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Cover Reproducible Steganography via Deep
Generative Models

Kejiang Chen, Hang Zhou, Yaofei Wang, Menghan Li, Weiming Zhang, Nenghai Yu

Abstract—Whereas cryptography easily arouses attacks by means of encrypting a secret message into a suspicious form, steganog-
raphy is advantageous for its resilience to attacks by concealing the message in an innocent-looking cover signal. Minimal distortion
steganography, one of the mainstream steganography frameworks, embeds messages while minimizing the distortion caused by the
modification on the cover elements. Due to the unavailability of the original cover signal for the receiver, message embedding is realized
by finding the coset leader of the syndrome function of steganographic codes migrated from channel coding, which is complex and has
limited performance. Fortunately, deep generative models and the robust semantic of generated data make it possible for the receiver
to perfectly reproduce the cover signal from the stego signal. With this advantage, we propose cover-reproducible steganography
where the source coding, e.g., arithmetic coding, serves as the steganographic code. Specifically, the decoding process of arithmetic
coding is used for message embedding and its encoding process is regarded as message extraction. Taking text-to-speech and text-to-
image synthesis tasks as two examples, we illustrate the feasibility of cover-reproducible steganography. Steganalysis experiments and
theoretical analysis are conducted to demonstrate that the proposed methods outperform the existing methods in most cases.

Index Terms—Steganography, reproducible, arithmetic coding, text-to-speech, text-to-image, generative model.
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1 INTRODUCTION

S TEGANOGRAPHY is the art of covert communication that
hides secret messages in innocent-looking media. The

security of steganography is implicitly built on behavior
security that a digital medium that is popular on the Internet
could appropriately serve as the cover medium for message
embedding. Texts, images, audios and videos have been
widely utilized in our daily lives, and their correspond-
ing steganographic algorithms have been well developed
in recent years. Among them, steganography algorithms
can be divided into three categories: cover selection, cover
modification, and cover synthesis steganography [1]. Cur-
rently, most attention is focused on cover modification based
steganography, which embeds messages by modifying the
elements of cover objects (spatial pixels [2, 3], chaotic pix-
els [4, 5], audio waveform [6, 7], etc.), yet such modification
will ineluctably induce distortion, which is likely to be
exposed to steganalysis, the opposite of steganography.

Following the timeline of steganography, cover-
modification steganography has developed from con-
stant distortion, wet distortion to arbitrary distortion. For
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constant-distortion steganography, the costs of modifying
different elements in cover objects are the same, which is
equivalent to minimizing the modification number of ele-
ments. Many steganographic codes for constant-distortion
steganography [8–11] achieve considerable performance.
However, it is found that some elements of cover objects
cannot be modified, such as the saturated area in spatial im-
ages. To solve the above problem, wet codes are proposed,
and some methods [12, 13] have approached the theoretical
bound of the rate-distortion function. When diving deeper
into the research, it can be inferred that it is more reasonable
to assign small modification costs to complex areas of the
cover object, which corresponds to adaptive steganogra-
phy, the mainstream research. To minimize the arbitrary
additive distortion of the modification, two representative
steganographic codes, Syndrome Trellis Codes (STCs) [14]
and Steganographic Polar Codes (SPCs) [15] are proposed
with the performance asymptotically achieving theoretical
bounds. With the well-developed steganographic codes,
many classical distortion-based methods have emerged,
such as [2, 16–18] in image, [6, 7, 19] in audio, and [20–
22] in video. However, due to the utilization of the near-
optimal steganographic codes, regardless of how well the
distortion is defined, there is still room for improving the
security performance.

Recently, deep generative models have been consider-
ately developed, which provide a way to sample new data
from a distribution learned from training data. Gartner pre-
dicts that by 2025 generative AI will account for 10% of all
data produced [23]. In addition, the metaverse has become
a hotspot, which is also full of generative data [24], indi-
cating that generative data are suitable for steganography.
More importantly, generative models largely change the
data environment of steganography. Specifically, by utilizing
the same generative models, the receiver can reproduce
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the same cover signal with the same semantic information,
which motivates us to design new steganographic methods.

In this paper, we first briefly review the motivation of
designing steganographic codes for encoding messages into
cover objects, which are originally derived from channel
coding, and summarize their limitations. The underlying
reason is that the receiver has no access to the original cover,
so the syndrome function is used for message extraction,
where the coset leader of the syndrome function is adopted
to guide the modification. Inspired by the signal repro-
ducibility of deep generative models, we propose cover-
reproducible steganography, a source coding based coding
scheme (e.g., arithmetic coding) that performs message em-
bedding and extraction, and validate the approach on two
popular generative tasks: text-to-speech and text-to-image.
The experimental results demonstrate that the proposed
methods outperform the STC and SPC-based steganography
methods in most cases.

In the remainder of this paper, Section 2 introduces the
related work of minimizing distortion steganography. In
Section 3, we prove that the distortion sort scheme does
not achieve better security performance. In Section 4, we
present the framework of cover reproducible steganography
and two instances based on text-to-speech and text-to-image
synthesis tasks. Experimental results and analysis are elab-
orated in Section 5. The following part, Section 6, concludes
the paper.

2 PRELIMINARIES AND RELATED WORK

In this paper, matrices, vectors and sets are written in bold-
face. The cover sequence is denoted by x = (x1, x2, ..., xn),
where the signal xi is an integer, such as the value of a
sample in an audio clip. The modification pattern on xi is
formulated by the range I . For example, the ±1 embedding
operation is ternary embedding with I = {−1, 0,+1},
where 0 denotes no modification.

