K
Channel Exemplars size 1 3 5 7
5 100 95.27% | 95.65% | 95.86% | 95.74%
3 100 95.01% | 94.97% | 94.98% -
Ethernet 3 100 90.88% | 90.72% | 90.74%
1 100 93.37% - -
3 50 97.16% | 97.18% | 97.04%
Ethernet (Downlink) 3 100 92.47% | 91.64% | 90.79%
Cached 3 100 95.88% | 95.30% 95%
Slotted ims 3 100 89.23% | 88.25% | 87.98%
10ms 3 100 63.73% | 61.40% | 63.35%
Femtocell 3 100 92.60% | 91.80% | 91.83%
Tor 3 100 58.44% | 56.18% 56.2%

TABLE I: Summary of the measured success rate of the propatiadk reported here. Data is shown for different numbers of
exemplars, different population sizes and different valoBK in the K-nearest neighbours method. In all cases thepkemof
each web site are fetched consecutively within an hour eéxoeg*) where a sample is taken each hour for 5 days.

campaign is not monotone amongst individual websites. In

100 x w : X . X : .
[ h 9 | Q U this section, we investigate possible reasons behind tloe po
. sol m performance of certain websites. We use the same ethernet
S dataset from Section V-C where samples are fetched hourly
£ 60 Hfph U O R H over 5 days. The study of other scenarios like femtocellheédc
" H %m etc. provides similar results.
8 40 } X 1
o
>
¢ 20 j en | 100W... A0 100$,= ' .
0 1 1 _ [Meahrate |- -+ % : ;’5‘.' ',. S0 R '.
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Fig. 18: Tor network K-Nearest Neighbours classificaton § * . £,
performance, no browser caching, = 5. @ %0 @ %0
40 40
30O 0.1 02. 03 04 05 3C'O ' 5 10 15
o of normalized max downlink speed Max downlink speed (MBps)
D. Other Proposed Channels (a) Standard deviation (b) Median

A number of other channels have been proposed in the litergjg 19: Scatter plot of max link speed standard deviaticth an

ture as a defence against traffic analysis attacks. Wegll  megian against success rate. Samples are taken hourly for 5
[18] suggest a traffic morphing method which maps the packe(gays over ethernet channel.

sizes of one web site to the packet distribution of another

site. This defence fails to overcome the attack considered

here since it makes use only of timing information and does i i

not use packet size information. This is also the case for all 1) Network SpeedThe link speed between the client and
of the packet-size based defences proposed in the HTTPOS each web server varies from a website to another. It is
scheme introduced in [12]. A potential defence againstrtgmi also different between samples of the same page. To in-
attacks is to modify the packet timing pattern by delaying vestigate the effect of network speed on_the cIaSS|f|cat!0n
transmissions. However, although this might be expected to  Performance, we calculated peak downlink speed during
counter timing-based attacks such as that considered tehe s each fetch (the results for uplink and uplink+downlink
defences will also have an impact on delay. For example, SPeed is similar). Then in order to compare the metrics,
BUFLO introduced in [3] is similar to the time slotting metho values for samples of each page are normalized and their
that we consider above and which appears to be impractical ~ variance is evaluated. Figure 19aillustrates the scaltber p

given its substantial impact on delay and bandwidth, with ~ ©f normalized standard deviation of link speed against
190% bandwidth overhead reported in [16]. success rate of each website. It can be seen there is no

strong correlation between these two metrics that would
suggest that a web site with more variable link speed
should result a lower success rate. Similar comparison is
also studied with median speed for each web site (Figure
19b) to show that having an overall faster link speed does
not guarantee a poor classification performance.

