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Abstract. The Internet is rapidly evolving from a network of personal
computers and servers to a network of smart objects (“things”) able to
communicate with each other and with central resources. This evolution
has created a demand for lightweight implementations of cryptographic
algorithms suitable for resource-constrained devices such as RFID tags
and wireless sensor nodes. In this paper we describe a highly optimized
software implementation of Elliptic Curve Cryptography (ECC) for the
MSP430 series of ultra-low-power 16-bit microcontrollers. Our software
is scalable in the sense that it supports prime fields and elliptic curves
of different order without recompilation, which allows for flexible trade-
offs between execution time (i.e. energy consumption) and security. The
low-level modular arithmetic is optimized for pseudo-Mersenne primes
of the form p = 2" — ¢ where n is a multiple of 16 minus 1 and c fits in
a 16-bit register. All prime-field arithmetic functions are parameterized
with respect to the length of operands (i.e. the number of 16-bit words
they consist of) and written in Assembly language, whereby we avoided
conditional jumps and branches that could leak information about the
secret key. Our ECC implementation can perform scalar multiplication
on two types of elliptic curves, namely Montgomery curves and twisted
Edwards curves. A full scalar multiplication using a Montgomery curve
over a 159-bit field requires about 3.86 - 10° clock cycles when executed
on an MSP430F1611 microcontroller.

Keywords: Internet of things, lightweight cryptography, Montgomery
curve, twisted Edwards curve, multi-precision arithmetic.

1 Introduction

More and more non-traditional computing devices, ranging from various kinds
of sensors and actuators over consumer electronics and household appliances to
smart vehicles and related road-side infrastructure, get equipped with wireless
transceivers, which allows them to communicate with each other or connect to
the Internet. According to a whitepaper by Cisco, the number of smart objects
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(or “things”) connected to the Internet started to exceed the number of people
with Internet access at some time between 2008 and 2009 [7]. Consequently, the
so-called Internet of Things (IoT) has become reality some seven years ago. In
the same whitepaper, Cisco estimates that the IoT will encompass no less than
50 billion “things” by the year 2020, which corresponds to some 6.58 connected
devices per person. However, since this is an average figure, it can be assumed
that, in the developed world, every person will soon be surrounded by dozens
of smart devices capable to interact with each other in an entirely autonomous
fashion. The IoT is expected to have a profound impact on every sector of the
economy, ranging from agriculture to high tech, and touch our daily lives to a
much larger extent than the Internet did in the past 20 years [16]. At the same
time, it is also clear that 50 billion smart devices connected to the Internet pose
unprecedented challenges to the security and privacy of their owners or users.

Similar to the “traditional” Internet (i.e. the Internet connecting commod-
ity computers and servers), public-key cryptography plays a crucial role in the
security arena of the IoT. In the recent past, a number of lightweight variants
of common security protocols have been proposed (e.g. Datagram TLS [29] and
HIP Diet Exchange [25]), taking the very specific requirements and constraints
of the IoT into account [13]. These protocols support the use of Elliptic Curve
Cryptography (ECC) [12] as a less-costly alternative to RSA [30] for such tasks
as authentication and key establishment. However, even though ECC features
a much better security-per-bit ratio than RSA, it is still computation intensive
and, therefore, poses a massive burden for resource-constrained IoT devices. In
fact, a large number of the smart objects that populate the IoT only feature an
8 or 16-bit processor clocked with a frequency of a few MHz [31]. A well-known
example for a 16-bit platform targeted towards IoT applications is the MSP430
family of ultra-low power microcontrollers from Texas Instruments [5]. Besides
modest processing power, [oT devices often possess only a few kB of RAM and
(at most) a few 100 kB of Flash memory. However, for battery-powered devices
such as wireless sensor nodes, energy is by far the most precious resource. Once
deployed in the field, a sensor node is expected to run several months, or even
years, without any maintenance and replacement, which means it must survive
for long periods of time on a single battery charge.

Past research on improving the energy efficiency of ECC software focussed
primarily on reducing the execution time of scalar multiplication, which is the
main arithmetic operation of virtually all elliptic curve cryptosystems [12]. The
energy consumption of (cryptographic) software on an embedded processor is
closely tied to its execution time in the sense that a faster execution of a given
algorithm normally translates to savings in energy [33, Sect. 6.3]. Possibilities
for reducing the execution time of a scalar multiplication exist at both the field
and the curve arithmetic layer, respectively. Related to the former are various
approaches to speed up multiple-precision arithmetic on the MSP430 platform
[9,22,27,32,37]. Recently, Diill et al [6] reported impressive new speed records
for multiplication (and squaring) modulo a 255-bit prime, which they achieved
through an elaborate implementation of Karatsuba’s technique [17] combined
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Table 1. Classes of constrained devices (source: RFC 7228 [4])

’ Name H Data size (e.g. RAM) ‘ Code size (e.g. Flash) ‘
Class 0, CO < 10 kB < 100 kB
Class 1, C1 ~ 10 kB ~ 100 kB
Class 2, C2 50 kB 250 kB

with sophisticated Assembly optimizations. In a second line of research, the im-
pact of alternative curve models, such as Montgomery [24] or twisted Edwards
curves [3], has been studied for both high [6] and low to medium security levels
[20]. The Montgomery model currently holds the speed record for variable-base
scalar multiplication on MSP430 processors, while the twisted Edwards model
achieves record-setting performance for fixed-base scalar multiplication. Due to
their excellent performance characteristics, Montgomery and twisted Edwards
curves also occupy the top spots in terms of energy efficiency.

