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Abstract—K-nearest neighbor search is one of the fundamental tasks in various applications and the hierarchical navigable small world
(HNSW) has recently drawn attention in large-scale cloud services, as it easily scales up the database while offering fast search. On the
other hand, a computational storage device (CSD) that combines programmable logic and storage modules on a single board becomes
popular to address the data bandwidth bottleneck of modern computing systems. In this paper, we propose a computational storage
platform that can accelerate a large-scale graph-based nearest neighbor search algorithm based on SmartSSD CSD. To this end, we
modify the algorithm more amenable on the hardware and implement two types of accelerators using HLS- and RTL-based methodology
with various optimization methods. In addition, we scale up the proposed platform to have 4 SmartSSDs and apply graph parallelism to
boost the system performance further. As a result, the proposed computational storage platform achieves 75.59 query per second
throughput for the SIFT1B dataset at 258.66W power dissipation, which is 12.83x and 17.91x faster and 10.43x and 24.33x more energy
efficient than the conventional CPU-based and GPU-based server platform, respectively. With multi-terabyte storage and custom
acceleration capability, we believe that the proposed computational storage platform is a promising solution for cost-sensitive cloud

datacenters.

Index Terms—ANN search, Architecture, Cloud, Data-center, FPGA, In-storage computing, Near-memory computing, SmartSSD.

1 INTRODUCTION

HE nearest neighbor search that finds a certain number of
T closest points in a high dimensional space for a given query is
a fundamental task in many domains, including machine learning
[34], data analysis [32], and information retrieval [14]. As the
volume of data available increases exponentially in the era of
big data [10], the importance of a scalable and efficient data
search becomes even more significant. For this reason, instead
of performing an exhaustive brute-force search to find exact
nearest neighbors, approximate nearest neighbors (ANN) search
that finds highly probable nearest neighbors with less computational
complexity and smaller memory footprint has been widely used
in many applications such as image classification [9], image
recognition [31], image search [21], and text retrieval [35].

A common mechanism for the search starts with transforming a
large dataset into high-dimensional, real-valued feature vectors by
employing a set of machine learning techniques and storing them in
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a database [20]. Because such feature extraction techniques produce
similar vectors for similar data, distances (e.g., Euclidean) among
the vectors can be measured to quantify the semantic similarity of
the corresponding data [11]. When a user query is given, the query
is first transformed to a feature vector (by using the same feature
extraction technique), and then an ANN search is performed to find
a list of ranked database vectors that are semantically close to the
query vector.

Major search engines, including Bing and Google, also em-
ploy a family of ANN search algorithms to boost their search
performance [1] [33]. However, such cloud services with a large-
scale search often pose strong service-level agreement (SLA)
requirements such as low latency, high bandwidth, and search
relevance. To meet these requirements, cloud service providers
need to employ an expensive compute cluster consisting of high-
end CPUs with many DIMMs to store the entire database vectors in
memory and perform the fast ANN search in a distributed manner.
However, this scale-out approach is not only costly from the
perspective of operating cost but also expensive due to the time and
energy overhead required for moving a huge volume of data from
storage to compute devices. Even in a single node, accelerating
ANN search is challenging as the algorithms demand both high
memory capacity and bandwidth. Over a few TB storage is needed
to store large-sized vector datasets, but the SSD bandwidth is
significantly insufficient to match the computing capacity. We
observe that the time spent for IO accounts for more than 70% of
the total latency when we run a state-of-the-art proximity graph-
based ANN algorithm in a standard CPU-based server system. This
bottleneck indicates that the current computer system architecture
is not suitable for accelerating large-scale ANN search.

In this paper, we propose a cost-effective and energy-efficient
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near-data processing (NDP) solution for accelerating a large-
scale ANN search for cloud services. In particular, we use a
U.2 form-factor flash solid-state drive with Xilinx UltraScale+
FPGA integrated. By placing computing capabilities directly on the
storage, data is allowed to be processed in place with significantly
less data movement. In addition, this approach frees up host
resources such as CPU, DIMM, and network bandwidth, which
can be potentially used for other activities running on the host. The
main contributions of the paper are as follows.

o We implement the state-of-the-art proximity graph-based nearest
neighbor search on the computational storage platform for the
first time for cloud services.

« We propose a software/hardware co-design approach to make the
target graph-based algorithm more suitable for the computational
storage platform.

o We accelerate the graph-traversing search kernel that requires
a lot of random memory accesses using various hardware
optimization techniques. We propose two types of accelerators
based on high-level synthesis (HLS) and RTL.

o We scale up the proposed platform to have multiple CSDs that
run in parallel and show a linear performance improvement as
the number of devices increase.

o We evaluate the overall system performance of the proposed
platform for a large-scale dataset and compare it against a
conventional CPU-based and GPU-based server platform.

2 ALGORITHMIC BACKGROUND

We first define the nearest neighbor search problem and introduce
state-of-the-art ANN search algorithms. We then describe the
latest graph-based algorithm named hierarchical navigable small
world (HNSW), which is our target algorithm to accelerate on the
computational storage platform.

2.1

Given a dataset X that consists of n points in d dimensional space,
ie., X = {x1,x2,- - ,xn}, the nearest neighbor search problem is to
find K closest points in X to g based on similarity measure p(x;,q),
in which x; is a d dimensional vector and a query point g. The
brute-force search method computes the distance between the query
and every point of the dataset guarantees the exact solution, but it is
not feasible for a large n value as the computational time increases
linearly, O(n). To address this issue, approximate nearest neighbor
algorithms that can practically accelerate the search process by
two-to-three orders of magnitude are widely used. Their goal is
to reduce the computational complexity and the memory footprint
while achieving a high probability of exact solution measured in
recall metric (= the number of correct neighbors / the total number
of neighbors searched).

