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Abstract— Recently, deep neural network (DNN) has been
widely adopted in the design of intelligent communication systems
thanks to its strong learning ability and low testing complexity.
However, most current offline DNN-based methods still suffer
from unsatisfactory performance, limited generalization ability,
and poor interpretability. In this article, we propose an online
DNN-based approach to solve general optimization problems in
wireless communications, where a dedicated DNN is trained for
each data sample. By treating the optimization variables and
the objective function as network parameters and loss function,
respectively, the optimization problem can be solved equivalently
through network training. Thanks to the online optimization na-
ture and meaningful network parameters, the proposed approach
owns strong generalization ability and interpretability, while
its superior performance is demonstrated through a practical
example of joint beamforming in intelligent reflecting surface
(IRS)-aided multi-user multiple-input multiple-output (MIMO)
systems. Simulation results show that the proposed online DNN
outperforms conventional offline DNN and state-of-the-art itera-
tive optimization algorithm, but with low complexity.

Index Terms— Deep neural network (DNN), online optimiza-
tion, generalization, interpretability, intelligent reflecting surface
(IRS), multiple-input multiple-output (MIMO), beamforming.

I. INTRODUCTION

Recently, thanks to its strong learning ability and low testing

complexity, deep neural network (DNN) has made great suc-

cess in optimization problems in wireless communication, such

as channel estimation [1], beamforming [2], signal detection

[3], resource allocation [4], etc. The existing DNN-based op-

timization methods can be mainly divided into two categories,

to improve algorithm performance and efficiency, respectively.

For the first category, black-box DNNs are used to directly

learn the input-to-output mapping [1, 2], or techniques, such as

deep unfolding, are used to exploit the advantages of both deep

learning and conventional iterative optimization algorithms

[3]. Besides, the optimization objectives are expressed in

the form of the monotonically decreasing energy functions

of Hopfield neural networks in [5] so that the objective is

optimized as the network evolves. As for the second category,

the pruning policy is learned in [4] to accelerate the branch

and bound algorithm while the complex objective function is

approximated by a network in [6] to solve the problem with

simple optimization techniques.

In most current DNN-based wireless optimization works,

the network is first trained offline with a large number of

samples to minimize the average loss over the entire dataset,

and the network parameters are fixed during online testing.
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In spite of high theoretical performance according to the

universal approximation theory, the actual performance of

offline DNN can be limited by inadequate training and local

minima. Consequently, in many complex wireless commu-

nication problems, conventional algorithms are still superior

in performance, and the advantages of DNN mainly lie in

lower complexity [2]. Besides, the performance degradation

of the DNN trained offline is very common when input

distribution changes during online testing [2], and the limited

generalization ability hinders the application of DNN in fast

changing environments. Last but not least, DNN is often

regarded as a black box with unexplainable parameters in

data-driven methods, therefore not suitable for tasks with strict

reliability requirements.

To address the above issues in the current offline DNN-

based methods, we propose a novel online DNN-based ap-

proach in this article to solve general optimization problems

in wireless communication, where a dedicated DNN is trained

for each data sample. Specifically, the optimization variables

and the objective function are treated as network parameters

and loss function, respectively. Then, the decrease of loss

through network training is equivalent to the solving process

of the optimization problem. The strong generalization ability

and interpretability of the proposed approach can be easily

understood based on its online optimization nature and mean-

ingful network parameters. Furthermore, a practical example

is provided to facilitate a better understanding of the proposed

approach and illustrate its superiority. In the joint beam-

forming problem in intelligent reflecting surface (IRS)-aided

multi-user multiple-input multiple-output (MIMO) systems,

we demonstrate that the proposed online DNN achieves better

performance than conventional offline DNN and state-of-the-

art iterative optimization algorithm, but with low complexity.

II. ONLINE DNN FOR GENERAL OPTIMIZATION

In this section, the general proposed framework is elabo-

rated from four aspects, namely network modeling, constraint

elimination, parameter initialization, and network training.