Besides minimizing execution time, there exists a second avenue to reduce
the overall energy consumption of ECC operations performed in an IoT device
(e.g. a wireless sensor node), namely to deploy energy-scalable ECC software. In
cryptographic engineering, the term scalability generally refers to the ability to
process operands (including keys) of any length without introducing the need
to re-design or re-implement a cryptosystem. More concretely, ECC software is
said to be energy-scalable if it can perform scalar multiplication in elliptic-curve
groups of varying order (i.e. varying cryptographic strength) without having to
re-write and/or re-compile the source code [21]. Energy-scalable ECC software
allows for flexible and dynamic (i.e. run-time adaptable) trade-offs between se-
curity and energy consumption, whereby the execution time (and thus also the
energy cost) of a scalar multiplication increases with the cube of the group size
in bits. The real-world benefit of energy-scalable cryptographic software in the
context of the IoT is probably best explained by taking a Wireless Sensor Net-
work (WSN) [28] as example. A WSN may utilize ECC for such tasks as access
control [38], key exchange [20, 21], or broadcast/multicast authentication [8], to
list a few. While all these tasks are security critical, their actual requirements
with respect to the hardness of the Elliptic Curve Discrete Logarithm Problem
(ECDLP) differ greatly, as we will explain in the following section. A scalable
ECC implementation allows one to use smaller groups for less security-critical
tasks, thereby saving precious energy. In contrast, ECC software that supports
just a single curve falls short in terms of either security or energy efficiency.

Besides energy, also RAM and non-volatile memory (i.e. ROM or Flash) are
scarce resources on MSP430-based sensor nodes and other IoT devices. This is
little surprising since MSP430 microcontrollers have a common address space
of 16 bits for RAM and Flash, which means the addressable memory space is
only 64 kB (i.e. 216 bytes) [36, Sect. 1.4]. The IETF distinguishes among three
classes of constrained devices on basis of their memory capacity as specified in
Table 1. Class 0 devices are so restricted in memory and processing capabilities
that, according to [4], “most likely they will not have the resources required to
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communicate directly with the Internet in a secure manner.” A typical example
of a Class 0 device is the WISP 4.1DL, a software-programmable passive RFID
tag equipped with an MSP430F2132 microcontroller that features 512 B RAM
and 8 kB Flash memory [34, p. 121]. Most wireless sensor nodes fall into Class
1; for example, the TelosB [23] contains an MSP430F1611 microcontroller and
provides 10 kB RAM as well as 48 kB Flash. Even though the TelosB is able to
store six times more program code than the WISP RFID tag, it must be taken
into account that a sensor-node operating system alone may, depending on the
configuration, use up half of the TelosB’s Flash memory [11]. In addition, since
these operating systems do not support any security services other than simple
link-layer encryption, application developers have to include auxiliary libraries
for security protocols (e.g. Datagram TLS [29]) and the required cryptographic
primitives, which significantly increases the total code size. Therefore, it can be
expected that, in real-world application scenarios, only a small fraction of the
TelosB’s Flash capacity of 48 kB will actually be available for ECC.

In this paper, we introduce an energy-scalable ECC implementation for the
16-bit MSP430 platform that supports both Montgomery and twisted Edwards
curves over pseudo-Mersenne prime fields. More precisely, our ECC software is
able to carry out variable-base scalar multiplication on Montgomery curves and
fixed-base scalar multiplication on twisted Edwards curves. The low-level field
arithmetic is optimized for primes of the form p = 2 — ¢ where n is a multiple
of 16 minus 1 (e.g. n = 159,191,223, 255) and ¢ has a length of at most 15 bits
so that it fits into a single register of an MSP430 processor. All functions of the
Fp-arithmetic library are parameterized by a “length” parameter, which means
they take an argument that specifies the number of 16-bit words the operands
(resp. result) consist of. In this way, one and the same arithmetic function can
be used for pseudo-Mersenne prime fields of different order (e.g. ranging from
159 to 255 bits) without having to re-compile the source code. Contrary to the
majority of previous work (e.g. [6,14, 20]), we aimed for a compromise between
performance and code size rather than optimizing solely for speed. In particu-
lar, we strived for an implementation that is small enough to fit into the code
space of Class 0 and Class 1 devices as listed in Table 1 [4]. Achieving a good
trade-off between speed and size is a highly challenging task since the common
measures to improve performance (e.g. loop unrolling, storage of pre-computed
curve points) have a negative impact on ROM/Flash consumption.

In order to reach high performance, we implemented all low-level operations
supported by our F,-arithmetic library in Assembly language, but we refrained
from adopting code-size increasing optimizations such as loop unrolling. When
classifying ECC software along an axis between speed and size, our implemen-
tation is close to the far end towards size because we sacrificed speed for small
code size, while most previous implementations sacrificed code size to achieve
high speed. The whole F,-arithmetic library we describe in this paper occupies
just some 2.3 kB in Flash memory, which makes our implementation one of the
most compact ever reported in the literature. To put this into perspective, the
fully-unrolled implementation of multiplication in a 255-bit prime field recently
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introduced by Diill et al [6] has a size of roughly 3.6 kB when compiled for an
MSP430 processor, i.e. their multiplication function alone consumes 56% more
code space than our complete Fp-arithmetic library. We also made an effort to
protect the library against timing attacks [18] by implementing all arithmetic
operations, except inversion, in a “regular” fashion so that they always execute
exactly the same sequence of instructions. Hence, the execution time depends
solely on the length of the involved operands (i.e. the number of 16-bit words
they consist of), but not on their actual values. We implemented the inversion
via the extended Euclidean algorithm, which has operand-dependent execution
time. However, as we will show in this paper, timings attacks on the inversion
can be can be effectively thwarted through multiplicative masking. We provide
a detailed execution time analysis of various of field-arithmetic operations and
scalar multiplication algorithms on an MSP430F1611 processor [36] for Mont-
gomery and twisted Edwards curves over 159, 191, 223 and 255-bit fields.

