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Abstract—For mobile devices, communication via cellular
networks consumes more energy, and has a lower data rate
than WiFi networks, and suffers an expensive limited data
plan. However the WiFi network coverage range and density
are smaller than those of the cellular networks. In this work,
we present a behavior-aware and preference-based approach to
prefetch news webpages that a user will be interested in and
access, by exploiting the WiFi network connections to reduce
the energy and monetary cost. In our solution, we first design
an efficient preference learning algorithm based on keywords
and URLs visited, which will keep track of the user’s changing
interests. By predicting the appearance and durations of the WiFi
network connections, our prefetch approach then optimizes when
to prefetch what webpages to maximize the user experience while
lowing the prefetch cost. Our prefetch approach exploits the idle
period of WiFi connections to reduce the tail-energy consumption.
We implement our approach in iPhone. Our extensive evaluations
show that our system achieves about 60% hit ratio, saves about
50% cellular data usage, and reduces the energy cost by 9%.

Index Terms—Prefetch, predication, mobile computing.

I. INTRODUCTION

According to a recent study [?], mobile web browsing is
growing significantly and expected to surpass the desktop web
browsing by 2015.Web browsing and news reading account for
a large proportion of the time and data used by smartphones.
Smartphone users with a data plan spend on average 300
minutes per month browsing the web, which is comparable to
mobile voice usage [?]. The global smartphone study run by
Zokem shows that web browser is the single most popular data
application which accounts for 54% of data application face
time and 50% of data volume for smartphones [?]. Among the
user’s web browsing activities, reading news makes up for 68%
of the time which is one of the most frequent activities [?].

Typically there are two different networking access ap-
proaches: cellular network and WiFi network. Although the
cellular network is almost ubiquitous and its coverage seems
not to be a problem, the limited data plan, higher price, lower
data rate and more energy consumption [?], [?] make the
smartphone users prefer using the WiFi network whenever
possible. It is thus natural to switch to WiFi network access
whenever possible. Seamless switch between networks has
been proposed to improve the networking performances [?],
[?]. To further reduce the energy and monetary cost while not
sacrificing the user experience, in this work we present a seam-
less transparent solution that automatically prefetches contents
and switches between networks. Techniques of prefetching
contents [?], [?] and seamlessly switching networks [?], [?]

have been used previously to address various challenges. To
make the content prefetching work for mobile devices, a
number of challenges must be addressed. In general, we need
to know when to prefetch what contents such that the user
experience is not deteriorated and the overall energy cost and
monetary cost for data plan is reduced. Then we need to learn
and predict the availability of WiFi network access and the
user web-browsing preference.

To address the challenge of knowing what to prefetch, we
predict what webpages the user will visit in the near future and
prefetch them via WiFi network at an appropriate time. When
the user indeed wants to read these webpages later, there is no
need to access them via cellular network. With the advances in
mobile devices, the memory is getting larger and computation
capacity are becoming stronger, so it is possible for mobile
devices to learn the user’s preference and prefetch the web
pages in advance. Most of the previous work on web prefetch
is based on the URLs of web pages visited by the user in the
past. Moreover, the majority techniques for web prefetch focus
on short-term prefetching, where the webpages will be visited
in a short time period, e.g., a few seconds to a few minutes
at most. The short-term prefetch technology can be divided
into two categories: probability-based and clustering-based
approach. In probability-based approach, the web request
sequence is assumed to follow a certain probability distribution
and the future request hence can be anticipated according to
the pattern. For the clustering based approach, the decision
is based on the assumption that the webpages close to the
previous downloaded webpages are more likely to be accessed
in the future.

In this paper we focus on the long-term web prefetch which
prefetch the web contents much earlier (e.g., half an hour
to several hours) before the user browses the webpages. An
motivating example for this long-term prefetch is as follows.
Assume that a user Bob goes to work at 8:00 am in the
morning by train and he is used to read news on his way
to the office. Assume there is no WiFi network in the train
and Bob has a WiFi network at home. By profiling the news
types and frequently visited pages by Bob in the train, we can
prefetch these dynamic contents for Bob when he is about
to leave home for work. Although contents prefetched might
be obsolete or be invalided in the future, we assume that the
user’s experience will not drop by reading the news prefetched
about an hour ago.