A. Network Modeling

Consider the following unconstrained optimization problem:

min
x

f(a,x), (1)

where a denotes known parameters, x denotes optimization

variables, and f denotes the objective function.

Both the conventional offline DNN-based method and the

proposed online DNN-based approach can be used to solve the

above optimization problem. Fig. 1 illustrates the frameworks
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of two methods and their main components are compared as

follows to highlight the novelty of the proposed approach:

• Input: For both methods, known parameters a that con-

tain available information are treated as network input.

• Layers & Parameters: The conventional offline DNN

typically consists of convolutional (Conv) and fully-

connected (FC) layers with unexplainable parameters θ

while the proposed online DNN adopts self-defined (SD)

layers where the estimations of optimization variables x̂

are treated as parameters and the forward computation is

customized according to the signal flow to obtain f .

• Output: The output of the conventional offline DNN is

the estimations of optimization variables x̂ = m(a, θ),
where m denotes the unexplainable mapping function

parameterized by θ. For the proposed online DNN, the

output is the optimization objective f(a, x̂).
• Loss function: In the conventional offline DNN, consider

supervised learning, the mean-squared error between the

network prediction and the label is commonly used as

the loss function, L. In the proposed online DNN, f is

a reasonable choice for L since its reduction through

training is equivalent to the solving process of the op-

timization problem. Since no label is required, methods

using this kind of loss function are usually called un-

supervised learning-based approaches in recent literature

[2, 7]. Notice that, in maximization problems, L should

be 1/f or −f so that the reduction of loss is equivalent

to the maximization of the objective function.
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Fig. 1. The frameworks of the conventional offline DNN and

the proposed online DNN to solve optimization problem (1).

As demonstrated by Fig. 1, the conventional approach trains

a common network offline with multiple data samples while

the proposed approach trains a dedicated network online for

each new sample. Therefore, there is no so-called testing stage

in the online DNN since x̂ are obtained at network parameters

rather than output, and the generalization problem does not

exist at all. Besides, the meaningful parameters make the

online DNN highly interpretable.

B. Constraint Elimination

DNN parameters are usually unconstrained and can take

arbitrary values in the entire real space. However, for those

optimization problems in wireless communications, the opti-

mization variables, x, are subject to various constraints, which

results in a feasible region X .

To implement the proposed DNN with constrained vari-

ables, an intuitive method is to eliminate the constraints and

transform the constrained optimization problems to uncon-

strained ones. There are several standard methods on constraint

elimination. Some integrate the constraints into the objective

function, such as the Lagrangian multiplier method and the

penalty function method while others maintain the feasibility

of the solution through projection operation, such as the

projected gradient descent algorithm [8]. Nevertheless, these

methods suffer from complex mathematical derivation, ill-

conditioned problems, and slow convergence.

In this article, we use the technique of reparameterization.

Specifically, for x ∈ X , if we can find a differentiable

transform function g to express x in the form of a set of

unconstrained variables x′, i.e., x = g(x′) and the feasible

region of x′ is the entire real space, then we can treat x′ as

network parameters instead of x. During training, the gradients

of the loss function with respect to x′ can be obtained by

the chain rule, i.e., dL
dx′

= dL
dx

dx
dx′

. After training, x̂ can be

readily recovered by g(x̂′). Next, we provide the transforms

and unconstrained counterparts of optimization variables of

most common constraints in wireless communications:

• Complex constraint: In most communication problems,

the optimization variables are complex numbers. If an

optimization variable x ∈ C, then the unconstrained

counterparts are its real and imaginary parts x′
r and x′

i,

and the transform is x = x′
r + jx′

i.

• Unit modulus constraint: When IRS or phase shifters

are used, phases of components have unit modulus. If

x ∈ C and |x| = 1, then the unconstrained counterpart is

its argument φ, and the transform is x = ejφ.

