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Abstract—We present two Secure Two Party Computation
(STPC) protocols for piecewise function approximation on private
data. The protocols rely on a piecewise approximation of the
to-be-computed function easing the implementation in a STPC
setting. The first protocol relies entirely on Garbled Circuit (GC)
theory, while the second one exploits a hybrid construction where
GC and Homomorphic Encryption (HE) are used together. In
addition to piecewise constant and linear approximation, poly-
nomial interpolation is also considered. From a communication
complexity perspective, the full-GC implementation is preferable
when the input and output variables can be represented with
a small number of bits, while the hybrid solution is preferable
otherwise. With regard to computational complexity, the full-GC
solution is generally more convenient.

Index Terms—Secure Two Party Computation, Signal Process-
ing in the Encrypted Domain, Computing with private data,
Garbled Circuits, Homomorphic Encryption

I. INTRODUCTION

HE interest towards applications where two or more non-

trusted parties wish to collectively process one or more
signals to reach a common goal has prompted the quest of
tools and protocols capable of processing signals and data
directly in the encrypted domain [1l], [2]. The availability of
such protocols would avoid that non-trusted parties refuse to
cooperate even when they have a common goal because they
are not willing to disclose their private inputs to the other
parties. Processing signals directly in the encrypted domain,
in fact, allows each party to observe only its own input and
its share of the computation output, thus avoiding the need to
disclose sensitive information to the others. In recent literature,
protocols like those described above are often referred to as
Signal Processing in the Encrypted Domain (s.p.e.d.). The
number of possible applications of s.p.e.d. is virtually endless.
Among the most interesting scenarios investigated so far
we mention: private data mining [3]], secure processing of
biometric data [4], [S], [6], secure processing of biomedical
signals [7], [8], processing of private user preferences [9],
fusion of private data [10], etc.

From a technical point of view, s.p.e.d. protocols rely on
Secure Multi-Party Computation (SMPC), a cryptographic
discipline rooted in the seminal works by Goldreich [L1],
Rivest et al. [12] and Yao [13]]. In the simplest case, like
the one considered in this paper, the protocol involves only
two parties. In this case, we speak about Secure Two-Party
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Computation (STPC) instead of SMPC. In a general STPC
setting, one party, say Alice, owns a signal that must be
processed in some way by the other party, hereafter referred to
as Bob. Bob must process Alice’s signal without getting any
information about it, in some scenarios not even the result of
the computation. At the same time, Bob is interested to protect
the information he uses to process the signal.

Several cryptographic primitives for STPC exist, which
when coupled with a suitable design of the underlying signal
processing algorithms, permit to process the signals in a secure
way. The two main approaches to STPC are based, respec-
tively, on Homomorphic Encryption (HE) and Garbled Circuits
(GCs). HE provides a simple and elegant way to evaluate
linear operations on encrypted data [12]], however when non
linear operations are involved, it is necessary to resort to ad-
hoc, interactive and usually complex protocols. For instance,
researchers have developed HE-based protocols to compute
common non linear functions such as bit decomposition and
comparison [5], division [14], etc. On the other hand, GCs
allow to evaluate any function that can be represented with an
acyclic boolean circuit. For this reason GCs are very powerful
tools when the functionalities involved in the computation can
be represented by simple circuits, like in the case of com-
parison, addition, multiplexing, etc.. In other cases, however,
the boolean circuit required to describe the functionality is
so complex to make the use of GCs problematic. This is the
case, for instance of product, division [15], logarithm [16]]
computation, etc. Given the complementary pros and cons of
HE and GC, the use of hybrid protocols has been proposed to
take advantage of the benefits offered by the two approaches,
so that complex protocols are developed as a concatenation of
sub-protocols, some of them implemented by using HE and
others by using GCs [7], [8]. A simple protocol to securely
link HE and GC subprotocols is described in [17].

Recently, Fully Homomorphic Encryption (FHE) schemes
[L8], [19], [20] have been proposed, allowing the evaluation
of both addition and product between encrypted values on
the service provider side, without any interaction with the
party owning the public key, whose only tasks is to encrypt
the inputs and decrypt the results. Unfortunately, FHE is still
highly inefficient, principally due to the huge size of the public
key.

Regardless of the adopted approach, computing a generic
function, like trigonometric, hyperbolic and statistical func-
tions on private data is a difficult problem. Classical HE
schemes (like [21], [22]) do not provide a general approach



for universal function evaluation, while both GC and FHE
require that the to-be-computed function is described as a
logical circuit working on binary variables, thus making the
implementation of complex functions like trigonometric func-
tions, extremely inefficient.

With the above ideas in mind, the main contribution of this
paper is the proposal of a new class of protocols that permit to
evaluate privately a piecewise constant, linear or polynomial
approximation of any function f() having limited domain
and codomain, for any given choice of the approximation
parameters like the representation error and the accuracy of
the input and output variables. To start with, the piecewise
approximation is determined, specifying the sub-intervals the
function domain is split into to define the piecewise approx-
imation, and the approximation parameters to be used within
each subinterval. Then, given the input, the actual function
approximation consists of three main steps: interval detection,
parameter retrieval and approximation. In the first step the
domain interval the input belongs to is detected, then the
parameters of the (constant, linear o polynomial) approxima-
tion are retrieved and finally the actual approximating value
is evaluated.

The present work generalizes and improves the system pro-
posed in [23], where piecewise linear function approximation
by means of full-GC or Hybrid protocols is considered. As
a first main difference, in this paper we consider a general
approximation framework, which is not limited to piecewise
linear functions, but includes also polynomial approximation.
Secondly, and equally important, the efficiency of the protocols
proposed in [23|] is significantly improved with regard to
both the full-GC and hybrid implementations. Specifically, the
complexity of the segment detection phase is decreased from
O(NY{) to O(N), where N is the number of segments and ¢ the
input bitlength, and the complexity of the parameter retrieval
phase is diminished down to a point to become negligible.

With respect to the two approaches proposed in the paper,
one fully based on GC and the other relying on a hybrid
protocol, we show that from a communication point of view
the hybrid solution is preferable when the input is represented
with a large number of bits and a high precision is needed,
otherwise the full-GC solution is preferable. With regard to
computational complexity, our implementations reveal that
full-GC solution is always preferable.

This paper is organized as follows. In Section [lI} the main
cryptographic tools the protocols rely on are presented. The
general framework for piecewise polynomial approximation
is presented in Section together with the instantiations
of such a framework for specific cases of particular interest.
The number of bits that must be used to represent the pro-
tocol variables is evaluated in Section [[V] as a function of
the approximation error. Different STPC implementations for
various classes of approximation functions are presented in
Section [V] and compared in Section [VIl The paper ends with
some conclusions in Section

II. CRYPTOGRAPHIC TOOLS

In this section, we present the cryptographic primitives at
the bases of our protocols, namely Oblivious Transfer (OT),

Garbled Circuits (GC) and Homomorphic Encryption (HE).
Throughout the paper we adopt the semi-honest security
model, where the parties involved are assumed to follow the
protocol as prescribed but try to learn as much as possible
from the exchanged messages and their private inputs. While
the security of the single tools in the semi-honest setting
are demonstrated in the original papers, the security of their
composition in hybrid protocols is proven in [17].