Nearest Neighbor Search Definition

2.2 Tree-based Space Partitioning

Tree-based ANN search algorithms such as KD-trees [16], R-
trees [19], and VP-trees [36] have been proposed to accelerate
the search process by partitioning the space hierarchically into
a tree structure and splitting the points along with the structure.
Although these methods reduce the search time substantially for
low dimensional datasets, their performance starts to suffer as the
number of dimensions increases because distances among points
are not distinctive enough [8].
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Figure 1: HNSW’s Graph Structure and Search Performance
(HNSW [27], NAPP [30], VP-tree [36], NSW [13])

2.3 Hashing-based Methods

Hashing-based ANN search algorithms are derived from the idea
of locality-sensitive hashing (LSH) [17] that hashes similar inputs
into the same buckets with high probability. This method usually
predefines multiple hash tables to convert a vector to shorter hash
codes and matches the query against candidate vectors in the hash
code domain for efficient computation. In order to improve search
accuracy, a lot of literature has been published to design better
hash functions, including the learning-based approach [25] and
project-based approach [29].

2.4 Quantization-based Methods

Product quantization (PQ) based methods [22] have been ex-
tensively researched in recent years as they reduce the memory
footprint significantly by compressing the candidate vectors via a
vector or sub-vector quantization. The distance calculation between
a query and candidates is also approximated by the distance
calculation between the query and the representative words based
on the quantization result. Hardware implementations using this
method exist due to its low computation and memory requirements
[37], but they do not output high search quality because of the
accuracy loss caused by vector quantization.

2.5 Graph-based Methods

Another popular ANN search algorithm is the graph-based approach
[13] [26]. These algorithms build a proximity graph where a
candidate vector is represented as a vertex, and two vertices are
connected if they are sufficiently close. Then, they search nearest
neighbors from an entry point by exploring the graph based on the
distance relation among neighbor nodes based on the idea that a
neighbor’s neighbor is also likely to be a neighbor. The proximity
graph-based methods achieve both high accuracy and fast search,
but they have memory space overhead to store original vectors
and an additional graph structure. They also require many random
accesses for graph traversing, which is unsuitable for memory
devices such as DRAM and SSD.

2.6 Hierarchical Navigable Small World

Among proximity graph-based algorithms, hierarchical navigable
small world (HNSW) [27] is a target algorithm of this work. The
HNSW algorithm has recently gained a lot of attention because
of its outstanding performance on high dimensional datasets when
compared to previous algorithms. As shown in Figure 1, the key
idea of HNSW algorithm is to separate the links according to their
length scale into different layers and then search in a multi-layer
graph. It maintains a few long-range connections on the top layer
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Algorithm 1 HNSW Search Kernel

Input: query g, enterpoint ep, # of nearest to return ef, layer number /
Output: ¢f closest neighbors to g
Parameter: maxM: max # of lists in upper layers, maxMO: max # of lists in
layer0, V: visited list, C: candidate list, F: final list
1: V,C,F < ep
2: while |C| > 0 do
: ¢ < get nearest element from C to ¢

4 f < get furthest element from F to ¢

5 if distance(c,¢) > distance(f,q) then

6: break

7: for e € neighborhood(c) at layer | do

8 if e ¢ V then

9 V<< VUe

10: f < get furthest element from F to ¢
11: if distance(e,q) < distance(f,q) or |F| < ef then
12: C<«+CUe
13: F <+ FUe
14: if |[F| > ef then
15: remove furthest element from F to ¢
16: return F

while high-volume and short-range connections lie on the lower
layers. In the HNSW algorithm, the search always starts from the
coarse-grained top layer which has the longest links. The algorithm
greedily traverses through the elements from the upper layer until
a local minimum is reached. After that, the search switches to the
lower layer which has shorter links and restarts the process from

the element which was the local minimum in the previous layer.

This process is repeated until reaching to the finest-grained bottom
layer. As a result, the HNSW’s unique graph structure and search
method enable much better logarithmic complexity scaling and
faster search speed than the other previous algorithms (Figure 1).

Since the nearest neighbor search for user queries are conducted
through the stored HNSW graph database which was already
constructed in a downtime, the focus of this work is the search
kernel of the HNSW algorithm. The Algorithm 1 describes the
HNSW search kernel and its essential parameters. When the user
query ¢ is given, it traverses the graph from the top layer starting
at the entering point ep and tries to find the ef closest neighbors
in the vector space. The ef is the main parameter that controls the
quality of the search. It determines the size of the buffer window
that tracks the closest neighbors, while it also affects how many
candidates the algorithm needs to go through. The final K nearest
neighbors are simply selected among the e f closest neighbors. The
search kernel chooses the entering point of the next layer based
on the closest neighbors found in the current layer and continues

the search on the next layer. The kernel repeats this process until it
reaches the bottom layer that contains all the points in the dataset.

In order to find the closest neighbors, the kernel utilizes three
lists: visited list v, candidate list ¢, and final list f. The visited list,
whose size is the same as the number of total points, is used to
check if a point is visited before, so the same distance calculation
is not repeated. The candidate list is the list of candidate points
for both graph traversing and closest neighbors. Its size is set to a
larger number than ef. The list also tracks the closest point to the
query among the candidate points along with its distance value. The
final list is a dynamic list that only keeps the ef closest neighbors
updated. Unlike the candidate list, it tracks the furthest point in
the list. All three lists are initialized to have only the entering
point. The search kernel reads a candidate from the candidate list
and visits its neighbor points one by one. If the distance between
the query and the visited neighbor is smaller than the maximum
distance of the final list, the neighbor point is inserted into both the
candidate and final list. If the final list is full, it removes the current
furthest and inserts the new point with the maximum distance
updated. The kernel repeats this process until there is no candidate
left or until the minimum distance of the candidate list is no longer
smaller than the maximum distance of the final list. In other words,
the search kernel stops traversing if no closer point can be found in
the neighbor points of a candidate.

