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Artificial-Noise-Aided Message Authentication
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Abstract—In the past, two main approaches for the purpose
of authentication, including information-theoretic authentication
codes and complexity-theoretic message authentication aes
(MACs), were almost independently developed. In this papemwe
propose a new cryptographic primitive, namely, artificial-noise-
aided MACs (ANA-MACs), which can be considered as both
computationally secure and information-theoretically seure. For
ANA-MACs, we introduce artificial noise to interfere with th e
complexity-theoretic MACs and quantization is further employed
to facilitate packet-based transmission. With a channel ading
formulation of key recovery in the MACs, the generation of
standard authentication tags can be seen as an encoding pess

two MACs are identical, then the transmitter is identified as
a legal user and it is highly likely the received message is
exactly equal to the one transmitted.

In the past, two main approaches, including information-
theoretic authentication codés [2]] [3] and complexitgeitetic
MACs, were almost independently developed for the purpose
of authentication. In general, they differ in the assumpio
about the capabilities of an opponent. Information-thgore
authentication codes, which are based on information theor
offer unconditional security, i.e., security independefthe

for the ensemble of codes, where the shared key between Alicecomputing power of an adversary. The complexity-theoretic
and Bob is considered as the input and the message is usedapproach starts from an abstract model for computation, and
to specify a code from the ensemble of codes. Then, we show,ggmes that the opponent has limited computing power. Due

that the introduction of artificial noise in ANA-MACs can be
well employed to resist the key recovery attack even if the
opponent has an unlimited computing power. Finally, a pragnatic
approach for the analysis of ANA-MACs is provided, and we
show how to balance the three performance metrics, includig
the completeness error, the false acceptance probabilitgand the
conditional equivocation about the key. The analysis can beell
applied to a class of ANA-MACs, where MACs with Rijndael
cipher are employed.

Index Terms—Information-theoretic authentication codes, mes-
sage authentication codes, channel
information-theoretic security.

I. INTRODUCTION

ESSAGE authentication codes (MACs) are cryptqg guthenticated

coding and decoding,

to their high flexibility, the complexity-theoretic MACs fih
widespread applications in practice.

Complexity-theoretic MAC algorithms can be constructed
from other cryptographic primitives, such as cryptographi
hash functions, or block cipher algorithms. Currently, the
security of MAC algorithms rely on the hardness of hash
functions, i.e, given the message and its MAC, it is “hard”
to forge a MAC on a new message. This means that they
can be broken if the adversary has an unlimited power of
computation.

In recent years, there has been various effarts [[4]-[7] in
authenticating the transmitter and receiver at the phi/sigaer,
based on prior coordination or secret sharing, where théesen
if the receiver can successfully demaoeula

graphic primitives used extensively in the constructiog,y gecode the transmission. [ [4], a physical-layer authe

of security services, including authentication, nonregtiain,
and integrity. Basically, message authentication is tousns

tication scheme was proposed, in which MACs, along with
messages, are transmitted concurrently over the physigat.|

that an accepted message truly comes from its acclaim@dmpared to the traditional transmission approach abawe th
transmitter. When the transmitter intends to send a messa&qysicm layer, the authors claim the possibility of infation-

it also generates a MAC, which is a function of the messaggaqretic security due to the presence of channel noise-How
and a shared key, known only to both the transmitter and tB@er, its security often depends on the physical channel.

receiver. The generated MAC is often appended to the messag

fr this paper, we develop a new cryptographic primi-

[1]. At the receiver, @ MAC is computed from the received e gartificial-noise-aided MACs (ANA-MACs) for ensuring
message and compared to the MAC that is transmitted. If (g, rmation-theoretic security. The use of artificial r®ig
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ANA-MACs makes it difficult for an opponent to derive
the key. With the use of quantization, ANA-MACs can be
encapsulated and transmitted in packets above the physical
layer, just like the traditional MACs, which is in sharp crast

to existing physical layer authentication schemes.

It should be pointed out that the proposed ANA-MACs are
also different with the binary approximate message authent
cation codes (AMACs)[8]/19] and the noise-tolerant messag
authentication codes (NT-MACs<) [10]. Both AMACs and NT-

MACSs are designed to tolerate some channel errors during the
transmission of messages. For ANA-MACs, a slight change
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in messages may result in a rapid change for authenticatiéwe. For this reason, we simply use the authenticationttag
tags, as often encountered in the traditional MACs. Yet, ANAnstead of a full message in what follows.
MACs can tolerate some channel errors occurred during theLet K, T,.; and7” denote the random variables describing
transmission of tags. Furthermore, both AMACs and NThe key, ther + 1-th tag and a sequence of tags from
MACs are computationally secure, while ANA-MACs maytime 1 tor, and taking valueg, t,.1 andt” = (t1,--- ,t,),
ensure some degree of information-theoretic security. respectively. Letp,, denote the expected probability of suc-
Throughout this paper, we do not discriminate the notationgssful deception for a spoofing attack of ordeand P, the
between scalars and vectors, which will be made clear frgenobability of successful deception if Eve can observe astmo
the contexts. For a binary vecterits bipolar form is simply r messages. Walkelr [13] proved

denoted ast, in which each component takes value from <~ QH(K|[T™ )~ H(K|T") _ o—I(KiTy 1 |T7) (1)
{+1,—1}. To be consistent with the standard convention in "= N

algorithms and complexity theory, where the running time @nd Rosenbaum [14] proved

an algorithm is measured as a function of the length of itatinp P> 2-%}1(1()’ @

n, we will thus provide the adversary and the honest parties

with the security parameter in unary &% (i.e., a string ofn. which hold even if Eve has an unlimited power of computation.