A. Homomorphic Encryption

With a semantically secure, additively homomorphic, asym-
metric encryption scheme, it is possible to obtain the encryp-
tion of the sum of two values a and b available in encrypted
form through the product of the corresponding ciphertexts. In
other words, by denoting with [[-] the encryption operator, we
have [a+b] = [a] - [b]. In a similar way it is possible to com-
pute the product between two values, one of them available in
non-encrypted form, through exponentiation, i.e. [ab] = [a]®.
More complex functionalities, such as bit decomposition [24]]
and comparison [25], can also be evaluated by interacting with
the owner of the decryption key in protocols characterized by a
rather high complexity in terms of protocol rounds and number
of transmitted cyphertexts.

The most widely used additively homomorphic cryptosys-
tem is Paillier cryptosystem [21] with plaintext space Zy and
ciphertext space Z}., where N is a T-bit RSA modulus and
a ciphertext is represented with 27" bits. The communication
complexity of HE-based protocols is mainly related to the
number of cyphertexts to be transmitted and the number of
rounds necessary for the protocol evaluation. The computa-
tional complexity is usually measured in terms of number of
modular exponentiations, and by considering that encryption
and decryption have a complexity similar to exponentiations.

B. Oblivious Transfer

Oblivious Transfer (OT) protocols [26] allow one party, the
chooser, to select one out of two (or more) inputs provided by
another party, the sender, in a way that protects both parties:
the sender is assured that the chooser does not receive more
information than it is entitled, while the chooser is assured
that the sender does not learn which input he received.

OT protocols can be subdivided in two phases: the off-
line and online phases. It is customary to move the set
up operations and a great part of the most computationally
expensive operations to the offline phase, which is performed
during inactivity, and during which the chooser and the sender
evaluate many OTs computed on random values. Then, during
the online phase the result of precomputed OTs are used to
update the OTs to the actual values [27]]. During the offline
phase a great number of OTs can be evaluated in parallel in
3 communication rounds, transmitting 6¢ bits for each OT,
where ¢ is the input bitlength, while the online phase needs
only the transmission of 2t bits in 2 rounds for each OT [28]].

C. Garbled Circuits

Any boolean circuit containing no cycle can be privately
evaluated on secret inputs by using Garbled Circuits (GC).



Despite several optimizations proposed later, the overall pro-
tocol for GC evaluation is still similar to the first one proposed
by Yao [[13]], [29]. As shown in Figure E], a GC is evaluated in
three steps. During garbling, one party, the sender, associates
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Figure 1. Garbled circuit scheme.

a couple of secrets (one for each logical value) to each wire
of the circuit and garbles each gate by encrypting, for each
row of the corresponding truth table, the secret associated to
the output by using the two secrets associated to the inputs.
In the transmission phase, the sender transmits the garbled
tables to the other party, the receiver. Moreover the sender
transmits the secrets associated to the input wires linked to
his inputs, while the receiver obtains the secrets of his input
wires by performing an OT together with the sender. Finally,
during evaluation, the receiver decrypts the secrets gate by gate
starting from the gates connected to the inputs (for a detailed
description of each of the above steps we refer to [30]).

Thanks to recent optimizations [31], [32], [33], garbling,
transmission and evaluation of XOR gates have negligible
complexity, while for each non-XOR binary gate circuit gar-
bling requires the computation of 3 Hash functions and the
transmission of 3¢ bits, where ¢ is a security parameter (usually
t = 80 for short term security). In addition, gate evaluation
requires the computation of a Hash function with probability
3/4. For each input bit of the sender ,a secret of ¢ bits is
transmitted, while for each input bit of the receiver an OT is
evaluated (2t bits transmitted online). We underline that if the
sender and the receiver know in advance the functionality to be
evaluated, garbling and circuit transmission can be performed
offline, when the inputs are not yet available.

D. Hybrid protocols

The use of hybrid protocols, such as in [7]], [16], permits to
efficiently evaluate functionalities for which full-HE or full-
GC solutions would not be efficient (or even impossible).
Given that GC and HE rely on different ways of representing
data, conversion from homomorphic ciphertexts to garbled
secrets (or vice versa) must be performed by resorting to
interfacing protocols based on additive blinding. In particular,
by referring to the protocols described in [17], it is easy to
derive that the conversion of an ¢-bit long value from HE to
GC requires the on-line transmission of additional 27" + 7/t
bits, while conversion from GC to HE requires an overhead
of 2T + (¢ + 7)5¢ bits, where 7 is an obfuscation security
parameter (usually 7 = 80).

III. FUNCTION APPROXIMATION

Given a generic limited function f() with domain Dom =
[€a,xp) and codomain [y,,ys), our goal is to find a way to
approximate f() in Dom so that the approximation can be
efficiently evaluated in the encrypted domain, as shown later
in Section [V] The solutions we focus on in this paper permit
to represent a sampled and quantized version of f() - say
f() - through a piecewise polynomial function f(), as shown
in Figure [2| To be specific, the approximation procedure we
propose consists of two main steps. First the domain of f () is
partitioned into a given number of non-overlapping intervals.
Then, for each interval, a polynomial is chosen to approximate
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Figure 2. High level steps to map a function f(z) into a piecewise

polynomial function f(&) in a discrete space.

A. Quantization

First of all, considering that STPC protocols work with
integer values, we introduce a discretized version of f(). To
do so, we assume that the input variable x is represented by
¢, bits and the function output y with £, bits. We also find it
convenient to translate and scale the domain and codomain of
f() and to represent input and output by using integer numbers
so that the input ranges in the interval [0, n) NN and the output
in the interval [0,m) N N, where n = 2% and m = 2%,
More specifically, we define the normalized and quantized
input and output variables respectively as & = |g.(z - Za)],
with ¢, = xffxa and § = |q,(y — ya)| with ¢, = yffya. of
course, these operations introduce an approximation error €,
that can be reduced by increasing ¢, and ¢,. In particular £,
must be chosen large enough so that the step used to quantize
the output is lower than the desired approximation error, i.e.
1/g, < e. With the above understanding, the normalized and
discretized version of f() can be represented by a sequence
of value pairs (&;,9;), with &; = 4, Vi = 0...n — 1 and
U = {f (;7 —|—xa>J = [f(z)]. In other words, for any ¢

ranging from 0 to n — 1 we have g; = f(&;).

B. Domain Partitioning and Polynomial Approximation

Generally speaking, given the degree of the polynomials
used for the approximation, determining the best way of
partitioning the domain of f() is not an easy task. For
this reason, we avoid looking for the optimal segmentation
of Dom and restrict our analysis to the identification of a
partition that permits to keep the approximation error below a
predefined value, while allowing an efficient implementation
by relying on STPC techniques. In other words, regardless of
the polynomial degree, given an error € > 1/¢,, the goal is to
partition the domain into intervals S;, each delimited by the
left and right extremes §5 and §§, wherein the distance between



f(&;) and the looked-for approximation f(&;) is lower than
the given error, i.e., considering the amplification factor in the
output, | f(2;) — f(Z:)| < eqy.