3 COMPUTATIONAL STORAGE DEVICE

As the volume of machine and user-generated data exponentially
increases in the big data era, the demand for high-capacity storage
has been increasing, especially in cloud data centers. At the same
time, the high volume of data has created challenges for reliable
storage and efficient data retrieval for further processing. Current
server architectures, broadly composed of CPU and storage, move
all necessary data from the storage to the host memory when they
need processing. As both components constantly improve their
performances, bulk data transfer between the CPU and storage
causes significant delays in the system. To solve this memory
bandwidth bottleneck issue, Samsung developed SmartSSD [2]
computational storage device that allows parallel computations on
the storage device without data being moved to the host memory.
SmartSSD combines a field-programmable gate array (FPGA) and
a solid-state drive (SSD) with a fast direct data movement channel
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Figure 3: HNSW Algorithm Modification

between the two for efficient near-data processing. Evolved from
the first HHHL PCle form factor, Samsung recently released a
more compact version with the 2.5 inches U.2 form factor that is
interchangeable with other U.2 SSD cards. The major advantage of
using computational storage is offloading computations to the
storage level and reducing the volume of data fetched to the
CPU due to its near-data processing capability. In other words,
computational storage reduces the memory bandwidth requirement
between the CPU and storage, which is often the source of system
bottleneck, by allowing the CPU to read-only extracted information
out of bulk storage data. Many previous works [12] [23] [18] [24]
discussed the advantages of computational storage.

Figure 2 shows the system architecture of the SmartSSD
platform. It has a Xilinx Kintex UltraScale+ KU15P FPGA with
4GB DRAM and 3.84TB NAND Flash arrays on the same board
in U.2 form factor (69mm x 100mm x 15mm). The FPGA chip
contains 1.14 million logic cells, 1968 DSP slices, and 34.6 Mbits
on-chip SRAM. The SmartSSD device is connected to the host
CPU through the PCle Gen3x4 interface, which gives a theoretical
maximum bandwidth of 4 GB/s. One of the main features of the
SmartSSD platform is that there is a PCle switch presented in the
FPGA to provide three-way paths: between the CPU and FPGA,
between the CPU and SSD, and between the FPGA and SSD. The
4GB DRAM attached to the FPGA can work as a buffer memory
when data moves between FPGA and CPU or between FPGA and
SSD because the FPGA does not have enough memory on the chip.
From the host driver’s view, each FPGA and SSD is seen as a
PClIe device. The host transfers data between the host memory and
FPGA through normal PCle communication. It also transfers data
between the host memory and SSD in the same way, even though
the data physically go through the PCle switch on the FPGA.
SmartSSD also supports direct data transfer between the FPGA and
SSD, called peer-to-peer (P2P) communication, because it does not
involve any memory copy on the host side. For P2P communication,
the driver uses a reserved memory space on the FPGA’s DRAM
called a common memory area (CMA). This special memory area
is made to be accessible by the host, FPGA, and SSD, and it is
exposed to the host PCle address map. The host application cannot
directly access the CMA but needs to go through Xilinx’s OpenCL
APIs [15]. The application allocates memory from CMA using
clCreateBuffer API with Xilinx memory extension and P2P flag set.
The memory object returned from the previous operation is passed
to clEnqueueMapBuffer API, which provides a virtual address
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Figure 4: Hardware Mapping and Dataflow

K nearest neighbors

pointer. Then, the SSD can use the allocated memory in the CMA
for direct read/write access through the obtained virtual address.
This process creates the P2P communication between the FPGA
and SSD and removes unnecessary host interaction and memory
copies.

Since the SmartSSD was developed in U.2 form factor, it is
easy to scale up to have multiple cards using a commercially
available storage server. For the case of 48 SmartSSD cards,
the server’s total storage capacity will be 184.32TB with more
than 50 million logic cells and 192GB DRAMs. In this work,
we harness 4 SmartSSD devices in a single storage server and
prove the scalability of the system with a non-trivial graph-based
nearest neighbor search application. Furthermore, we suggest that
this computational storage platform is a high-performance and
cost-effective solution for datacenters because it uses near-data
processing and reduces the number of nodes with high storage
capacity.

4 SOFTWARE-HARDWARE CO-DESIGN
4.1 Algorithm Modification

As stated in section 2.6, the HNSW algorithm builds a multi-
layer proximity graph that requires lots of random data accesses for
traversing points in the graph. We can utilize DRAM’s fast accesses
for small datasets whose graph database can fit the FPGA’s 4GB
DRAM. However, for large datasets whose sizes easily extend to
a few hundred gigabytes (e.g., SIFT1B), DRAM is not feasible.
Leveraging SmartSSD’s large storage capacity, we can store the
database to the SSD and perform the search on the FPGA. The one
disadvantage of using an SSD is its long access time. To mitigate
this issue, we modify the HNSW algorithm into two stages, as
shown in Figure 3. Instead of having a monolithic graph database
whose size can increase far beyond the FPGA’s DRAM size, we
partition it into multiple databases so that each of them is a smaller
HNSW graph database that can fit in the DRAM. In detail, we
split the raw dataset into N segments first and generate the HNSW
database from each of them to make sure its size is less than the
size of DRAM. For nearest neighbor search, we run an independent
search on each graph database for a given query and get N sets
of K closest neighbors as results. Then, we perform brute-force
distance calculations for all intermediate results to find the final
K closest neighbors. This two-stage algorithm modification shows
good performance and does not suffer accuracy loss because each
HNSW graph is large enough to produce relevant results in the first
stage, and those results are reduced with an exhaustive method in
the second stage. For the SIFT1B dataset, the recall of the modified
HNSW is 0.94 when K=10 with ef=40.
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Figure 5: Database Restructuring