1's) when necessary [11]. If the equality in [2) holds, the corresponding authenidrat
The rest of the paper is organized as follows. Some preligede is called--perfect.

inaries on both information-theoretic authenticationepdnd  To prevent Eve from using = Ej(s) to learn the keyk,

MACs are made in Section-Il. In Section-lIl, a new cryptoit should have sufficient number of solutions fofor a given

graphic primitive, ANA-MACs, is proposed and its verifiaati ¢ = Ex(s) [2]. Given s andt, let K(s,t) = {k : Ex(s) =

mechanism is given. Then, its security analysis is fornedat?, vk € K} denotes the set of solutions for= Ej(s). It

in Section-IV. In Section-V, we provide a pragmatic apptoadollows that the successful deception probability for aegiv

for analysis of ANA-MACs. Section-VI presents numericaPair (s,t) has a lower bound of

results and the conclusion is made in Section-VII. (5.1) > 1 3)
P18, t) 2 -
K(s, 1)l
Il. PRELIMINARY In [2], projective plane codes were proposed to achieve the

A. Information-Theoretic (Systematic) Authenticatiord€s best possible spoofing attack of ordermnamely,P; = ﬁ

A systematic authentication code is a triple(st 7, K) of  For the best authentication codes achieving the lower bound

finite sets and a mapping : K x S — T, whereS is the ©f P, it was proved that
source state spacé, is the tag spaceX. is the key space, and 1) [K(s1,t1) VK(s2,t2)] = 1 if 51 # s2;
E(k,-) 2 E), : S — T is often called an encoding rule for a 2) |[K(s,t)| =+/IK] for Vs € S,t € T;
givenk € K. 3) |{t:|K(s,t)] > 0}| = \/IK] for Vs € S.
Two trusting parties, Alice (or a transmitter) and Bob (or However, this class of authentication codes cannot rdst t
a receiver), share a secret keye K. To send a piece of spoofing attack of order > 2.
information (called source state)c S to Bob, Alice computes  Theorem 1:For 1-perfect systematic authentication codes,
t = Ex(s) € T and puts the message = (s, t) into a public they cannot resist the spoofing attack of order 2, namely,

channel. After receivingn’ = (s',t'), Bob will compute p, =1,Vr > 2.
E}.(s) and check whethef = E (s). If yes, Bob will accept Proof: It is enough to consider = 2. Suppose that
it as authentic. Otherwise, Bob will reject it. Eve has accessed two different messaggs= (s1,t;) and

We assume that an opponent (or Eve) has a complete = (s2,t2), wheres; # s;. To insert a new message
understanding of the system, including the mappiigThe m = (s,t), wheres # si1, s, Eve wants to derive the key
only thing she does not know is the kéyagreed upon by %, which can be surely learned from two available messages
Alice and Bob, which is used to specify a particular encodirgince |KC(s1,t1) (| K(s2,t2)| = 1. Indeed, there is a single
rule E;.. We also assume that Eve has the ability to introduc®@mmon solution oft for t; = Ej(s1) andty = Ej(s2) if

a message into the channel. After observation of the firsts1 # sa. u
messagesnq, - - - ,m,, Eve places her own message into Given s" = (s1,--+,s,) and t" = (t1,---,t,), let
the channel, attempting to make Bob accept it as authen#ie(s™,t") = {k : Ex(s;) = t;,i = 1,---,r,Vk € K} denote
This is called a spoofing attack of order In literature, the set of solutions fot; = Ej(s;),i = 1,---,r. Clearly,

there are often two different types of spoofing attack, i.eG(s",t") ==y ... . K(si,ti). _
impersonation attack and substitution attack. An impeation ~ Forr-perfect authentication codes, it was showrlin [14] that

attack at timer + 1 [12] is just the spoofing attack of order i i EESEL
e . K", ) =Kl ,ie{l,---, 1}.
r. In a so-called substitution attack at time Eve observed K(s", 291 = K] red 1}
r messagesn,,--- ,m, and replaces the message. by a and H(K|T"+1) = 0. Hence, we also have the same result as

different message which she hopes to be accepted by Bobthat of Theorem 1 for-perfect authentication codes.

For systematic authentication codes, a source staie Theorem 2:For r-perfect authentication codes, they cannot
assumed to be public (without security) whenewer= (s,t) resist the spoofing attack of ordér> r + 1, namely,p, =
is transmitted, which can be freely accessed by both Bob ahd/l > r + 1.



B. Complexity-Theoretic MACs I1l. ARTIFICIAL-NOISE-AIDED MACS

Definition 1: A message authentication codél = A. Basic Idea
(Gen Mac, Vrfy) is a triple of algorithms with associated key
spacek’, source message (state) spﬂe and tag spac# .

- Key Generation. Upon input”, the algorithm Gen
outputs a uniformly distributed key: of length n:
k + Gen(1™).

- Tagging. The probabilistic authentication algorithr’rz)f
Macy (s) takes as input a secret kéye K and a source
message € S and outputs an authentication tag 7

We have shown that information-theoretic (systematic) au-
thentication codes take the same function as message authen
tication codes. IfE(k,s) = h(k,s),Vk € K,s € S, they are
actually the same.
In general, the authentication tag is a deterministic fiomct
a source message and the keyk shared between Alice
and Bob. The only exception is the authentication codes with
splitting, where the mapping : £ x S — T is allowed to
be stochastic in the sense that, for giveands, h(k, s) is a
stochastic variable.

Noting that the use of a stochastic encoding mapping in
authentication may be helpful for preventing possible $ipgo
attacks, since the conditional equivocation about the kay m

A lexitv-th ic MACIT — (Gen Mac.\/ b increase compared to a deterministic mapping. In order to
complexity-theoretic = (Gen Mac, Vrfy) can be make this ideal more practical, we propose to introduce

;ormglate(: V;:'th a keyed hash fungtlohn. FormaILy, the tag is &rificial noise to corrupt the standard authenticatiorstag
unction of the source messageand the secret key On one hand, the introduction of artificial noise may in-

t =h(k,s), (4) crease the conditional equivocation about the key, namely,
H(K|T) > H(K|T). Here T and T" denote the random
variables for the standard authentication tag and artiicia
noise-corrupted authentication tag, respectively. Onather
hand, the successful authentication probability may desee
v="19(k,s,t), (5) as the introduction of noise. Nevertheless, this can be made

wherev € {0,1}, and 9(k,s,t) = 1 if ¢ = h(s, k), zero acceptable in practice if the completeness error is ndgdigi
otherwise.

Note that a MAC implies a two-round authentication protoB. Formulation
col: the verifier chooses a random message as challenge, al
the prover returns the MAC on the message.

Definition 2 (Completeness [115])We say that a MAC has
completeness errar if for all s € SH

- Verification. The deterministic verification algorithm
Vrfy . (s,t) takes as input a secret key, a source
message € S and a tag € 7 and outputs an element
of the set{0, 1}.

whereh : K x § — T is a keyed hash function.
The verification algorithm takes, s, ¢ as inputs and outputs
a binary decision

nguppose that7| = 2!, |K| = 2". To prevent possible
eavesdropping, we propose to introduce artificial noise to
interfere with the clean tag, and then quantization is used t
facilitate packet-based transmission.