To determine a partition of Dom with the desired character-
istics, we use a bisection algorithm, inspired by a divide and
conquer strategy. The partitioning algorithm starts with the
analysis of the whole segment S = Dom, which is subdivided
by using the following recursive procedure:

1) A polynomial approximation of f() in S is computed
and the maximum error €5 = max; cg | f(2;) — f(&)]
is evaluated;

2) if €g < eq, the parameters of the interpolating poly-
nomial are stored and the set is marked as a leaf of
the binary-tree associated to the bisection algorithm,
otherwise

a) S is marked as a node of the binary-tree and
subdivided into 2 subsets each one having size one
half of S,

b) the procedure is applied from step 1 to each subset.

Note that if a good approximation is not found, the bisection
continues until the leaves of the tree coincide with the single
points of the discrete domain. In addition to its simplicity,
the above bisection algorithm ensures that the size of all the
intervals of the partition is a power of 2, thus enabling an
efficient GC implementation of the approximation algorithm,
as shown in Section [V-AT]l

The depth of the tree and the number of segments of the final
partition depends on the approximation type. Here we consider
constant, linear and polynomial approximations and exemplify
the results by considering the approximation of sinc(z) (see
Figure [3). We assume that approximation parameters are real-
valued, postponing the discussion about their integer represen-
tation within secure protocols to Section

1) Constant approximation:
In this case f () is approximated by a constant. Given a
segment S;, the maximum approximation error is minimized
by choosing the approximating constant as

. maxzes, f(:f:) + mingeg; f(j)
= )
2

If |c;— f(@)] < eqy for all the values & € \S;, the approxima-
tion is satisfactory, otherwise the segment is subdivided again.
The main advantage of this approximation is its simplicity. A
single value is assigned to each leaf of the quad-tree and, once
the correct leaf has been selected, the approximated value is
immediately obtained, with no additional operations.

2) Linear approximation:

In each segment S, f() is approximated through a linear
function:

mj(:% — §§) +q]',

where §§ is the left extreme of the segment and m; and g; are
chosen so to minimize maxies_jﬂf(i) —m;(& — §§) —gjl}.
Due to the difficulty of solving the above minimization, we
replace it with the search for the regression line that minimizes

the square error, i.e. we solve min Za@esj (f(2) —mj(a?—éé-) —

;). Then the maximum error in the interval is evaluated

and if it is not lower than the desired error the segment is
subdivided again.
3) Continuous linear approximation:

Assuming that the domain is subdivided into m segments,
we may desire to enforce the continuity between the linear
approximations used in consecutive segments, even if this can
result in a larger number of segments. To do so we need to
solve the following linear optimization problem:

min maxge pom {|f(Z) — M) (¢ — §§(i) — @)}
Qg1 =m;(85 =8 ) +¢q;  Vji=0...m—2
)
where j(Z) denotes the segment S; containing &, while éé and
87 are the left and right extremes of the segment Sj.

We can easily observe that the above optimization problem
has 2m variables and m — 1 constraints, in addition, if a
certain partition does not guarantee an error lower than the
target maximum error, some segments must be split and
the whole optimization problem has to be solved again.
To simplify the problem, we decided to impose that the
approximating function is equal to the original one at the
extremes of each segment. This is obviously a sub-optimal
solution, that, however, permits to compute very quickly the
desired approximation. Under this assumption, the continuous
linear piecewise approximation is fully defined by the extreme
points of the m segments, i.e. the m + 1 couples (3}, 7))
(51, 91) -+ (Bh—1:Um—1) (87,1, G—1), where ?)é and g/ are
the values that the quantized function assumes in the extreme
points of the segment S; and, again, (57,9}) = (§§.+1,g]§+1).
With these assumptions, in each segment j, we have m; =

N Y

; sJ and ¢; = g]é
4) Polynomial approximation:

In order to improve the accuracy of the approximation within
each interval and consequently reduce the number of seg-
ments required to obtain a given precision, we can use a
polynomial approximation. Without imposing any continuity
constraint across the intervals, and given the polynomial
degree d, the coefficients of the polynomial that minimizes
maxjegjﬂf(;%) - Z?:o aji(& — 85)|} in a generic inter-
val j can be obtained by searching the coefficients of the
regression line that better approximates the set of points

{(1, z, 22, ..., j:d,f(fc))}A < in a space of d + 2 di-
mensions. If the approximationmfe:rrBr given by the polynomial
is not lower than the threshold, the interval is split again and
a new polynomial is searched in the new partition.

5) Continuous polynomial approximation:
If we require that the approximation is continuous on the
border of different segments, we can impose that the values
assumed by the polynomial on the extreme points of the seg-
ments are equal to those assumed by the to-be-approximated
function. The polynomial of degree d approximating f ()ina
section S}, can then be obtained by the polynomial of degree
d — 1 approximating the function.

Starting from a linear approximation in the interval obtained
as described in Section [[II-B3] a quadratic approximation
function can be obtained as ff(ﬁc) = bjo+bj1(& — 55) +

bjﬁg(if? — §é)(.’i’ — §§), where bj’() = qj and bj71 = m;. The



(a) Original

(b) Continuous Linear Approximation

e A o—

(c) Continuous Quadratic Approximation

(d) Constant Approximation

Figure 3.

approximation error inside the interval depends on the value
of bj - and can be expressed as

Eg(f,bjyz) =
F(&) = bjo -
= () - bja(@ - 3)(@ - 3)), )

where €1(Z) is the approximation error introduced by the
linear approximation. To obtain b;, the mean square error
1 S ‘ D s, €2(#) is minimized by imposing that its derivative
with respect to b; 2 is equal to 0. Doing so, we obtain

Vics, (@)@ — )@ - )
> ses, (& — 8h)2(& — &7)2
Being interested to obtain an approximation of the form
Zj:o aji(& — 84)", we find the following coefficients: a; o =

bjO, a;1 :bjl —an(Aj —SJ) and a;.2 —bJQ

Given the approximation of degree 2, we can obtain the
approximation of degree 3 similarly, as f?(&) = f2( ) +
bj3(&—85)(&—8%) (2 —c3), where c3 is a point of the interval
(possibly one of the extreme points), whose selection can be
carried out by means of numerical analysis [34]]. By iterating
the above operation, we can obtain an approx1mat10n of degree
d, that can be written in the form ZZ 0a;,i(Z — §§)Z

6) Other solutions:
Other techniques can be used to approximate f() within
the segments S;. For instance, by using a spline interpo-
lation of degree d we would ensure the continuity of the
piecewise approximation and its first d — 1 derivatives [35]],
however the spline approximation does not depend on the
values that the function assumes in the non-extreme points
of the segment. This raises some problems with the overall
interpolation procedure. Suppose, for instance that at a certain
point, with the domain split into N segments, the maximum
approximation error exceeds the desired maxim value. With

3)

bj2 =

(e) Linear Approximation

(f) Quadratic Approximation

Approximation of sinc(z) in [0, 10) with different classes of interpolating functions.

a spline approximation is not easy to decide which segment
should be further split, since even by splitting the segments
where the error exceeds the threshold, it is possible that the
new spline approximation exceeds the maximum error in some
of the segments that have not been split.

Alternatively, we could use a Taylor approximation centered
in the middle of each interval. Unluckily, this solution provides
an excellent approximation close to the center of the intervals,
but deteriorates rapidly towards the extreme points. To solve
the problem, polynomials of large degree should be used,
otherwise we risk to split the domain into too many small
intervals, making the solution inefficient.