Unfortunately, for news prefetch, URL-based approach is



insufficient because each piece of news is often assigned a
unique URL and a user seldom reads the same news twice. It
is hard to predict what kind of news a user will be interested in
purely based on the URL of the news. In this work, we present
a prefetching approach that combines the keyword-based and
URL-based approach. Based on the list of most visited web-
sites and sections by the users (e.g., cnn.com, cnn.com/World),
we assign different weights to different websites and sections.
We also capture the user’s dynamic preference on news by
assigning decayed weights to the list of mostly appeared
keywords in the news. We then sort the list of possible news
based on a combination of the websites” weights and keywords
weights. This will give us a list of news to prefetch.

The second challenge is to decide when to prefetch these
contents. Several challenges make the decision of prefetch
timing difficult: (1) if a user has a WiFi network access
now, we need to predict when the user will move outside the
coverage region of the WiFi networks; (2) even if we know
when the WiFi network connection will be lost, we need to
estimate the time needed for prefetching the contents so that
the prefetched contents are mostly up-to-date when the user
reads it; (3) the prefetching activities should not interfere the
regular network usage activities by the user (otherwise, the
user experience will be deteriorated).

In summary the main contributions of this work are as
follows. We combine the keyword-based and URL-based
prefetching approach to predict the webpage a user will be
interested in. We also present a network condition prediction
approach that can start contents prefetch automatically. In
addition, we propose a prefetch scheduling algorithm to exploit
idle time of the network to prefetch the web pages. See
Section for details of our system design and approaches.
We implement the prototype system in iPhone and conduct
extensive evaluations on the performance of our system. The
experimental results reported in Section [V] show that our
system has high hit ratio and low waste ratio while at the
same time is energy efficiency and data saving.

II. RELATED WORK
A. Desktop Prefetch

Web prefetching has been studied for a long time. The pri-
mary objective of prefetching technique in desktop computer
is to reduce the latency of web page loading and increase the
hit ratio of the prefetched web pages.

1) Short-Term Prefetching: Short-term prefetching tech-
nique aims at predicting the web pages to be visited in the
near future say the next one or two web pages. Markov
model is an important approach for short-term prefetching.
The Markov-based prefetching technique predicts the next
web pages to be visited by analyzing the past visit sequence.
Xing [?] proposed a hybrid-order tree-like Markov model that
can predict web access precisely. By analyzing the user’s
visit path, Jin [?] proposed a prefetching model based on the
Hidden Markov Model (HMM) that is able to capture and
mine the user’s information requirement for the future and
then makes semantic-based prefetching decisions.

Firefox [?] introduced a new strategy for website optimiza-
tion: link prefetching. The browser can prefetch specified web
pages based on the prefetching hints provided by the web page.
It utilizes browser idle time to download or prefetch documents
that the user might visit in the near future. In HTMLS5 [?]
prefetching is done via the LINK tag, specifying “prefetch”
as the rel and the href being the path to the document.

2) Long-Term Prefetching: In contrast to the short-term
prefetching, long-term prefetching uses long-term steady state
object access rates and update frequencies to make prefetch
decisions. Markatos [?] proposed a top 10 approach for
prefetching: the server keeps the most popular documents
requested by the proxies and the clients, and then these top 10
documents will be considered for prefetching by the clients.
In the approach by Shin [?], the proxy calculates both the
most popular domains and most popular documents in those
domains, then prepares a rank list for prefetching. Keyword-
based prefetching for Internet news services is presented in [?]
[?]. The keyword-based approach is able to prefetch the URLs
that is rarely accessed or have never been before. Venkatara-
mani et al. [?] presented and evaluated a long term prefetching
policy based on both object request rates and lifetimes. Wu [?]
proposed a H/B-Greedy prefetching to improve the H/B metric
which combines the effect of increasing hit rate (H) and
reducing the extra bandwidth (B) consumed by prefetching.

B. Mobile Prefetch

The prefetching technique for mobile device also needs to
be energy and data efficient. Balasubramanian [?] presented a
measurement study of the energy consumption characteristics
of three widespread mobile networking technologies and finds
that 3G and GSM incur a high tail energy overhead incurred
by staying in high power states after completing a transfer.
Liu et al. [?] proposed the TailTheft to schedule a number
of transmissions to the Tail Time of other transmissions.
Balasubramanian [?] explored the use of intermittently avail-
able WiFi to reduce 3G data usage and ease pressure on
cellular networks. [?] proposed the VAP scheme which can
dynamically adjust the number of prefetch jobs based on the
current energy level to prolong the system running time. [?]
described a prefetch scheme that adapts to different network
systems. [?] presented a cost-benefit analysis to decide when to
prefetch based on the performance such as latency reduction,
the cost of energy and monetary cost or data usage.

