
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

A Deterministic Approach to Detect
Median Filtering in 1D Data

Cecilia Pasquini, Giulia Boato, Naif Alajlan and Francesco G.B. De Natale

Abstract—In this work, we propose a forensic technique able to
detect the application of a median filter to 1D data. The method
relies on deterministic mathematical properties of the median
filter, which lead to the identification of specific relationships
among the sample values that cannot be found in filtered
sequences. Hence, their presence in the analyzed 1D sequence
allows excluding the application of the median filter. Owing to
its deterministic nature, the method ensures 0% false negatives
and, although false positives (not filtered sequences classified
as filtered) are theoretically possible, experimental results show
that the false alarm rate is null for sufficiently long sequences.
Furthermore, the proposed technique has the capability to locate
with good precision a median filtered part of 1D data and
provides a good estimate of the window size used.

Index Terms—Forensics, Detection, Median filter

I. INTRODUCTION

AS a result of globalization and worldwide connectivity,
people from all over the planet are exchanging ever

increasing amounts of information of whatsoever type and
form, in the most diverse fields of human activity including
science, economy, social relationships, news, entertainment.
This poses a number of problems related to the reliability
and trustworthiness of information, as well as its potential
malevolent use. Forensics technologies provide powerful tools
to verify the authenticity of data and their possible ma-
nipulation, either they refer to multimodal sensed signals,
medical records, geophysical observations, marketing statistics
or financial reports. In this framework, the detection of any
operation that could have been employed to post-process a set
of data, either for malicious purposes or simply to improve
their content or presentation, turns out to be of interest for a
comprehensive forensic data analysis.

In this work, we consider a widely known technique com-
monly used for data smoothing, namely, the median filter
[1]. Thanks to its ability to effectively discard outliers while
preserving relevant information, median filtering has been
extensively adopted as a post-processing operator in different
fields, including audio processing [2], [3], image processing
[4], [5], geophysics [6], economics [7], biomedical signal
processing [8], both for 1D and 2D signals. Several methods

C. Pasquini, G. Boato and F.G.B. De Natale are with the Department
of Information Engineering and Computer Science, University of Trento,
Trento 38123, Italy (e-mail: cecilia.pasquini@unitn.it; boato@disi.unitn.it;
denatale@disi.unitn.it).

N. Alajlan is with the College of Computer and Information Sciences, King
Saud University, Riyadh 11543, Saudi Arabia (najlan@ksu.edu.sa).

This work was supported by the Deanship of Scientific Research of the
King Saud University through the International Research Group under Project
IRG14-20.

have been proposed for the forensic detection of median
filtering, with particular attention to images. Most of them
are based on a statistical characterization of the filtered signal
in different domains, often relying on machine learning tools
for the detection.

To the best of our knowledge, no specific methods for the
forensic analysis on 1D data are available, as they usually
focus on the two-dimensional case, although part of them
can be easily conceived and adapted to the 1D domain and
will represent a benchmark comparison in our experimental
validation phase. In [9] Kirchner and Fridrich proposed a
simple yet effective median detector that exploits the artifacts
introduced by the filter. The ratio of histogram bins and the
subtractive pixel adjacency matrix features in the first-order
difference domain are used as traces to detect median filtering
in bitmap images. The first-order difference map is employed
in [10] by Cao et al. to compute the probability of zero-values
in texture areas of the image. A more complex median detector
was proposed by Yuan in [11], based on the idea that median
filtering, applied to overlapping blocks, affects the pixels
ordering in each block, thus introducing a strong dependence
between median values originating from overlapping filter
window. Kang et al. in [12] analyzed the statistical properties
of the median filter residual by using an autoregressive model.
In [13] Chen et al. proposed an effective median detector based
on two sets of features, the cumulative distribution function
of k-th order image difference (global probability) and the
local correlations between different adjacent image difference
pairs (local correlation). Recently, an effective median forensic
algorithm was proposed in [14], where the second-order local
ternary patterns are used to capture the changes of local
textures due to median filtering. All of the above techniques
rely on statistical classification as a final step of the detector,
thus producing both false alarms and missed detections.

In this paper we propose a deterministic approach to detect
the application of a median filter on 1D signals or data
sequences. The method exploits some basic mathematical
properties of the median filter, which are a consequence of
its very definition and enforce specific relationships among the
samples of the original and filtered sequences. Such properties
lead to the identification of sets of 1D patterns (called in
the following “unfeasible classes”) that cannot be output by
a median filter. While the problem of identifying roots of
median filters (i.e., patterns that are certainly preserved after
the filtering) has been widely addressed in the past [15], to the
best of our knowledge this is the first work focusing on the
study of patterns that are certainly not introduced by a median
filter.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

This turns out to be particularly important for forensic
purposes, as the subject signal can be scanned sequentially
and the presence of such patterns can be checked by means
of a simple algorithm: if they are detected, then the signal
is classified as negative to median filtering; otherwise, it is
classified as positive to median filtering. It is worth pointing
out that the detection does not require any thresholding or
training operation, as it is a direct result of the scanning
procedure. Moreover, given the nature of the algorithm, the
rate of false negatives is guaranteed to be null, as no unfeasible
classes can be present in filtered sequences.

The effectiveness of the technique is proved by extensive
experiments on different kinds of 1D data, including audio
tracks, economical series, physiological signals. Besides con-
firming the absence of false negatives, experimental results
demonstrate that in practical cases the method easily achieves
0% false positives, which would be possible in principle.
Indeed, the occurrence of the unfeasible classes in common
data originated from different sources is extremely frequent.
Moreover, the detector is able to provide as a side-information
the size of the applied median filter and, thanks to the
capability of detecting the unfeasible classes throughout the
entire sequence, the technique can be used to segment with
a high precision the filtered subsequence in the case of local
filtering. Although the proposed scheme is deterministic when
the median filter is the very last process applied, we also
explored the possibility to exploit the distribution of the
unfeasible classes in the signal to detect median filtering even
when a post-processing operation is applied, thus addressing
robustness issues of the deterministic detector.

The rest of the paper is organized as follows: in Section II
the rationale behind the proposed approach is explained in
detail and the design of the final detectors is presented in
Section III, while the results of the experimental tests are
reported in Section IV. Finally, we draw the conclusions of
our work in Section V.

II. MEDIAN FILTER DETECTION
AND UNFEASIBLE SEQUENCES

In this work, we design a forensic detector of median
filtering for 1D data based on deterministic properties of such
processing, which can be applied to 1D signals or, in general,
to any set of ordered one-dimensional data samples.

First, we introduce the theoretical background and the main
rationale behind our method in Section II-A. Then, in Section
II-B we propose an algorithmic procedure for the analysis of
1D data, that will be exploited in the following sections.