As an additional possibility, we mention the usage of a neu-
ral networks, whose implementation in the encrypted domain
has been proposed in [7]. In fact the multi-layer perceptron
(MLP) is a universal function approximator, as proven by the
universal approximation theorem [36]. However, the proof is
not constructive regarding the number of neurons required or
the settings of the weights. Moreover each neuron involves
several products, which can not be implemented efficiently in
the encrypted domain, and an activation function, whose best
secure implementation so far is based on a linear piecewise
approximation.

IV. PARAMETER REPRESENTATION

In this section we evaluate the impact that the number of bits
used to represent the parameters of the approximating function
has on the approximation accuracy.

As we said, SMPC works with integer numbers, however the
coefficients of the polynomials derived in the previous section
are real numbers and need to be approximated with integer
numbers. A possibility would be to simply approximate them
by using the formula Z?:o la; (& — §; ) Such a choice,
however, may result in an exceedingly large approximation
error. To alleviate this problem, we quantize the approximation



coefficients by multiplying them by a factor k£ and dividing the
final approximation result by the same value. We underline
that by imposing that k is a power of 2, we can implement
the division very easily by discarding the ¢; least significant
bits of the result. We also argue that a different number of bits
(a different precision) is needed to represent the coefficients of
different orders in the polynomial (intuitively more bits will be
needed for higher orders). To allow for such a differentiation
we introduce different multipliers for different coefficients,
let us denote them by k; = 20k < k. where ly; is the
number of bits used to represent the fractional part of i-th
order coefficients, obviously such parameters have to be scaled
during the computation so that all the parameters are amplified
by the same factor k.

At this point we need to understand how many bits are
needed to represent the coefficients. Since the coefficients can
be negative, we need one bit for the sign. The number of
bits used to represent the magnitude can change with the
coefficient degree, but its must be the same for each interval.
The magnitude of the parameters of degree ¢ depends first of
all on the biggest value assumed by a ; for all the sections S,
identified as ¢, ; = [log,(max;{a;;})]. In such a way a dif-
ferent bitsize is used for coefficients corresponding to different
degrees in the polynomial. Then the magnitude depends on the
quantization factor k;. This is equal to understand how many
bits of the fractional part of the parameters a; ; are represented
for each degree :. Considering that the largest quantizer for
the parameters is k; = k, we can rewrite the approximating
function by using the notation introduced so far a{]

d Le—Liyi| L. . 1(4 — &L\
f(a?) _ > im02 L:zajﬂ (& 3]) ’ @)

allowing us to evaluate products involving values represented
with smaller bit-lengths and then multiplying the results by
the factor k/k; = 2°*~%~i by simply concatenating a proper
number of zeroes. While k;a; ; can be represented as an integer
number by rounding it in the plain domain, the division in ()
is computed discarding the log, k = ¢, less significant bits of
the sum result, allowing only to truncate the value.

To determine ¢ ;, we compute the difference between the
quantized function f(Z) and the approximating function f(z).
Considering that the analysis is the same for each segment j,
in the following we omit such an index for simplicity. The
approximation error can be written as:

f@) - f(@) =
L E;/i: 2Zk—£k,i \_kla/z—‘ (i‘ - §I)7 —
= f(@) - { : k J R

i=0 v

: a [ &Ge@ )
(@) _Zai(@_gl)i_ (Zlk+€t> )
=0

where 0 < ¢ < 1 is the truncation error, while |¢;| <
1/2 is the error introduced to round the i-th coefficient.

The formula refers to the j-th segment for simplicity.

f(@) — Zf:lo_ai(i — 3!)" is the approximation error, while
Z?:o % + €, is an additional representation error that
we want to keep as small as possible. Since €; < 1 (equiv-
alent to thelc_odomain quantization error), we impose that
Z?:o w is also lower than one, so that the represen-
tation error is lower than twice the codomain quantization
step. Recalling that each interval contains a number of points
that is a power of 2, the difference between the input and
the left extreme of the segment the input belongs to is
& — & < 2% 2 max;{8] — 84}. Considering that |e;| < 1/2,

we obtain
1\i

d X ~
|Zz(kZ ) <

=0

d 9ily
2k;

(6)

i=0
Allowing an error lower than 1/(d + 1) in each term of the
sum ensures that the total error is lower than 1, yielding k; >
(d+1)2%—1,

The bitsize of the fractional part of the i-th coefficient then
is ;i = il, + [logy(d + 1)] — 1 and the bitsize of the
amplification factor k can be obtained by letting k = k.

The total number of bits needed to represent all the pa-
rameters of the approximation (|k;a; ;] Vi and §§-) then is

Ep = em + Z?zo(gu,i + Ek,i + 1)

V. STPC IMPLEMENTATIONS

As already outlined in Section [} the main tools for STPC
are HE and GC. Moreover, it is also possible to develop
hybrid protocols by composing several subprotocols, each one
implemented by relying on the most suitable approach.

In the following, we present two solutions to implement the
approximation algorithm described in the previous sections
in a STPC setting. The two solutions rely, respectively, on
a full-GC implementation and a new hybrid solution. We
excluded a priori the development of a protocol entirely based
on HE since the protocols introduced in Section [[lIf need the
bit decomposition of the input, for which an efficient HE
implementation does not exist.

We first describe the two protocols and then we analyze
their complexity in Section to evaluate which of the two
is more efficient for different setups. We assume that the
input Z is available to Alice in form of garbled secrets, while
the full-GC and hybrid protocols represent the output value
1y as garbled secrets and as a cyphertext respectively. If a
different representation is needed for further computation, the
conversion algorithm presented in [17] must be used. The
above setting mimics a case in which the function evaluation
protocol is embedded inside an outer protocol. In addition of
being used for further computation, the output can also be
disclosed to Alice as a final result, while Z cannot be an input
from Alice or Bob, otherwise, being the function known, they
could directly input f(Z) to the subsequent computation.

A. Full-GC solution

Given an approximating function having the form defined
in the previous section, its evaluation in correspondence of an
input £ can be implemented in three steps: i) identification
of the segment & belongs to; ii) retrieval of the parameters



determining the approximating function in the identified seg-
ment; iii) use of the retrieved parameters to compute f (z). In
this section, we present a protocol entirely based on GC to
implement the above steps.

1) Interval detection: The correct subset is identified
through a classification tree. Thanks to the use of a bisection
algorithm we can associate a binary tree to the partition,
where we can reach the leaf associated to the segment the
input belongs to by traversing the tree from the root node
and by choosing the left or right child according to the most
significant bit of the input, and repeating the operation for
each node according to the next bits, until a leaf is reached,
as shown in Figure [4

The idea behind the GC protocol is to build a binary circuit
that, given the input, returns as many output bits as the number
of leaves in the tree and where only the bit corresponding to
the leaf associated to the correct segment is equal to 1.

Let us assume that the binary tree has IV leaves (and hence
N — 1 nodes). An input & belongs to the j-th subset S;
(associated to the j-th leaf of the tree) if p is the depth of
the leaf in the tree and the p most significant bits of Z and the
left extreme sé are equal. These p bits are associated to the
direct path from the root to the leaf associated to segment S,
i.e. the sequence of bits encountered on the branches when

traveling from the root to the leaf (Figure H).

The above condition can be verified through a binary circuit
computing AY_ &g, iy @ Sé‘wr—i) = 1, where A indicates the
AND operator, & the XOR operator, ~ the negation and ;)
identifies the i-th bit of & (%) is the least significant bit).