Pi(k,s,t) =0: k<« Genl"),t < hy(s)] < o (6)  An artificial-noise-aided message authentication code
It is clear that the completeness errar means that the (ANA-MAC) is thus with a probabilistic algorithnf™ to
successful authentication probability is larger tHan o for Produce the tag 3
two trusted parties. t < Ry (s) )

when the inputs aré, s.

C.R k : . - .
emar In this paper, we consider an explicit constructiodff (s)

Information-theoretic (systematic) authentication cofdeo-

. ) ! : _ as follows
vide message authenticity guarantees in an informatioo-the
retic sense within a symmetric key setting. However, infor- t = h(k,s),
mation theoretic bounds on the spoofing attack of order i = 9@+w), (8)

show that they are still vulnerable (Theorems 1 and 2) if -

the opponent can access much more authenticated messageere ¢ is the [-length bipolar vector form of, w is an

Complexity-theoretic MACs can be seen ascaunterpart artificially-introduced Gaussian-distributed noise wectith

of information-theoretic authentication cod@s the field of zero mean and variance of,/; (I; denotes the identity maitrix

computational securitywithout considering the information- of sizel x 1), Q(z) is ag-bit quantization function, antle 7

theoretic deception probability. is al-length vector, where each component takes value from a
In the past, information-theoretic authentication codes afinite quantization level se¥’ = {v;,va, - -+, v2¢ } Of size 2.

complexity-theoretic MACs are almost independently deveClearly, 7 = V!, whereV'! denotes the cartesian power of a

oped. It is interesting to ask if we can construct MACs, whicketV.

are both computationally secure and information-thecaéyi With the introduction of artificial noise and quantizatitime

secure. size of an original tag is expanded by; times. In practice,

1n literature, the message spagé is often used. 1= 8 Is often enou_gh: . e~
2|t requires to hold for alln € N in [I5] while the completeness error is . (:?"'\_/en s and k, it 1S p055|b~le to partlyonT Into two
defined for a given and fixed in this paper. disjoint sets, namely,7 = Ta(k,s) U Tr(k,s), where



Plte TA(k,s) > 1 — a. In essence, the verification al- 2) Verification: Now, we focus on the design of verification
gorithm for ANA-MAC is to find a deterministic partition of algorithm for ANA-MACs, which often deals with the imper-
T for given s and k, which minimizes the false acceptancéonation attack. The problem of deciding whether a received
probability and at the same time keeps the successful authtag is authentic or not can be viewed as a hypothesis testing
tication probability not smaller than a target valuelof o.  problem [12].

Whenever such a partition is determined, the verification Let Ho correspond to the hypothesis that the tag is au-
algorithm can be well formulated. It takéss, # as inputs and thentic, andH; correspond to the hypothesis that the tag has

outputs a binary decision been generated by an adversary. With a standard packét-leve
transmission above the physical layer, it is assumed thidt bo
v="19(k,s,1), (9) a legitimate user and an adversary can get a error-free copy

of the tag, namelyt.
wherev € {0,1}, 9(k,s,&) = 1 if § € Ta(k,s) and zero  To facilitate the derivation, we simply assume that ¢+w,
otherwise. where the quantization is simply omitted. This is a reastmab

An ANA-MAC has completeness errer if for all s € S, approximation if a fine quantization method with sufficient
number of quantization levels is employed.

P[d(k,s,t) =0:k+ Gen(1"),f + h{“(s)] <a. (10)  To be more concrete, we consider the ‘Alice-Bob-Eve”
model, where Eve, as an impersonation attacker, wants to
inject messages into the legitimate transmission from éAlic

C. Verification with Hypothesis Testing to Bob. Suppose Alice and Bob shared a Keywhich is
employed to authenticate each other. With inptits, ¢, Bob

) ) ) wants to decide ift is from Alice. Eve does not know the
deciding which of two hypothesed/, or H,, is true, when gpareq keyk, and it is assumed that Eve generates a random

one is given the value of a random variatile (e.g., the key k for authentication as there is no any information about
outcome of a measurement). The behaviol/ofs described ;. 3 ailaple. Essentially, this is cast as a binary hypothesis

by two probability distributions: IfH, or H; is true, thenU testing problem:
is distributed according to the distributigny, (u) or pg, (u),
respectively. Hy : K=k
Let Pp = 1 — « be the detection probability, namely, H, : K=kg.
the probability of successful declaration &, when Hy is . e R .
actually true, andP; = 3 be the false alarm probability,HIn this case,i/ = (T', K), u = (f, k). Under hypothesis

5 . . 0, the pairu = (f,k) (seen by the receiver) is generated
23{32:?; :?ueeprobablllty of false declaration By when H, is according to the distributiop(t, K = k), whereas under

. . L hypothesisH;, v = (t,k) is generated according to the
The optimal decision rule is given by the famous Neymara— (1) - P(K = k). This is because that in the

p h hich hat. f . _distribution p
earson theorem which states that, for a given max"'tafjse ofH,, the generations of authentication tag and key are
tolerable false alarm probabilitg, o can be minimized by

. . . independent of each other as there is no means to efficiently
assuming hypothesis if and only if guess the key.
The formulation of the optimum binary hypothesis testing

1) Hypothesis TestingHypothesis testing is the task of,

U =
1ng >0 (11) can be written as
PH, (U = u) ~
o PmU=w) | pE K = k)
for some thresholg depending onu. o= os pr, (U =u) gp({) (K =k)
Let the functionD(«, 8) be defined by I —
~ log PUAK = k) _. @5
« 11—« Zk/e/cp(ﬂK:k)P(K:k)
D(w, B) = alog + (1 —-«)log (12) ) o o
1-p5 The optimal decision rule is given by> o for some threshold

) . . . . ) ] o depending ornu.
With optimal hypothesis testing (IL1), its detection prdbab = Now, it is clear that a partition off for the purpose of
ity and false alarm probability are closely connected [12]. \grification can be done as

Lemma 1:The detection probability — o and the false - .

alarm probability3 satisfy Ta(k,s) = {t €eT:n> 9} : (16)

As the source messageis assumed to be available, it
D(a, ﬂ) < Dkr (pHo (u)Hle (u)) (13) follows that
Lei - - ; (i-0" (-1
where the Kullback-Leibler (KL) divergence can be written a p(Ek) o exp | ——"tp—F (17)
202
Drr (f(2)||g(x)) = Z f(z)log (=) (14) Wwith t = n(k, s) a_nd E_ is its bipolar (c_olumn_) vector form._ _
- 9(z) In general, this binary hypothesis testing problem in its

S optimum form can not be easily tackled as it requires to
for two probability distributionsf (z), g(z). enumerate” keys with a priori uniform distribution.