A. Theoretical background

We will represent the one-dimensional objects analyzed as
numerical sequences {yi}∞i=1 ⊂ R, that we will simply denote
as {yi} for the sake of brevity1 . Then, the action of median
filtering can be defined as follows:

1In practice the sequences to be analyzed will be finite, thus we will have
that yi = 0 when i is higher than a certain value.

yi+2yi�2

xi+2xi�2

yi yi+1yi�1

xi�1 xi xi+1

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�2 = yi�1 xi�1 � yi�1 xi  yi�1

xi�2 = yi�1 xi�1  yi�1 xi � yi�1

xi�2 � yi�1 xi�1 = yi�1 xi  yi�1

xi�2  yi�1 xi�1 = yi�1 xi � yi�1

xi�2 � yi�1 xi�1  yi�1 xi = yi�1

xi�2  yi�1 xi�1 � yi�1 xi = yi�1

xi�2 = yi�1 xi�1 � yi�1 xi  yi�1

xi�2 = yi�1 xi�1  yi�1 xi � yi�1

xi�2 � yi�1 xi�1 = yi�1 xi  yi�1

xi�2  yi�1 xi�1 = yi�1 xi � yi�1

xi�2 � yi�1 xi�1  yi�1 xi = yi�1

xi�2  yi�1 xi�1 � yi�1 xi = yi�1

xi�2 = yi�1 xi�1 � yi�1 xi  yi�1

xi�2 = yi�1 xi�1  yi�1 xi � yi�1

xi�2 � yi�1 xi�1 = yi�1 xi  yi�1

xi�2  yi�1 xi�1 = yi�1 xi � yi�1

xi�2 � yi�1 xi�1  yi�1 xi = yi�1

xi�2  yi�1 xi�1 � yi�1 xi = yi�1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

Fig. 1: Representation of the influence of {yi} on {xi} for the
case of N = 3.

Definition Given a sequence {xi} and a natural odd number
N , the output of a median filter with size N applied to {xi}
is a sequence {yi} such that

yi = median(Xi),

Xi := {xi−bN2 c, . . . , xi, . . . , xi+bN2 c},

when i > bN2 c and yi = 0 otherwise.

In a forensic framework, we assume to analyze a 1D data
and look for traces of previous median filtering. In other
words, we deal with an “inverse” problem, where we are given
a sequence {yi} and we need to determine whether it is the
output of a median filter of a certain size N applied to an
original unknown sequence {xi} or not.

In order to provide an answer to this question, we can
now exploit the following consequence of the median filtering
definition:

Property Let {yi} be the output of a median filter of size N
applied to {xi}. Then, ∀i > bN2 c the following facts hold:
• at least one value in Xi is equal to yi
• among the other values of Xi, bN2 c of them are equal to

or greater than yi and the remaining bN2 c are equal to
or lower than yi.

As an example, we consider the simple case where N =
3. In such case, if {yi} is the sequence to be analyzed and
we suppose it is the output of a median filter with size 3
applied to an unknown sequence {xi}, a generic value yi, i >
bN2 c introduces some knowledge on the 3 elements of Xi, as
illustrated in Fig. 1. In particular, we can observe that xi−1, xi

and xi+1 must satisfy at least one of the 6 sets of conditions
reported in the central grey block in Fig. 1, and the same

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

yi+2yi yi+1

HN set of conditions

on xi�bN
2 c, . . . xi+bN

2 c

HN set of conditions

on xi+1�bN
2 c, . . . xi+1+bN

2 c

HN set of conditions

on xi+2�bN
2 c, . . . , xi+2+bN

2 c

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi�1 = yi xi � yi xi+1  yi

xi�1 = yi xi  yi xi+1 � yi

xi�1 � yi xi = yi xi+1  yi

xi�1  yi xi = yi xi+1 � yi

xi�1 � yi xi  yi xi+1 = yi

xi�1  yi xi � yi xi+1 = yi

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi = yi+1 xi+1 � yi+1 xi+2  yi+1

xi = yi+1 xi+1  yi+1 xi+2 � yi+1

xi � yi+1 xi+1 = yi+1 xi+2  yi+1

xi  yi+1 xi+1 = yi+1 xi+2 � yi+1

xi � yi+1 xi+1  yi+1 xi+2 = yi+1

xi  yi+1 xi+1 � yi+1 xi+2 = yi+1

xi+1 = yi+2 xi+2 � yi+2 xi+3  yi+2

xi+1 = yi+2 xi+2 � yi+2 xi+3  yi+2

xi+3 = yi+2xi+2 � yi+2xi+1  yi+2

xi+3 = yi+2xi+2 � yi+2xi+1  yi+2

xi+1 = yi+2 xi+2 � yi+2 xi+3  yi+2

xi+3 = yi+2xi+2 � yi+2xi+1  yi+2

xi+1 = yi+2 xi+2 � yi+2 xi+3  yi+2

xi+3 = yi+2xi+2 � yi+2xi+1  yi+2

xi+1 = yi+2 xi+2 � yi+2 xi+3  yi+2

xi+3 = yi+2xi+2 � yi+2xi+1  yi+2

xi+1 = yi+2 xi+2 � yi+2 xi+3  yi+2

xi+3 = yi+2xi+2 � yi+2xi+1  yi+2

Fig. 2: Hypothesis tree for a median filter N = 3.

holds for all the values in {yi}: yi+1 enforces 6 possible sets
of conditions involving the 3 elements xi, xi+1, xi+2, as well
as yi−1 for xi−2, xi−1, xi, and so on. We can replicate the
procedure for a generic filter size N , and we obtain that each
yi affects the N values in Xi by imposing a number of possible
sets of conditions that is equal to

HN = N
(N − 1)!(

N − 1

2

)
!

(
N − 1

2

)
!

.

Clearly, HN significantly increases with N : HN =
6, 30, 140, 630 for N = 3, 5, 7, 9, respectively.

If we start from a value yi and move forward in {yi}, at
each step we will have HN possible systems introduced and
the elements of {xi} must fulfill at least one of them. This can
be represented by a tree, as in Fig. 2, where at each node one of
the possible set of conditions is added to the ones cumulated in
the previous steps along the corresponding path, thus obtaining
an equality/inequality system at each node. Now, at each step
the systems introduced and the ones of the previous step will
share N − 1 overlapping variables (the intersection of Xi and
Xi+1). Hence, according to the values in {yi}, at each node the
system cumulated along the branch might contain conditions
on the same variable that are not compatible: in such cases,
the cumulated system has an empty feasibility region and we
will define the branch as unfeasible; otherwise, we will denote
it as feasible.

Clearly, if at a certain step j all the branches are unfeasible,
it means that no sequence {xi} exists such that it could
generate {yi} when median filtered with size N . In other
words, we have the deterministic proof that {yi} is not the
output of a median filter of size N and we obtain a response for

the forensic problem we face. Although the specific framework
and mathematical tools used are different, such approach can
be compared to the ones proposed in [16] and [17], where a
similar rationale is employed for the detection of resampling
in signals and steganography in digital images, respectively.

B. Algorithmic checking procedure
In the light of the above, a possible approach for analyzing

a given sequence {yi} could be to progressively scan it and
determine at each step whether the tree generated by the
samples contains at least one feasible branch, meaning that
a median filtering with size N might have occurred. In this
regard, we propose a recursive algorithmic procedure for the
analysis of the sequence {yi} starting from a generic element
at position i up to a certain number Tmax of successive values.
It is based on a recursive algorithm consisting of a depth-first
visit of the tree and its pseudo-code is reported in Algorithm 1.
In particular, it takes as input arguments the size N of the
median filter, the sequence {yi}, the index i of the first element
of {yi} to be considered, the maximum number Tmax of
successive values to be scanned and the current level T of the
tree (which is initially set to 1 and increases at each iteration
up to Tmax).