Lymberopoulos [?] presented a prefetching technique based
on machine learning approach for mobile phone. Their
prefetch technique is based on the visited URLs and only
focus on the URLs visited most frequently. They extract
spatiotemporal feature form the user’s browsing behavior and
use these features for training. Their approach also decreases
the energy consumption by offloading the machine leaning
job to the remote server. Song [?] proposed novel algorithms
to mine the association rules and use them to construct the
prefetch sets and proposed a cache-miss-initiated prefetch
(CMIP) scheme to reduce system resources consumption such
as bandwidth and power. Armstrong [?] employs a pair of



proxies, located on the mobile client and on a fully-connected
edge server respectively. The client specifies her interest by
highlighting portions of already fetched webpages through the
browser. If relevant changes have occurred, the edge proxy
will aggregate the updates as one batch to be sent to the
client. Komninos [?] presents a prefetching approach based
on the contextual information regarding the user’s activities
and interests extracting from their electronic calendar.

To enhance the prefetching performance, it is also important
to predict the network environment [?]. Higgins [?] presented
a predictive frame for mobility-aware prefetching. It uses the
Gauss-Markov model to estimate the movement and further
estimate the probability of the future location.

III. PROBLEM FORMULATION AND CHALLENGES
A. Problem Formulation

Given the user’s access history and the past network
condition, we want to prefetch the web pages via WiFi
network for the user to browse when the WiFi network
is not available. Here we focus on prefetching news web
page from news websites. To capture the user behaviors and
for easy manipulation, we designed and implemented a web
browser for i0S. We assume that the user visits web pages
through our browser and we can keep track of the user’s
access history. In addition, to keep the prefetching activities
transparent from the end-users while not interfering the regular
browsing activities of end-users, our system should prefetch
the webpages automatically by carefully exploiting the idle
network connections. Our system also will predict the network
connections, especially, when the end-user will have a WiFi
network access and when the end-user will leave the current
WiFi network. Based on this network prediction and the user
browsing behavior and preference model, we should carefully
schedule the prefetching jobs such that we can prefetch the
most latest related news before the user leaves the current
WiFi network coverage. Observe that a user still needs to use
cellular network connections when the user wants to read some
news webpages not yet prefetched. An intermediate goal here
is to reduce such cellular network connections as much as
possible. The ultimate goal is to carefully decide what contents
to be prefetched at what time such that the overall energy
consumption and the paid network access are reduced.

B. Challenges and Approaches

1) News Preference Issue: How to learn the user’s prefer-
ence is a challenging problem. Learning the preference by the
URLSs visited by the user is not accurate for news prefetching,
as a user always read the newly added news which often
have new URLs, which are hard to predict. Another technique
for learning the user’s preference is to perform statistics
(e.g., the keywords frequencies [?]) on the news webpages
visited by the user. Keywords extraction has been widely
used for understanding webpages [?], [?]. Unfortunately these
techniques cannot be directly applied here as our goal is to
reduce energy consumption and data access: If we analyze
the whole news word by word, it will cost a large amount

of energy and might not find the keywords in which the user
are really interested. Besides, the keyword list maintaining is
also challenging since the keyword list will keep growing as
the time goes on and some keywords will become obsolete.
We need to refresh the keywords list such that the keyword
list size is bounded and it indeed actually captures the user’s
recent interests.

Not only the keywords, the visit paths within a news
website are also important for preference learning. It will
consume a large amount of time to search the news from all
news websites. Even for the same website, there exits always
multiple sections for different categories and searching all the
sections also costs time. Thus the prefetching need to combine
the keywords and the visit path of the websites, that is we
need to prefetch the news including the keywords from the
user’s favorite websites. Instead of keep tracking all the visited
URLSs, we only keep track the URLs of the news website and
the URLs of the sections and subsections in the news website
(see Fig. 2] for details).

2) Performance Issue: Performance is a major concern due
to the limited bandwidth of the mobile device. Fast loading
of a webpage is what the user desires, so the prefetching is
supposed not to interfere the user’s normal browsing. It is
better that we prefetch contents when there are no regular
networking activities: prefetching should be interleaved among
regular data transferring. In order to exploit the period after the
data transferring is completed, we need to estimate when the
next regular web browsing requests will occur and how long
a prefetching job will take. Observe that a user often experi-
ences various networking speeds due to different networking
environment (e.g., time, location, and APs). However, our
extensive evaluations (downloading more than 300 webpages)
at three different locations show that the fetch times for
webpages do not have a large variance. For simplicity, in this
work, we will use the mean fetch time as the estimated time
for prefetching any new webpage.