2.1 Minimizing Distortion Steganography

In adaptive steganography, the elements in different regions
will be assigned different costs. Given a cover object x,
the cost introduced by modifying xi to yi can be denoted
by ρi. In regard to additive steganography, the distortion
is the sum of all costs, D(x,y) =

∑n
i=1 ρi, y ∈ Y . The

modification probability is denoted as π(x,y), thus the
sender can send up H (π(x,y)) bits of message with the
expected value of the distortion Eπ(D), where

H (π(x,y)) = −π (x,y) log2 π (x,y) , (1)

Eπ(D) =
∑
y∈Y

π(x,y)D(x,y). (2)

For a given message length L, minimizing the distortion
while embedding message can be formulated as the follow-
ing optimization problem:

min
π

Eπ(D)

s.t. H (π(x,y)) = L.
(3)

This problem can be solved using Lagrange multipliers. The
optimal probability πλ follows an exponential distribution
with respect to D(x,y):

πλ =
1

Z(λ)
exp (−λD(x,y)) , (4)

where Z(λ) is a normalizing factor:

Z(λ) =
∑
y∈Y

exp (−λD(x,y)) , (5)

and λ is the Lagrange multiplier determined from the
message length constraint. As proven in [25], the entropy
is decreasing in λ, so λ can be quickly determined by binary
search. For additive steganography, the optimal πλ is given
by

πλ(xi, yi) =
exp(−λρi(xi, yi))∑

yi∈I+xi exp(−λρi(xi, yi))
. (6)

The optimality of πλ implies that Eπ(D) of any probability
distribution π satisfying (3) cannot be smaller than Eπλ(D)

,
i.e.,

Eπ(D) ≥ Eπλ(D), (7)

with equality iff π = πλ.

2.2 Steganographic Codes
For additive steganography, there exist practical coding
methods, such as STCs [14] and SPCs [15], which can
approach the lower bound of the average distortion. These
codes are derived from the channel coding, to solve the
problem that the recipient cannot obtain the cover. The
syndrome function Eq. (8) is used for message extraction,
and finding the coset leader of the function is equivalent to
embedding message with near-minimum distortion:

Ext(y) = Hy = m
y=x+e−−−−−→ H(x + e) = m, (8)

Emb(x,m) = arg min
y∈C(m)

D(x,y), (9)

where e is the modification pattern corresponding to near-
minimum distortion.

To find e more effectively, the parity check matrix H is
carefully designed in STCs, which is constructed by placing
a small h × w submatrix Ĥ along the main diagonal. The
solution of STCs can be represented as a path through
the syndrome trellis of H. The height h of the submatrix
determines the number of paths, which affects the algorithm
speed and efficiency. There are kh choices in each grid of the
trellis for k-ary embedding. Therefore, a larger h means a
more powerful ability to minimize distortion but also higher
computational complexity. Besides, the complexity of STCs
exponentially increases with the number of modification
patterns k = |I|.

SPCs provide another near-optimal steganographic cod-
ing method based on polar codes, using Successive Cancel-
lation List (SCL) decoding algorithm to minimize additive
distortion in steganography. Arikan’s efficient method [26]
is used to determine the frozen indices Ac for constructing
the steganographic parity-check matrix H. The list size l of
SCL determines the performance of the coding, and a larger
l leads to a better ability to minimize distortion but also
higher computational complexity.
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2.3 Generative Models
Deep generative models are neural networks with many
hidden layers trained to approximate complicated, high-
dimensional probability distributions using a large number
of samples [27]. Text-to-speech and text-to-image are two
representative tasks.

2.3.1 Text-to-Speech (TTS)
Deep generative models have proven to be effective in pro-
ducing natural speech. Modern TTS systems often consist of
two parts: the first part converts the input text into acoustic
features (feature generator), and the second one synthesizes
the raw waveform conditioned on these features (vocoder).
Among feature generators, Tacotron2 [28], Transformer-
TTS [29] and Flowtron [30] enabled highly natural speech
synthesis. Producing acoustic features frame by frame, they
achieve considerable mel-spectrogram reconstruction from
the input text. WaveNet [31], WaveGlow [32], MelGAN [33]
and HiFi-GAN [34] are widely used as vocoders, which
generate raw waveforms with high voice quality. It is note-
worthy that some TTS systems output the same speech with
the same input text, which provides us with an opportunity
to make it possible that the receiver to obtain the cover
speech.

2.3.2 Text-to-Image (TTI)
Deep neural networks based on Generative Adversarial
Networks (GANs) [35] have enabled end-to-end trainable
text-to-image generation. To enable TTI models to syn-
thesize higher resolution images, many following works
are proposed to use multiple, stacked generators, such as
StackGAN [36] and its enhanced version StackGAN++ [37].
Attention has a major impact on improving language and
vision tasks, and AttnGAN [38] builds upon StackGAN++
and incorporates attention into a multi-stage refinement
pipeline. The transformer-based TTI model, DALL-E [39]
has also been proposed with considerable performance.
Inspired by CycleGAN, cycle-consistent image generation
by appending an image caption network and training the
generation network to produce a synthesized image with
similar caption as the text, such as MirrorGAN [40] and
N2N [41]. The reversibility of cycle-consistent TTI makes
the information hiding and extraction easier to implement.