In other words, at each call of the CHECK function the
algorithm creates all the HN possible sets of conditions
generated by the sample at the current location and check
their consistency with the existing branches (created at the
previous call) in a sequential order. When the first feasible
condition is found, the function recursively launches itself and
moves to the successive sample. As we observed, the number
HN substantially increases with N , thus leading to a higher
computational complexity of the algorithm when raising N .

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

Algorithm 1
function CHECK(N ,{yi},i,T ,Tmax)

Get yi from {yi}
Create the HN sets of conditions imposed by yi
for each set of conditions do

Check conditions overlapping for that T
if conditions are compatible then

if T = Tmax then
return OK

else
R = CHECK(N , {yi},i+ 1,T + 1,Tmax)
if R = OK then

return OK
end if

end if
end if

end for
return ¬OK

end function

Fig. 3 shows an example referred to a practical case for the
filter size N = 3. Here, we consider a sequence {yi} such
that

y2 = 5, y3 = 8, y4 = 9, y5 = 6,

and illustrate the algorithmic procedure when
CHECK(3,{yi},2,1,Tmax) (where Tmax ≥ 4) is called.
The analyzed sequence is reported at the bottom and the
tree generated is represented above. The blue arrows show
the branches sequentially analyzed by the algorithm, where
the dotted ones indicate a new call of the CHECK function.
Conditions on same elements of {xi} are aligned vertically
and a red box indicates that an explicit inconsistency with
respect to the previous set of conditions along the current
branch is found. On the other hand, a grey box indicates that
the current set of conditions is compatible and the CHECK
function is recursively called with the third and fourth input
arguments increased by a unit. For the sake of brevity, only
the check on the first set of conditions generated by the first
sample y2 = 5 is represented (i.e., x1 = 5, x2 ≥ 5, x3 ≤ 5);
however, the following ones are treated in the same way
and all of them turn out to be closed, thus showing that the
analyzed sequence cannot be generated by a median filter of
size 3.

Although a progressive scanning by means of such algorith-
mic procedure would represent a valid solution from a theoret-
ical point of view, the actual application to data sequences of
considerable length is computationally demanding, especially
when N increases. However, we will see in the next section
that we can exploit additional properties of the median filter
and adopt smarter strategies in order to simplify the analysis
from both a theoretical and a computational perspective.

III. UNFEASIBLE CLASSES AND N -DETECTORS

A peculiar property of the median filter is the fact that it is
based on a sorting operation and, because of that, the set of
conditions on {xi} that we defined in the previous section are

y2 = 5 y3 = 8 y4 = 9 y5 = 6

x1 = 5 x2 � 5 x3  5

x2 = 8 x3 � 8 x4  8

x2 = 8 x4 � 8x3  8

x2 � 8 x3 = 8 x4  8

x3 = 8x2  8 x4 � 8

x4 = 8x2  8

x4 = 8x2 � 8

x3 � 8

x3  8

x5 = 9x4 � 9x3  9

x5 = 9x4  9x3 � 9

x3 = 9 x4  9 x5 � 9

x4 = 9x3  9 x5 � 9

x3 = 9 x4 � 9 x5  9

x4 = 9x3 � 9 x5  9

x6 = 6x4 � 6 x5  6

x6 = 6x4  6 x5 � 6

x4 = 6 x5  6 x6 � 6

x5 = 6x4  6 x6 � 6

x4 = 6 x5 � 6 x6  6

x5 = 6x4 � 6 x6  6

x5 = 9x4 � 9x3  9

x5 = 9x4  9x3 � 9

x3 = 9 x4  9 x5 � 9

x4 = 9x3  9 x5 � 9

x3 = 9 x4 � 9 x5  9

x4 = 9x3 � 9 x5  9

x6 = 6x4 � 6 x5  6

x6 = 6x4  6 x5 � 6

x4 = 6 x5  6 x6 � 6

x5 = 6x4  6 x6 � 6

x4 = 6 x5 � 6 x6  6

x5 = 6x4 � 6 x6  6

y1 y6

x1 = 5 x2  5 x3 � 5

¬OK

¬OK

¬OK

¬OK

Fig. 3: Representation of the CHECK function with N = 3 for
a specific sequence {yi} starting from the position 2.

composed of equalities and non-strict inequalities. By looking
at Fig. 2, we have that the structure of the tree (the number
and kind of conditions added at each step) is determined
uniquely by the specific filter size N we are considering. On
the other hand, the feasibility of each branch only depends
on the values of the yi’s, as it is easy to observe that in
an equality/inequality system the existence of a solution only
depends on the order relations between all the constant terms
involved, that in our case are represented by the elements of
{yi}. Indeed, in Section II-B we have shown how to verify
that for N = 3 a sequence such that

y2 = 5, y3 = 8, y4 = 9, y5 = 6,

generates a tree with only unfeasible branches, but we would
have obtained the same result by applying the checking
procedure to any sequence with the same 6 order relations

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

between y2, y3, y4 and y5, i.e., such that

y2 < y3, y2 < y4, y2 < y5,

y3 < y4, y3 > y5,

y4 > y5.

Let us now suppose to analyze a generic subsequence
of {yi} composed of L elements in consecutive positions,
regardless of its starting point in {yi}, which can be seen as a
vector of length L with values in R. Thus, we can identify RL

as the set of all such possible objects and, consistently with
the notation on trees, we can denote each vector aL ∈ RL as
feasible (unfeasible) for a filter size N if the corresponding
tree, generated as described in Section II, contains at least one
feasible branch (contains only unfeasible branches).

According to the previous observations, we can give the
following definition and lemma:

Definition Let ∼ be a binary relation over RL such that for
aL,bL ∈ RL

aL ∼ bL ⇐⇒ all the L(L− 1)/2 order relations

between the elements of aL
hold also for the corresponding

elements of bL

Example

(1, 3, 2, 4) ∼ (100, 300, 200, 400),

(1, 3, 2, 4) ∼ (−20,−1,−7, 50),
(1, 3, 2, 4) � (−50, 0, 50, 100).

Lemma If aL ∈ RL is feasible (unfeasible) for a certain filter
size N , then any bL ∈ RL such that bL ∼ aL is feasible
(unfeasible) for N .

Proof: Let A and B be the trees generated for the fixed value
of N from aL and bL, respectively, as described in Section
II-A (see Fig. 2). Let then FA(i, l) be the cumulated system at
the i-th node of the l-th level of A, where 1 ≤ i ≤ (HN)l and
1 ≤ l ≤ L; the same holds for FB(i, l). Being fixed the value
of N , FA(i, l) and FB(i, l) share the same variables and they
are subject to the very same equality or inequality conditions
with the exception of the constant terms, which are given by
the elements of aL and bL. By hypothesis, the corresponding
elements of aL and bL have the same order relations and the
systems FA(i, l) and FB(i, l) have either empty or not empty
feasibility regions. �

In other words, we can limit the analysis to the classes
on RL (that we will denote as L-classes) defined by the
relation ∼ , since all the vectors of RL with the same order
relations between their components will be either feasible or
unfeasible. This represents a crucial result, as such L-classes
are in a finite number (for a given L they can be explicitly
determined by means of combinatorics rules) and we can
perform our analysis a priori, thus avoiding the application
of the algorithmic procedure in II-B to the given sequence.
As an example, we proved in Section II-B that (5, 8, 9, 6) is

unfeasible in R4 for N = 3. Given a generic sequence {yi}, if
we find along the sequence 4 values in a consecutive position
which have the same order relations as (5, 8, 9, 6), we can
deterministically assert that such sequence (or such part of
the sequence) has not been median filtered with N = 3.