Figure 4. Example of binary tree associated to a domain partition.

Being the path from the root to each leaf known,
55<fri>@5§‘<z,,7i> can be simply evaluated as T, _; if

52‘(@—1) =0 and as Z(,,_; otherwise, for each i. The AND
gates common to different paths can be evaluated only once.
During the tree design, each time a node is added, except for
the root node, two AND gates are added: one having as inputs
the upper path and the negation of the actual bit of £, the other
with the upper path and the actual bit of . To decrease the
total number of gates the first AND gate and the NOT gate
between the input bit and the AND can be merged together
and replaced by a gate with the following truth table

Ist input  2nd input | output
0 0 0
0 1 0
1 0 1
1 1 0

The final circuit implementing the bisection algorithm is
composed by only 2(N — 2) non-XOR gates (an example
is shown in Figure [5| where the circuit implementing the
bisection algorithm depicted in figure [ is shown), signifi-
cantly improving the circuit used in the protocol described
in [23], where segment selection was achieved through N — 1
comparison circuits, and required (N — 1)¢, non-XOR gates.
We point out that such an improvement was possible due to
the use of a bisection algorithm during the construction of the
approximating function.

.. NOT gate
T3 170% <
I ' ’> negated input
§la=2p A
! AND gate %
' -7 E
7(te=3),

thost

significant
mput bl

bits "7 =-»leaf selectors (secret output)
| |
I I I I I I I 1

Figure 5.  Circuit implementing the subset identification associated to the
binary tree of Figure [4]
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Figure 6. Circuit for parameters selection and its optimizations (blue inputs
are public).

2) Parameters selection: The circuit for parameters selec-
tion is entirely composed by XOR gates.

Given the concatenation p; of the approximation parameters
associated to each segment 7, and the output of the associated



leaf [;, and by remembering that if & belongs to the segment
S; only [; = 1, while the outputs associated to the other leaves
are null, the parameters p; of the segment S; can be obtained
as p; = Zf\il l; p;. Considering that only I; p; # 0, the same
result can be obtained by evaluating ©X ,/; p;. Finally we
recall that the to-be-approximated function is public, then the
domain partition and the parameters of the various segments
are not secret, hence the AND between the output of any leaf
1 and a generic bit b of the associated parameters p; can be

expressed as
0
i pipy = { L

When I; p;y = 0, the XOR operation is implemented by
simply propagating the other input (even if XOR gates have
negligible complexity, in this way we further reduce the circuit
complexity). An overall sketch of the circuit for parameters
selection is given in figure Figure [6]

We conclude by stressing out again that non-XOR gates are
not used in the circuit and that less than (N —1)¢, XOR gates
compose the circuit. This marks a significant improvement
with respect to the solution proposed in [23] where N — 1
multiplexers are used, for a total of (/N —1)¢, non-XOR gates.

3) Approximation: During the last step, the approximation
coefficients obtained in the previous phase are used to compute
the approximated value. In the case of constant approximation
no further operation is needed, since the approximation coin-
cides with the parameters obtained in the second step. This is
not the case for linear and polynomial approximations. Let us
assume, then, that a polynomial of degree d is used for the
approximation, and let us indicate the parameters determining
the exact form of the approximating polynomial with p;, while
the secrets relative to & are available since the very beginning
of the protocol.

First of all the difference § between the input & and the
left extreme §§ of the segment S; containing & is computed
by a subtraction circuit composed by ¢, non-XOR gates
[37]. The sign of the output is discarded, since we know
that the difference is always positive. The direct evaluation
of the polynomial 2t =0 |kga; o] + E?:1 2t =i | ka6
(extension of the solution proposed in [23] to polynomial
of degree d) would require d — 1 products with increasing
complexity to compute all the powers of § and then other d
products to multiply them with the corresponding coefficients.
This would require a circuit composed by O(d3¢?) non-
XOR gates. In fact §% is represented by i/, bits, while the
corresponding coefficient by £, 44/, bits, hence their product
needs O(i?¢2) non-XOR gates. Summing the non-XOR gates
of the d products, we obtain a circuit composed by O(d3¢?)
non-XOR gates.

A simpler solution can be obtained by evaluating the ap-
proximating polynomial through a sequence of d blocks, as
shown in Figure [/ In practice the polynomial is evaluated as
Ao+ (A1 + x(As + (... + ©(Ag—1 + xAyg) . ..))), where
A; = 2%t |k;ag,]. By setting vg = |kas 4] and evaluating
d linear expressions

if pipy =0
otherwise.

)

vy = Ag_i + 0v;_1,

(one for each block) with i ranging from 1 to d, where v; is
the output of the i-th block used as input to the next one.

Z vy = [kag,q)
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Figure 7. Full-GC implementation of the approximation part.

In the first product of the series, we compute the product
between vy, represented with ¢, bits, and the corresponding
coefficient, represented with d/, + ¢, bits, hence the product
needs 2(d¢, + ¢,)¢, — (dl, + ¢,) non-XOR gates and returns
a value that is represented with (d+ 1)¢, + ¢, bits. The result
is used in an ADDER together with the scaled coefficient,
whose ¢, least significant bits are 0, hence an ADDER having
(d+1)¢, + ¢, — £, = dl, + ¢, non-XOR gates is used and
its output is represented with (d+ 1)¢, + ¢, bits. In a generic
step 4, the product is composed by 2((d + i — 1), + £,)¢,, —
((d4+i—1)l,+¢,) non-XOR gates, its output is represented by
(d+1)¢,+¢, bits and hence the ADDER should be composed
by (d+1)f, + ¢, non-XOR gates, but considering that the i/,
least significant bits of the parameter a; are null, only df, +£,
non-XOR gates are needed. In total the number of non-XOR
gates composing the circuit computing the approximation is

3d%02 — de2 + 2dl,L, — 1/2d%0, + 1/2d0,, 8)

for a complexity that is reduced to O(d?¢?).

B. Hybrid solution

The second protocol that we developed relies on a hybrid
combination of GC and additively homomorphic encryption.
The rational behind it is that while the first two steps of the
protocol are more easily carried out by resorting to GC, for
the last one the use of HE could be advantageous. In fact,
an HE implementation of the interval detection requires the
encryption of single bits, resulting in a high expansion factor,
and the implementation of boolean gates through more ex-
pensive products and the number of exponentiations between
cyphertexts, while parameter section is evaluated essentially
for free by using GC and hence any HE implementation would
have a higher complexity.



A hybrid approach had already been used in [23]], where the
input Z is used to compute the linear approximation within
all the segments through HE and then the bits obtained by
comparing the input with the left extremes of the intervals
are obfuscated and used to select the correct approximation,
by using an interactive HE protocol. Such a protocol can be
easily extended to a generic polynomial approximation.

Here we propose to use an approach similar to the one
presented in Section we first select the parameters with
negligible complexity and then pass them to the multipliers
rather then computing all the multiplications and then select
the correct one, avoiding N — 1 multiplexers and the trans-
mission of O(N) cyphertexts. Hence, in contrast to [23], we
introduce a new hybrid protocol for which the complexity
of the homomorphic part does not depend on the number of
intervals the domain is partitioned into, but only on the degree
of the polynomial.