As the optimum hypothesis testing is difficult to implemengll keys to compute the false alarm probability for any given
we propose to use a simple test statistic s € §. This seems to be an impossible task. Later in Section-
e V, we, however, show that it is possible to compute it in a
n=pt (18) closed-form expression thanks to the pseudorandomnelss of t
andr is further compared to a threshold valuéor making a complexity-theoretic MACs.
final decision, wherg: = hi(k, s) is the tag generated by Bob
and i is its bipolar vector form. IV. SECURITY ANALYSIS
This approach can be viewed as a code acquisition 3P~ |nformation-Theoretic Bounds

proach encountered in code-division multiple-access (@DPM ] ) )

communication systems, where the tag signajurean be ~ Consider an impersonation attack on the+ 1)th source
considered as a unique pseudo-noise (PN) code, which§Ssage: 1. We adopt the powerful hypothesis-testing for-
available at the sides of both Alice and Bob, but keeggulation originally proposed by Maurer [12]. The receiver
unknown to any potential attacker. knows K" andr messagesny = (s1,t1), - ,my = (sr, ),

In both hypotheses; is the sum ofl normally distributed aNd S€es a message. 1 = (s,+1,t,+1) Which could either
random variables, which is still normally distributed. Tee D€ & correct message sent by Alice (hypothdgig or a

fore, it suffices to compute its mean and variance. fraudulent message inserted by Eve (hypothésiz
In the case of hypothesi, one can show that For this quofmg atta(_:ker of order, the opponent’s
strategy for impersonation at timer + 1 can be
n|Ho = 1 + 2o, (19) described by an arbitrary probability distribution

_ ; . 12 = —my, M,=m,- I the opponent
wherez, = 3!, fi;w;. We denote its mean and variance adld  Qut=ma |11 =my o M=, PP
chooses to  US€ Qus,.\—m, 1 |Myi=my, M, =m, =

o 2 E{nHy} =1, PMMl:meM}:ml,...,MT:mT, the cheating probability
U%{O 2 Var{n|Hy} = lo2. (20) has the following lower bound.

Theorem 3:Consider the spoofing attack of ordefor an
By decomposing the hypothesH; into a series of sub- ANA-MAC, where the opponent generates an ANA-MAC tag
hypothesise%Hf’ s H K = k’}, i.e., by further assuming 7’1 when she/he observedANA-MAC tags (I""). We have

that Eve impersonates Alice using the kidy we have

, D(Oé,pr) SI(K;TT+1|T17"' 7TT)7 (26)
n|HY =1-2dg (h(k,s), h(k',s)) + 21, (21)

and fora = 0,
wherez; = Zizl g;w; anddg(z,y) denotes the Hamming

distance between two binary stringsofandy. Then, pr > 271K Tl 1), (27)

ﬁlf/éE{anla K'Y =1—2dy (h(k,s), (K, s)), Proof: Consider probability distributions conditioned on
o2  AVar{n|Hy, K} = lo2 22) the event thatM; = my,--- , M, = m,. Under hypothesis

HY ’ v Hy, the pairU = [M,41,K] (seen by the receiver) is
It is clear thaty|H, ~ N (7o,0%,) and n/HF ~ generated according to the probability distribution

N ﬁ]f,aailf/)- P,y K|\ My=ma, e My=ms
The authentication is typically claimed if > p. Hence,
the successful authentication probability (or the debecti

probability) can be simply computed as

whereas under hypothesi$,, U = [M,,1, K] is generated
according to the distribution

20— "o P,y =mpga | My=ma oo My=m,. - Pr\My=ma o Mp=m,.-
Pp=Q|—, (23) _
O Hy For ANA-MACs, each message can be written asn =
where (s,t), where the source messageés carried without secrecy
1 > t? and hence is accessible even for any opponent. Hence, we
Qlz) = — exp | —— | dt. (24) R,
Vor /. 2 can employ a more compact form for probability distributpn
With this setting of threshold, according to the distribution namely,
of n|H,, a false alarm probabilityy can be calculated as Poty oy K My=my e M= = Pr =ty i
— gk Purryi=mpiq |My=my o My=m.. = Pp_ f i f_fs
B=Ev|Q 1| @) et el B
O—H{c/ K‘I\r{lzml,---,l\{r:mr - K‘lefl_’..._’TT:fr'
We comment here that the successful authentication probietp,(t,--- ,t,.) denote the successful deception probabil-
ability (23) can be directly computed while the false alarrity for a particular observed sequenée = ¢,,--- , T, = t,,

probability is difficult to compute in general, since it stiu which is the probability of accepting hypothedis when Hy
enumerate all possible keys, which is of se Furthermore, is actually true. According to Lemma 1, we have

the above formulation in general depends on the source ~ ~ . - ~ - ~
messages as show by[[22). Indeed, one should enumeraf (@, pr(t1,---,t;)) < T (K;Tr+1|T1 =t T = tr)-



Then, it is straightforward to show both {26) andl(27) just diB. A Coding Formulation for Key Recovery in MACs

in [12]. B Consider the key recovery problem for the spoofing attack of
To gain further insights into the spoofing attack, we can alggderr, namely, the opponent has accessetessages:; =
follow the derivation process employed [n [14] [16]. (s1,t1), -+ ,m, = (s, t,) and he/she wants to recover the

Within the framework of ANA-MACs, we argue that thekey. Now, we present a coding formulation for this problem.
opponent should do her/his best to generate a clear authentin the opponent’s view (for key recovery), the generation
cation tagt, instead of a noise-corrupted versigrgiven that of possible tags for a given messagean be considered as a
t" has been observed for a spoofing attack of ordéndeed, deterministic encoding process of
if an illegal tag is generated by the opponent, the intradact
of the artificial noise may slightly increase the false atarpe h(,s): K—T. (32)
probability. However, this increase is often minor as tHe€fa  Given  source messages, the generation of possible
acceptance probability should be less than a small target vatags is with a determinist encoding process of

in the design of ANA-MACs. ~ A ,

Theorem 4:Consider the spoofing attack of ordefor an flss7) = (A1), B )] K= T (33)
ANA-MAC, where the opponent generates a clear Tag: That means, givem source message$ = (s1, - ,S;) €
when she/he observedANA-MAC tags (I'"). We have S", it is possible to generate a codés”), which is comprised

( o ) of |[K| = 2™ codewords, namely,
> 9—1 KiTrqa|Th, o T ) , - ,
pr =2 (28) C(s") = {er(s), -y ean (7)), (34)

Proof: Let P, (t|i") denote the probability thatwould be Where each codeword;(s") = (7 (k,s1),---,hi(k,s,)) is
a valid choice forl},, given thatI™ = i" has been observed.indexed by a possible kely € K.