To this extent, we can generate all the L-classes for any
value of L and determine which of them are feasible or
unfeasible for a given filter size N . We will then denote as
UN
L the set of L-classes that are unfeasible for a certain N and

do not contain any L′-class, L′ < L, that is itself unfeasible
for N . By building such sets, we can obtain a set of patterns
(meant as order relations between consecutive elements) to
be sought in the given sequence {yi} in order to determine
whether it has been filtered or not, as it is explored in the
next section.

A. Identification of feasible and unfeasible classes

In order to identify a priori the feasible and unfeasible
patterns for a certain filter size N , we exploited the algorithm
proposed in II-B by analyzing the L-classes up to a certain
length.

First, we observed that the filter size N determines a
maximum length for its unfeasible classes, which is equal to
2N − 1. Indeed, the following lemma holds:

Lemma Let {xi} be a numerical sequence in R and {yi} the
output of a median filter with size N applied to {xi}. Then
each yi will be related to its adjacent values within a maximum
window of size 2N − 1.

Proof: By definition of the median filter, each yi depends
uniquely on Xi. At the same time, Xi affects the values in the
set Yi = {yk, k = i− bN2 c, . . . , i+ bN2 c}, thus establishing a
mutual relationship between yi and the elements of Yi, whose
cardinality is 2N − 1. �

Hence, we have that the maximum length is given by 5, 9,
13 and 17 for N = 3, 5, 7, 9, respectively.

Then, we employed the function UNFEASIBLECLASSES,
whose pseudocode is reported in Algorithm 2, to identify the
unfeasible L-classes for a specific filter size N and for L
starting from 2 up to 2N−1. In particular, at each step all the
possible L-classes for the current L are created, the ones which
contain a (L−1)-class identified as unfeasible at the previous
iteration are discarded and, among the remaining ones, the
CHECK function determines which ones are unfeasible, thus
obtaining the set UN

L for each length L.
In Table I, we report the cardinality of the UN

L obtained,
indicated as |UN

L |. The computational complexity of the pro-
cedure increases both with L (because of the total number of
L-classes, which is reported in the second column) and with N
(because of the number of possible sets of conditions). Thus,
we limited the analysis to the classes up to L = 11 and in
the hardest cases (marked with the symbol ∗), instead of all
the possible L-classes, we considered only the ones where the
relations between the L elements are strict inequalities, which
can be seen as the L! possible permutations of L elements (for
L = 11 we have almost 40 million permutations). Although
this does not provide an exhaustive analysis (2N − 1 would

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

Algorithm 2 Identification of unfeasible classes

function UNFEASIBLECLASSES(N)
for L = 2, . . . , 2N − 1 do

Create all the possible L-classes
for each L-class do

if it does not contain an element of UN
L−1 then

Choose an aL ∈ RL in the current class
Create the sequence {ai},
whose first L values are the elements of aL
if CHECK(N ,{ai},1,1,L)= ¬OK then

Save current class in UN
L

end if
end if

end for
end for

end function

TABLE I: Number of unfeasible L-classes derived for different
values of N . The symbol ∗ means that only classes with strict
inequality relations between the L elements have been consid-
ered. The last row reports the total time (in seconds) necessary
to derive all the unfeasible classes of the corresponding value
of N .

L N. of L-classes |U3
L| |U5

L| |U7
L| |U9

L|
2 2 0 0 0 0
3 13 0 0 0 0
4 75 12 0 0 0
5 541 20 60 36 36
6 4683 0 468 270 222
7 47293 0 74 1712 980
8 545835 0 34 7666 5578
9 7087261 0 2 1802 31496

10 102247563 0 0 838 29776*
11 ∼ 1 billion 0 0 478 6510*
Total computation time 0.15s 580.3s 27320s 51960s

be higher for N = 7, 9), the number of unfeasible classes
detected among the L! considered is significant and sufficient
to correctly detect the filter, as we will see in the next sections.
It is to be pointed out that, although it is time consuming for
higher values of N , the above operation can be performed off-
line and once-for-all, and can be easily parallelized; moreover,

aggregating all unfeasible classes detected among different
values of L and N requires very limited memory requirements.

As an example, in Fig. 4 the 12 unfeasible 4-classes
for N = 3 are graphically represented, where the distance
between each value has been normalized to a common unit.
We can notice that in most of the classes the values satisfy
strict inequalities, while in 4 classes the first and the last
elements are equal. Moreover, for each class its symmetric
counterpart in the vertical and horizontal direction are included
in U3

4 . Indeed, it is easy to observe that in case of vertical or
horizontal symmetry the building of the tree leads to the same
results, thus suggesting that a further equivalence could be
introduced in order to represent the unfeasible patterns in a
more compact way.

Furthermore, it is interesting to visualize how much the
unfeasible classes are similar for different values of N . To
this end, we identified the unfeasible classes at a certain L that
are shared by more than one value of N and the ones that are
unfeasible for only one value of N . In Fig. 5, such analysis
is graphically represented as Euler diagram, highlighting the
different behaviour of the unfeasible classes when L varies.
For instance, we can notice that the sets U7

5 and U9
5 coincide

and, in general, the unfeasible classes for N = 7 and N = 9
have a significant overlap (which decreases by increasing L).
Clearly, this intrinsically affects the detection performance
of the method when a different window size is used in the
filtering. Indeed, it is easy to predict that if a sequence has
been median filtered with N = 7, the probability that it will
contain classes that are unfeasible for N = 9 will strongly
decrease, as most of them are unfeasible also for N = 7 and
have been certainly removed.

B. N -detectors

Once the sets UN
L are identified, the definition of simple

and fast detectors is straightforward. Indeed, differently as
the solution proposed in Section II-B, it is now possible to
simply scan the sequence progressively and check whether the
elements of {yi} fulfill or not the order relations corresponding
to the classes in the sets UN

L : if such classes are present in
the sequence, we can deterministically classify {yi} as not
filtered; if none of the unfeasible classes is found, we classify

Fig. 4: Graphical visualization of the elements in U3
4 .

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

L = 5 L = 6

L = 7 L = 8

U3
5 U5

5

U7
5 ⌘ U9

5

2

0

18

24

18 384

0

84

48

138

74

576

1308

404

34 7666

5578

U5
6 U7

6

U9
6

U9
7

U5
7

U7
7 U7

8
U5

8

U9
8

Fig. 5: Relative sharing of the unfeasible classes among different values of N and L. A number indicating the cardinality is
placed in every set. Notice that for N = 3 the sets UN

4 and UN
5 are empty.

the sequence as filtered. Although this second assumption
is not deterministic (unfeasible patterns might be missing
also in a not filtered sequence), we will see that in practice
the false alarm rate is basically null for sequences with a
sufficient length, since pristine signals most likely contain
unfeasible classes. A deeper analysis of such aspect is provided
in Section IV-A, where we establish a relationship between
the length of the analyzed sequence and the false alarm
probability. Moreover, the implementation of such procedure
leads to algorithms with a quite low computational complexity,
consisting of a simple check on order relations.