2 WSN Security: Confidentiality Versus Integrity

A WSN can be defined as a wireless network of autonomous sensor nodes (also
called motes [23]) that are spatially distributed in a certain area of interest to
cooperatively monitor a certain physical phenomenon or condition like temper-
ature, humidity, light, smoke, vibrations, etc. [28]. In recent years, WSNs have
found widespread adoption in a multitude of application domains ranging from
medical monitoring over home automation and traffic control to environmental
surveillance. A typical sensor node is an inexpensive, battery-operated device
equipped with an 8 or 16-bit microcontroller and has limited memory resources
[23]. The way in which the nodes collect, process and transfer sensor readings
depends on various factors such as the size, topology, and organization of the
WSN. In the simplest case, each node sends its sensor readings directly to the
Base Station (BS) or some other data collector for post-processing and decision
making. However, this approach wastes precious energy for data transfers since
the senor readings of neighboring nodes are typically very similar and, hence, a
lot of redundant data gets sent to the BS. In a large-scale WSN, the nodes are
often organized in clusters, in which some pre-processing of sensor data, called
data aggregation [28], is performed to filter out redundant or correlated data
with the goal of reducing network traffic. Data transmission in a large WSN is
usually multi-hop in the sense that the nodes cooperatively receive and forward
(i.e. relay) packets from the source towards the destination.

WSNs differ greatly from traditional networks regarding threat models and
assumptions about the attacker’s capabilities [28]. Traditional research in net-
work security was always conducted under the assumption that the endpoints
of a communication channel are secure. On the other hand, this is not the case
in WSN security research since the attacker is assumed to have physical access
to the sensor nodes, which allows him to manipulate or even capture a certain
number of nodes. After capturing a node, the attacker will be able to obtain all
data stored on it (including cryptographic keys) because wireless sensor nodes
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are not tamper resistant due to cost reasons. The attacker may even manage to
re-program a captured node and integrate it back into the WSN, where it then
can conduct all kinds of malicious activities. In contrast to ordinary nodes, the
BS possesses plenty of resources and is out of reach from physical attacks.

There exists a massive body of literature with proposals on how ECC could
contribute to improve the security of WSNs [1, 21, 38]. The “big picture” of an
ECC-enabled WSN can be sketched as follows. Prior to deployment, each node
gets equipped with a key pair suitable for ECDH key agreement, whereby the
public key along with the node’s network address is signed by a trusted third
party, which is called Central Authority (CA) in [1]. In practice, this signature
can have the form of a lightweight certificate that contains an expiration date
and other relevant information. Besides the key pair and certificate, each node
is also loaded with the public key corresponding to the trusted party’s private
signing key, which allows the node to check the validity of a certificate. During
the initial configuration (i.e. bootstrapping) of the WSN, each node exchanges
certificates with its neighbors within communication distance and then verifies
the validity of all received certificates with help of the public key of the trusted
party. The nodes establish secret keys with all neighbors that are in possession
of a valid certificate using static ECDH key exchange (ephemeral ECDH would
also be possible, but is slightly more complicated). Now, neighboring nodes can
form a cluster, select a cluster head, and carry out various other initialization
activities. From time to time, e.g. when a node runs out of battery, a new node
needs to be integrated into the WSN. The cluster head verifies the certificate
of the new node and sends the node’s network address to the BS so that it can
update routing tables and perform other management tasks.

In the ECC-based security architecture for WSNs sketched above, ECDH is
used for key agreement between neighboring nodes and ECDSA for signatures
(e.g. certificates). These two cryptosystems have greatly different requirements
regarding their “strength” (i.e. the hardness of the ECDLP), which also reflects
the damage an adversary can cause when breaking them. For example, when an
attacker manages to obtain the private ECDH key of a node, he may be able to
decrypt the messages sent between this node and its neighbors. For many real-
world applications, such a confidentiality breach in a small part of the WSN is
a non-critical issue (as mentioned in e.g. [35]) since, despite this data leak, the
proper functioning of the WSN is not impacted. On the other hand, when the
attacker manages to get hold of the trusted party’s signing key, he is able forge
signatures and certificates, which will allow him to inject malicious nodes into
the WSN. Such malicious nodes can, for example, manipulate messages on the
way from source to destination or completely drop packets. The consequences
of such an integrity breach can be disastrous and may, in the words case, make
the whole WSN useless [28]. Therefore, long-term signature keys used for node
authentication deserve a higher level of security than e.g. ECDH keys used to
establish shared secrets between nodes. It is, of course, possible to do both the
node authentication and key exchange with a high-security elliptic curve, but in
such a setting the key exchange is “over-secured,” which wastes energy.
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3 Prime-Field Arithmetic

The performance of virtually any ECC implementation depends heavily on the
execution time of certain arithmetic operations (in particular multiplication) in
the underlying finite field. When implementing ECC in software, it is common
practice to use curves defined over some special prime fields that facilitate the
modular reduction operation [12]. A well-known example for primes with good
arithmetic properties are the so-called pseudo-Mersenne primes [12], which are
primes of the form of p = 2™ £ ¢ where ¢ is relatively small (to fit into a single
register of the target processor) and n is chosen such that p meets the desired
bitlength. When taking advantage of the congruence relation 2" = ¢ mod p, the
reduction of a 2n-bit integer modulo p = 2™ — ¢ has linear complexity, i.e. the
execution time of the reduction operation increases linearly with n [12].