Then, In what follows, we sayC(s") as anr-order MAC, corre-
sponding to the spoofing attack of order

P.(t[f) = Z Pt k|f") = Z P(t|k, ) P(k[E") Clgarl_y, there ardX]| =2" codewords. Suppose that the
ek pre cardinality of tag space i§7| = 2! and each tag is of the

o equal binary bit length, the coding rate ofC(s") can be

- Z P(k[t"), (29) dgfined as g ° ° )

keK(t) R.(r) = % (35)

whereC(?) is the set of keys under whichis a valid tag. Since the source messagis generated according to a finite

Given thati” has been observed, the opponent's optimuffiessage sef, the opponent has to consider an ensemble of

strategy is to substitute the taghat maximizesP, (¢|t"). Thus, codes2,.(C) = {C(s") : s" € 8"}, which is all of fixed coding
the success probability given thét has been observed in anrate R, (r).

optimum spoofing attack of orderis This ensemble of codé3, (C) is revealed to both Alice and
B Bob. From a standard cryptographic view, this code ensemble
P.(f") = max b (tl") is also revealed to Eve.
- In the literature, the size of tag space is often not largan th
Z ZP r1 = L) P (H7) the size of key, which yield®?.(1) > 1. For information-
teT ~ theoretic authentication codes, it is always assumed that
= Z Z Tyry1 = tit")P(k[t") R.(r) > 1 for somer’s. Otherwise, it is not secure. For
teT kek(t) the MACs encountered in practic&?.(1) > 1. However,
5 P(Ty 41 = t|t")P(k|t") 30 R.(r) < 1 typically for » > 2. For example, the 3GPP
= { P(Ty1 = t, k[i") } (30) employs a challenge-response authentication schemeewher

the binary length of a tag i = 64, while the binary length

whereE is the conditional expectation given that = ¢". Of: keydi_Sn :t 1?& I ¢ cod @), it o
By use of Jensen's inequality, we have ccording to the value of coding rat&(r), it can be
yu inequalty, w v formulated as either a source coding probleRy({) > 1)

Py > QH(K Ty |T7 =) H (T4 |T7 =)~ H(K|T7=1") (I\)/eraCchannel coding problenR((r) < 1) for key recovery in
" = L S.
g~ I T [T7=T), (31)  In [17], the link between authentication theory and rate-

distortion theory was exploited and the rate-distortiomction
B appears in a powerful lower bound to the probability of an
As shown in [[(2D), the conditional cheating probability isuthentication fraud. In essence, Sgarro introduced arpina
determined by the opponent’s capability to compute the faud matrix, which tells which authenticated tags cheattvh
posterior probabilities about the key when she/he observedeys under the given attack:(k,¢) = 1 iff the authenticated
tags, namelyP(k|t"),Vk € K. Therefore, it is interesting to messagen = (s, t) cheats the key. The distortion betweeh
develop a coding formulation for the problem of key recovergnd¢ can be defined as a complement formyok, ¢), namely,
in ANA-MACs. d(k,t) = 1 — x(k,t). Positive distortion level&\ > 0 make



sense in a situation when the legal user is recognized as saletim that the computational security can be achieved fisr th
whenever a “sufficiently high fraction” of the received tage message authentication code.
authenticated. For ensuring computational security, it requires that ng an
It should be pointed out that Sgarro in [17] considered onbfficient decoding algorithm exists for any cod&s™) €
the spoofing attack of order 1 by a careful definition of th@,.(C). Since the publication of Shannon’s original paper
fraud matrix. For the spoofing attack of orderthe distortion in 1948, the search of the codes for achieving the channel
betweenk andt” should be defined as a complement form afapacity has been pursued for several decades. Currently,
x(k,t"), namely, linear codes and their efficient decoding algorithms hawnbe
- - extensively studied. Therefore, for construction of a good
d(k,t") =1 - x(k,t"). (36) ANA-MAC code, linear code ensembles should be better

The rate-distortion function for the “key sourc&” with prob- avoided as their complexity can often be reduced due to the

ability distribution = (often uniform) and distortion measurelinearity of codes. As various hash functions are nonlinear
d(k,t) is defined as this is practically avoided for the construction of MACs éds

on the keyed hash functions.
R(A) = min I(K;T"). (37)
Pr=m,B{d(K,T")}<A . - , .
To derive an explicit key for the spoofing attack of ordgeit
For any opponent who observed messagesm: = s best to use a maximum-likelihood decoder for ANA-MACs
(51, t1), -+ ,my = (sr, 1), his/her equivocation about the keyif the adversary has unlimited computing power.
is upper bounded by Definition 3: Let the binary codeword: € C, which is
H(K|T™) < H(K) — R(A = 0), (38) further modulate_d withe(c) and trf’;\nsmitted_ over t_he <_:hanne|
p(ylz), the received vectog € R™. A maximum-likelihood
where the rate-distortion functioR(A) can be numerically (ML) decoding algorithm decodes the vectonto a codeword

computed. ¢, such that
In what follows, we mainly focus on the channel coding R
formulation, as this will eventually be the casB.(r) < 1) ¢ =maxp (yla(c)) . (39)

for some r's when the opponent can access(different)

authentication tags. We point out that even in the case ofDefinition 4: (ML recoverable) Giveny € R" and s",

r = 1, it is also possible to construct authentication tagsherey = z+w andx = ¢, ¢ = hi(k, s"). For an ML decoder
with I > n [18]. The expanded size of tag space can bgy), we mean that

well employed to enhance the receiver operating charatteri )

(ROC) performance for authentication, which, however, is k ZIglea%P(Mkﬁr)- (40)
more vulnerable to potential attackers. This vulnerabit&n

be remedied by the introduction of artificial noise in ANA{f P(k + k) = 0, we claim that the authentication key is ML
MACs. recoverable.