3) Energy Issue: Due to the limited lifetime of the bat-
tery in mobile devices, energy consumption is an important
consideration for the mobile prefetching approach. Prefetching
web pages will consume large amount of energy when using
wireless connection, especially when using cellular network
or the connection is poor. WiFi networks, in general, consume
less energy than cellular network, so if we can always prefetch
contents via WiFi network it will save the energy consumption.
However, the WiFi network is not always available for some
areas. Thus, we should exploit the WiFi connections whenever
possible. To ensure that the prefetched news is up-to-date, we
will delay the prefetch as late as possible.

Though the WiFi network is energy saving compared to
the cellular network, both WiFi and cellular network waste
some energy when the data transfer is completed, which is
called 'tail energy” [?], [?]. Since the mobile device is at high
powering setting when transferring data via WiFi or cellular
network, after the mobile device completes the transferring it
still consumes more energy than normal setting. Though the
“tail energy” is unavoidable for the mobile devices, we can



also exploit the period after the transferring to prefetch the
news for the user in advance, such that the tail energy will not
be wasted. Thus we also need to learn the user’s behavior such
as how long the user stays in the current WiFi network and the
time separation between two normal consecutive networking
activities.

On the other hand, prefetching the useless news that the
user will not read in the future also wastes a certain amount
of energy. If the news is with low possibility to be read in
the future, then it is better not to prefetch it, instead let the
user access it via cellular network when needed. Though the
more we prefetch, the higher possibility we prefetch all the
contents to be accessed, but the more energy consumption.
Thus we need to balance the amount of the news to prefetch
and accuracy of the prefetching.

IV. SYSTEM DESIGN
A. System Architecture

To predict the webpages the user will visit in the future, we
need to learn the user’s preference based on the news read.
Besides in order to effectively schedule the prefetching jobs,
we also need to learn the user’ s browsing behavior. Table [I|
shows the data we need to learn about the user’s preference
and behavior.

TABLE I
PREFERENCE AND BEHAVIOR LEARNING

Learning [ Data

Time interval between two web requests,
Enter time, Leave time time of the webpages
Keywords in the title, visited URLSs

Browsing Behavior

Browsing Preference

WiFi

‘Web Browsing Cellular

£ AN
[Preference Leamin}; [Bchavior Leamin%

Prefetching

ersonal Preferenc Location Monitor |

Personal Behavio)

Fig. 1. System Architecture

Fig. [1] illustrates the system architecture. In our system,
the preference learning module learns the user’s preference
and predicts what web pages the user will visit based on
the preference learned. Location monitor module runs in the
background to keep track of when the user enters and leaves
a certain Wifi coverage area. Based on the historical log
provided by the location module, the behavior learning module
will predict when the user is about to leave the wifi coverage

area and trigger the prefetching module to start prefetching.
If the prefetching module is triggered to start, it will find the

web pages that is likely to be visited in the future based on the
prediction results provided by the preference learning module.
After extracting the URLs of the web pages to be visited,
the prefetching module then schedules these prefetching jobs
according to the user’s browsing behavior which is provided
by the behavior learning module.

B. Network Environment Prediction

The first challenge to be solved in our system design is
decide on when to prefetch web pages for the user. Although
the user wants to read the latest news, but for most users they
will be also interested in the news happened several minutes
or hours ago. So prefetch the ”old” news is reasonable and
meaningful to the user. But we still want the news prefetched
to be relatively new, so we begin the prefetching as late as
possible while ensuring the prefetching can be finished before
the user leaves the WiFi. To do this, we need estimate how long
the user will stay in the coverage area of the current network.
For most of the people, the daily schedule and weekly schedule
do not change a lot and hence it is possible to do such network
coverage prediction.

Monitoring the network connection all the time sometimes
may give us misleading information about how long the
user stays in the WiFi area, because it is possible that in a
certain position in the WiFi coverage area, the WiFi access
is temporarily unavailable. Instead of monitoring the network
connection, we monitor the user’s current location to estimate
when he or she leaves a certain area. The location module is
available in most of the mobile devices that can help us to
monitor when the user enters of leaves a certain area.