Finally, the knowledge of the UN
L ’s for the different values

of N allows for a median filter detection targeted to one
or more values of the filter size N . Precisely, considering
a generic set of integer odd values N , we can define its
corresponding N -detector: in this case, the presence of all
the unfeasible classes in

⋃
N∈N

UN
L will be checked and the

sequence will be considered as positive to median filtering
detection if only feasible classes for at least one value of
N ∈ N are detected; on the other hand, we consider the
sequence as negative to median filtering detection if at least
one unfeasible class for each value of N ∈ N is detected.

IV. TESTING

The proposed detection method has been tested on various
kinds of 1D data. In particular, we considered 4 different
datasets:
• MUSIC: music audio clips of different length and sources

have been taken from the entire version of the publicly
available dataset used in [18], which includes 64 clips
of 30 seconds and a genre collection composed by 1000
tracks of 30 seconds. They are stored in .wav and .au
format and their sources vary from CD to radio and
microphone recordings. The total number of clips is 1064,
each one sampled at 22050Hz and consisting of 661500
samples.

• SPEECH: similarly, speech audio clips have been taken
from [18] (where the technical specifications are the

same as the music clips) and from the AMI Corpus
[19], which includes 36 conference recordings of 20-60
minutes. From the latter, the first 20 millions samples (20
minutes) of each recording have been considered. The
total duration of the dataset is 752 minutes.

• STOCK: we downloaded historical stock data [20] of all
the companies listed on NASDAQ stock exchange since
at least 10 years. In particular, we considered the daily
closing price of each company’s security, thus obtaining
a total number of 1299 sequences whose length varies
from 3650 to about 9000 (depending on the date they
entered the stock market).

• ECG: Electrocardiogram (ECG) data (used in [8]) have
been downloaded from the publicly available MIT-BIH
Arrhythmia Database [21], the MIT-BIH Supraventricular
Arrhythmia Database [22] and from the European ST-T
Database [23]. The three datasets provide a total number
of 216 ECG sequences containing on average 300000
samples.

A. False alarm probability analysis

As previously stressed, our detection method can guarantee
a null rate of false negatives (median filtered data classified as
not filtered), as filtered sequences will not present unfeasible
classes by definition. On the other hand, not filtered sequences
that do not contain unfeasible classes are possible in princi-
ple. In those cases, the detector would fail and classify the
sequence as filtered, thus leading to false positives.

In order to quantify such false alarm probability, we per-
formed a preliminary analysis on a subset of each dataset.
Let us consider a value of N and a sequence with length
equal to T . Then, we want to estimate pFA(T), the false
alarm probability of the {N}-detector for a given dataset as a
function of T , which can be seen as the probability of finding
only feasible classes for N in sequences with T samples that
have not been filtered. For the sake of simplicity, let L be such
that ∃L′ ≤ L with UN

L′ 6= ∅, and let us suppose to consider
only non-overlapping subsequences of length L contained in

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

Music Speech

Stock Ecg

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

hU3
5 i

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

hU3
5 i

0 100 200 300 400 500 600
0

0.01

0.02

0.03

0.04

hU3
5 i

0 100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

hU3
5 i

Fig. 6: Pmf of the 5-classes and 7-classes in the different datasets. The histogram depicted refers to the ORIGINAL case for
each dataset and the 252 classes belonging to 〈U3

5 〉 have been placed in the first bins. For the different processing (reported
row wise), we computed the value of pU and the value Tmin, by imposing a false alarm probability upper bound equal to 0.01.

TABLE II: False alarm of the {3, 5, 7, 9}-detector.

MUSIC SPEECH STOCK ECG

ORIGINAL 0% 0% 0% 0%
MOVING AVERAGE 0% 0% 0% 0%

GAUSSIAN LOWPASS 0% 0% 0% 0%

TABLE III: Average computational time in seconds of the {3, 5, 7, 9}-detector for 100 samples.

MUSIC SPEECH STOCK ECG

ORIGINAL 8.5 ·10-6 8.0 ·10-6 3.4 ·10-4 1.8 ·10-5

MOVING AVERAGE 8.3 ·10-6 7.9 ·10-6 3.5 ·10-4 1.7 ·10-5

GAUSSIAN LOWPASS 8.4·10-6 7.9 ·10-6 3.4 ·10-3 1.7 ·10-5

the dataset, whose corresponding L-class is represented by a
random variable CL.

Then, we can assume that all the L-classes (meant as the
L-classes corresponding to the subsequences of length L)
contained in the dataset are independent realizations of CL,
and that we have an estimate of the probability mass function
of CL. Now, the sample space of CL coincides with all the
possible L-classes and is composed of two disjoint parts: the
L-classes that do not contain nor are themselves unfeasible
classes and the ones that either belong to UN

L or contain a
L′-class that belongs to UN

L′ . We will denote the latter set as
〈UN

L 〉 and by summing up the pmf values of all the elements
in 〈UN

L 〉 we can quantify the probability pU that a realization
of CL is unfeasible.

Finally, these probability values provide some information
on pFA(T) for a generic sequence. Indeed, a sequence of
length T contains bT/Lc non-overlapping subsequences of
length L and, thanks to the independence assumption and
the knowledge of pU , we can compute the probability of
finding a given number of L-classes in 〈UN

L 〉 among them.
This is done be seeing the sequential analysis of the non-
overlapping subsequences as a Bernoulli process (where the
success is represented by the fact that the corresponding L-

class belongs to 〈UN
L 〉) and model the number of successes

as a binomial distribution with parameters bT/Lc and pU . We
can then obtain the probability pLFA(T) of finding only feasible
L-classes among the bT/Lc non-overlapping subsequences in
the sequence as follows:

pFA(T) ≤ pLFA(T) =

(bT/Lc
0

)
p0U (1− pU)

bT/Lc

= (1− pU)
bT/Lc. (1)

As stated in (1), pLFA(T) is an upper bound of the global
false alarm probability pFA(T) as it refers to non-overlapping
subsequences only, while overlapping ones could belong to
〈UN

L 〉 as well; moreover, unfeasible classes for N with a higher
length might be present in the sequence. However, such a
result allows us to find a value of T for which the false alarm
probability is certainly lower than a desired value.

In Fig. 6, we report the results of such kind of analysis for
two pair of N and L values: for N = 3 we considered L = 5
(which excludes the possibility of longer unfeasible sequences)
and for N = 5 we considered L = 7, as higher values would
imply a significantly higher computational cost. For each
sequence of each dataset we considered its original version

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

TABLE IV: Percentage of positives for the {N}-detectors when a different window size is used in the filtering.