3 LOSSY PROPERTY OF DISTORTION-SORT
STEGANOGRAPHY

Generative models, such as text-to-speech and text-to-image
systems, enable the situation in which the receiver owns the
cover object. With the cover audio, the first thought that
comes to mind is that the sender can sort the cover elements
according to the distortion and embed message into a part
of cover elements with minimal distortion. In the original
setting, for the message of m bits and the cover sequence
x = (x1, x2, · · · , xn) with cost ρ(x) = (ρx1 , ρx2 , · · · , ρxn),
the average distortion introduced by message embedding
can be minimized when the probability distribution π fol-
lows Gibbs distribution (4). In this manner, the minimal
average distortion is computed by

Eπλ (Dx) =

n∑
i=1

πλ (xi) ρ (xi) , (10)

where πλ (xi) = exp(−λρ(xi))
1+exp(−λρ(xi)) and m =

∑n
i=1H (πλ (xi)).

In the distortion-sort setting, the cover elements
are arranged in ascending order of cost, x′ =
(x′0, x

′
1, · · · , x′n), ρ(x′i) ≤ ρ(x′i+1). In order to embed m

bits, the sender marks elements 1, · · · , k as changeable and
embeds the message into changeable elements. Similarly, the
minimal average distortion of the optimal distribution µλ′

with respect to ρ(x′) becomes

Eµλ′ (Ds) =

k∑
i=1

µλ′ (x′i) ρ (x′i) . (11)

Since the probability distribution about the complementary
set can be regarded as 0, we can consider that the distribu-
tion µλ′ complemented with 0 is a distribution about ρx′ ,
i.e., π = (µλ′ .0). From Eq. (4), we thus have

Eµλ′ (Dx′) > Eπλ (Dx) . (12)

Therefore, the distortion sort steganography cannot achieve
better security performance than the original minimal dis-
tortion steganography.

4 COVER REPRODUCIBLE STEGANOGRAPHY

The generative models provide us with a great opportunity
for the receiver to reproduce the cover with the same se-
mantic. In addition, the modification seldom changes the
semantic of the generated media, since the modification
is very slight with respect to the original signal. Under
this circumstance, the modification pattern and the optimal
probability can be obtained by the receiver as well. The ben-
efit is that channel coding is no longer needed for message
embedding and extraction. The receiver can synchronize the
modification pattern with the sender. Therefore, the source
coding can be adopted for message embedding, which not
only possesses high computational efficiency but also near-
optimal rate-distortion performance. Using this property,
we propose a novel steganography method cooperating
with Adaptive Arithmetic Coding, named Cover Repro-
ducible Steganography (abbreviated as CRS). In Section 4.1,
we develop the algorithm of message embedding and ex-
traction. In Section 4.3 and Section 4.4, two instances, audio
steganography and image steganography, are presented.

4.1 Message Embedding and Extraction
1) Message embedding: Given the cover x and the corre-
sponding distortion definition method D(), we can obtain
the cost ρ of changing every element. Following the optimal
distribution, given the message length L and the cost ρ, the
optimal probability π is obtained according to Eq. (6). With
the probability π, we can decode the encrypted message
into modification pattern e using the decoding process of
arithmetic coding.

Arithmetic coding maps a string of elements to a uni-
formly distributed binary string. Here, the decoding process
of arithmetic coding can be used for message embedding:
first the uniform message is selected, and then the message
is mapped to a sequence (modification pattern). Following
the previous work [42], the message embedding can be
represented by finding a path in the concentric circle, as
shown in Figure 1. Concentric circles represent samples
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(pixels in images, waveform samples in audio clips). The
innermost circle represents x1, the middle x2, and so on.
The intervals in each circle represent the probabilities of
modification patterns.

To encode the secret message into a modification pattern,
the secret message m is viewed as a binary representation
of a fraction in the range [0, 1). The secret message m is first
encrypted using the XOR operation with a pseudo random
bitstream s

me = m⊕ s, (13)

where⊕ represents the XOR operation. Given the encrypted
message me = [m1m2m3...mL], it can be interpreted as a
fraction q in the range [0, 1) by prepending “0.” to it:

m1m2m3...mL → q = 0.m1m2m3...mL =

L∑
i=1

mi · 2−i.

(14)
The fraction q uniquely marks a point on the edge of
the circle, as well as a line from the origin to the point.
Message embedding is carried out by simply reading off
the modification patterns corresponding to the bins. The
embedding process stops when the list of modification
patterns unambiguously defines the message. The stego y
is easily obtained by adding the modification e to the cover
x.

y = x + e. (15)

The stego y are sent to the receiver. The message length L
can be negotiated in advance.

2) Message extraction: Receiving the text and the cor-
responding stego y, the receiver first reproduces the cover
x, then he can get the probability distribution π and the
modification pattern e. With the same probability distri-
bution π, the same concentric circles can be reconstructed.
Message extraction is performed via the reverse operation:
the modification pattern progressively narrows the range
of possible messages until there only exists one fraction
q =

∑L
i=1mi2

−i of L-length message me in the interval.
With the shared secret key, the receiver can generate the

same pseudo-random binary string s and then can decrypt
the message:

m = me ⊕ s. (16)

Figure 1 gives an example of message embedding and
extraction. Concentric circles represent the sample index; the
innermost represents i = 1, the middle i = 2, and the outer
i = 3. Each circle represents the conditional distribution
π(xi), e.g., π0(x1) = 0.5, π−1(x1) = 0.25 and π+1(x1) =
0.25. The encrypted secret message m = [00101101] is
viewed as a binary representation of a fraction 0.00101101
(0.17578125) in the range [0, 1), then the modification pat-
tern e is determined by the route where the fraction lies in.
Message extraction is performed via the reverse operation:
the sequence of modification patterns progressively narrows
the range of possible messages.