The NIST and numerous other standards bodies recommend elliptic curves
over prime fields whose bitlengths are multiples of 32, e.g. 192, 224, or 256 bits
[12]. However, as demonstrated by Bernstein in [2], it can be more beneficial to
use primes that are slightly shorter than the standard bitlengths (e.g. 255 bits
instead of 256), especially if one aims for both high speed and a regular execu-
tion profile to counter timing attacks. Having one bit of “slack space” permits
some special software optimization techniques that are not applicable when the
bitlength is exactly a multiple of the processor’s word size. The elliptic curves
we used to benchmark our implementation follow this approach since they are
defined over fields given by primes of the form p = 2" — ¢ where n is a multiple
of 32 minus 1 (e.g. n = 159 or 191) and c is up to eight bits long. However, the
parameterized [Fp-arithmetic library for MSP430 processors we describe in this
section is flexible enough to support any n that is a multiple of 16 minus 1 and
any c that is in the range of [1,2'5 — 1].

We use the following notation to describe the arithmetic functions: n is the
bitlength of the prime p = 2" — ¢; this implies that any element a € F, is also
n bits long. When working on a w-bit processor, a field element can be stored
in an array of m = [n/w] words, each consisting of w bits. In our case, w = 16
since the target platform is an MSP430 processor. We use lowercase letters to
denote field elements and indexed lowercase letters to refer to individual words
of a field element. Consequently, a € I, can be written as an array of the form
(@m—1,--.,a1,a9) where a,,_1 is the Most Significant Word (MSW) and ag the
Least Significant Word (LSW). All arithmetic functions of our library are able
to process incompletely-reduced operands, which means that an operand does
not necessarily need to be the least non-negative residue modulo p, but has to
fit into m words and can, therefore, be up to n + 1 bits long. Also the results
produced by our functions for IFp-arithmetic may not be fully reduced.

3.1 Modular Addition and Subtraction

The straightforward way to perform a modular addition r = a 4+ b mod p is to
first calculate the sum s = a + b and then subtract a multiple of p from it to
obtain a final result that fits into m words. Since each of the operands can be
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n + 1 bits long, the subtrahend is either 0, p, 2p, or 3p [20]. However, instead
of subtracting a multiple of p, it is, in general, more efficient to add a multiple
of ¢, which is possible since 2" = ¢ mod p. An MSP430 implementation of this
approach for modular addition with fully-unrolled loops and regular execution
profile is described in [20, Sect. 3.1]. The main drawback of such an “add-then-
subtract” technique is that it consists of two loops, each introducing overhead
if they are not unrolled. Due to the simplicity of these loops, the loop overhead
(i.e. updating of a loop counter, checking of a loop-termination condition, and
jumping back to the start) can significantly impact the overall performance.

Since we aim for small code size (and, therefore, avoid loop unrolling), it is
very important to minimize the loop overhead. An obvious way to achieve this
is to employ a modular addition technique that requires only a single loop, like
the one described by Diill et al in [6, Sect. 4.4]. Our implementation is based
on their approach and performs an addition in IF,, as follows. First, we add the
MSWs of a and b, i.e. we compute the sum s = a,,_1 + b,,_1, which can be up
to 17 bits long when the operands are incompletely reduced. This sum is then
split up into a lower part s; consisting of the 15 least-significant bits, and an
upper part sy with the remaining two bits. We temporarily store sy, in a reg-
ister and multiply sy by c. Thereafter, the m — 1 remaining words of the two
operands are added (with carry propagation), starting with the LSWs ag and
bog. The main difference to a “conventional” multi-precision addition is that the
product of sy and c is added to the two LSWs and, therefore, the carry to be
propagated to the next-higher word can be 0, 1, or 2. Finally, the carry from the
last addition (i.e. the addition of the words a,,—2 and b,,_2) is propagated into
s, which is then at most 16 bits long. The final result has a length of no more
than n + 1 bits (i.e. fits into m words), but may be not fully reduced.

The most basic way to perform a modular subtraction » = a — b mod p con-
sists of two simple steps: the computation of the difference d = a — b, followed
by an addition of p (or a multiple thereof) to get a non-negative result. In the
most extreme case, namely when a = 0 and b has the maximum possible value
of 2"t — 1, it is necessary to add 3p. A constant-time implementation of this
modular subtraction technique with unrolled loops is described by Diill et al in
[6, Sect. 4.4]. However, when implemented with “rolled” loops to minimize the
code size, this approach suffers from a high overhead since (at least) two loops
need to be executed; one for the actual subtraction and the other(s) to obtain
a non-negative result. In order to minimize the loop overhead, we perform the
modular subtraction by computing r = 4p + a — b mod p since this operation
can be implemented with one single loop, similar to the modular addition. The
addition of 4p, which ensures that the final result is positive, does not cause
much overhead when taking into account that all w-bit words of 4p, except the
two LSWs and the MSW, are identical and can be kept in a register.