We observe that the durations of a user staying in a network
depend on the time. For example, in weekdays a user may go
to the office at 9:00 am and work till 12:00 pm during which
the WiFi network is available. At noon the user might go
outside to have lunch where he would like to read the news
but the WiFi network is not available. We can then predict that
the user will usually have Wifi access from 9am to about noon.
In the afternoon, the user may stay in office from 1:30PM to
5:30PM. Thus, to precisely estimate how long a user will stay
in a certain area, we will keep track the following information
(t;,d;, L;, SSID;), where t; is the time the user enters the
coverage area of the network with SSID; at location L;, and
the user will stay in this network for a duration of d;. We will
round time t; to hours. Based on the collected networking
access data, we then predict when the user will leave the
current Wifi network.

As a result, for the same WiFi we have multiple time dura-
tion records for the same entering time. We use a probability-
based algorithm to estimate the time the user will leave the
current network, such that we can finish the prefetch in time.
Let T} be the collection of time the user stays in the WiFi
coverage area of SSID i after entering at time ¢, where d is
the day (e.g., Monday, Tuesday, efc.) and the hour when the
user enters the WiFi coverage. Let p!(d) be the probability
that the mobile device is connected to this AP for over time
d when entering at time ¢. We estimate the time that the user



will stay in the current WiFi coverage as
argmin{d | p(d) > 4},

where ¢ is a threshold value (chosen as 0.5 in our implemen-
tation).

Given the estimated staying time, it is still necessary to
choose an appropriate time during this period to prefetch web
pages. Prefetching late can result in that some webpages the
user might browse in the future cannot be prefetched before the
user leaves the WiFi coverage area. However early prefetching
can also cause problems: the prefetched webpages may be out
of dated as the webpages be updated; the user may browse the
prefetched news when within the WiFi coverage area, which
go against our purpose to prefetch webpages for the use in a
non-WiFi environment. Thus we seek to find the time to start
the prefetching as late as possible, while at the same time to
ensure that the prefetching can be finished in time. Given the
estimated staying time d, number of web pages to prefetch
land the average fetch time f, in order to finish prefetching
these webpages before the WiFi coverage is not available, we
need to start to prefetch no later than d — [ - f.

C. Web Page Access Prediction

1) Preference Learning: News title is always concise, in-
formative and highly related to the content of the news, and
the user is always guided by the keywords in the title. For
example, a basketball fan may not want to miss any news titled
with "NBA” or “Lakers”. Thus by extracting keywords from
the titles we can effectively learn the user’s preference and
predict what news the user will be interested in. In addition, the
users are interested in different keywords to different degree
and hence we quantify the keyword interest by assigning each
keyword w with a interest weight ¢(w). Each time the keyword
w appears in the title of the news read by the user, we increase
¢(w) by a constant ¢,

In order to get the title of the news to extract keywords,
for each requested news webpage, we will parse the head of
the HTML file of the webpage and get the title of the file
which is the news title. By getting rid of the function words
and punctuations we can obtain the according keywords in the
title.

Since people’s interests will change as time goes on, newly
appearing keywords in the title play an more important role
in learning the user’s preference than old ones. For example a
user might be interested in the presidential election in Novem-
ber, so the news tilted with election”, “Democratic” and
”Republican” will be browsed with high possibility. However
in the next month, the user might be bored with the “election”
and turn the interest to the “Christmas” and “new year”. To
deal with the issue of interest changing, we use a time decay
function to keep reducing the keyword’s interest weight as
time goes on.

In each time period ¢, the keyword w’s weight ¢(w) in the
keyword list will be reduced to g(w) - (1 —§), where 1 — ¢ is
the decay rate, and remove the keyword if its interest weight
is less than the threshold e. Not only the decay function helps

us capture the user’s current interests, but also contributes to
reducing the size of the keyword list. To effectively maintain
the keyword list, we use the heap data structure to store the
keywords. In every time period we will check whether the
root’s interest weight is less than ¢, if so we remove it from
the keyword list and heapify the keyword list, and then check
the new root’s interest weight until the root’s weight is larger
or equal to €, as shown in Algorithm [T}

Algorithm 1 Keyword

1: while The weight of the keyword at root ¢(w) < ¢ do
2:  Remove keyword w from the keyword list

3:  Heapify the keyword list

4: for each keyword w in the heap do

5 gw) — q(w) - (1-0)

In our keyword maintaining approach, the keyword w might
be removed from the keyword list and later be added again.
Thus w’s weight g(w) is accumulated and decayed since the
latest time it is added to the keyword list and g(w) is less
than the “actual” weight. However in our approach, if keyword
is removed from the keyword when weight ¢(w) is smaller
that €, the actual weight is also less than a constant of the
removal threshold e. Formally, for each keyword w in time
interval between time ¢ and n we define a weight function
firw) = 35 @j(w) - (1= 6)"7, x(w) € {0,1}, where
xj(w) indicate whether w appears at time t;. In each time
slot, if f"(w) < e, where time ¢ is the first time word w
appears since the last removal, the word w will be removed
from the keyword list. Then we have the following theorem

Theorem 1: If a word w is removed from the keyword list
at time slot n, then the weight fi'(w) < 1=.