The previous processes only consider a short message.
When the message becomes longer, due to the precision
limitation (32 bits or 64 bits), a queue-based message embed-
ding mechanism is introduced. The details are illustrated in
Algorithm 1 and Algorithm 2.

(0.17578125)

Encrypted Message

Modification Pattern

Figure 1. Example of arithmetic coding for ternary steganography. Con-
centric circles represent sample index; the innermost represents i = 1,
the middle i = 2, and the outer i = 3. Each circle represents the
conditional distribution π(xi). The encrypted secret message m =
[00101101] is viewed as a binary representation of a fraction 0.00101101
in the range [0, 1), then the modification pattern e is determined on the
route where the fraction lies in. Message extraction is performed via the
reverse operation: the sequence of modification patterns progressively
narrows the range of possible messages.

Algorithm 1 Message embedding
Require: The cover x, the encrypted message me, the opti-

mal probability distribution π, the precision β.
Ensure: The stego y.

1: h0 = 1, l0 = 0, p = 0
2: for k ∈ {1, 2, 3, ..., n} do
3: for j ∈ {−1, 0,+1} do
4: q = 0.mpmp+1mp+2...mp+β . Queue-based

Message
5: hk = lk−1 + (hk−1 − lk−1) ∗

∑j
i=−2 π

i (xk) .
π−2 = 0

6: lk = lk−1 + (hk−1 − lk−1) ∗
∑j−1
i=−2 π

i (xk)
7: if q ∈ [lk, hk) then
8: e = e :: j
9: R = {r = 0.b1b2b3...bβ , b ∈ {0, 1}|r ∈

[lk, hk)}
10: break
11: end if
12: end for
13: for i ∈ {1, ..., β} do . Calculate the actual

embedded message length.
14: if r1[bi] = r2[bi] = · · · = r|R|[bi] then
15: else
16: L′ = i− 1
17: break
18: end if
19: end for
20: lk = lk � L′, hk = (hk − 2−β)� L′ + 2−L

′
. �

Bit left shift operation of fraction part.
21: p = p+ L′

22: end for
23: y = x + e
24: output = y
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Algorithm 2 Message extraction
Require: The stego y, the reproduced cover x, the optimal

probability distribution π, the precision β.
Ensure: The encrypted message me.

1: e = y − x
2: h0 = 1, l0 = 0, p = 0,me = {}
3: for k ∈ {1, 2, 3, ..., n} do
4: hk = lk−1 + (hk−1− lk−1)∗

∑ek
i=−2 π

i (xk). π−2 = 0

5: lk = lk−1 + (hk−1 − lk−1) ∗
∑ek−1
i=−2 π

i (xk)
6: R = {r = 0.b1b2b3...bβ , b ∈ {0, 1}|r ∈ [lk, hk)}
7: for i ∈ {1, ..., β} do . Calculate the actual

embedded message length.
8: if r1[bi] = r2[bi] = · · · = r|R|[bi] then
9: else

10: L′ = i− 1
11: break
12: end if
13: end for
14: lk = lk � L′, hk = (hk − 2−β)� L′ + 2−L

′
. �

Bit left shift operation of fraction part.
15: me = me :: r1[1 : L′]
16: end for
17: output = me

4.2 The Proof of Near-optimal Performance

Information embedding and source coding (compression)
are dual problems [43]. Intuitively, the embedding perfor-
mance of using a certain compressor is equivalent to its
compression performance due to their duality [43]. In our
scenario, if the compression is perfect, then the modifica-
tion pattern will strictly follow the optimal modification
probability distribution. However, there is no perfect com-
pressor, and we choose near-optimal Arithmetic Coding for
message embedding. Inevitably, the probability distribution
that actually follows differs from the optimal probability
distribution. According to the compression performance of
Arithmetic coding, we can derive the upper bound of the
difference of the real distribution and the optimal distribu-
tion.

Given the optimal modification probability distribution
π of length n, the bounds on the length of an arithmetic
code to represent the distribution are [44, Section 4.4.1]:

H(π) ≤ L < H(π) +
2

n
. (17)

In practice, we embed only H (π) bits of message, so the
real distribution arithmetic code used for message embed-
ding must be modified to π′ except for the situation L =
H (π). According to [45, Theorem 5.4.3], using the incorrect
distribution π′ for encoding H(π) bits message when the
target distribution is π incurs a penalty of D (π ‖ π′) in the
average description length. Directly extended from Eq. (17),
the distribution divergence D (π ‖ π′) has an upper bound:

D (π ‖ π′) < 2

n
, (18)

and if n→∞, then:

D (π ‖ π′)→ 0. (19)

By increasing the length of the sequence, the relative en-
tropy between π and π′ becomes 0, meaning that the
modification using arithmetic coding follows the optimal
modification probability distribution π when the sequence
is long enough.

4.3 Text-to-Speech CRS
Text-to-speech systems have developed rapidly and the gen-
erated speeches have excellent quality. More importantly,
these systems facilitate efficiently performing CRS. Figure 2
shows the diagram of cover reproducible steganography
based on the TTS system. At the sender-end, the text is
fed into the TTS system generating the cover audio. With
the cover audio and the secret message, we can decode
the encrypted message into the modification pattern us-
ing adaptive arithmetic decoding according to the optimal
probability distribution. Then the stego audio is obtained by
adding the modification pattern to the cover audio.