C. A Decoding Approach for Key Recovery in ANA-MACs ~ We consider a binary-input continuous-output AWGN chan-

, nel (Bi-AWGN) as encountered in ANA-MACH](8). Its ca-
For an ANA-MAC under the spoofing attack of orderwe pacity Cs (v;) is a function ofy; — 1/202, which can be

can characterize it using a quintugls, I, 7, Q2,.(C), p(y|z) }, o v
e e Fo mirA e b bl 1 - explicitly expressed as

wherep(y|z) denotes the conditional probability distribution XpICTy exp
for the artificially-introduced channel betweefz) and? (y). 1 e —(—B)2/2 _2p
In this paper, we ?Iways assume a memoryless channel Sde) = |1 - N /ﬂf Y logy (1 +e ™) dy|
hencep(y|z) = [];Z, p(yilz:). _ _

Firstly, we consider the transmission of MACs, in whictwhere 3 = /2v;. As the value ofy; is determined by the
Eve can directly access thesource messages and their introduced artificial noise, one can adjust it in practicetfe

tags best possible performance.
y=nhk,s") 2 [h(k,s1), -, bk, s.)]. The sphere-packing bound of Shanrnon [19] provides a lower
bound on the decoding error probability of block codes trans
Given s” and if the encoding rule mitted over the Bi-AWGN channel. With a coding approach
(™) K= T" for MACs, the best possible recovery of key for a potential

eavesdropper to attack ANA-MACs is to use an ML decoder,

is an injection R.(r) < 1), Eve can recover the ke by with which, the decoding probability can be lower bounded
generating a lookup table of siZ# and searching over this with the Shannon’s 1959 sphere-packing bound.
table for finding the key:, which admitsy = A(k, s"). Lemma 2:(The SP59 Lower Bound [19]) Consider an

In the language of coding, it means that the recovery of keyorder ANA-MAC code {S",7",K,Q.-(C),p(y|z)}. Let a
can be considered as decoding of the received sigina its sequence of source messagése S” be sent, anth(y|z)
most likely inputf((Y). Given r messagesni,--- ,m,, if represents a Bi-AWGN channel with the signal-to-noiseorati
any decoderf((Y) is of computational complexit{(2™), we of ~;,. For any decodek, it is clear thatk — MK, s") —



X —Y — K form a Markov process. LeP. = P(K # f(), equivocation abouk” when Eve observed various realizations

we have that of 7" can be lower bounded as
P6>PSPB(11917t)7 H(K'TT) = H(K)_I(K7TT),
where > H(K)—nRc(r)”'Ca(mn)
-1 _ = n(1-R(r)'Ca(w)).  (42)
Pspp (1,0,v) = Q(\/2lv) + e~ ( )
Ve -
/2 1—2 \/— Let
. sin(¢) ™ 21 cos do, _
| s a2 cos()s S R o) )
fi(z) = 1 /°° -1 _2_2 4oz ) de it follows that H(K|T") > §H(K). Hence, the successful
: 2% T (HTl) 0 P 2 ’ probability for an eavesdropper to guess the key is apotit.
Clearly, ¢ is a lower bound on the normalized equivocation
andé < [0, ] satisfies the inequalitg~'# < gj—gfr)) with (relative to the entropy of key).
[
20) = 2”[__21/ (sin(¢))'~2de. V. A PRAGMATIC APPROACH FOR THEANALYSIS OF
(=) Jo ANA-MAC s

c For the design of ANA-MACs, one should carefully balance
the three performance metrics, namely, the successfuéauth
gcation probability, the false acceptance probabilityd @he
security against spoofing attacks. For simplicity, we foons

The SP59 bound is exponentially increasing with the blo
length! and the exponent is strictly negative for &.(r) £
& > Ca(v), it becomes clear that above capacity th
minimum probability of error goes to 1 exponentially fasttwi > ; .
the block length. Hence, any opponent cannot recover the I} spoofing attack of order-1 anfi.(1) < 1, in which a

licitly f ly-designed ANA-MAC, ized annel codir_lg formulation mak_es sense. -
Z)s(pfcl)(l:llogvsor a properly-cesigne as summarizet »s shown in [(29), the conditional cheating probability is

Theorem 5:Given an r-order ANA-MAC determined by the opponent’s capability to compBt{é|T =
(S, 77K, 97:(0)7p(y|x)}_ With an artificially-introduced t),Vk € K. Hence, a tractable metric for the sec_u_rity against
Bi-AWGN channel of noise variancg/2~;, we say that this quoflng attacks can be chosen to be the conditional equivo-
ANA-MAC can resist any explicit key-recovery attack asca\t/l\c/)_?habo#t thelke;;;i_(KLT). lation for MAC h
the recovery of key is with error probabilitgxponentially Ith & channel coding formutation for S, We how show

. ; . . that it is possible to provide a design guideline for balagci
approaching 1 even for any adversary with an unlimite . .
power of computation ifR.(r) > Cs(y;) whenl — oc. the three performance metrics of ANA-MACs. We start with

a brief review of some basic concepts of channel coding.

rz A binary (I, M, d) code represents a binary code with length

In practice, the key is often of short length, typically of " L . .
: ize M = |C|, and minimum Hamming distancé. An
length 128. Hence, it seems that Theorem 5 makes no se esq%idistant code (of length and distancel) is a setC' of

Fortunately, it is well known in coding theory that the deicad B
error probability can go to 1 even with short block lengt ectors .Of. lengthl (called codewords), such thd(z, y) = d
or all distinctz,y € C.