Proof: Assume that a word w is added into the keyword
list and then removed for n times. Afterwards, at time slot a;
word w is added into the list again and at time slot r; removed

from the list. Let v;(w) = fa:”) and t; = 7; — a;, then we
have
fi(w) =Y vilw) - (1= 0)=0" M
i=1
n
<> e (1-8)=ih )
i=1
<e- Y (1-8)=h 3)
i=1
€
- 4
1—ce€ @)
This finishes the proof. |

Since word w is added at time a; and removed at time r;,
(11— &) must be less than € and hence 31" (1 —§)Xi't <

1

*fhe user’s preference on news is also related to sections
of the news website. The news website is always organized
as a tree structure as shown in Figure 2] which consists
of several sections such as Sports, Economy, Entertainment,



and each section also has some subsections . Learning the
user’s preference only based on keywords is no enough. For
example the user always visits the sports section and thus the
news in this section will be browsed by the user with higher
probability. Thus we also keep track of URLs of the sections
and subsections visited frequently by the user such that we can
prefetch the news from these URLs. Similarly to the keywords,
we assign a interest weight #(s) to each section s. We keep
track of the times the section s is visited by the user and
each time the user visits the section s, we increase the weight
t(s) by a constant ¢;. Besides, the weights of URLs are also
decayed as time goes on using the same approach for the

keyword.

subsection (/World/Euro coe

Fig. 2.

With the interest weights of keywords and URLs, we define
the interest weight for each news according to the keywords
appearing in the headline and the URL where the news appear.
The higher the weight is the more possible the user will read
it. Assume that keywords ws, ..., w, appear in the news h’s
title, and the weight of the section where the news appears is
t(s), then we set h’s weight as

Website

cnn.com/Tech

/Tech/PC LR /'l‘eLh/Mnbile

‘Website Architecture

Section

[news] -+ ]

n

w(h) = q(w;) + t(s) )

i=1

2) News Searching: If the prefetching module is about to
start prefetching, it will search the news from the sections
frequently visited by the user. In order to search the news
from a web page, we first need to parse the HTML files of the
according sections’ webpages. The HTML file is structured as
a tree structure — dom tree and each element of the HTML file
is represented as a node, such as title, data, image, hyperlink,
etc. We search the whole dom tree to find all the nodes tagged
with the < a > which represents the hyperlink node. Then
from the hyperlink nodes we can obtain the URL of the news
webpage and the title of the news. One problem concerning
the extracted URLs is that for some websites, the URL of the
hyperlink might be the relatively path not the absolutely path
of the webpage and prefetching the relative URL can lead to
web request failure. To deal with this problem, before adding
a URL to prefetch queue we need to check whether the URL
is a relative URL. As the relatively path does not have the
prefix of "http://”, so for the relative path URL we append it
to the URL of its parent node to get the full URL.

Given the news searching results, we need to decide which
news webpages to prefetch. Obviously, the more we prefetch,
the more likely that we can prefetch the news the user will
read in the future, but the more energy cost and storage cost.
To make prefetching decision, we compare the news’s weight
with a prefetch threshold, if it is greater than the threshold,
we then add the URL of the news web page to the prefetch
queue. In order to set the value of the prefetch threshold
appropriately, we keep track of the weight of each news the
users read to learn what weight the user is likely to read and
set the prefetch threshold based on these weights. Let p be
the expected probability that the prefetched webpages will be
accessed, n be the total number of webpages the user visited
and v(w) be the number of webpages whose weight is above
w, then we set the threshold weight s as

argmin{w | v(w) > p-n}.