3.2 Multiplication and Squaring

Some MSP430 models, including our target processor (the MSP430F1611), are
equipped with a hardware multiplier that is capable to perform multiplications
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Algorithm 1. Multiple-precision multiplication (product-scanning method)

Input: Two m-word operands a = (am—1,...,a1,a0) and b = (bm—1,...,b1,bo)
Output: 2m-word product z = a X b = (22m—1, ..., 21, 20)
S<—a0><b0

20 < smod 2¥; s < s/2%

: for ¢ from 1 by 1 to m — 1 do
j<0; k<«
while £ > 0 do

s s+a; X by
j—ji+1l; k+—k—-1
end while
2 <= smod 2¥; s+« s/2%
end for

: for i from m by 1 to 2m — 3 do
j—i—(m-1); k<m-—1
while j <m —1 do

s s+a; X by
j&—J+1 k+—k—-1
end while
z; < smod 2¥; s+« s/2%
end for

S$4 S8+ am-1 X bm—1

Zom—o2 + s mod 2%

:Z2m71<—8/2w

: return (22m—1,...,21,20)

© 0N TR R

T T N e R T
MEQL OISR

and Multiply-ACcumulate (MAC) operations with 16-bit integers. This multi-
plier is not tightly coupled to the processor core, but attached to it in the form
of a memory-mapped peripheral. The MSP430 instruction set does not include
dedicated multiply or MAC instructions; instead, the multiplier is accessed via
a set of eight peripheral registers that are visible in the address space and can
be loaded and read using the mov instruction [36]. There are four registers (and
associated memory addresses) for the first operand, called MPY, MPYS, MAC, and
MACS, as well as one register and address for the second operand, referred to as
0P2. The type of operation (i.e. multiplication or MAC, signed or unsigned) is
selected by the address the first operand is written to. For example, to perform
an unsigned multiplication, one has to write the first operand to MPY. The exe-
cution of the selected operation starts immediately and automatically after the
second operand is written to OP2. There are three result registers: RESLO holds
the lower 16 bits of the result, RESHI the higher 16 bits, while SUMEXT contains
the carry of the accumulate operation if an unsigned MAC is performed.

From an algorithmic point of view, there are two basic techniques to imple-
ment a multiple-precision multiplication, namely the operand-scanning method
and the product-scanning method (see [12,19] for details). The availability of a
hardware-supported MAC operation clearly indicates that the latter technique
may reach better performance on an MSP430F1611 device. Algorithm 1 shows
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our implementation of the product-scanning approach, which is very similar to
that in [12, Algorithm 2.10]. It consists of two nested loops; the first computes
the lower half of the product z (i.e. the words 21 to z,_1), whereas the second
nested loop contributes the higher words (i.e. z,, to za;,—3). Both inner loops
perform MAC operations; in each iteration, two w-bit words are multiplied and
the 2w-bit product is added to a cumulative sum s. In general, when adding up
several such 2w-bit products, the length of the sum s can exceed 2w bits. The
index j is incremented in the inner loop, while k is decremented, which means
the words of operand a are loaded in ascending order and those of operand b in
descending order. An operation of the form z; < s mod 2% as in line 9 assigns
the w least significant bits of s to the word z;, whereas s < s/2% represents a
w-bit right-shift of s. Note that the computation of ag X by is “peeled oftf” from
the first nested loop since it is not a MAC operation but just a straightforward
multiplication. We also compute the last 2w-bit product, a,,—1 X b,,—1, outside
the second nested loop because it is not necessary to shift s after the addition
of this product; instead, we can directly write s to zo;,—o and zoy,—1-

Listing 1. First inner loop of the product-scanning method in Assembly language

1 INNLOOP1:

2 MOV QAPTR+, &MAC

3 MOV @BPTR, &0P2

4 SUB #2, BPTR

5 ADD QEXTPTR, CARRY
6 CMP INNSTOP, BPTR
7 JGE INNLOOP1

Listing 1 shows our Assembly implementation of the first inner loop of the
product-scanning method (line 5 to 8 of Algorithm 1). APTR and BPTR are two
registers that contain pointers (i.e. addresses) through which the 16-bit words
of operand a and b are accessed. The first MOV instruction writes a word of a to
MAC, thereby configuring the multiplier to execute a MAC operation. Then, the
second MOV instruction writes a word of b to OP2, which immediately starts the
execution. A MAC operation consists of the multiplication of the 16-bit words
written to MAC and 0P2, followed by the accumulation of the 32-bit product to
the content of the RESHI |RESLO register pair, whereby the resulting carry bit is
placed in SUMEXT. In line 5 of Listing 1, the carry bit gets added to a general-
purpose register named CARRY using the indirect addressing mode to read from
SUMEXT (see [36, Sect. 7.2.4] for further explanations). MSP430 processors have
an autoincrement addressing mode, with which we update APTR, but there is no
autodecrement mode. Therefore, we manually decrement BPTR with help of the
SUB instruction in line 4. The register INNSTOP holds the address of by (i.e. the
LSW of operand b) and, consequently, the loop iterates as long as the address
in BPTR is greater or equal to INNSTOP. Each iteration takes 16 clock cycles on
an MSP430F1611 processor, to which the loop overhead (i.e. the comparison in
line 6 and the jump instruction in line 7) contributes three cycles.
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Optimized Squaring. Squaring is a special case of multiplication that allows
for dedicated optimizations due to the equality of the two operands [12]. When
an ordinary multiplication algorithm, such as the product-scanning method, is
used for squaring (by setting b = a), then all 2w-bit word-products of the form
a; X aj with j # k are computed twice because a; X ar = ax x a; [19]. Only the
m word-products a; X a;, which lie in the “main diagonal” and are themselves
squares, are generated and processed only once. Dedicated squaring algorithms
intend to avoid such overheads by computing each word-product only once and
then doubling it (e.g. trough a left-shift) if needed. When implemented in this
way, the squaring of an integer consisting of m words requires the computation
of (m? + m)/2 word-products, which is just about half of the m word-products
that have to be formed in the course of an ordinary multiplication. However, in
practice, the saving in execution time is often significantly below 50%.