To describe the protocol, we assume that for the GC part
Bob acts as the garbler and Alice as the evaluator, while in
the HE part, Alice owns the private key while the public key
is obviously available to Bob as well. We also assume that
Z is available to Alice through a previous computation in the
form of garbled secrets. As we said, the segment S; with &
and the corresponding approximation parameters are obtained
by using GC as detailed in Section and Section
At this point, the parameters |k;a; ;| (in the next we avoid
the round operator) are obfuscated by adding to them a value
rga) randomly generated by Bob.

Similarly to Section we assume that each parameter
k;ag,; is represented with 1+ ¢, ; + i, + |logy(d + 1)] bits,
hence the relative obfuscation value is 1 + ¢, ; + i, + 7 bits
long. The difference § between 4 and 8 is computed by using
a subtraction circuit and the result is also obfuscated by adding
a random number 7 provided by Bob as an additional input of
the GC and represented with ¢, + 7 bits. The difference and
the obfuscated parameters are sent to Alice.

Alice computes all the powers of §+r from 1 to d, encrypts
them and sends the cyphertexts to Bob. Knowing r, Bob can
remove the obfuscation by computing

o1 = [0+7][-r]
[6°] = 10 +)10e)* [r’] )
[6°] = [0 +r)°16* )~ [6] =" [—r°]

To evaluate the polynomial, Bob needs again to interact with
Alice, to compute the product between the powers of § and
the corresponding coefficients. Hence Bob introduces a new
obfuscation rz@ in each power %, i = 2,...,d and sends the
value to Alice. In this way Alice, after decryption, obtains all
the powers of ¢ obfuscated by a value that Bob knows exactly
(Alice already has ¢ obfuscated by rgé) =r).

Alice computes the polynomial by using the obfuscated
powers and parameters obtaining:

k a)\si
Yob = ko (koas 0—|—7’ Z k as7i+7‘§ ))(5 +r(5)) 9)

Table 1
SHORT TERM SECURITY PARAMETERS [38]].

Content Name  Bitsize
Homomorphic security parameter T 1024
Garbled circuit security parameter t 80
Obfuscation parameter for HE to GC conversion T 80

that is equal to the polynomial evaluated in & obfuscated by
the value

A k
OTZ(G)(V + Zl ng)E(kiaS,i + r§“)), (10)

d
k() k
W
where we recall that £ = 26—k,
Alice encrypts ¥y, and all the quantities —%(kias’i + rga))
and sends them to Bob that finally computes under encryption

Hﬂiac asi+ri]
=1 (11)

[9] = y,,bu[[f—ro”u Hua "%

It is important to underline that when d = 1, the first part
of the protocol is not needed, because Bob already knows the
obfuscation affecting the difference, hence the protocol starts
directly with the computation of y,.

In contrast to the full-GC solution, the hybrid protocol
outputs the value amplified by a factor k£ and enriched with
many fractional bits. If it is necessary to represent the final
value with only ¢, bits for further computation, we can resort
to one of the interactive protocols proposed in [14], [L5].

VI. PROTOCOLS COMPARISON

In this section we evaluate the efficiency of the two proto-
cols described so far, by considering both communication and
computational complexity. We also provide the runtime of a
Java implementation of the protocols.

As shown in Section the parameters associated to higher
degree approximations require more bits for their represen-
tation. Hence the use of polynomials with a large degree
is convenient only if it permits to significantly decrease the
number of segments the domain is partitioned into. For this
reason the results strongly depend on the function to be
approximated. Generally speaking, the most efficient solution
must be decided by considering the specific applications and
the available hardware/software. Here, we exemplify the kind
of analysis that the designer should carry out, by considering
the approximation of the function sinc(x) = Sin(2) i the
interval [0, 10).

For sake of simplicity, we assume that ¢, = £, = £, hence
the parameters influencing the complexity are the bitlength
¢, the polynomial degree d and the number of segments N
used to partition the function domain. In addition, we must
consider the security parameters involved in the protocols and
summarized in Table [

First of all we investigate the effect that the polynomial
degree has on the number of segments of the partition. Given
the bitlength ¢, the function is first scaled and translated to
fit the domain [0, 2¢) and the codomain [0,2%). We report in



Table 1T
NUMBER OF SEGMENTS REQUIRED TO APPROXIMATE sinc(x) AS A
FUNCTION OF THE BITLENGTH £ AND THE APPROXIMATION ERROR €
(MISSING VALUES INDICATE THAT THE GIVEN ERROR CANNOT BE
REACHED WITH THE GIVEN BITLENGTH).

(a) Constant approximation

l\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 13 28 92 127

12 15 33 171 313 1158 1998
16 15 33 182 361 1724 3408
20 15 35 184 365 1743 3482

(b) Linear approximation

l\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 8 17 36 49

12 7 17 38 53 124 214
16 7 17 38 53 120 166
20 7 17 38 53 119 162

(c) Quadratic approximation

l\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 5 9 16 22

12 5 10 17 21 35 66
16 6 10 17 21 35 43
20 9 10 17 21 35 42

(c) Cubic approximation

l\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 5 7 16 23

12 5 7 16 21 34 52
16 5 7 16 21 35 37
20 5 10 16 21 35 37

Table [[I| the number of segments obtained by using constant,
linear, quadratic and cubic approximation as a function of the
bitlength ¢ and the target approximation error € (computed as
error/ max (y)). We can easily observe that by using a cubic
approximation (or even higher degrees) the number of seg-
ments continues to decrease, but no significant improvements
are obtained, hence the cubic solution will not be considered
any further. Given the number of segments, we can evaluate the
communication complexity, the computational complexity and
the runtime for the three kinds of approximations. We remind
that with regard to the piecewise constant approximation, the
parameters provided by the first two steps of the protocol
implemented entirely by mens of GC already represent the
approximation we look for without the need of any further
computation. For this reason, the use of a Hybrid protocol for
the piecewise constant approximation is not necessary.

For sake of brevity continuous approximations are not
considered, however we underline that their complexities are
similar to those of the corresponding non continuous approx-
imations.

A. Communication complexity

For the GC part we use precomputation only for the oblivi-
ous transfers, so that an OT21 used to associate a t-bit secret to
an input bit provided by Alice requires the online transmission
of ~ 2t bits, while the transmission of the secrets associated
to the input bits of Bob requires ¢ bits and for each non-XOR
gate 3t bits are transferred, while no communication is needed
for the XOR gates. If circuit transmission is precomputed,
as in the case of two parties knowing in advance that they

Table III
COMMUNICATION COMPLEXITY OF THE ONLINE PHASE (IN BYTES) OF
THE FULL-GC APPROXIMATION PROTOCOL APPLIED TO sinc(x) AS A
FUNCTION OF £ AND € (MISSING VALUES MEAN THAT THE GIVEN ERROR
CANNOT BE REACHED WITH THE GIVEN BITLENGTH).

(a) Constant approximation

l\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 660 1560 5400 7500
12 780 1860 10140 18660 69360 119760
16 780 1860 10800 21540 103320 204360
20 780 1980 10920 21780 104460 208800
(b) Linear approximation
l\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 4320 3180 3870 4650
12 9180 7140 7710 8610 11790 17190
16 16020 13020 13350 14250 16710 19470
20 24780 20820 20910 21810 23730 26310
(c) Quadratic approximation
f\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 16620 22740 9000 9720
12 39180 39420 22560 23160 19920 18120
16 71400 71640 47520 48120 42240 43140
20 91320 91500 82080 82680 74400 75240

have to evaluate together a given function, the communication
complexity is reduced to only the online transmission of the
~ 2t bits relative to Alice’s input.