4.2 Hardware Mapping

Due to the slight modification of the algorithm, we can efficiently
map the HNSW algorithm on the SmartSSD platform using all the
memory components, such as on-chip BRAM, off-chip DRAM,
and SSD. Figure 4 describes the overall hardware mapping and
the data flow. First, the host loads the entire database that includes
multiple HNSW graph databases to the SSD. This is a single-time
event that initializes the SSD and is the baseline of our platform.
Second, the FPGA fetches a graph database to the DRAM using
P2P communication and searches for the input queries. It finds the
K nearest neighbors for the current graph database and updates
the final nearest neighbors that keep the best results among all
the nearest neighbors found so far. Third, the FPGA repeats this
procedure until it covers all the graph databases. Once it finds the
final nearest neighbor results, it sends them back to the host. By
doing this, the FPGA fetches the data from the SSD to DRAM
only once for each graph database. It also uses P2P communication,
which eliminates unnecessary PCle traffic to the host and helps to
improve system performance.

4.3 Database Restructuring and Caching

The original database of the HNSW algorithm consists of two
tables: 1) an upper-layer table that contains the linkage information
of the points in the upper layers and 2) a layer-0 table that contains
the linkage information of the points in the bottom layer along with
their raw data. Each line of the upper-layer table describes a point’s
linkage information with the highest layer that the point is observed
and the neighbor lists for all the layers except the bottom. Each
layer’s neighbor list starts with the size information that stores the
number of linked points to the target point, followed by the indexes
of the linked points. The maximum size of each neighbor list is set
by the parameter called maxM. If a point is only observed in the
bottom layer, it stores O for the first observed field of the highest
layer and omits the neighbor lists in the upper-layer table to save
the table size. On the other hand, the layer-0 table has a fixed size
for each point. Each line starts with the index of the point, which is
the same as the line number, and includes the size of the neighbor
list whose maximum is set to twice maxM (maxMO0 = 2 x maxM).
After the neighbor list, the raw vector data follow. This original
HNSW database structure can store the graph information in a
more compact manner, but it requires additional calculations to

index the target point’s information in upper-layer table and makes
unaligned addresses both in upper-layer and layer-0 table. As a
result, using the original database structure increases the number
of external memory accesses on hardware when graph traversing,
which can significantly degrade the overall search performance. To
solve this problem, we re-organize the original database into three
types of tables to have a more aligned address for hardware: 1) an
index table that stores the size and pointer information to access
the following list tables efficiently, 2) the list tables that store the
lists of neighbor indexes, and 3) the raw data table that stores the
raw vector data, as shown in Figure 5. Specifically, each line of the
index table contains the size of the neighbor list and the pointer
to access the neighbor list in the list table for each layer. Hence,
if we read a single line from the index table for a point, we can
get how to access its neighbor list in each layer along with the
list’s size information. Each entry of the list table stores a point’s
neighbor list whose maximum size is fixed to maxM in upper
layers and maxMQO in layer-0. For the layer-0 table, we separate
the neighbor list and raw data into different (size information is
already in the index table). This separation allows the search kernel
to access the list table and raw data more easily, removing all the
unaligned accesses in the original structure. Finally, the proposed
reorganized database structure can eliminate the redundant external
memory accesses by aligning the memory address with 64 bytes,
causing only 4% increase in database size compared to the original
database structure. In addition, we cache some of the restructured
tables on-chip for faster database accesses. We initially designed
a standard demand-based cache, but the irregular memory access
pattern by the algorithm makes it impractical to utilize the temporal
and spatial locality. We only got a hit rate of 16.3% with a 4-way
set-associative cache. Since the number of index table entries is the
same as the number of total points, all entries cannot be cached.
Instead, we minimize the access to the index table to one time per
point by putting all necessary information in a single row. Then,
we decide to cache the list tables from the top layer because every
search process starts from the top layer. Due to the FPGA’s on-chip
memory capacity, we manage to store the list tables from layer 6
(top) to layer 3.

5 ACCELERATOR DESIGN

In this section, we describe two types of hardware accelerators
that implement the sophisticated HNSW search algorithm based on
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Figure 6: Overall Architecture

different design methodologies: high-level synthesis (HLS) based
and RTL based.

5.1 HLS-based Design

For the baseline implementation of HLS based design, we use
HNSW’s original C++ implementation in GitHub [3]. We modify
the code to synthesize on Vivado HLS, such as replacing dynamic
memory allocation and data types with static versions. Based on
this baseline, the following techniques are applied to maximize
performance.

5.1.1 Single-bit Tag-based Visited List

The visited list has the same size as the total number of the points
as it needs to check if any point of the dataset is visited for each
query. In the original C++ code, the data type of the visited list
is set to an unsigned integer, and its value is updated to the index
of a query if visited. By comparing the current query’s index and
the target point’s value in the visited list, the search kernel knows
if the point was visited before. This method works well in the
software implementation but requires a large memory space when
the dataset size is large (e.g., 4MB on-chip memory for a million
point dataset). Considering the FPGA’s on-chip memory size is very
limited, the large size of the visited list severely hinders hardware
scalability. To address this issue, we change the visited list to
a single-bit tag-based implementation, where each bit represents
whether each point is visited or not. Although this method requires
the initialization of the list for each query processing, it reduces
the size of required on-chip memory by 32 times.

5.1.2 DRAM Access Optimization

To maximize the DRAM bandwidth, we change all the data types
that access the external DRAM to maximum 512 bits using HLS’s
arbitrary-precision data type ap_uint (N). We use the same data
type for the on-chip table accesses that also require high data
bandwidth. In addition, since the corresponding bit-width is aligned
with the address of the reorganized database that we proposed, the
redundant external memory access does not happen.