VII. EFFECT OFLINK SPEED AND CONTENT CHANGE ON

CLASSIFICATION PERFORMANCE

By looking closely at performance of websites, it can be seen
that the total mean success rate obtained in each measuremen



The above results suggest that there is no strong cornelatio

100 g 100 g T : between the performance of our attack and link speed, small
90 Tre 9% R content change and number of parallel connections. However
2 80 S L. S 80 L. the choice of exemplars are essential to the performance of
2 0 KR g ol e, the attack. In particular when the content change is mone tha
g o o % o T a threshold, the difference between sa_mpI(_es can no longer be
g . 8 . ignored by the attack. An example of this misbehaviour can be
@ %0 @ %0 seen for websitg: 10 in the measurement campaign considered
4 40 in this section, where 2 different versions of the page were
% 01 o0z 03 04 0s 3% 01 02 03 04 05 observed during the experiment. In result, 1 exemplar repre
o of normalized sample length o of normalized # of GET/POST requests sents one version while 2 others represent another vergion o
(2) Sample length (b) GET/POST count the page. This causds-NN method to fail collecting enough

Fig. 20: Scatter plot of sample length and GET/POST requeé’[OteS for a successful classification, which in turn leads to

count standard deviation against success rate. Samples at4ccess rate dfl%.

taken hour|y for 5 days over ethernet channel. To overcome this ISSue, Separate sets of exemplars are
required to represent each version of a web page in order to
successfully classify future samples.

100 < lOOWV
90 -:-.39-'- . 90 '\_;'. . VIIl. FINDING A WEB PAGE WITHIN A SEQUENCE OF
g 80 S, g eoly ° WEB REQUESTS
g ol W . g 70 5.
2 e © 2 6ol In the experiments presented so far we have assumed that
% o § w0 within the observed packet timestamp stream the boundaries
between different web fetches are known. This is probably a
40 40 . . . ",
reasonable assumption on lightly loaded links where theisin
30 e 30 .

0 10 20 30 40 0 50 100 150 frequently idle between web fetches. However, not only migh
Number of serving [P addresses Number of active TCP ports this assumption be less appropriate on more heavily loaded
() Open IP connections (b) Active TCP ports links but it also allows for a relatively straightforward ares
Fig. 21: Scatter plot of median open IP connections and activof defence, namely insertion of dummy packets to obscure the
ports count against success rate. Samples are taken hourly foundaries between web fetches. In this section we therefor
5 days over ethernet channel. extend consideration to links where web fetches are caoti¢d
in a back to back fashion such that the boundaries between web
fetches cannot be easily identified.
The basic idea is to sweep through a measured stream of
2) Sample Length and GET/POST Requests Cdtorteach  packet timestamps trying to match sections of it against the
web site we plot the standard deviation of the normalizediming signature of a web page of interest. This exploits the
number of uplink packets (a measure of the variabilityfact that our timing-only attack does not fundamentallyetegh
of the web page over time) and the corresponding sucen knowledge of the start/end times of the web fetch (unlike
cess rate (see Figure 20a). The results for uplink angrevious approaches which use packet counts to classify web
uplink+downlink is similar. We also provided the same pages).
plot for maximum number of GET/POST requests for |n more detail, to locate a target web page within a stream
each website (Figure 20b). It can be seen that, there is ngf packet timestamps we first select three measured packet
strong correlation between the these metrics and succegigestamp sequences for that web page to act as exemplars (as
rates which is suggestive that the classification attack igreviously). Then, we sweep through the stream of timessamp
fairly insensitive to variability of web page content over jn steps of 10 packets, extract a section of the stream of
time. ) ) ) ) the same length as each exemplar (plus 10 to cover the step
3) IP Connections, Active TCP ports order to investigate  sjze) and calculate the distance between the section and the
the robustness of the attack against parallel connectiongxemplar. After sweeping through the full stream we select
for each web site we plot the median number of servinghe location within the stream with least distance from the
IP connections and active TCP ports against their correexemplars as the likely location of the target web page withi
sponding success rates. As illustrated in Figures 21a anghe stream. While this process assumes that the target vgeb pa
21b, again there is no clear correlation between mentione@ present within the packet stream, using a similar apgroac
metrics which is suggestive that the number of active that in Section V-E we could extend this approach to decide
IPs/ports for each web site, which represents the numbeghether the web page is present by appropriately threstmldi
of parallel connections, has no effect on the performancenhe distance (when the measured least distance is above the
of our proposed attack. threshold, the page is judged to not be present in the stream)
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Fig. 22: lllustrating locating of a web page within a packigeam. The page www.iscp.ie shown in red triangles is an gi@m
of a web page which is successfully located among 2, 3, 4 ar@hSecutive web fetches. The vertical lines show the first SYN
packet of each web page.