At the receiver-end, the stego audio is first recognized
as text, which is the same as that at the sender-end. It is
worth mentioning that the semantic of the audio is robust
to the modification, since the modification is slight with
respect to the original audio signal. Notably, someone may
argue that the speech recognition system could not achieve
the perfect performance. At first, the speech recognition
system has achieved considerable performance, such as
TDNN [46] for speaker recognition and DeepSpeech [47] for
text recognition. Furthermore, the process can be checked
by the sender, if the recognition failed, the sender can
change the text using synonym substitution. In addition, the
receivers themselves can also help to recognize the speaker
and the speech content. Thereafter, using the same TTS
models, the cover audio and the modification pattern can be
reproduced. According to the negotiated distortion function,
the identical optimal probability distribution is obtained by
inputting the message length. The encrypted message can be
extracted using adaptive arithmetic encoding. For the multi-
speaker situation, a speaker recognition model is trained
and shared, so that the receiver can identify the speaker and
carry out the same generation process.

4.4 Text-to-Image CRS
Sharing images with a caption is very popular on social
websites, meaning that it is a suitable way for covert com-
munication. Besides, text-to-image generation has gradually
turned into practical and is suitable for cover reproducible
steganography. Figure 3 shows the diagram of cover re-
producible steganography based on the TTI system. At
the send-end, the text is fed into TTI system generating
the cover image. The modification costs of image pixels
are defined using image steganography distortion function,
such as HILL [2] and MiPOD [3]. According to minimal dis-
tortion steganography, by feeding the message length and
costs, we can obtain the optimal probability distribution.
Subsequently, the encrypted message is decoded into the
modification patterns using adaptive arithmetic decoding.
The stego image is obtained by adding the modification
patterns to the cover image. The stego image and the text
are posted on the website together. At the receiver-end, the
text is fed into the same TTI system generating the cover
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FlowTron 
FastSpeech 

Speech
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Stego Audio Text
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Speaker ID
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Encrypted Message
010101011101...AAE

Speaker
Recoginition

Sender

Receiver
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FlowTron 
FastSpeech 

Text

I have a dream

Probability TableCover Audio

Encrypted Message
010101011101...

Speaker ID
Alice
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Stego Audio

Cover Audio

Modification

Message Length
Modification

Public Channel

Figure 2. Cover Reproducible Steganography based on text-to-speech system.

This is a black bird
with gray and white
wings and a bright

yellow belly and chest.

Text Cover Image Probablilty Modification Stego Image

Encrypted Message 

01011...1011

This is a black bird
with gray and white
wings and a bright

yellow belly and chest.

Text

Stego Image

Cover Image Probablilty

Modification

Encrypted Message 

010111011

Element-wise add

Element-wise subtract

Calculate optimal

 Message Length

1000

Arithmetic coding

Cost

Cost

Distortion definition

Length

TTI

TTI

Sender

Receiver Public Channel

Public
Channel

Figure 3. Cover Reproducible Steganography based on text-to-image system.

image. Naturally, the modification pattern is obtained. Us-
ing the negotiated distortion function and message length,
the optimal probability distribution is calculated. Thereafter,
the encrypted message is extracted by encoding the modi-
fication patterns according to the probability distribution.
After decryption, the receiver obtains the secret message.

Additionally, as mentioned in Section 2.3.2, the TTI also
has cycle-structure generators, e.g., MirrorGAN, which can
perform text-to-image as well as image-to-text. Under this
circumstance, the CRS framework can be applied to the
scenario where only a single image is sent, because the
modification seldom changes the semantic of image and the
stego image can be captioned into the same text.

5 EXPERIMENTS

In this section, experimental results and analysis are pre-
sented to demonstrate the feasibility and effectiveness of the
proposed schemes.

5.1 Experimental Setting

5.1.1 Dataset and Generative Models
Text-to-Speech: For single-speaker, the Flowtron [30] and
WaveGlow [32] are trained on LJ speech [48] dataset, which
consists of 13,100 short audio clips of a single speaker
reading passages from 7 nonfiction books. The dataset con-
sists of approximately 24 hours of speech data recorded
on a MacBookPro using its built-in microphone in a home
environment. The sampling rate of audio is set as 22.05
kHz. With the well-trained generative models, given 10,000
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random sentences, we generate the corresponding 10,000
audio clips, whose bits per sample is 16 and the sampling
rate is 22.05 kHz.

For the multi-speaker scenario, the Flowtron and Wave-
Glow are trained on LibriTTS dataset[49]. The LibriTTS
corpus consists of 585 hours of speech data at 24 kHz
sampling rate from 2,456 speakers and the corresponding
text. With the well-trained generative models, given 10,000
random sentences, we generate the corresponding 10,000
audio clips, whose bits per sample is 8 and the sampling
rate is 22.05 kHz. To facilitate the steganalysis experiment,
we clip the audio clips to 3 seconds.
Text-to-Image: The TTI model DALL-E [39] is trained on
CUB-200 Birds [50] that contains around 10k images where
each image depicts a single object and there are ten asso-
ciated captions per image. With the well-trained DALL-E,
given 10,000 bird description texts, we generate the corre-
sponding 10,000 spatial images, and the size of the image
is 256 × 256 × 3. For simplicity, the steganography and
steganalysis are carried out on the first channel.