5.1.3 Parallelization & Multi-Query Processing

On the compute side, the search kernel reads a candidate index
from the candidate list and visits its neighbor points stored
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in the list one by one. During this process, it calculates the
distance, updates the three lists, and finds the next candidate.
We parallelize this process by reading multiple neighbor points
and performing distance calculations in parallel. The search kernel
then decides how to update the lists with simple comparisons. We
also use the HLS pipeline and HLS unroll pragma to speed up the
distance calculation. In addition, multiple queries can be processed
simultaneously because the search processing for a query is read-
only and independent. In HLS, we instantiate multiple search
kernel modules to achieve higher throughput. We can successfully
integrate two kernel modules with the given FPGA resource.

5.2 RTL-based Design

Although the HLS-based design has the advantage of fast develop-
ment and easy debugging, its performance is often limited. One
major problem of HLS-based design is that it is hard to fully utilize
the external DRAM bandwidth even after substantial optimizations.
Also, the HLS tool often does not support synthesis for custom
parallelization schemes over well-known code patterns. As a result,
the HNSW algorithm turns out to be a bad fit for HLS as it requires
abundant memory accesses and complex dataflow. Therefore, we
also design a custom accelerator in System Verilog to fully exploit
the acceleration opportunities in the algorithm.

5.2.1

Figure 6 shows the overall architecture of the proposed HNSW
accelerator. It consists of a memory access module that manages
all communications with the external DRAM and computing
modules that perform distance calculations and neighbor traversing
to search the nearest points in each layer. Since the memory access
module and the computing modules are cleanly decoupled via FIFO
interfaces, it is easy to increase the number of computing modules
to support multi-query processing. We integrate two computing
modules like in the HLS version in this accelerator design.

Overall Architecture

5.2.2 Upper-layer Operation

For the operation of the proposed accelerator, the host CPU
initializes the SmartSSD’s SSD with the whole graph databases.
On the FPGA side, once it gets the start signal from the host,
the accelerator loads the parameters (e.g., max layer, entering
point, ef value, etc.) and input queries from the external DRAM to
configuration registers and the query FIFO via the parameter DMA
and query DMA, respectively. The raw data DMA then loads the
entry point’s vector data, and the distance calculator computes the
distance between the query and the entering point. Once the initial
distance between the query and the entering point is calculated, the
distance comparator starts the candidate searching. Based on the
HNSW algorithm, the candidate searching for upper layers does
not use the candidate list, and the other two lists as the ef value
is set to 1. It is rather done by simple distance comparison. If the
calculated distance is smaller than the minimum distance stored
in the internal register, the upper layer comparator updates the
minimum distance and sends the index value to the index table
DMA. Then, the index table DMA accesses the index table, and the
list table DMA fetches the neighbor list of the target point. For all
the indices in the neighbor list, the raw data DMA reads the vectors
one by one, and the distance calculator calculates distances between
the vectors and the query. If the upper layer comparator finds a
smaller distance than the minimum value among the calculated
distances, the index of the current minimum distance is sent to the
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index table DMA to traverse the following list in the same layer.
If not, the current layer is lowered to the next layer and sends the
index of the current minimum distance to the index table DMA
to start a new search as the entering point of the new layer. The
accelerator repeats this process until it reaches the bottom layer.

5.2.3 Layer-0 Operation

For the layer-0 case, the layer-0 comparator performs candidate
searching by managing the visited list, candidate list, and final list,
as explained in section 2.6. The visited-list checker checks whether
the current index has been visited before to prevent duplicated
distance calculations. If the index is not visited and its distance is
smaller than the maximum distance of the final list, the index and
distance value are emplaced in the final and candidate list. Both
lists are sorted lists, so each requires sorting when the new data
comes in. Once the layer-O comparator finishes all the distance
calculations and list updates for the neighbor list of the current
index, the search-end condition checker checks if the search should
be ended. It stops searching only if the candidate list becomes
empty or cannot find any good candidate (i.e., min. distance of
candidate list > max. distance of final list). Otherwise, it continues
searching in the following index by sending the current minimum
index of the candidate list to the index table DMA.

5.2.4 Memory Access Module

Each DMA module in the memory access module consists of an
address generator that generates a proper address to the target table
and an AXI read/write master that access the external DRAM. Each
DMA is designed to maximize effective DRAM bandwidth with
utmost bit-width based on each table’s data type and data length.
Especially, the query DMA and raw data DMA are designed with
the AXI’s maximum 1024 bits to support bulk data read of high
dimensional vectors. Since all DMA modules always access the
restructured database with aligned address, the memory access
module can minimize the number of external memory accesses.

5.2.5 Distance Calculator

The distance calculator calculates the Euclidean distance between
a given query and a vector. A single distance calculation unit
comprised of 16 processing elements (PEs) and an adder tree. Each
PE calculates the square of the difference between the two 8-bit
elements and the adder tree accumulates all the square products in
the unit. As the distance calculator integrates 8 calculation units
and another adder tree at the bottom, it can compute the distance
between the two 128-dimensional vectors in parallel at a time.

5.2.6 Distance Comparator

The distance comparator is responsible for searching candidate
indexes and keeping the ef nearest neighbors to return the final
K nearest neighbors. In this iterative process, initialization of the
single-bit tag-based visited list and sorting of the candidate and the
final list is crucial to the performance because the former happens
for each new query and the latter happens for each new index
insertion, respectively. To address this, we propose two design
optimizations illustrated in Figure 7. In our implementation, the
byte size of the visited list is set to 0.62MB to support a total of
5M points. To minimize the number of cycles for re-writing all the
contents to 0, we shape on-chip BRAMs as wide as possible to
the maximum of 512 bits. We also employ a couple of visited lists
to hide the latency by using one as the active list while the other
is initialized. In order to speed up the list sorting, we implement
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Figure 7: RTL-based Design Optimizations

the parallel sorting instead of the serial sorting used in the original
algorithm. We subtract the current distance from each distance
of the list in parallel. Having a bit vector as a result, in which
each bit indicates whether the current distance is smaller than the
corresponding index (=0) or not (=1), we can determine where the
current distance should be inserted in the list.