Our implementation of the squaring function in Assembly language follows
closely Algorithm 2 in [19]. This algorithm consists of two nested loops, plus a
third one, which is a simple (“un-nested”) loop. The two nested loops compute
the word-products to be doubled and are similar to those of the multiplication
in Algorithm 1, except that the termination conditions for the inner loops are
different since they are iterated fewer times. Both inner loops consist of just six
Assembly instructions (similar to Listing 1), and each iteration takes 16 cycles
on our MSP430F1611 device. In the third loop, which is iterated m times, the
intermediate result obtained so far is doubled and the m word-products of the
form a; x a; (which are actually word-squares) are added. Each iteration of the
third loop requires 42 clock cycles on an MSP430F1611 processor.

Modular Reduction. As mentioned in the beginning of this section, our F,-
arithmetic library is scalable and optimized for pseudo-Mersenne primes of the
form p = 2™ — ¢, where n is a multiple of 16 minus 1 and ¢ can be up to 15 bits
long. The functions of the arithmetic library can process incompletely-reduced
operands, which means the operands can exceed their nominal bitlength by one
bit and have a length of n + 1 bits. Consequently, the result of a multiplication
or squaring is up to 2n + 2 bits long and fits into 2m words. A straightforward
approach for reducing a 2m-word product z modulo p = 2™ — ¢ is to split z up
into a lower part z; and a higher part zy such that z = zy - 2™ + 2, followed
by a substitution of 2™ by ¢, which is possible since 2" = ¢ mod p. However, in
our case, this method entails some overhead because n is not a multiple of the
word size w and, thus, shift operations are necessary to extract zy from z.

To avoid bit-level shifts, we perform the reduction operation in two steps as
described in [6,20]. In the first step, the 2m-word product z is reduced modulo
2p into an intermediate result ¢ consisting of m 4+ 1 words, which is then in the
second step further reduced modulo p to yield a final result with m words. The
first step requires to partition z into a lower part zj consisting of the m LSWs
(i.e. the n + 1 least significant bits) of z and a higher part zy with the remain-
ing m words. However, this partitioning does not require any shift operations
since it is done at the word-size boundary. Then, we compute the intermediate
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result ¢ = zp - 2¢ + z, using the operand-scanning technique [12], whereby the
16-bit quantity 2¢ needs to be written to MPY only once and can then be used
for all m multiplications [36]. This also explains why the length of ¢ is limited
to at most 15 bits as otherwise 2¢ would not fit in a register. Note that, when
2z is a product of two (n + 1)-bit integers, i.e. when z < (2! —1)2, and ¢ has
a length of w — 1 bits, then ¢ is at most n + w + 1 bits long and can be stored
in m + 1 words. In the second step of the reduction operation, t is split up into
a lower part t; with exactly n bits and a higher part ¢ty with w + 1 bits. The
final result r = ty - ¢ 4+t is then obtained by multiplying ty by ¢, adding the
2w-bit product to the two LSWs of ¢, and propagating the carry bit up to the
MSW. Even though r may not be fully reduced, it fits into m words.

3.3 Inversion

Since inversion in I, is an extremely costly arithmetic operation, it is common
practice in ECC software to use projective coordinates for scalar multiplication
so that only a single inversion has to be carried out to convert the result from
projective to affine coordinates [12]. However, this final inversion is a potential
source of side-channel leakage as it can reveal information about the projective
representation of the point obtained as result, which, in turn, may allow an at-
tacker to learn a few bits of the secret scalar [26]. In order to prevent this kind
of attack, the inversion has to be implemented in such a way that its execution
time is either constant (i.e. operand independent) or appears random [18]. The
most common way to achieve the former is to execute the inversion through an
exponentiation according to Fermat’s little theorem, i.e. a=! = a?~2 mod p. In
most previous papers describing timing-attack-resistant ECC software, such as
[6,20], this exponentiation was implemented using addition chains.

While Fermat-based inversion allows one to achieve constant execution time
in a relatively straightforward way, it is significantly slower than the Extended
Euclidean Algorithm (EEA) [12]. However, the EEA has an irregular execution
profile and, consequently, operand-dependent execution time. Nonetheless, it is
possible to thwart timing attacks against EEA-based inversion by employing a
simple multiplicative masking method. Let Z be the z-coordinate of a point in
projective coordinates and let u be a random element of F,, that is unknown to
the attacker. Instead of inverting Z directly, we first multiply Z by u, then in-
vert the product Zu using the EEA to obtain (Zu)~!, and finally multiply the
inversion result (Zu)~! by u to get Z~1. In this way, the execution time of the
inversion depends on both Z and u, but since the attacker does not know u, he
is not able to draw any conclusions about the actual value of Z. Note that, in
our ECC software, u is “hard-coded” and can not be changed, which requires
us to take care that an attacker can not reveal u by exploiting variations in the
execution time. This is especially important in ECDH key exchange where an
attacker can use a fake public key, e.g. a point of low order, which may enable
him to “guess” Z and use this information to get u. We thwart such attempts
by insisting secret scalars to be a multiple of the curve’s co-factor, as in [2], so
that the resulting Z coordinate is 0 and the inversion is not executed.
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4 Point Arithmetic and Scalar Multiplication

In this paper, we consider two special families of elliptic curves, namely Mont-
gomery [24] and twisted Edwards curves [3]. The former achieve unprecedented
efficiency in variable-base scalar multiplication, such as performed in static and
ephemeral ECDH key exchange, whereas the latter excels in the other two use
cases, namely fixed-base scalar multiplication (needed in e.g. ECDSA signature
generation and ephemeral ECDH key exchange) and double-base scalar multi-
plication (performed in e.g. the verification of an ECDSA signature).