(exponentially if the signal-to-noise ratioy; is sufficiently

e e , The distance distribution of a binary code of length!
low, which is implied by the SP59 lower bound. We'll show i
numerical results later. Is defined to be th¢l + 1)-tuple (4o(C), 41(C), ..., A;(C)),

As shown in [[2D), the conditional cheating probability i{;here A;(C) denotes the mean number of codewords at

determined by the opponent’s capability to compute the a}A\mmgngl.stancz ftrortr: adﬂxted cot_jewo_rd.t it th ber of
posterior probabilities,P(k|t"),Vk € K. Therefore, it is code 1S said 1o be distance invariant it the number o

more fundamental to derive a lower bound on the condition%?dewords at distancefrom a fixed codeword only depends

: : = on ¢ and not on the particular word chosen.
equivocation about the kelf (K|T") when the opponent has . .
agcesseak tags e (K|T") PP Given s € S and an ANA-MAC, let us first suppose that

. N . .
Theorem 6:(Lower Bound on the Conditional Equivocationthe underlying MACC = C(s) is an equidistant code.
about the Key) For any adversary who has observé@dA-
MAC pairs of (s;,%;),i = 1, --- ,r, her/his equivocation aboutA. Equidistant MACs
the key is lower bounded by Lemma 3 (Semakov and Zinoviév][20hn optimal bi-
=p B -1 nary equidistantl, M, d) code exists if and only if there exists
H(K|T") 2 n (1 Re(r) CQ(%)) ’ (41) a resolvable balanced incomplete block design (BIBD) with
where n is the key length andy, is the SNR due to the Parameters = M,k = M/2,A=1—d,r =1.

introduction of artificial noise in ANA-MACs. For binary equidistanl, M/, d) code, the distance takes the
Proof: As the mutual information per channel use bevalue of
tween the observation at the side of Eve and the shared key ML I+1

LI(K;T") is upper bounded by the channel capacity, his/her dopt = oM —1) 2 (44)



if dope is an integer. 1td,,,; is Not an integer, i.e. the equidistaniTherefore, it is straightforward to compute the mean and
code is not optimal, then the code with= |d,,. | is called a variance ofl; (k") for VK’ # k as
good equidistant code. Some constructions of good eqaittist

2
codes from balanced arrays and nested BIBDs were described E{l,(K)} = O_—Qd = 4vd,
in [21]. w
Suppose now that the underlying MACs employed in ANA- Var{lx(k")} = édai = iQd = 8v;d. (51)
MACs are (, 2", d) equidistant codes. Then, it is possible to Tw T
compute the three performance metrics. In what follows, we denoté, (k') by I, for simplicity. The

Firstly, the use of equidistant MACs can facilitate theosteriori probabilities can now be written as
computation of the successful authentication probabilityc

~ 1, -
and the false acceptance probabilily According to the P(K'|t) = e P(klt), (52)
decision metric of[(18) and further setting or
—lyr
N\ € k
0=pl, P = s (53)
it follows that
o = 1—PD—Q<nZ;Q>—Q(m(1—P)) H(K|T) = E{H(K|T =1)}

= Q(W(l_p)) = E{_k/zelcp(k |t) log, P(k |t)}
@ ( “ 2%G) (45) — E {log2 (1 + Qile—li>}
=1

whereG £ (1 —p)?, v = R; 'y, and Zgn ; z
_ | et
_ In(2) ' B ==l 2
8 = Pr(n=pn"t>pl) +In(2) {1+22n1 }
=@ ( 27k (200 = (1 = p))) Since2™ is practically very large{'2® for n = 128), the
= Q ( /2ym (264 — (1 — p))) ) (46) sum of2" identically-distributed random variables converges
to the sum of their mean values, namely,
For example, Let us consider the special casef 6f . o1 on_1
According to [45) and{46), this means that Z el Z Ble by =om 1,
=1 i=1
Sa1 = d = g (47) 2" —1 2n—1
! n Solie i~ Y B{lie ) = —dyd(2" - 1).
The conditional equivocation about the kBl K |T') can be i=1 i=1

well evaluated by the lower bound proposed in Theorem 6. Rdence, one finally have that
equidistant MACs, we can provide a heuristic approximation ~ dyed (27 — 1)
method to evaluate it, which shows an explicit connection H(K|T) = n—ln(2)*1%27n
betweenH (K|T) andd. 1

Theorem 7:For an ANA-MAC with the use of(l, 2", d) X n—4n2)" Repd.
equidistant codes for the underlying MACs, the conditional ]
equivocation about the key when the opponent has accessed & expected, the conditional equivocation increases when
single tag can be approximated as the noise variance increases. For ANA-MACs, one has to

= 1 consider both the successful authentication probability «
H(K|T) = n—4In(2)"" Reyd. (48)  and the false acceptance probability which, however, is

Proof: Consider that a secret kdyshared between Alice closely related to the noise variance. Therefore, it is of
and Bob is used to select a MAC codewaravhich is further importance to balance these requirements.
corrupted by artificial noise to form an ANA-MAC codeword
t. When Eve receiveg, she can calculat®™ posteriori B. General Case

iliti g / n _li i i
probabilitiesP(k’[:"), k" € K., or 2" log-likelihood ratios From coding theory, it is well known that the number of

P(k|D) 1 Oal codewords for equidistant codes is very limited, which wfte
(k') = log 7 P o2 > it (K)], k" € K (49) results into a very low coding rate.
Tw =1 For a binary cod€” of lengthi/ havings distances, a general
Clearly, I,(k) = 0. For equidistant MACs with (Hamming) result by Delsarte [22] implies that
distanced, we have that

L (1
d (t(k), t(K)) = d,Vk' # k. (50) 1= ; <Z> 54
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It should be pointed out that the derivations[ofl(46) dnd (48) [ |
require the property of distance invariant for the undedyi

codes, since we cannot assume the use of a particular key VI. NUMERICAL RESULTS
between Alice and Bob. Fortunately, Delsarte told us how to\ne consider ANA-MACs, where the underlying MACs are
decide if a code is distance invariant. constructed by the Rijndael block ciphér [18]. Hence, the

Lemma 4 (Distance Invariant [22])Let C' be a code for ynderlying MACs in ANA-MACs allow the specification of
which the numbes of distances is at most equal to the dugjariants with the block lengthiX and key length %) both

distanced’. ThenC' is distance invariant. _ ranging from 128 to 256 bits in steps of 32 bits.
Unfortunately, it still remains a challenge for design oflsu

distant-invariant codes in practice. . A. Empirical Distance Distribution of Complexity-Theadeet
For ANA-MACs, the complexity-theoretic MACs are em-

ployed, which can be seen as random codes, due to their . .

pseudorandomness property. Empirically, we claim that the 0 Make sense a channel coding formulation for the

complexity-theoretic MACs are distance-invariant thanes Rindael-cipher based MACs, we use= 128 and! = 256.

their inherent pseudorandomness, as verified by extensiygnce the coding rate 8. =1/2. _
numerical results shown in Section-VI. Given as € S and further fix ak € K, it is straightforward

L o
For the set of random codes of raf, it is well known to generate authentication tags with’ € K/k, and the Ham-