6 EXPERIMENTAL RESULTS

In this section, we present the implementation results of the
proposed HNSW accelerators and the computational storage
platform using SmartSSD devices. We then evaluate the proposed
platform against other server platforms.

6.1

We chose three server-class computing platforms for evaluation:
CPU-based server platform, GPU-based server platform, and
SmartSSD-based computational storage server platform. The CPU-
based server has 2 AMD EPYC 7351 CPUs, 128GB DIMM,
and 1TB SSD in a 2U server rack. The original C++ HNSW
implementation [3] ran on this server. Since it does not have any
additional computing device, the CPU is solely responsible for all
the computations and data movements. The GPU-based server has
2 Intel Xeon Gold 6226R CPUs and a TITAN RTX GPU that has
4608 CUDA cores with 24GB GDDR6. We run the latest CUDA
accelerated HNSW implementation [4] on the GPU-based server. In
this case, the CPU handles data movement while the GPU performs
the search computations. The computational storage server has
2 Intel Xeon Silver 4210 CPUs and SmartSSD devices, each
containing Xilinx’s UltraScale+ FPGA, 4GB DDR4, and 3.84TB
SSD as near data processing accelerators. In this platform, CPU’s
role is minimized to the control of the devices, including device
programming and launch of P2P communications and no longer
handles large data movement or computation. We vary the number
of SmartSSD devices from 1 to 4 and run our HLS-based and
RTL-based HNSW accelerator on the computational storage server.
The detailed hardware configurations of each server platform are
listed in Table 1. We chose the SIFT1B [6] dataset for benchmark,
which is widely used for evaluating large-scale ANN algorithms.
The dataset contains 1 billion SIFT vectors and 10K queries. Each
vector is 128-dimensional with a byte element format. The total
size of the SIFT1B dataset is 119GB.

Experimental Setup

6.2 FPGA Implementation Results

Table 2 shows the FPGA resource utilization of the proposed
HLS-based and RTL-based designs. Both designs are bounded by
memory resources with more than 80% usage, mostly spent by
the visited list and on-chip list tables. Figure 8 shows the query
per second (QPS) performances of the two HLS implementations
(baseline and optimized) and RTL implementation. The optimized
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Table 1: Experiment Hardware Configurations

CPU-based GPU-based SmartSSD-based
Server Platform  Server Platform  Comp ional Storage Platform
2 AMD NVIDIA Xilinx Kintex
Compute Unit EPYC 7351 TITAN RTX UltraScale+KU15P
CPUs GPU FPGA
GPU Card U2
Form Factor (116mm x 35mm (69mm x 15mm
X267mm) % 100mm)
DRAM 128GB DIMM 24GB GDDR6 4GB DDR4
Capacity (DDR4-2666) (DDR4-2400)
SSD Capacity 1TB 1TB 3.84TB
SSD 0.58GB/s 0.58GB/s 4GB/s
Bandwidth SATA Express SATA Express NVMe U.2
Table 2: FPGA Resource Utilization
LUT FF BRAM URAM DSP
HLS 19362 281743 818 80 837
(37.37%)  (26.95%) (83.13%)  (62.5%)  (42.53%)
RTL 259166 270267 874 96 783
(49.58%) (25.85%) (88.82%) (75.0%) (39.79%)

HLS design achieves 2.66 QPS, which is 8,867 times faster than
the baseline HLS design. This performance gain is achieved by
database restructuring and bit-width optimization that improved the
external memory access pattern. The RTL design achieves 20.59
QPS, improving the optimized HLS design by 7.74 times (68,633x
of baseline). This performance gain is achieved by addressing the
memory bottleneck still existed in the optimized HLS design.
We fully utilize the physical data bandwidth by designing a
custom memory interface and minimizing external memory access.
This increase of effective bandwidth results in a drastic overall
performance improvement.

In addition, we compare the performance of our RTL-based
design against the brute-force approach if it was implemented on the
SmartSSD’s FPGA. The theoretical maximum QPS performance
of the brute-force design can be calculated using the number of
DSP slices, operating frequency, and the number of vector reads
for searching. Since the total number of DSPs in the FPGA is
1968 and each vector is 128-dimensional, the brute-force design
would be able to process a maximum of 15 distance calculations
between a query and vectors in parallel. Assuming the operating
frequency is 200MHz, the computing throughput of the brute-
force design is 3 billion vectors per second. A single query needs
to compute with 1 billion vectors in the SIFT1B dataset, so it
takes 0.33 seconds to process. In this time, 1920 DSPs execute
15 parallel distance calculations every single cycle with 100%
utilization. We do not consider any time for distance comparisons
and data fetch from memory. Hence, 3 QPS is the theoretical
maximum performance of the brute-force design. Figure 9 shows
the QPS and the number of vector visits required for searching
in both HNSW (RTL-based) and brute-force design. The HNSW
implementation shows a 6.86x higher QPS throughput than the
brute-force implementation. The main reason for this performance
gap is that the HNSW implementation reduces the number of
vectors required in a single query search by 338,739 times, which
is 0.03% of the brute-force case. Although the HNSW requires
a lot more complex computation and memory access per vector
read, the much smaller number of reads enables the HNSW to
outperform the compute-bound brute-force approach.