4.1 Montgomery Curve

The Montgomery model of an elliptic curve was originally introduced 20 years
ago to speed up algorithms for integer factorization [24]. Formally, a so-called
Montgomery curve over F,, can be defined by an equation of the form

Ey: By =2 + A2” + o (1)

where A, B € F,, and (A? — 4)B # 0 [24]. Montgomery curves feature a unique
addition law that is “special” in two aspects. First, the addition law describes
a so-called differential addition, which means it allows one to compute the sum
P, + P, of two points P;, P, whose difference P, — P, is known. Second, when
using projective coordinates, both a point addition and point doubling can be
performed using X and Z coordinates only, i.e. the Y coordinate is not needed
for the computation. The usual approach to implement scalar multiplication on
a Montgomery curve is to use the Montgomery ladder [24], a simple algorithm
that executes both a (differential) addition and a doubling for each bit of the
scalar, independent of its actual value. Therefore, the Montgomery ladder has
a regular execution profile, which helps to thwart side-channel attacks.

We implemented the differential point addition and point doubling on basis
of the formulae given in [24]. Consequently, the point addition consists of three
multiplications, four squarings, three additions, and the same number of sub-
tractions in F,,. A doubling, on the other hand, takes two multiplications, two
squarings, two additions, two subtractions, as well as a multiplication by the
constant (A 4 2)/4, which is a relatively cheap operation if the parameter A is
chosen properly [2]. There are two implementation options for the ladder; one
is the standard approach with separate addition and doubling functions, while
the other combines both into a so-called “ladder step” [6]. The variant with the
ladder step requires besides the normal IFp-arithmetic operations also a special
function for conditional swapping of two field elements, but has the advantage
of a highly regular memory access pattern (i.e. the addresses used to load and
store intermediate results do not depend on secret information). We decided to
use the standard approach since MSP430 devices have no cache (and, thus, do
not leak timing information through secretly-indexed loads) and since we found
it a little faster than the ladder-step variant when taking into account that the
three least-significant bits of a scalar are 0 and require only doublings.
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4.2 Twisted Edwards Curve

Twisted Edwards curves were first described in [3] as a generalization of (ordi-
nary) Edwards curves. Some of these curves are equipped with a very fast and
complete addition law, whereby the rational point O = (0, 1) serves as neutral
element. Completeness means that the addition law works for any two points
P, @ that lie on the curve, including corner cases such as P = O, @ = O, and
P = —Q [3]. Formally, a twisted Edwards curve over a prime field F,, is defined
by the equation

Er :ax® +y* = 1 + do?y? (2)

where a,d € F), and ad(a — d) # 0. As explained in [3], the completeness of the
addition law depends on the two curve parameters. More precisely, when a is a
square and d is a non-square in IFp,, then the addition law can be complete and
have no exceptions. Completeness is a valuable property if one aims for a side-
channel resistant implementation of scalar multiplication since the corner cases
mentioned above do not need to be treated separately, which naturally leads to
a regular execution profile and constant execution time.

The so-called extended coordinates presented by Hisil et al [15] allow for a
particularly fast addition of points when the curve parameter a = —1. In this
case, a mixed addition (i.e. an addition where one of the two points is given in
projective coordinates and the other in affine coordinates) requires only seven
multiplications in IF,,. Extended projective coordinates were originally proposed
in [15] as a quadruple of the form (X,Y,T,Z), whereby the fourth coordinate
T = XY/Z. In our implementation, we further split 7' up into the two factors
E and H, i.e. we have EH =T = XY/Z, since this facilitates an optimization
of the point doubling formulae. Consequently, we use a quintuple of the form
(X,Y,E,H,Z) with EH =T = XY/Z to represent a projective point and the
triple (u,v,w) with u = (z +y)/2, v = (y — z)/2, and w = dzy to represent an
affine point. The computational cost for a (complete) mixed addition amounts
to seven multiplications, three additions, and three subtractions in IF),, while a
projective doubling takes three multiplications, four squarings, four additions
and two subtractions. We implemented the scalar multiplication according to
the highly-regular fixed-base comb technique described in [21], which uses eight
pre-computed points and processes four bits of the scalar at a time.

As demonstrated by Bernstein et al [3], every Montgomery curve over I, is
birationally equivalent over F,, to a twisted Edwards curve and vice versa. This
equivalence is very useful in ephemeral ECDH key exchange since it allows one
to perform the fixed-base scalar multiplication (for generating a key pair) on a
twisted Edwards curve and the variable-base scalar multiplication (to compute
the shared secret) on the birationally-equivalent Montgomery curve [21].

5 Results and Comparison

We complied and assembled the source code of our ECC software for MSP430
microcontrollers using version 6.10 of IAR Embedded Workbench, which comes
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Table 2. Execution time and code size of arithmetic operations in 159, 191, 223, and
255-bit pseudo-Mersenne prime fields on a TI MSP430F1611 processor (all execution
times include the full function-call overhead and the modular reduction; the values in
parentheses indicate the time spent for the reduction operation alone).

Operation Execution time (in clock cycles) Code size

P 159 bit [ 191 bit | 223 bit | 255 bit | (in bytes)
Addition 226 258 290 322 100
Subtraction 244 278 312 346 120

Multiplication || 2448 (388) | 3304 (452) | 4288 (516) | 5400 (580) | 360 (168)

Squaring 1998 (388) | 2578 (452) | 3214 (516) | 3914 (580) | 406 (168)