5.1.2 Steganography Algorithm
To verify the effectiveness of the proposed method, different
distortion and different steganographic coding methods are
considered. DFR [51] and AACbased [6] are adopted as the
distortion functions for audio steganography, which assign
high cost to audio samples which are difficult to predict.
HILL [2] and MiPOD [3] are adopted as the distortion
functions for image steganography, which assign a low
cost to those pixels in the texture area and a low cost in
the smooth region. STC, SPC and AAC are adopted as
steganographic codes. Besides, simulated embedding is also
carried out for comparison, which represents the theoreti-
cal bound. Since STC frequently fail when the payload is
larger than 0.5 [14], the payload ranges from 0.1 to 0.5 bps
(bit per sample for audio clips) or bpp (bit per pixel for
spatial images). To point out, there are some generative
steganography, SteganoGAN [52] and ChatGAN [53]. We
have implemented the steganalysis experiments using SRM,
and the results show that the detection error rate is near
to 0, which is consistent with the results in [53], meaning
that these methods are easy to detect. Therefore, we do not
compare them in the subsequent subsections.

5.1.3 Security Evaluation Metric
In our scenario, it is difficult for an attacker to obtain
the same generative model as ours. The attacker also has
difficulty training a surrogate model that generates very
similar audios or images as our secret generative model.
Here, we make a strict assumption that the attacker owns
a certain number of image pairs or audio pairs. Then the
attacker can use steganalysis for detection.

In regard to audio steganography, the state-of-the-art
handcrafted features extracted from both time domain and
Mel-spectrogram domain, named CTM, are adopted for
detection with ensemble classifier (EC). The ensemble clas-
sifier is built on Fisher Linear Discriminator (FLD), which
can minimize the total classification error probability under
equal priors PE = minPFA

1
2 (PFA + PMD) where PFA and

PMD are the false-alarm (FA) probability and the missed-
detection (MD) probability, respectively. The ultimate secu-
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Figure 4. The average detection error rate P E as a function of payload
in bits per sample (bps) for steganographic algorithm payloads ranging
from 0.1-0.5 bps against CTM using AACbased distortion on generated
LibriTTS database.
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Figure 5. The average detection error rate P E as a function of payload
in bits per sample (bps) for steganographic algorithm payloads ranging
from 0.1-0.5 bps against CTM using DFR distortion on generated Lib-
riTTS database.

rity is qualified by average error rate P̄E averaged over 10
random 50/50 splits of the database, and larger P̄E means
stronger security. Since the deep learning based steganalysis
is difficult to detect adaptive audio steganography, as stated
in [54], we do not implement deep learning based steganal-
ysis for audio.

As for image steganography, handcrafted feature spatial
rich model (SRM [55]) equipped with EC, SRNet [56] are
adopted. The SRNet is built on TensorFlow.. The optimizer
Adamax is used with minibatches of 16 cover-stego pairs.
The datasets are divided into training set, validation set,
and testing set (7,000, 500, 2500 pairs, respectively). The
detection error rate of the testing set is used for evaluating
the security of steganographic algorithms.

5.2 Security Performance and Analysis

For the text-to-speech task, DFR and AACbased are selected
as the distortion function. It can be seen from Figure 4 to
Figure 7 that the AAC-family outperforms STC-family and
SPC-family in most cases with respect to different distor-
tions and different datasets. Additionally, the detection error
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Figure 6. The average detection error rate P E as a function of payload
in bits per sample (bps) for steganographic algorithm payloads ranging
from 0.1-0.5 bps against CTM using AACbased distortion on generated
LJSpeech database.
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Figure 7. The average detection error rate P E as a function of payload
in bits per sample (bps) for steganographic algorithm payloads rang-
ing from 0.1-0.5 bps against CTM using DFR distortion on generated
LJSpeech database.

rate is also approaching the theoretical bound. The biggest
improvement is near to 2%.

For the text-to-image task, HILL and MiPOD are selected
as the distortion function. Figure 8 and Figure 9 show
the security performance of the different coding methods
against SRM. In most cases, AAC-family outperforms STC-
family as well as SPC-family and is closer to the theoretical
bound. The results verify the effectiveness of the CRS frame-
work applied to text-to-image tasks. Numerically, AAC-
family outperforms STC-family by at most 2% for HILL.
As for MiPOD, the tendency of the improvement is similar.
Figure 10 and Figure 11 show the security performance
against SRNet. The tendency of the results is similar to that
against SRM. In most cases, AAC-family outperforms STC-
family and SPC-family.

To confirm the statistical significance of the improve-
ment, we apply a t-test to evaluate the statistical significance
of the results. The hypotheses are

H0 : µ1 ≤ µ2;H1 : µ1 > µ2 (20)

where µ1 and µ2 are the mean values of the average detec-
tion error of the improved method (AAC) and the original
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Figure 8. The average detection error rate P E as a function of payload in
bits per pixel (bpp) for steganographic algorithm payloads ranging from
0.1-0.5 bpp against SRM using HILL distortion on generated CUB-200
Birds database.
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Figure 9. The average detection error rate P E as a function of payload in
bits per pixel (bpp) for steganographic algorithm payloads ranging from
0.1-0.5 bpp against SRM using MiPOD distortion on generated CUB-
200 Birds database.

method (STC). The statistic t is calculated as follows:

t =
µ1 − µ2√
Sw( 1

n1
+ 1

n2
)

(21)

where

Sw =
1

n1 + n2 − 2

[
(n1 − 1)S2

1 + (n2 − 1)S2
2

]
(22)

n1 and n2 are the numbers of testing times, and S1 and S2

are the standard deviations of the original and improved
algorithms, respectively. By looking up the t-score table
of the standard normal distribution, the corresponding t-
value can be obtained. A lower t-value indicates a higher
probability that H0 holds. If the t-value is larger than a
threshold, H0 is rejected, and the improvement is deemed
statistically significant and reliable.