1) Full-GC solution: By assuming that the secrets asso-
ciated to Z are already available, the protocol requires only
the transmission of the gates composing the circuit in one
communication round. As already shown in Section
2(N — 2) non-XOR gates are used in the first sub-circuit
and O in the second sub-circuit, while the complexity of
the third part depends on the polynomial degree, for which
the estimated number of gates is given by equation (8).
Increasing the polynomial degree decreases the number of
segments, and hence the number of non-XOR gates in the
first part of the circuit, especially when passing from constant
to linear approximation with high ¢ and small e. On the
other side, the number of non-XOR gates of the third part is
O(d%¢?) and hence its complexity increases. Table [Il| shows
the communication complexity of the full-GC protocol in bytes
according to the results shown in Table[[l, where the parameter
bitlengths have been set according to the analysis carried out
in Section

As it can be seen from the tables, constant approximation
is preferable to linear approximation for small bitlengths
with large representation error. Quadratic approximation has
always a communication complexity larger than the linear
approximation and the results worsen with higher polynomial
degrees. It is important to underline that the complexity
depends more on the bitlength than on the precision. In fact,
a smaller approximation error results in a smaller interval for
each segment and hence the number of bits representing the
parameters decreases, thus reducing the complexity of the third
circuit as well.

2) Hybrid solution: The hybrid protocol requires 4 com-
munication rounds. In the first one, the garbled circuit is
transmitted, together with the secrets of the random values
that are used to obfuscate the circuit outputs. As shown



Table IV
COMMUNICATION COMPLEXITY OF THE ONLINE PHASE (IN BYTES) OF
THE HYBRID APPROXIMATION PROTOCOL APPLIED TO sinc(z) AS A
FUNCTION OF £ AND € (MISSING VALUES MEAN THAT THE GIVEN ERROR
CANNOT BE REACHED WITH THE GIVEN BITLENGTH).

(a) Linear approximation [2 rounds]

l\e 0.1 0.05 0.01 0.005 0.001  0.0005
8 11898 12218 13288 14068

12 12438 12818 14008 14908 19058 24458
16 13038 13418 14608 15508 19418 22178
20 13638 14018 15208 16108 19958 22538

(b) Quadratic approximation [4 rounds]

l\e 0.1 0.05 0.01 0.005 0.001  0.0005
8 16666 17346 17256 17976

12 17626 17986 18136 18736 19966 22036
16 18686 18966 19056 19656 20646 21546
20 19306 19526 19976 20576 21566 22406

Table V

BEST PROTOCOL FOR EACH CONFIGURATION, ACCORDING TO
COMMUNICATION COMPLEXITY ANALYSIS (SOLUTION-DEGREE).

(a) Constant approximation

T\e 01 005 001 0005 0001 00005
8 GC0 GCO0 GCI1  GCI

12 GC-0 GCO0 GC-1  GC-1  GC-1  GC-1
16 GC-0 GC-0 GC-0 GC-1 GC-1  GC-1
20 GC-0 GC-0 GC-0 Hyb-1 Hyb-1 Hyb-2

in Section the circuit transmitted in the first round
is composed by the 2(n — 2) non-XOR gates composing
the tree, the ¢, non-XOR gates of the subtraction circuit,
£, + 7 bits for the adder used to obfuscate the difference and
lyi + ily, + |logy(d + 1)) + 7 ~ (i + 1) + 7 non-XOR
gates for the obfuscation of each parameter k;a; Vi =0...d.
In the second round d cyphertexts, containing the powers of
the obfuscated difference between the input value and the left
extreme of the segment are transmitted, while in the third
round d — 1 cyphertexts, containing the obfuscated powers,
are sent back. Finally, in the fourth round, one cyphertext, the
obfuscated approximation, and the d cyphertexts encrypting
the obfuscated parameters are sent to Bob. When d = 1,
the second and third rounds are discarded and the cyphertext
containing d +r is transmitted during the last round. The com-
munication complexity of the linear and quadratic solutions are
shown in Table Table [V] shows the best choice for each
set of parameters, according to the communication complexity.
In general, the full-GC solution is preferable, but for a large
number of bits and high precision the hybrid protocol requires
to transmit less data. It is interesting to observe that in a case
(¢ = 20 and e = 0.0005) the hybrid quadratic approximation
protocol provides slightly sbetter results than the others.

At least for the example discussed in this paper, if the circuit
can be transmitted offline, hybrid solutions are in general not
advantageous, and the choice among the different full-GC
solutions depends only on computational complexity.

B. Computational complexity

As shown in Section the computational complexity
depends on the number of Hash functions for the GC part of
the protocols and the number of exponentiations for the HE

Table VI
AVERAGE COMPUTATIONAL COMPLEXITY OF THE ONLINE PHASE
EXPRESSED AS NUMBER OF HASH FUNCTIONS (ROUNDED TO THE
CLOSEST INTEGER) COMPUTED BY ALICE AND BOB IN THE FULL-GC
APPROXIMATION PROTOCOL APPLIED TO sinc(x). THE COMPLEXITY IS
EXPRESSED AS A FUNCTION OF £ AND € (MISSING VALUES MEAN THAT
THE GIVEN ERROR CANNOT BE REACHED WITH THE GIVEN BITLENGTH).

(a) Constant approximation

O\e 0.1 0.05 0.01 0.005  0.001  0.0005
8 83 195 675 938
12 98 233 1268 2333 8670 14970
16 98 233 1350 2693 12915 25545
20 98 248 1365 2723 13058 26100
(b) Linear approximation
l\e 0.1 0.05 0.01  0.005 0.001 0.0005
8 540 398 484 581
12 1148 893 964 1076 1474 2149
16 2003 1628 1669 1781 2089 2434
20 3098 2603 2614 2726 2966 3289
(c) Quadratic approximation
\e 0.1 0.05 0.01 0.005  0.001  0.0005
8 2078 2843 1125 1215
12 4898 4928 2820 2895 2490 2265
16 8925 8955 5940 6015 5280 5393
20 11415 11438 10260 10335 9300 9405

part, while the XOR between secrets and products between
cyphertexts have a negligible complexity. We consider that
garbling is performed online, otherwise the complexity is
reduced only to the online evaluation of the circuit (performed
by Alice).

1) Full-GC solution: As already said, the interval detection
circuit consists of 2(IN —2) non-XOR gates, while the number
of non-XOR gates composing the interpolation circuit is given
by equation (8). Table shows the total computational
complexity of the full-GC solution when constant, linear or
quadratic approximation is used. As for the communication
complexity, the constant approximation is preferable to the
linear approximation for small bit-lengths and large represen-
tation errors, while the quadratic approximation exhibits the
worst performance.