32-bit Mul. || 700 (232) | 804 (258) | 908 (284) | 1012 (310) | 282 (164)
Tnversion 147440 202358 265318 336270 966

with a cycle-accurate instruction set simulator. Table 2 specifies the execution
time and code size of the major operations of our parameterized [Fp-arithmetic
library for 159, 191, 223 and 255-bit fields. The concrete primes with which we
collected the simulation results are those from the four so-called MoTE curves
specified in [10], namely 2% — 91, 2191 — 19 2223 _ 235 and 225 —19. A full
multiplication in a 159-bit pseudo-Mersenne prime field takes 2448 clock cycles
altogether, to which the reduction contributes 388 cycles, i.e. the multiplication
alone (without modular reduction) executes in 2160 cycles. Squaring (including
reduction) is roughly 18.4% faster than multiplication. However, the difference
between multiplication and squaring increases to some 27.5% in a 255-bit field
(5400 versus 3914 cycles). Also provided in Table 2 is the execution time of the
multiplication of a field element by a 32-bit integer; this operation can be used
in e.g. the point doubling on a Montgomery curve for the multiplication by the
constant (A + 2)/4. Inversion is the by far most expensive arithmetic operation
in IF),; a single inversion takes slightly more time than 60 multiplications. Note
that all operations listed in Table 2, except inversion, have constant execution
time. Since the number of clock cycles for an EAA-based inversion depends on
the value of the operand to be inverted, we specify the average execution time
in Table 2, which we found through inversion of 100 random field elements.

The last column in Table 2 summarizes the code size of different arithmetic
functions of our library. The function for multiplying multiple-precision integers
according to Algorithm 1 has a size of 192 bytes, while the modular reduction
function occupies only 168 bytes in Flash memory, i.e. both together amounts to
360 bytes. Squaring is, in terms of code size, slightly larger than multiplication
(by exactly 46 bytes) since it needs an extra loop. In general, our F,-arithmetic
library is very compact because we avoided code-size increasing optimizations
like loop unrolling. The size of the whole library amounts to about 2.3 kB; this
includes besides the arithmetic operations also some auxiliary functions (e.g. to
copy a field element or to check whether two field elements are equal).

We also evaluated the execution time of variable-base scalar multiplication
(using the basic Montgomery ladder) on four different Montgomery curves and
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Table 3. Execution time (in clock cycles on an MSP430F1611) of variable-base scalar
multiplication on a Montgomery curve and fixed-base scalar multiplication on a twisted
Edwards curve over 159, 191, 223, and 255-bit fields.

Curve type | 159bit | 191 bit [ 223 bit | 255 bit

Montgomery (variable base) || 3.86-10° | 6.00-10° | 8.79-10° | 12.34-10°
Twisted Edwards (fixed base) || 1.92-10° | 3.01-10° | 4.45-10° | 6.29-10°

fixed-base scalar multiplication (using a comb method with eight pre-computed
points) on the four bitrationally equivalent twisted Edwards curve. The curves
we used to obtain the simulation results are specified in [10]. As summarized in
Table 3, the execution times for variable-base scalar multiplication range from
3.86 - 10 cycles (Montgomery curve over 159-bit field) up to 12.34 - 10° cycles
(255-bit field). On the other hand, the fixed-base scalar multiplications (on the
twisted Edwards curves) take only about one half of the execution time of the
variable-base scalar multiplications at the same security level. In terms of code
size, the C implementation of the point arithmetic on the Montgomery curve
is about 1.7 kB; this includes besides point addition/doubling and scalar multi-
plication also a few auxiliary functions (e.g. for projective-to-affine conversion
of a point). The code size of the point arithmetic on the twisted Edwards curve
amounts to roughly 2.1 kB, again including some auxiliary functions. We have
eight pre-computed points in extended affine coordinates per curve, which, in
total (i.e. for four curves), occupy 2.5 kB in Flash memory.

In recent years, numerous papers on efficient ECC software for MSP430(X)
processors have been published, e.g. [6,9, 14,20, 22, 27,32, 37]. However, in the
majority of these works, ordinary curves in Weierstrafl form were used and the
implementations lack protection against timing attacks, which makes it hard to
compare the reported results with ours. Only Liu et al in [20] and Diill et al in
[6] adopted Montgomery curves, but they entirely unrolled the field arithmetic
(i.e. these implementations are not scalable). The former authors achieved an
execution time of 3.25 - 10 and 5.12 - 10% clock cycles for scalar multiplication
on a 159-bit and a 191-bit Montgomery curve, respectively, which outperforms
our scalable ECC software by less than 20%. Diill et al reported 7.93 - 105 cycles
for a scalar multiplication on Curve25519 and a code size of 13.1 kB, but these
results were obtained using an MSP430FR5969 as evaluation platform. To aid
comparison, we simulated our software with the parameters of Curve25519 and
obtained an execution time of 10.85 - 10° clock cycles on the same device. Con-
sequently, our scalable implementation is approximately 1.37 times slower than
that of Diill et al, but more than three times smaller.

6 Conclusions

We presented the concept of energy scalability as an approach to minimize the
total energy consumption of ECC operations in a WSN or, more generally, the
IoT. Taking an ECC-based security architecture for a WSN as case study, we
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argued that node authentication has higher security requirements than e.g. the
establishment of a shared secret key between nodes to encrypt short-lived data
like sensor readings. By using elliptic-curve groups of smaller order for the less
security-critical task(s), it is possible to save precious energy; for example, one
could adopt a 191-bit curve for key establishment and a 223-bit curve for node
authentication. We introduced a scalable yet efficient software implementation
of ECC for 16-bit MSP430 processors that supports Montgomery and twisted
Edwards curves. The core component of our ECC software is a parameterized
library for arithmetic in pseudo-Mersenne prime fields, which is able to process
operands of various lengths and has a binary code size of only 2.3 kB since we
refrained from loop unrolling and other size-increasing optimizations. Nonethe-
less our software is only a factor of 1.37 slower than the high-speed Curve25519
implementation of Diill et al, but three times smaller. In summary, our results
show that reaching good performance does not necessarily have to come at the
expense of large code size and poor scalability.
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