The significance level for the test is set to t0.05(n1 +
n2 − 2). As shown in Table 3 to Table 5, under different
payloads and steganographic schemes, in most cases, the
test statistic t-values are larger than the corresponding
quantile t0.05(18) = 1.734, which implies that the detection
improvement with respect to STC has statistical significance.
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Figure 10. The average detection error rate P E as a function of payload
in bits per pixel (bpp) for steganographic algorithm payloads ranging
from 0.1-0.5 bpp against SRNet using HILL distortion on generated
CUB-200 Birds database.
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Figure 11. The average detection error rate P E as a function of payload
in bits per pixel (bpp) for steganographic algorithm payloads ranging
from 0.1-0.5 bpp against SRNet using MiPOD distortion on generated
CUB-200 Birds database.

5.3 Randomness Analysis

The parameters of the neural network in our CRS frame-
work are seen as secret keys, which are only known by
the sender and the receiver. The attacker cannot obtain the
identical model. Note that, in the process of training a neural
network, there are multiple stages where randomness is
used, such that the previous settings can be established. The
randomness operations include:

• Random initialization of weights of the network be-
fore the training starts, e.g., RandomNormal, Trun-
catedNormal and RandomUniform.

• Regularization, e.g., dropout, which involves ran-
domly dropping nodes in the network while training.

• Optimization processes like stochastic gradient de-
scent, RMSProp or Adam also include random ini-
tializations.

These operations can be controlled by a seed. Therefore, the
seed can be regarded as the secret key of the method under
the CRS framework. Meanwhile, the choice of the seed has
little impact on the performance of the neural network,

Table 1
The detection errors P E of distortion-sort steganography with different

payloads (0.1 - 0.5 bpp) against SRM.

Method 0.1 0.2 0.3 0.4 0.5
HILL 0.4391 0.3433 0.2590 0.1839 0.1298
HILL-SORT 0.3750 0.2760 0.1976 0.1428 0.1004
HILL-SORT-EVEN 0.3910 0.2725 0.1844 0.1277 0.0861

which indicates that the behavior does not arouse suspicion
from the attacker.

5.4 Performance of Distortion-Sort Steganography
To verify the inference we concluded in Section 3, steganal-
ysis on distortion-sort steganography is carried out. Two
representative strategies are considered:

• “SORT”: select L (message length) cover elements as
the final cover, set their corresponding distortion as
the final distortion, and use simulate embedding for
message embedding.

• “SORT-EVEN”: select L/ log2 3 cover elements as the
final cover, set the modification distortion to zero
(p−1 = p+1 = p0 = 1

3 ), and use simulate embedding
for message embedding.

Table 1 presents the results, where HILL is the distortion
function and SRM is the steganalyzer. HILL performs far
better than HILL-SORT and HILL-SORT-EVEN, indicating
the the distortion-sort steganography cannot surpass mini-
mize distortion steganography, which validates our conclu-
sion in Section 3.

5.5 Time Complexity Comparison
The time complexity of the embedding process of STC, SPC,
and AAC are O(2hn) [14], O(l ·n log2 n) [57] and O(n) [58].
Therefore, arithmetic coding has certain advantages at the
sender-end. Since the implementation details are different,
such as the source codes of STC have adopted Intel Instruc-
tion Set for faster implication, we do not compare the exact
running time here. Regarding message extraction, there are
additional operations in our CRS framework, such as audio
generation and modification probability calculation, while
STC and SPC only need to calculate the syndrome func-
tion. Therefore, CRS framework is more time-consuming
for receivers. Intuitively, we present the average running
time of different parts of the proposed CRS framework in
Table 2. It can be seen that the time cost of the whole process
is small and the processes of embedding and extraction
using arithmetic coding are very efficient with respect to
generating cover.

Table 2
The running time of different parts of the proposed CRS framework.

(GPU: Waveglow: Nvidia 3090, DALL-E: Nvidia A100,
CPU: Intel (R) Xeon (R) CPU E5-2670 @2.30 GHz)

Generative Models Generation (s) Embedding (s) Extraction (s)

WaveGlow [32] 1.883 0.0153 0.0163
DALL-E [39] 0.1593 0.0156 0.0149
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Table 3
The average detection errors P E of different coding methods with HILL and MiPOD distortion on the generated CUB-200 Birds dataset.

Method
Payload 0.1 0.2 0.3 0.4 0.5

HILL

SIMU 0.4391 (+/- 0.0025) 0.3433 (+/- 0.0066) 0.2590 (+/- 0.0061) 0.1839 (+/- 0.0040) 0.1298 (+/- 0.0020)
STC 0.4323 (+/- 0.0033) 0.3312 (+/- 0.0055) 0.2384 (+/- 0.0046) 0.1691 (+/- 0.0029) 0.1229 (+/- 0.0036)
SPC 0.4301 (+/- 0.0043) 0.3304 (+/- 0.0037) 0.2417 (+/- 0.0033) 0.1716 (+/- 0.0042) 0.1196 (+/- 0.0038)
AAC 0.4362 (+/- 0.0054) 0.3409 (+/- 0.0047) 0.2559 (+/- 0.0041) 0.1840 (+/- 0.0054) 0.1291 (+/- 0.0045)
t-value 1.9488 4.2398 8.9809 7.6872 3.4022

MiPOD

SIMU 0.4336 (+/- 0.0051) 0.3411 (+/- 0.0074) 0.2604 (+/- 0.0050) 0.2037 (+/- 0.0035) 0.1421 (+/- 0.0030)
STC 0.4215 (+/- 0.0034) 0.3286 (+/- 0.0048) 0.2439 (+/- 0.0034) 0.1762 (+/- 0.0031) 0.1248 (+/- 0.0033)
SPC 0.4267 (+/- 0.0048) 0.3301 (+/- 0.0057) 0.2492 (+/- 0.0039) 0.1804 (+/- 0.0035) 0.1309 (+/- 0.0030)
AAC 0.4312 (+/- 0.0039) 0.3464 (+/- 0.0061) 0.2633 (+/- 0.0060) 0.1940 (+/- 0.0038) 0.1422 (+/- 0.0033)
t-value 5.9285 7.2517 8.8957 11.477 11.790

Table 4
The average detection errors P E of different coding methods with AACbased and DFR distortion on generated LibriTTS dataset.