Theorem 8:For an ANA-MAC with the use of((,2")
MACSs, the conditional equivocation about the key when tt
opponent has accessed a single tag can be approximated

H(K|T)~n—4In(2) 'Ry, - d. (57) ‘
0 50 100 150 200 250 300

whered = (2_n Zd dAd)' ) ] Distance
Proof: Let I(d) denote the set of keys with which the
generated tags are at Hamming distadcgom the tag with Fig. 1. pistance distribution for random codes and MACs vRiindael

that ming distance betweél(s, k') andh(s, k) can be numerically
AT computed.
Ay = (d>2 1a-Ro), (55 “°MP
whereA, denotes the mean number of codewords at Hammi 0.06 : : : : :
distanced from a fixed codeword. —6— Random codes
Then, according to[(46) and(56), it is straightforward t 005k . | —*— MACs with Rijndael Cipher
show that §
Aqg =
=3 52Q (V2 (200 = (1-p))). (56)
d>0 3
while the successful authentication probabilify](45) remma §
unchanged. o
%
E
2

k. Clearly,|J,~,K(d) = K. Hence, cipher.
H(K|T) = E{H(K[T'=1)} This empirical distance distribution is shown in Fig. 1,
) which coincides well with the random codes of the same cod-
= FE<logy |1+ Z el ing rate. Extensive numerical results show that this erogiiri
K €KX/k distance distribution keeps unchanged for the usgso€ S
S, el andVk € K. Hence, the distant-invariant property has been
+ln(2)1E{ Kek/k k — } , empirically confirmed, thanks to the psuedorandomnesseof th
LY er/ne complexity-theoretic MACs.
where
B. Fundamental Limits on the Key Recovery Attacks
Edl+ Z el = 1+ ZE Z el To attack ANA-MACs, an opponent tries to do her/his best
K EX/k d>1 K €K(d) to decode the key.
~ 27, A fundamental limit on the opponent’s capability on guess-
and ing the key is the conditional equivocatioH,(K|T), which

can be estimated by (b7). With a random-code-like distance
, , distribution, it is immediately to see thdt= n. Hence,
EQ > hery = Y ES > leh ) »
= =1 | wex(a H(K|T) =n(1 —4(In2)" Rey).

ZAd(—‘l%d)- Numerically, we, however, found that it is often looser than
a>1 the lower bound of[{43). This is because that the law of

Q
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large number holds only approximately when random vargblauthentication probability can still be achieved in this BNR

being summed are dependent. regime.
Fig.[2 shows the lower bound on the normalized conditional
equivocation, as determined by [43). A%/No = —3 dB, ¢ completeness Error vs. False Acceptance Probability

H(K|T) > 53. Hence, the successful probability for an

opponent with an unlimited power of computation to guess The completeness errar 1S defined as the (_:om_plement
the key is abou@ 5. of the successful authentication probability, which isselly

connected to the normalized threshold valuey the theory
of hypothesis testing, the completeness error and the false
045 acceptance probability is fundamentally balanced with_(113).

0.4r

0.351

0.3f

0.25¢

0.2r

0.15¢

=¥ a (p=0.5)

Lower bound on the normalized equivocation ()

Completessness Error (o) and False Acceptance Rate ()

0.1}
—%— ( (p=0.5)
0.05f —6— a (p=0.55)
—6— B (p=0.55)
% 25 2 15 1 05 0 o (p=09)
' E/N,, dB ' =B (0=06)
0
10_15 1 1 1 1 1
Fig. 2. Lower bound on the normalized equivocation. -3 -25 -2 -15 -1 -0.5 0

Eb/NO, dB

Fig. 4. Completeness error and false acceptance prolyabdisusEy,/No
for different thresholds.

10

To see the fine tradeoff between and 3, we plot them

] in Fig.[4 for differentp’s. As the conditional equivocation
about the key increases when the SNR decreases, the variance
of the artificial noise is essentially determined by the eyst
requirement on the completeness error and false acceptant r

10 F

10°F

10 ;| === SP59 lower bound for decoding error probability E D. The Effect of Quantization

—&— Successful authentication probability
‘ To facilitate packet transmission, quantization should be
107} introduced for ANA-MACs. In most cases, 8-bit quantization
‘ is often enough for ANA-MACs and no obvious difference
} can be observed in simulations for both the successful authe
03 2 Y 0 1 2 tication probability and false acceptance probabilityhwitr
Eb/NO. dB without quantization. For the conditional equivocatioroab
the key, the introduction of quantization can in generaléase
it due to the data processing inequality and the opponent
becomes more difficult for implementing any key-recovery

Decoding Error Prob./ Successful Authen. Prob.

Fig. 3. The SP59 low bound on the decoding error probabitity successful
authentication probability.

If the opponent choose to decode the key based on her/laﬁE%aCk'
observation of a single authentication tag, we can employ
the SP59 lower bound for estimating her/his possibility to
successfully decode the key. Hig. 3 shows the SP59 bound oiVe propose a channel coding approach for the key recovery
the decoding error probability and successful authendinat problem encountered in the spoofing attacks of MACs. With
probability for different £,/Ny’s. As the opponent cannotthis new approach, the computational security for MACs can
do better than an ML decoder, the SP59 bound providee viewed as the requirement of exponential complexity for
an over-estimate of its capability on guessing the key. Al possible decoders to succeed.
shown, the opponent becomes hopeless in guessing the ke new cryptographic primitive, namely, ANA-MACS, is
wheneverE;, /N, is below about -1 dB, where the decodingroposed by employing the artificial noise to corrupt the
error probability is around 1, while almost perfect suctidss complexity-theoretic MACs. This idea is shown to has some

VIl. CONCLUSION



degree of information-theoretic security. The proposed®AN
MACs are similar to the recently-proposed physical layer
authentication schemes, as both are interfered with noise.
However, the proposed ANA-MACs come with the artificially-
introduced noise, the amount of which can be well controlled
to meet various performance metrics. This, however, is not
the case for physical layer authentication schemes, wiere t
noise is introduced by the channel.

With the introduction of quantization, the proposed ANA-
MACs can be encapsulated in packets and transmitted above
the physical layer just like that of the traditional MACs,
which contrasts sharply with the existing physical layer au
thentication schemes. We hope that this research can bridge
two closely-related but almost independently developéuh-pr
itives, namely, information-theoretic authenticatiordes, and
complexity-theoretic MACs.
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