6.3 Scaling-up with Multiple SmartSSDs

One major advantage of using SmartSSD is that it is easy to scale
out the number of devices with its standard U.2 form factor in
the storage server. Managing multiple SmartSSD devices only
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requires a small revision to the host code. The host needs to
identify each device and program it individually. Once programmed,
the host creates a device context for each and sends commands
through the context as it does in the single device case. On the
modified HNSW algorithm, in which we already divided the large
database into smaller graph databases, we have two parallelization
strategies to utilize multiple SmartSSDs: query parallelism and
graph parallelism.

In query parallelism, each SmartSSD holds a full copy of
the graph databases and processes a different set of queries, as
shown in Figure 10 (a). In this case, there is no dependency among
devices because each SmartSSD has an entire database and works
on different queries. However, all sub-graph databases need to
be loaded from the SSD to DRAM, so the latency required for
database movement can become a bottleneck in the overall system.
On the other hand, graph parallelism distributes graph databases
among multiple SmartSSDs, without any database duplication.
Each device is responsible for finding the top K results out of the
assigned graph databases, as shown in Figure 10 (b). Since the
number of sub-graphs processed in a single SmartSSD decreases,
the database transfer latency is also reduced in proportion to the
number of devices. However, the top K results from each SmartSSD
need to be aggregated in the host, and the brute-force search is
required to compute the final nearest neighbors.

Figure 11 shows the QPS performance of the two different
parallelization approaches when the number of SmartSSDs varies
from 1 to 4. As shown in Figure 11 (a), the performance of the
query parallelism does not scale linearly as the number of devices
increases. It achieves 32.17 QPS with 4 SmartSSD devices, which
is only 1.56x higher than the single device performance. The reason
for the nonlinear increase in performance is mainly because each
device still needs to load an entire database from the SSD to
DRAM. The computation time does reduce by four times because
each divice processes only 1/4 of the input queries, but this means
the effect of input batching is also reduced by four times because it
has a smaller number of queries to work on with a single memory
load. As a result, the database transfer time, which is a bottleneck
of the system, hinders the linear increase in the QPS performance.
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In comparison, the performance of the graph parallelism increases
almost linearly as the number of devices increases. It achieves 75.59
QPS performance, which is 3.67x higher than the single device
performance, as shown in Figure 11 (b). Unlike query parallelism,
graph parallelism reduces computation time as well as data transfer
time by reducing the number of graph databases to cover per device.
In graph parallelism, the host should aggregate the results from the
devices and perform the last brute-force search. However, the host
needs to find just the ten best searches out of 40 candidates for each
query. Thus, its workload is negligible. Based on our measurement,
it takes 0.29s, which is only 0.2% of the overall execution time.

6.4 Evaluation

To evaluate the performance of a large-scale ANN search on
different server platforms, we measure the QPS and average power
consumption of each server platform when they run the HNSW
algorithm on the SIFT1B dataset with the same configuration
(ef=40, K=10). For the CPU-based server platform, we change the
number of threads from 1 to 32 and enable the SIMD extension for
efficient vector distance calculations.

Figure 12 shows the QPS, average power consumption, and
energy efficiency of the three server platforms. The performance of
the CPU-based server platform linearly increases until the number
of threads is 4. However, its performance is saturated beyond
this point, mainly because of the memory interference among
multiple threads. The CPU utilization is also saturated at a low
level, implying that the target workload is not compute bound,
but memory bound. We confirm this observation in the GPU
setting as well. Although GPU’s compute kernel performance

achieves 26.34 QPS with heavy optimizations in CUDA and
maximized query batching (i.e., processing 10,000 queries at a
time), its overall performance drops to 4.22 QPS. This is because
the graph database stored on the system’s SSD should be first
copied to the host main memory and then transferred to GPU’s local
DRAM for processing. On the contrary, the proposed computational
storage platform solves this data movement problem by placing
the high-capacity SSD and the FPGA in the same device and
utilizing P2P communication between them for efficient near
data processing. The platform achieves 20.59 QPS, which is
only 40% lower than its maximum compute capability of 35.15
QPS. In addition, the proposed computational storage platform can
scale up by harnessing multiple SmartSSD devices and achieve
better performance. With 4 SmartSSDs, the platform’s overall
performance increases almost linearly to 75.59 QPS. As a result,
the proposed computational storage platform shows 1.41-3.5x and
4.88x higher QPS performance than the CPU-based and GPU-
based server platform with a single SmartSSD. More remarkably,
with 4 SmartSSDs equipped, the same platform shows 5.18-12.83x,
and 17.91x higher QPS performance than the CPU-based and
GPU-based server platforms, respectively.

Figure 12 (b) shows the average power consumption of the three
server platforms. We confirm that the idle power of the CPU-based,
GPU-based server platform and SmartSSD-based computational
storage platform without extra computing devices such as GPU
and SmartSSD are 200.4W, 194.4W, and 178W respectively. For
the CPU-based server platform, the overall tendency of the power
consumption is similar to its QPS results. The power marginally
increases up to 221 W until the number of threads reaches four but
decreases to around 210W after the overall performance is saturated.
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The GPU-based server platform and the computational storage
platform, each with an extra computing device, consume 340.42W
and 195.75W, respectively. Considering the idle power of each
platform is 194.4W and 178W, the power-hungry GPU significantly
contributes to the high power consumption. On the other hand, the
computational storage platform with a single SmartSSD device
consumes as much power as that of the CPU-based server running
a single or two threads when we equalize the idle power of the two
server platforms. When the number of SmartSSD devices increases,
the power consumption of the computational storage platform,
except for the base server power, increases linearly. However, the
SmartSSD device itself is much more power-efficient than the
GPU, so the computational storage platform with 4 SmartSSDs
only consumes 258.66W, which is still significantly less than
the GPU-based server. Finally, the energy efficiency of the three
server platforms, which is calculated by QPS performance divided
by average power consumption (= QPS/W), is shown in graph
(c). The computational storage platform with a single SmartSSD
achieves 1.59-3.75x and 8.75x higher energy efficiency than the
CPU-based and the GPU-based server platform, respectively. The
same platform with 4 SmartSSDs achieves 4.42-10.43x and 24.33x
higher energy efficiency than the CPU-based and the GPU-based
server platform, respectively. The large performance and energy
efficiency gain over the conventional server platforms is achieved
because the proposed platform effectively reduces the data transfer
overhead at the system level by near-data processing in SmartSSD.
The accelerator design for a complex HNSW search algorithm also
contributes to the gain. It is also noteworthy that the SmartSSD’s

power consumption and its form factor are about 10x smaller
than a comparable GPU card, which makes SmartSSD even more
promising for future data center applications.