3) Scheduling Prefetching: Given the prediction result from
preference learning module and behavior learning module, we
know the time when the user will leave the current WiFi
coverage area and the collection of URLs to prefetch. Due
to the limited bandwidth of the mobile devices, prefetching
should not interfere user’s normal web browsing as aforemen-
tioned. Observing that the network connection is idle between
two web requests, we exploit the interval between two web
requests to prefetch web pages, as shown in Figure3]

Regular Browse  Prefetch
EIJ_LLL_J_IIHI\ IHIHI\IIHi
WiFi -—3G
Begin End
Fig. 3. Prefetch Scheduling

When scheduling prefetching jobs, we divide the time do-
main into time-slots of fixed length, and assume that fetching
one web page costs one time-slot . Formally, let a(u) =
[ag,a1,...,an] € 0,1 be the webpage access sequence by
the user, and p(u) = [po, p1,.--,Pm] € 0,1" be the prefetch
sequence. In order to not interfere the user’ s normal browsing,
for each time ¢, we should have

a; +pr < 1 (6)

To fully exploit the idle time when the user is browsing news,
we need to maximize

> ai+) (7)
i=1 j=1

In our system, we maintain a queue of the webpages to
prefetch. We first sort the webpages in prefetch queue in
decreasing order of the weight such that we could first prefetch
the web pages that are more likely to be accessed in case that
we do not have enough time to prefetch all the webpages in the
prefetching queue. Each time the webpage loading is finished
and the network connection is idle, prefetching module will
schedule a batch of web pages in the prefetch queue. In



particular, the average time interval the user spend on one
web page is T' and the average fetch time for prefetching a
web page is ¢, then we schedule 7'/t jobs from the news queue
to prefetch after each normal webpage request from the user.

V. SYSTEM IMPLEMENTATION AND EVALUATION

We implement the prototype system in iPhone 4 with 10S
5.1.1. In order to monitor when the user enters and leaves the
WiFi coverage area, we use a service called region monitoring
provided by IOS [?]. In iOS 4.0 and later, applications can
use region monitoring to be notified when the user crosses
geographic boundaries. We use this capability to keep track
of the time the user enters and leaves a certain WiFi area.

Our prototype system is used by three different people for
two weeks. Everyday they browse news webpages using our
system for about half an hour. When the user enters a WiFi
coverage area for the first time, the user needs to register this
area with its SSID in our system and we set the radius of the
WiFi area to 100 meters. Before the system starts to prefetch
webpages, it will send a notification to the user to ask for
the permission. In addition we also allow the user to start
prefetching manually.

A. Browsing Behavior Learning

1) Web Request Interval and Web Fetch Time: We first
present the user’s browsing behavior statistics when using our
system. Figure [6] shows the time intervals between two web
requests when the user browses news webpages. For 65% of
the time intervals, the lengths of the intervals are less than
1.5 second. These short intervals usually appear on the way
the user goes to the destination section after entering the news
website, because the user only stays on intermediate webpages
for a short time. These short intervals also appear when the
user switches from one section to another section. For the rest
35% time intervals, the average length is 61 seconds, which
is the average time the user spends on reading one piece of
news.

Figure [/| plots the time of fetching webpages via WiFi
network. As we can see, for most of the web requests, the
time of fetching a webpage via WiFi network is short. It takes
less than 1 second to fetch a webpage for over 94% of the
web requests. This is because that news webpages designed
for the mobile devices usually simply consists of words and
one or two pictures. Thus the size of a webpage is small and
hence it takes very little time to fetch a webpage via the high
speed WiFi connection.

2) Keyword Maintaining: Figure [§] shows the interest
weights of the keywords that have appeared in the title of
news read by the user. In our experiment, we set the removal
threshold to 0.2 and the decay period to 3 minutes. Here we
define the compression rate as the proportion of the number
of the keywords maintained in the keyword list to the total
keywords that have appeared in news titles. Our experiment
shows that we achieve the compression rate of 81%
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B. Performance

1) Network Condition Prediction: In our experiment, the
user’s daily schedule is almost fixed and hence the time the
user stays in a certain WiFi coverage does no vary a lot. As
mentioned above, our system will send a notification before
the user’s estimated leaving time and ask for the permission
to start to prefetch. We assume that the network prediction is
correct if the user agrees the prefetch request. Figured] shows
the accuracy of the network prediction. We achieve accuracy
rate of 80% in a week for one user.

2) Hit Ratio and Waste Ratio: Prefetching systems are often
evaluated in terms of the hit ratio and waste ratio. Hit ratio
refers to the proportion of the number of prefetched webpages
that are accessed by the user to the total requested webpages.
Waste ratio refers to the proportion of the number of undesired
prefetched webpages to the total prefetched web pages. Figure
[9 plots the hit ratio of our system. As we can see the hit ratio
is relatively stable and around to 60% on average. Though
at the beginning phase, our system does not learn the user’s
preference precisely and the prefetching is supposed to be
not accurate. However at the beginning phase, the prefetch
threshold is low due to the low weights of the news the user
browse and thus the amount of prefetched webpages is large.
Besides, at the beginning phase, the weight of the section is
dominate when make prefetch decisions and most of the news
in the user’s favorite section are prefetched. Thus we can still
achieve high hit ratio at the beginning phase.