A. Results target web page within each packet stream within a position

We constructed a test dataset as follows. For each run we piTor of w.ls packets, wherev is the window size at which

one of the 100 web sites to be the target. We then uniformly ap.| W operates((.2 in our setting) and is the average length

random pick up to 4 other web sites from the remaining welPf the 3 exemplars which are determined for each web site

sites. The selected web sites are then permuted randomly afjgParately. Given the limited information being used, thia

fetched one after another with a pause after each fetchgactif®markably high success rate and indicates the power of the
as a “thinking period”. The maximum time allowed for each timing-only attack. However, it can be seen that the success

fetch to complete i25 seconds.e the length of each pause rate starts to lower as the number of consecutive fetchegsgro

is selected uniformly at random from25 seconds. Repeating Which leads to a longer packet stream that can potentially

this for all web sites in the dataset, we created 100 test rundclude similar patterns to the target web page. Moreover we
pages with shorter length are less likely to be located ptppe

[ No. of consecutve page3 2 | 3 | 4 | 5 | due to their shorter signatures which are more likely to appe
[ Success rate | 82% [ 80% [ 66% | 64% | in the middle of a larger web trace.

TABLE II: Success rates of locating web pages am@ng
fetches. IX. SUMMARY AND CONCLUSIONS
We introduce an attack against encrypted web traffic that
makes use only of packet timing information on the uplink.
Using the classification approach described above we atn addition, unlike existing approaches this timing-ontiaaek
tempted to identify the location within each packet streamdoes not require knowledge of the start/end of web fetches
Figure 22 presents four examples of this, showing the positi and so is effective against traffic streams. We demonstrate
within a stream with least distance from the exemplars of ahe effectiveness of the attack against both wired and eseel
target web page. The success rate results for strearfissof traffic, consistently achieving mean success rates in exges
web sites are summarized in Table Il. With this approach wé0%. Table | summarises our measurements of the success rate
achieved a maximum success rate 8% for locating the of the attack over a range of network conditions.



Study of downlink and a preliminary study of up- [10]
link+downlink traffic suggest little difference from upkn
results presented in this paper, given timing patterns 6hkip
and downlink are strongly correlated. Moreover, the pregos
attack proves to be robust against different link speeéemint
number of parallel connections and small content change,
being able to maintain overall success raté bk for measure-
ments collected over a course of 5 days. However the thréshol
for which the attack remains resilient to content changeis t [12]
be studied. we leave further investigation of these maftars
future work.

Since this attack only makes use of packet timing infor—[ls]
mation it is impervious to existing packet padding defences
We show that time slotting is also insufficient to prevent
the attack from achieving a high success rate, even when
relatively large time slots are used (which might be expmkcte
to significantly distort packet timing information). Simily, 14
randomised routing as used in Tor is also not effective. More
sophisticated types of defence may be more effective, but we
leave consideration of those to future work as they likely
involve complex trade-offs between network performarecg.(  [15]
increased delay and/or reduced bandwidth) and resistance t
attack that warrant more detailed study than is possible.her

In addition to being of interest in its own right, by highligh
ing deficiencies in existing defences this timing-only cltta
points to areas where it would be beneficial for VPN designers
to focus further attention.

[11]

[16]
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