(a) MUSIC

N = 3 N = 5 N = 7 N = 9
MEDIAN 3 100% 0% 0.% 0%
MEDIAN 5 0% 100% 0.4% 100%
MEDIAN 7 0% 0% 100% 100%
MEDIAN 9 0% 0% 0.2% 100%

(b) SPEECH

N = 3 N = 5 N = 7 N = 9
MEDIAN 3 100% 0% 7.0% 85.3%
MEDIAN 5 0% 100% 1.0% 78.0%
MEDIAN 7 0% 0% 100% 78.0%
MEDIAN 9 0% 0% 0% 100%

(c) STOCK

N = 3 N = 5 N = 7 N = 9
MEDIAN 3 100% 0.3% 0.1% 0%
MEDIAN 5 0.4% 100% 6.8% 100%
MEDIAN 7 0.3% 16.9% 100% 100%
MEDIAN 9 0.7% 25.7% 45.7% 0%

(d) ECG

N = 3 N = 5 N = 7 N = 9
MEDIAN 3 100% 0% 0%% 0%
MEDIAN 5 0.9% 100% 20.8% 100%
MEDIAN 7 0% 13.4% 100% 100%
MEDIAN 9 0.1% 11.5% 27.8% 0%

(denoted as ORIGINAL) and we created four other sequences,
resulting from the application of a median filter with a varying
window size M , respectively denoted as MEDIAN M for
M = 3, 5, 7, 9. Then, we estimated the pmf in each case by
randomly collecting 500000 subsequences of the chosen length
and creating a normalized histogram of the corresponding
possible L-classes (see Fig. 6, where the pmf estimation for
the ORIGINAL sequences in the case N = 3 and L = 5 is
represented for each dataset).

By knowing U3
5 and U5

7 , we identified the 252 5-classes in
〈U3

5 〉 and the 33232 7-classes in 〈U5
7 〉. Then, we computed

the value of pU in each case and, by means of expression
(1), we derived the length value Tmin which is necessary to
guarantee that pFA(T) ≤ 0.01. It is interesting to notice that,
although the pmfs present some differences among the datasets
due to the different nature of the data, the general shape of
the histogram is quite similar. We also observe in any case
a decrease of pU when a window size M = 5, 7, 9 is used,
while it is clearly null when M = N . However, the value of
Tmin turns out to be quite low (not higher than 8000 in each
case) for both the values of N considered, and allows for
acceptable results in terms of detection, as it will be explored
in the following experiments.

B. Filter detection

After assessing the false alarm probability, we applied the
N -detectors (as described in Section III-B) for different N to
the sequences of all the datasets (assuming to stop the search
as soon as one unfeasible class for each element ofN is found)
and tested also the effectiveness of the proposed approach in
identifying and discriminating median filtering with respect to
other processing. In fact, in addition to the ORIGINAL and
MEDIAN M cases, for each sequence of each dataset we also
created other two versions, resulting from the application of a
moving average filter (with window size 3) and a Gaussian
lowpass filter (with window size 3 and standard deviation
equal to 0.5), respectively denoted as MOVING AVERAGE and
GAUSSIAN LOWPASS.

First, we applied a {3, 5, 7, 9}-detector, thus using all the
unfeasible classes that we derived in Section III-A. As we
specified in Section III-B, the algorithm checks the presence
of unfeasible classes for N = 3, 5, 7, 9 and the sequence is
classified as positive if only feasible classes for at least one

value of N are detected, while it is classified as negative if
at least one unfeasible class for each value of N is found.
Clearly, the ORIGINAL, MOVING AVERAGE and GAUSSIAN
LOWPASS cases should be negative to such detector, while the
MEDIAN M cases should be positive. As expected from the
theory, the rate of false negatives was null in all tests, so in
Table II we report the results only on sequences that were not
median filtered in terms of false alarm, which is the only type
of error that might occur. By observing the results, we can
notice that we also have a null rate of false positives both in
the ORIGINAL row (as we predicted in Section IV-A) and the
MOVING AVERAGE/GAUSSIAN LOWPASS rows, thus showing
the ability of the method in distinguishing between median
filtering and other kind of processing.

Regarding the complexity and computational time of the
detection, the search will be more demanding as N increases,
as the number and the length of unfeasible classes increase as
well (for N = 9, a total number of 74598 unfeasible classes
need to be checked with a length up to 11), but the first
unfeasible class is usually detected very soon. In Table III, we
report the average computational time in seconds necessary
to process 100 samples, showing the short time frame for the
analysis of not filtered sequences (about 6 milliseconds for a
30 second long audio track).

As further analysis, we applied the detectors for a specific
N to sequences that have been median filtered with a window
size M 6= N , thus evaluating the ability of the technique to
discriminate the size of the filter used. For instance, sequences
filtered with M = 3 should be positive to a {3}-detector
and negative to the {5}-, {7}- and {9}-detectors, and so
on. However, we observed in Section III-A that the sets of
unfeasible classes for N and M usually share a number
of classes (in particular for L = 5, 6), which are certainly
removed when a median filter with size M is applied. In
addition, the action of a median filter with size M 6= N
generally decreases the frequency of occurrence of unfeasible
classes for N even though they are feasible for M , as we
observed in Section IV-A for N = 3. Because of that, the
presence of unfeasible classes for N in sequences filtered
with size M is less probable, thus affecting the performance
of {N}-detectors. In Tables IV, we report the percentage
of sequences classified as positives in the different cases.
Similarly as before, the different values of M are reported
row wise, while the values of N are placed column wise. We

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

Music Speech Stock ECG

LEGEND Proposed [10] [9] [12]

{3, 5, 7, 9}
detector

{3, 5, 7, 9}�{3}�{3, 5, 7, 9}
detector

{3, 5, 7, 9}
detector

{5}�{3, 5, 7, 9}
detector

{7}�{3, 5, 7, 9}
detector

{9}�
60%

100%

97.1
98.7 99.8

96.1
98.9

100

{3, 5, 7, 9}
detector

{3, 5, 7, 9}�{3}�{3, 5, 7, 9}
detector

{3, 5, 7, 9}
detector

{5}�{3, 5, 7, 9}
detector

{7}�{3, 5, 7, 9}
detector

{9}�
60%

100%

99.5 98.7

84.0

74.0

85.4

78.6

{3, 5, 7, 9}
detector

{3, 5, 7, 9}�{3}�{3, 5, 7, 9}
detector

{3, 5, 7, 9}
detector

{5}�{3, 5, 7, 9}
detector

{7}�{3, 5, 7, 9}
detector

{9}�
60%

100%

95.8

77.0
74.9

84.983.7

{3, 5, 7, 9}
detector

{3, 5, 7, 9}�{3}�{3, 5, 7, 9}
detector

{3, 5, 7, 9}
detector

{5}�{3, 5, 7, 9}
detector

{7}�{3, 5, 7, 9}
detector

{9}�
60%

100%

98.6

78.4
72.3

84.984.0

Fig. 7: Accuracies obtained by applying our approach and the existing state-of-the-art methods.

TABLE V: Average computational time in seconds of different methods for 100 samples.