Figure [I0] plots the waste ratio of our system. The waste
ratio here is calculated for each batch of prefetched webpages.
Compared with the hit ratio, the waste ratio continuously
decreases. As time goes on, the user is more likely to access
to the webpages from the sections with large weight and also
to access the news with titles containing keywords with large
weight. Thus the prefetch threshold become larger and less
webpages are prefetched. However since our system learn the
user’s preference more precisely, the webpages prefetched are
more likely to be accessed by the subscriber and the waste
keeps decreasing.

In our prototype system, we remove prefetched web pages
and the clean the prefetch cache everyday. FigurdIT] plots the
everyday’s cache usage in 9 days. Similarly to the waste ratio,
the cache size is relatively large at the beginning. As the
system learns user’s preference more precisely and the prefetch
threshold become larger, less webpages are prefetched and the
cache size keeps decreasing. For the last 5 days the size of
the prefetch cache is about 11 MB per day.
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3) Energy and Data Consumption: We use the instruments
provided by the Xcode to evaluate the energy consumption.
The energy consumption in iPhone is divided into 20 levels
in instruments. In our experiment, we have two users browse
the same webpages using our system with prefetch feature
enabled and disabled respectively, and we close all the other
applications in iPhone. Both of the users first use the system
for about 10 minutes via WiFi connection and then via cellular
connection for 20 minutes. When the prefetch feature is
enabled, our system will prefetch webpages via WiFi network
in the first 10 minutes.

FigurdI2(a)] and FigurdI2(b)| plot the energy consumption
when the user browses webpages via WiFi network with
prefetch feature enabled and disabled respectively. In both
figures the peaks appear when the browser loading webpages
and after loading the web page, the energy level decrease to a
low level. As we can see, there are some time slots where the
energy level is higher after webpage loading, this is caused
by scrolling the web page which makes energy level increase
due to display contents change. With prefetch feature enabled,
the device stays at high energy level for longer time than the
one with prefetch feature disabled. This is because our system
is prefetching web pages in the background. However, as we
can see that even with prefetch feature disabled, the energy
level does not fall to a low energy level instantly due to the
effect of tail energy”. The average energy level with prefetch
feature enabled and disabled is 12.5 and 9.6.

Figure [[3(a)] and FigurdI3(b)| show the energy consumption
when our system is connected via cellular network. In Figure
after loading a webpage from prefetch cache, the energy
level falls instantly to the low level. However, in FigurdI3(b)}
after fetching a webpage via cellular network, thought the
energy level falls to a lower level, it still higher than that
when the webpage is loaded from the prefetch cache. The
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Fig. 12. Energy Consumption via WiFi Network

average energy level when when prefetch feature is disabled
is about 11.8 while the energy level is 10.2 when prefetch
feature enabled.

Let e(p) = ey (p) +ec(p) and e(n) = e, (n) +e.(n) be the
energy cost when the prefetch feature enabled and disabled,
where e,, and e, is the energy cost via WiFi connection and
cellular connection respectively. We then calculate e, /e, as
the energy cost reduction. The result shows that our system
consume less energy when prefetch enabled than that when
disabled and we achieve about 9% of the energy reduction.

During the data usage test we have two users browses about
100 webpages in one day with prefetch feature enabled and
disabled. Figure [5] plots the cellular data usage when prefetch
feature is enabled and disabled respectively. When the prefetch
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Fig. 13.  Energy Consumption via Cellular Network

feature is disabled, 30% of pages are not prefetched and all the
other webpages are prefetched via Wifi network. The cellular
data usage is 2 MB. When the prefetch feature is disabled, all
of the web pages are fetched via the cellular network and thus
the cellular data usage is 5 MB that is over 2 times of the one
with prefetch feature enabled.

VI. CONCLUSION

In this paper we designed a network-agile preference-based
prefetching method for mobile devices. We implemented our
method in iPhone and conducted extensive evaluations on
the performances of our methods. Our evaluations show that
our prefetching based approach is able to reduce the cellular
network access by about 50% and reduce the energy cost by
about 9%.
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