6.5 Discussion

Given the limited resource of hardware and experiment envi-
ronment, we utilized three different server platforms with fixed
configurations to demonstrate the merits of our near-data processing
solution. With recent advances in memory (e.g., HBM, NVMe SSD)
and technology supported by the hardware (e.g., GPUDirectStorage
[5]), architects are provided with various sets of hardware and
tools for constructing their system. This section discusses some
key design parameters of the systems and their effect on overall
systems.

SSD bandwidth. While our baseline CPU- and GPU-based
server platform uses the SATA interface that provides 0.58GB/s
bandwidth, today’s NVMe SSDs can support up to 4GB/s of
bandwidth via PCIe3x4. Since the storage IO bandwidth is the
bottleneck of the overall system, adopting SSDs with higher band-
width interface makes a baseline server system have comparable
throughput to that of SmartSSD. However, the primary advantage
of using a computing storage device is the direct integration of the
SSD and FPGA within a compact device. This integration allows a
large amount of data transfer without going through the long PCle
lanes in the main board of the system. This physical advantage
reduces the power consumed in the entire system, and it makes the
whole system more energy-efficient.
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GPU P2P transfer. GPUDirectStorage (GDS) has recently
enabled a direct data path for DMA transfers between GPU memory
and storage. This P2P transfer avoids a bounce buffer through the
CPU and decreases the latency on data movement. If we use the
GDS for P2P communication in our GPU-based server platform,
the overall throughput would be mainly determined by the SSD
bandwidth. In the current SATA interface, the IO time of the
GPU system accounts for 84% of the total latency. Therefore,
when we calculate the expected throughput for the case of NVMe
SSD and GDS, the throughput could increase up to 17.28 QPS,
which is still lower than the SmartSSD-based server platform.
Significant performance improvement can be achieved by larger
bandwidth SSD and P2P communication, but GDS still requires
the GPU and SSD to be connected via the long PCle lanes on the
mainboard, unlike the SmartSSD based server platform, which
definitely causes more power consumption than the proposed
platform with SmartSSD.

Dataset size. SM vectors are the maximum data size that
the FPGA can handle at once because we already use 88.82%
of the BRAM in our current implementation. However, using
the modified algorithm that divides the monolithic database into
multiple databases, our hardware can cover a much larger dataset
by iterating through the sub-graphs. For a smaller dataset with
less than SM vectors, a maximum throughput of 4118 QPS can be
achieved, which is the throughput when a single graph is executed
on the SmartSSD.

7 RELATED WORKS

There has been rich literature regarding hardware acceleration of
nearest neighbor search algorithms. Zhang et al. [37] presented
a novel PQ-based ANN search on the Intel HARPv2 FPGA
platform using OpenCL language. Although its proposed PQ-based
algorithm is highly parallelizable and scalable with achieving
high QPS on FPGA, its low accuracy can be a problem in some
cloud services that require high accuracy. Abdelhadi et al. [7]
implemented a PQ-based ANN search on FPGA to maximize its
throughput, but the algorithm innately suffers from low accuracy
and targets only a small dataset. There have been many publications
that use a computational storage platform for near-data processing.
Biscuit [18] was a platform for near data processing based on a
custom board like SmartSSD but with an SSD and low-performance
processor. BigStream [28] targeted big data analytics using the
SmartSSD board in PCle HHHL form factor. However, none of
the previous works used a computational storage platform for
graph-based ANN search.

8 CONCLUSIONS AND FUTURE WORKS

In this paper, we present a computational storage platform for
fast and energy-efficient billion-scale nearest neighbor search on
high-dimensional vector space. Among many approximate nearest
neighbor search algorithms, we choose the HNSW algorithm, which
is widely used in cloud-scale services due to its high accuracy
and database scalability based on the multi-layer graph structure.
However, the HNSW algorithm is cumbersome to accelerate in
hardware as it involves a huge database and irregular memory
access patterns for graph traversing. In this paper, we first propose
to use Samsung’s SmartSSD computational storage device to
accelerate the HNSW nearest neighbor search algorithm. The
entire database is stored in the SSD while a segment is fetched
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to a local DRAM for fast access. On FPGA, the HNSW search
kernel is implemented in two different design methodologies: HLS
and RTL. The HLS-based design heavily modifies the baseline
C++ code with various optimizations, while the RTL-based design
proposes a custom hardware architecture that can fully utilize the
external memory bandwidth with parallelized search logic. We
also scale up the computational storage platform to have multiple
SmartSSD devices. As a result, the proposed platform achieves
75.59 QPS for the SIFT1B dataset, which is up to 12.83x and
17.91x faster, and up to 10.43x and 24.33x more energy efficient
than the conventional CPU-based and GPU-based server platform,
respectively. For future works, we plan to improve the performance
of the computational storage platform even further by scaling up
the system with more SmartSSD devices. We also plan to increase
the size of the vector database to tens of TBs so that we can fully
utilize the platform’s capability. In the end, we would like to run an
end-to-end image search application on the proposed platform. If
we can run a data-intensive cloud services on a smaller number of
computational storage nodes, it will be very impactful to the cloud
industry.
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