MUSIC SPEECH STOCK ECG

[10] 7.4 ·10-3 6.5 ·10-3 5.9 ·10-3 5.8 ·10-3

[9] 3.4 ·10-3 2.2 ·10-3 5.8 ·10-3 3.8 ·10-3

[12] 6.2 ·10-4 1.2 ·10-4 1.2 ·10-4 1.3 ·10-4

can observe that the false alarm rate is generally lower than 1%
for the {3}-detector, which is again coherent with the analysis
performed in Section IV-A as the length of the sequence is in
any case higher than the correspondent Tmin values reported
in Fig. 6. While the false alarm rate is generally acceptable up
to N = 7, it substantially increases for the {9}-detector when
a median filter with size M = 5, 7 is used, thus confirming that
such filters tend to remove the unfeasible classes for N = 9.
However, it is worth pointing out that for the sequences with a
substantially higher length (i.e., part of the SPEECH dataset),
such classes are generally found.

C. Comparison with state-of-the-art techniques

We also tested our method against some existing detection
techniques. As we stressed in Section I, no specific methods
for 1D data exists, thus we adapted three different state-of-the-
art approaches that were originally conceived for images (2D

median filtering), but their rationale can be applied also to 1D
data. In particular, we considered the techniques proposed in
[9], [10] and [12]. All of them require some training phase,
as the former two are threshold-based and the latter employs
an SVM classifier. Thus, we divided each dataset in two equal
parts, one used for the training and the other one for the testing
phase. For the methods in [9] and [10], the optimal threshold
was determined by fixing a maximum false alarm rate of 5%
and choosing the threshold value yielding the lowest false
negative rate, while for the method in [12] we trained the
SVM classifiers as suggested in the original paper.

Because of the different properties of each method, we could
perform a comparison only for certain experimental scenarios.
Indeed, the detectors [9] and [10] are not targeted to a
specific filter size but they indicate that a generic median filter
operation has been applied, thus they have been compared
with the {3, 5, 7, 9}-detector. On the other hand, the technique

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

[

L

U3
L

[

L

U5
L

[

L

U7
L

[

L

U9
L

Original
Gaussian
lowpass

Moving
average Median 3 Median 5 Median 7 Median 9

Fig. 8: Example of median filter localization with the {3, 5, 7, 9}-detector. The black asterisks are the unfeasible classes detected
through the whole 1D signal.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

in [12] is able to discriminate among different values of
N and it has been compared with different {N}-detectors.
Moreover, the detector in [9] can be applied only on data
containing integer values, as it is based on an histogram bin
ratio, thus in our experiments we could employ it only for
the audio datasets. According to this considerations, in Fig. 7
we report the results obtained when applying the different
detectors on non median filtered sequences (including original,
average filtered, Gaussian lowpass filtered) and median filtered
with the same window as the detector. Here, we report the
accuracy value (meant as the percentage of sequences correctly
classified as filtered or not filtered) in the different cases, as
false negatives are also possible for the other methods. In
this setting, we can observe that our technique achieves the
maximum accuracy in any case. The performance of [10] and
[9] is also good in the corresponding scenario, while we can
notice that the technique in [12] has a different behaviour
throughout the different datasets. Moreover, in Table V we
report the average computational time that is necessary to each
technique to process (i.e., extracting the features) 100 samples
from the different datasets.

D. Tampering localization

In this section, we exploit the proposed detection algorithm
to locate parts of the 1D data that have been median filtered.
In particular, we partition each sequence into seven non-
overlapping parts, each of them processed according to the
different operations employed in the previous experiments
(ORIGINAL, MOVING AVERAGE, GAUSSIAN LOWPASS, ME-
DIAN with window size 3, 5, 7, 9, applied in this order). In this
phase, we limited the analysis to a subset of the MUSIC and
SPEECH dataset and applied each processing operation to a
signal part of 30000 samples.

We then run the {3, 5, 7, 9}-detector through the whole
sequence (i.e., not stopping at the first unfeasible class detected
but analyzing the sequence entirely) and perform a local
analysis by considering smaller non-overlapping blocks of
5000 samples. In particular, we classify each of them as
positive to median filtering if only feasible classes for at least
one values of N lie within it (i.e., blocks belonging to the
first three parts are true negatives and the ones belonging
to the last four parts are true positives). In Fig. 8, we
graphically represent the behaviour of the detector by means of
an exemplifying test sequence. The black asterisks below the
signal are the unfeasible classes detected through the whole
sequence for the different values of N ; clearly, no unfeasible
classes for a certain N are detected in the part of the sequence
median filtered with window size N . Also in this case, we
obtain 0% false negatives in every sequence, which means
that at least one unfeasible class is detected in each one of
the not median filtered blocks. Moreover, we can notice that
the unfeasible classes for any N are dense in the first three
parts, while they are more sparse when another filter size is
used. In particular, coherently with the results in the previous
section, no unfeasible classes for N = 9 are found in the last
three parts, although this does not affect the performance of
the {3, 5, 7, 9}-detector.

E. Robustness analysis

In this section, we deal with the issues of assessing the
robustness of our method with respect to post processing,
i.e., we consider the problem of detecting median filtering
even when a further successive operation is applied after it.
Firstly, we can observe that our technique is based on the
order relationships between the samples and it is robust to
any post-processing that preserve them, such as amplitude re-
scaling, monotonic corrections, normalization, shifting. With
regards to other operations, it is easy to state that when the
median filter has not been the very last process, the method
loses its deterministic nature since the post processing would
potentially introduce unfeasible classes. However, we can
notice that in such situation the effect of the previous median
filtering is still visible in the distribution of the unfeasible
classes detected in the sequence. In particular, we considered
the sequences of the different datasets with no processing
at all (denoted again as ORIGINAL) and we processed the
same sequences by first applying a median filter with N = 3
or N = 5 followed by a post processing operation among
moving average and Gaussian lowpass filter, thus obtaining
four different scenarios. Then, we run the respective {N}-
detector on all the sequences and we created an histogram of
all the unfeasible classes for that value of N , normalized by
the total number of unfeasible classes detected. In particular,
for N = 3 the histogram has |U3

4 | + |U3
5 | = 32 bins and for

N = 5 it has |U5
5 |+ |U5

6 |+ |U5
7 |+ |U5

8 |+ |U5
9 | = 638 bins.

A possible approach is to use the histogram bin values
as features and feed a classifier. Hence, as we did for the
state-of-the-art approaches, we divided each dataset in two
equal parts, one for training and one for testing, and we
extracted features from each training set. Then, for each of
the four scenarios we trained an SVM classifier with Gaussian
kernel (optimal parameters have been derived by means of a
grid search procedure) using features from all the datasets.
Finally, we performed a classification for the testing set of each
dataset in the different scenarios. In Table VI, we report the
accuracies obtained. We can observe that the accuracy values
are higher than 90% almost in any case and, as expected,
the performance are better for the case of N = 5 and the
Gaussian lowpass filter, which has less impact than the moving
average filter. In order to have a comparison with state-of-the-
art methods, we considered the approach in [12] (the only
one which detects median filter with a specific value of N)
and report in Table VII the results obtained by replicating the
same experimental settings, showing a clear performance drop
in case of post-processing and worse accuracies with respect
to the proposed method.