2) Hybrid solution: The GC part takes care to detect the
correct interval through the selection binary tree, retrieve the
parameters, compute the difference between & and the left ex-
treme of the segment and finally obfuscate the parameters and
the difference. In total 3(2 ~ (N —2)+0+3 " [(i4+1)ly+7))
hash functions are evaluated by Bob and one quarter of them,
on the average, by Alice. After receiving the obfuscated values,
Alice encrypts the powers of the difference (d exponentia-
tions), Bob removes the obfuscation (d(dQ_ ) exponentiations),
then Alice performs d — 1 decryptions (d — 1 exponentiations),
encrypts the parameters (d+1 exponentiations) and finally Bob
removes the obfuscation affecting the approximation value
with 2d exponentiations. In the linear implementation, the
@ exponentiations required to remove the obfuscation
from the powers and the following d — 1 decryptions are not
needed. Table [VII| shows the complexity of the hybrid protocol
when linear and quadratic approximations are used. We can
observe that many non-XOR gates are usually replaced by a
fixed number of exponentiations. In some cases, especially




Table VII
AVERAGE COMPUTATIONAL COMPLEXITY OF THE ONLINE PHASE EXPRESSED AS NUMBER OF HASHES (H) AND EXPONENTIATIONS (F£) (ROUNDED TO
THE CLOSEST INTEGER) FOR BOTH ALICE AND BOB IN THE HYBRID APPROXIMATION PROTOCOL APPLIED TO sinc(z). COMPLEXITY IS EXPRESSED AS A
FUNCTION OF £ AND € (MISSING VALUES MEAN THAT THE GIVEN ERROR CANNOT BE REACHED WITH THE GIVEN BITLENGTH).

(a) Linear approximation

O\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 1061H+5E 1106 H+5E 1241H+5FE 1339H+5E
12 1114H+5E 1166 H+5E 1316 H+5E 1429H+5E 1950H+5E 2625H+5E
16 1174H+5E 1226 H+5E 1376 H+5E 1489H+5E 1980H+5E 2325H+5E
20 1234H+5E 1286 H+5E 1436 H+5E 1549H+5E 2033H+5E 2355H+5E
(b) Quadratic approximation
L\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 1433H+11E  1504H+11E  1519H+11E  1609H+11E
12 1526H+11E  1568H+11E  1609H+11E  1684H+11E  1845H+11E 2111H+11E
16 1631H+11E  1665H+11E  1699H+11E 1774H+11E  1905H+11E  2018H+I11E
20 1699H+11E  1725H+11E  1789H+11E  1864H+11E  1995H+11E  2100H+11E
Table VIII

with small ¢, the GC part of the hybrid protocol needs
more Hashes than the corresponding full-GC solution, because
obfuscation needs many bits.

Comparing the full-GC and hybrid solutions from a com-
putational point of view is problematic, since this requires
to compare the complexity of Hash functions and exponen-
tiations, which ultimately depends on the architecture of the
platform used to implement the protocols. In the next section,
we move one step in this direction by comparing the runtime
of two specific implementations of the protocols.

C. Runtimes

We measured the runtimes required by Java implemen-
tations of the protocols on a desktop PC having an AMD
Phenom II X4 p40 processor at 3.00 GHz and 6.00 GB of
RAM. The results are reported in Table According to
such a table, GC solutions are preferable to Hybrid ones.
However all the tests have been performed by running both the
evaluator and the garbler in the same PC, so that the runtimes
are more related to computational complexity rather than to
communication time. Table shows the preferable solution
for various bitlength-precision setups.

VII. CONCLUSION

Given a function f() and an interval belonging to its
domain, we considered the problem of approximating f() by
means of a piecewise polynomial function f() in a STPC
setting. Constant, linear and quadratic approximations have
been considered. Regardless of the polynomial degree (except
for the constant approximation), two possible protocols have
been proposed. The first one relies completely on Garbled
Circuit theory, while the other adopyts a hybrid solution where
GC and Homomorphic Encryption are used together.

The main advantage of the full-GC implementation is the
use of only one cryptographic primitive. If the function f()
is part of a protocol, where the previous and subsequent
functionalities are also implemented by using GC’s, the in-
tegration of the sub-protocols that approximate f() would
be very easy. The evaluation of the piecewise approximation
is the heaviest part of the GC protocol and its complexity
significantly increases with the degree of the polynomial. The

AVERAGE GARBLER/EVALUATOR ONLINE RUNTIMES (MILLISEC)

(a) Full-GC Constant approximation

O\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 0.6/0.3 1.0/0.4  26/1.2  3.6/1.7
12 0.5/0.3 09/04 4.6/2.2 65/7.6 96/37 121/64
16 0.5/02  1.0/04 4.8/2.2 87/10 131/57  180/107
20 0.7/0.2  1.1/04  5.8/2.8 99/10 145/59  200/113
(b) Full-GC Linear approximation
l\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 2.4/1.1 1.9/0.8  2.0/09 24/1.0
12 5223 42721 42/19 4.6/2.1 52/3.0 56/6.3
16 72/6.3 67/4.5 70/4.3 70/4.7 72/5.9 74/8.3
20 93/12 95/10 90/10.0  92/9.7 95/12 92/12
(c) Full-GC Quadratic approximation
O\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 31/2.9 30/2.9 34/1.5  3.6/14
12 52/11 53/11 48/5.8 47/5.8 49/4.7 48/4.4
16 81/23 82/23 77/16 76/15 71/13 75/14
20 107/31 108/31 102/28 103/28  100/26 99/25
(d) Hybrid Linear approximation
l\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 486/310  479/306  500/323  496/322
12 516/321 511/318 520/327 517/328 520/327 526/327
16 536/327 541/327 536/324 533/321 542/329 541/330
20 554/325 553/319 553/321 553/328 557/332 561/328
(e) Hybrid Quadratic approximation
l\e 0.1 0.05 0.01 0.005 0.001 0.0005
8 1155/642 1161/644 1169/645 1163/644
12 1187/643 1187/659 1195/655 1192/660 1182/648 1176/645
16 1197/650 1189/644 1182/639 1194/645 1197/651 1198/653
20 1226/660 1226/656 1227/660 1205/643 1219/650 1223/643
Table IX
BEST PROTOCOL FOR EACH CONFIGURATION (PROTOCOL - POLYNOMIAL
DEGREE).
(a) Constant approximation
l\e 0.1 0.05 0.01  0.005 0.001 0.0005
8 GC-0 GC-0 GC-1 GC-1
12 GC-0 GC-0 GC-1 GC-1 GC2 GC-2
16 GC-0 GC0 GCO GC-1 GC-1 GC-1
20 GC-0 GC-0 GC-0 GC-1 GC-1 GC-1

hybrid solution permits to evaluate the final part by using HE,
reducing the complexity when polynomial with high degrees



are used.

Communication and computational complexity have been
estimated for a sample function. Runtimes have been mea-
sured as well. Observing runtimes, the full-GC solutions are
preferable to Hybrid solutions and we highlight that generally
a function approximation can be run in less than 100 msec.
Anyway, from a communication point of view, with high
bitlengths and high precision, hybrid solutions are preferable
to full-GC solutions, becoming more efficient in scenarios
with low bandwidth or when the result is used following HE-
based STPC protocols. Constant or linear approximation can
be generally used, while we rarely observed an improvement
from the use of quadratic approximation, making the use of
higher polynomial degrees unpractical.

Thanks to function approximation, many secure protocols
can be optimized or even implemented for the first time. This
is the case, for instance, of neural networks with smoother ac-
tivation functions. Moreover a future extension to multivariate
functions can be used to approximate an entire secure protocol
performing a computation on several inputs made available by
different parties.
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