Method
Payload 0.1 0.2 0.3 0.4 0.5

AACbased

SIMU 0.3117 (+/- 0.0022) 0.1680 (+/- 0.0030) 0.0985 (+/- 0.0023) 0.0709 (+/- 0.0032) 0.0574 (+/- 0.0022)
STC 0.2950 (+/- 0.0044) 0.1520 (+/- 0.0023) 0.0892 (+/- 0.0019) 0.0655 (+/- 0.0020) 0.0549 (+/- 0.0020)
SPC 0.2919 (+/- 0.0038) 0.1512 (+/- 0.0020) 0.0884 (+/- 0.0014) 0.0670 (+/- 0.0022) 0.0546 (+/- 0.0024)
AAC 0.3028 (+/- 0.0028) 0.1661 (+/- 0.0021) 0.0969 (+/- 0.0023) 0.0724 (+/- 0.0023) 0.0604 (+/- 0.0026)
t-value 4.7294 14.3164 8.1620 7.1588 5.3022

DFR

SIMU 0.3271 (+/- 0.0020) 0.2154 (+/- 0.0029) 0.1416 (+/- 0.0026) 0.0951 (+/- 0.0028) 0.0624 (+/- 0.0021)
STC 0.3125 (+/- 0.0036) 0.2029 (+/- 0.0025) 0.1284 (+/- 0.0021) 0.0835 (+/- 0.0021) 0.0593 (+/- 0.0019)
SPC 0.3082 (+/- 0.0035) 0.1979 (+/- 0.0023) 0.1308 (+/- 0.0017) 0.0852 (+/- 0.0024) 0.0575 (+/- 0.0023)
AAC 0.3127 (+/- 0.0025) 0.2066 (+/- 0.0023) 0.1403 (+/- 0.0026) 0.0942 (+/- 0.0029) 0.0631 (+/- 0.0022)
t-value 0.1443 3.4443 11.2595 9.4502 4.1339

Table 5
The average detection errors P E of different coding methods with AACbased and DFR distortion on generated LJSpeech dataset.

Method
Payload 0.1 0.2 0.3 0.4 0.5

AACbased

SIMU 0.4862 (+/- 0.0015) 0.4602 (+/- 0.0022) 0.4221 (+/- 0.0027) 0.3713 (+/- 0.0018) 0.3152 (+/- 0.0025)
STC 0.4837 (+/- 0.0019) 0.4550 (+/- 0.0019) 0.4125 (+/- 0.0033) 0.3569 (+/- 0.0017) 0.3002 (+/- 0.0034)
SPC 0.4855 (+/- 0.0029) 0.4555 (+/- 0.0023) 0.4148 (+/- 0.0025) 0.3621 (+/- 0.0030) 0.3036 (+/- 0.0034)
AAC 0.4871 (+/- 0.0016) 0.4603 (+/- 0.0016) 0.4211 (+/- 0.0034) 0.3717 (+/- 0.0023) 0.3187 (+/- 0.0024)
t-value 4.3285 6.7474 5.7397 16.3638 14.0571

DFR

SIMU 0.4868 (+/- 0.0014) 0.4618 (+/- 0.0014) 0.4299 (+/- 0.0025) 0.3914 (+/- 0.0030) 0.3479 (+/- 0.0030)
STC 0.4843 (+/- 0.0010) 0.4568 (+/- 0.0015) 0.4213 (+/- 0.0014) 0.3818 (+/- 0.0025) 0.3348 (+/- 0.0022)
SPC 0.4848 (+/- 0.0009) 0.4570 (+/- 0.0021) 0.4228 (+/- 0.0016) 0.3815 (+/- 0.0033) 0.3400 (+/- 0.0026)
AAC 0.4872 (+/- 0.0013) 0.4613 (+/- 0.0021) 0.4284 (+/- 0.0018) 0.3918 (+/- 0.0015) 0.3473 (+/- 0.0019)
t-value 6.5555 6.4944 11.9261 16.0529 20.1253

6 CONCLUSION

In this paper, we have proposed an effective cover re-
producible steganography framework based on generative
models. The generative models and the robust semantic of
the generated media make it possible for the receiver to
reconstruct cover. Under this circumstance, we introduce
arithmetic coding for message embedding and extraction,
and the superior performance has also been proven. Besides,
two instances are designed under our proposed framework
based on text-to-speech and text-to-image tasks. Experimen-
tal results show that the steganographic methods under
cover reproducible steganography framework are more se-
cure than traditional STC and SPC methods. Furthermore,
we also point out that distortion-sort stenography is not a
considerable solution.

The generative model not only introduces a new data
environment, but also provides a new steganography frame-
work. The proposed method can only work on lossless
channels. In the future, we will delve into how to improve

robust steganography based on generative models.
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