V. CONCLUSIONS

We have proposed a forensic detector of median filtering on
1D data based on deterministic properties of such processing
operation. According to a well defined theoretical rationale,
a set of patterns that cannot be present in median filtered
sequences have been computed offline and the final algorithm
consists in searching such patterns in the test sequence. The
proposed method has been tested on 1D signals and time series

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

TABLE VI: Classification accuracy by means of SVM with post-processing.

MUSIC SPEECH STOCK ECG
ORIGINAL vs MEDIAN N = 3 + MOVING AVERAGE 97.8% 93.7% 92.2% 73.1%
ORIGINAL vs MEDIAN N = 5 + MOVING AVERAGE 100% 100% 98.6% 94.4%

ORIGINAL vs MEDIAN N = 3 + GAUSSIAN LOWPASS 99.0% 96.8% 96.8% 78.2%
ORIGINAL vs MEDIAN N = 5 + GAUSSIAN LOWPASS 100% 100% 97.8% 98.2%

TABLE VII: Classification accuracy by means of method in [12] with post-processing.

MUSIC SPEECH STOCK ECG
ORIGINAL vs MEDIAN N = 3 + MOVING AVERAGE 55.0% 48.4% 50.7% 50.1%
ORIGINAL vs MEDIAN N = 5 + MOVING AVERAGE 50.0% 56.2% 74.4% 55.4%

ORIGINAL vs MEDIAN N = 3 + GAUSSIAN LOWPASS 62.3% 67.2% 56.7% 60.2%
ORIGINAL vs MEDIAN N = 5 + GAUSSIAN LOWPASS 66.2% 76.6% 69.4% 74.2%

coming from different sources, and proved to be extremely
accurate in detecting and locating the occurrence of median
filtering as well as identifying the size of the filter employed,
which is a quite rare feature in existing techniques for 2D
median forensics. Moreover, we also proved that the study of
the unfeasible classes can be used to detect median filtering
also in case of post-processing.

Such promising results open the way for future develop-
ments of this work in different directions. A natural step
further would be to approach 2D median filtering, which is
commonly applied to images. Unfortunately, treating bidimen-
sional data and filters introduces significant problems, both in
terms of theoretical results and computational complexity. In-
deed, although the theoretical concepts can be easily extended,
the derivation of the unfeasible classes presents two main
issues: due to the distribution in the 2D domain, the actual
overlapping variables at each step is reduced with respect to
the 1D case (at most 6 overlapping variables for a 3×3 filter),
together with the chance of encountering unfeasible branches;
as a consequence, the number of possible branches in the tree
(630 new ones are introduced at each step for a 3 × 3 filter)
and the number of L-classes required is higher, leading to
extremely demanding computational efforts. For this reasons,
a significant optimization of the technique would be required
and will be certainly subject of future work.

Moreover, much work can be developed regarding a further
analysis of robustness issues of the proposed method, by
designing more specific and advanced approaches allowing for
the identification of the median filtering occurrence even after
a wider range of post-processing operations.

REFERENCES

[1] J. W. Tukey, Exploratory Data Analysis. MA: Addison-Wesley, 1976.
[2] L. R. Rabiner, M. R. Sambur, and C. E. Schmidt, “Application of a non-

linear smoothing algorithm to speech processing,” IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 23, no. 6, pp. 552–557,
1975.

[3] T. Kasparis and J. Lane, “Adaptive scratch noise filtering,” IEEE
Transactions on Consumer Electronics, vol. 39, no. 4, pp. 917–922,
1993.

[4] S. Akkoul, R. Lèdèe, R. Leconge, and R. Harba, “A new adaptive
switching median filter,” IEEE Signal Processing Letters, vol. 17, no. 6,
pp. 587–590, 2010.

[5] P. M. Narendra, “A separable median filter for image noise smoothing,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 3,
no. 1, pp. 20–29, 1981.

[6] Y. Liu, C. Liu, and D. Wang, “A 1D time-varying median filter for
seismic random, spike-like noise elimination,” Geophysics, vol. 74, no. 1,
pp. 17–24, 2009.

[7] Y. Wen and B. Zeng, “A simple nonlinear filter for economic time series
analysis,” Economics Letters, vol. 64, no. 2, pp. 151–160, 1999.

[8] T. Pander, “The class of M-filters in the application of ECG signal
processing,” Biocybernetics and Biomedical Engineering, vol. 26, no. 4,
pp. 3–13, 2006.

[9] M. Kirchner and J. Fridrich, “On detection of median filtering in
images,” in Proceedings of SPIE, vol. 7541, 2010, pp. 101–112.

[10] G. Cao, Y. Zhao, R. Ni, and L. Yu, “Forensic detection of median filter-
ing in digital images,” in IEEE International Conference on Multimedia
and Expo, 2010, pp. 89–94.

[11] H. Yuan, “Blind forensics of median filtering in digital images,” IEEE
Transactions on Information Forensics and Security, vol. 6, no. 4, pp.
1335–1345, 2011.

[12] X. Kang, M. Stamm, A. Peng, and K. R. Liu, “Robust median filtering
forensics using an autoregressive model,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 8, no. 9, pp. 1456–1468, 2013.

[13] C. Chen, J. Ni, and J. Huang, “Blind detection of median filtering in
digital images: a difference domain based approach,” IEEE Transactions
on Information Forensics and Security, vol. 22, no. 12, pp. 4699–4710,
2013.

[14] Y. Zhang, S. Li, S. Wang, and Y. Q. Shi, “Revealing the traces of median
filtering using high-order local ternary patterns,” IEEE Signal Processing
Letters, vol. 21, no. 3, pp. 275–280, 2014.

[15] N. Gallagher and G. Wise, “A theoretical analysis of the properties
of median filters,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 29, no. 6, 1981.

[16] D. Vàzquez-Padı̀n, P. Comesana, and F. Pèrez-Gonzàlez, “Set-
membership identification of resampled signals,” in IEEE Workshop on
Information Forensics and Security, 2013, pp. 150–155.

[17] J. Fridrich, M. Goljan, and R. Dui, “Steganalysis based on JPEG
compatibility,” in SPIE Multimedia Systems and Applications, 2001, pp.
275–280.

[18] G. Tzanetakis and P. Cook, “Musical genre classification of audio
signals,” IEEE Transactions on Speech and Audio Processing, vol. 10,
no. 5, pp. 293–302, 2002.

[19] (2006). [Online]. Available: http://groups.inf.ed.ac.uk/ami/corpus/
[20] [Online]. Available: http://www.stockhistoricaldata.com
[21] G. Moody and R. Mark, “The impact of the MIT-BIH Arrhythmia

Database,” IEEE Engineering in Medicine and Biology Magazine,
vol. 20, no. 3, pp. 45–50, 2001.

[22] S. Greenwald, “Improved detection and classification of arrhythmias in
noise-corrupted electrocardiograms using contextual information,” Ph.D.
dissertation, Harvard-MIT Division of Health Sciences and Technology,
1990.

[23] A. Taddei, G. Distante, M. Emdin, P. Pisani, G. Moody, C. Zeelenberg,
and C. Marchesi, “The European ST-T Database: standard for evaluating
systems for the analysis of ST-T changes in ambulatory electrocardiog-
raphy,” European Heart Journal, no. 13, pp. 1164–1172, 1992.