• Box constraint: If a ≤ x ≤ b, then the transform is x =
a+(b−a)Sigmoid(x′), where the value of Sigmoid(x′) =
1/(1 + e−x′

) is between 0 and 1.

• Maximum power constraint: If x ∈ RK satisfies
∑K

k=1 xk ≤ P , then the unconstrained counterparts are

the power unconstrained version x′ and a power scaler

c. The transform is x = x′/
∑K

k=1 x
′
k ×P ×Sigmoid(c).

When beamforming is considered with multi-antenna

transmitters, the transform is similar, as will be introduced

later in the given example.

• Linear equality constraint: If x ∈ RK satisfies Ax =
b, where A ∈ RM×K is full row rank and M < K ,

i.e., there are infinite feasible solutions of x. Then, the

transform is x = Fx′+x0, where x0 is a special solution

that satisfies Ax0 = b, e.g., x0 = A†b with † denoting

pseudo inverse, and F ∈ RK×(K−M) is the zero space

of A, which satisfies AF = 0 and can be obtained by

the null function in Matlab or Python.

• Linear inequality constraint: If x ∈ RK satisfies Ax ≤
b, then the transform is x = Fx′+A†(b−µ), where µ =
eµ

′

> 0 denotes the introduced set of slack variables.

C. Parameter Initialization

Before training, network parameters need to be properly

initialized first, which is especially important in non-convex
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optimization problems. One simple method is to use random

generalization. Besides, by initializing and training multiple

times and selecting the best one, the performance can be im-

proved and stabilized, albeit at the cost of higher complexity.

In fact, high quality initializations can also be found without

much complexity overhead by exploiting expert knowledge.

For instance, we can initialize with sub-optimal solutions

obtained by low-complexity baseline algorithms. Or, in low-

mobility scenarios, the channels are highly time-correlated, so

the current initialization can inherit from previously optimized

parameters or even be predicted by autoregressive models.

D. Network Training

After parameter initialization, the training process begins.

During training, network parameters can be optimized by

popular DNN optimizers. Specifically, in each training it-

eration, the network first executes forward computation to

obtain the loss, and then executes backward computation to

compute the gradients of the loss function with respect to

all network parameters, which is efficiently implemented by

mainstream deep learning libraries. Based on the gradients and

the learning rate, network parameters are updated correspond-

ingly. Multiple iterations are required to train the network

to convergence. The learning rate, which is the only hyper-

parameter in the proposed online DNN, has to be carefully

configured to improve training efficiency. After the training

process is completed, final results of optimization variables

can be readily recovered based on the network parameters and

the corresponding transforms.

E. Relationship with Classic Gradient Descent

Actually, the proposed approach is equivalent to the classic

gradient descent algorithm theoretically. However, conven-

tional manual derivation of gradients or symbolic differenti-

ation suffers from swelling expressions and low computation

efficiency, while the proposed novel neural network-based im-

plementation benefits from automatic differentiation and paves

the way for fast and universal applications of gradient descent

in practical optimization problems. Despite the simplicity of

the core algorithm, surprisingly good results can be achieved

sometimes, such as the example given in the next section.

III. ONLINE DNN FOR JOINT BEAMFORMING IN

IRS-AIDED MULTI-USER MIMO SYSTEMS

To facilitate a better understanding of the proposed approach

and illustrate its superiority, we elaborate joint beamforming

in IRS-aided multi-user MIMO systems as an example.

A. System Model and Problem Formulation

Consider the IRS-aided multi-user MIMO system illustrated

in Fig. 2, where the BS with M antennas serves K single-

antenna users with the aid of an IRS with N reflecting

elements. The direct links between the BS and users are

assumed to be blocked. The received signal at the k-th user

can be written as

yk = hr
kΘGx+ nk, (2)

for k = 1, · · · ,K, where hr
k ∈ C1×N and G ∈ CN×M

denote the channels of the k-th IRS-user link and the BS-IRS

link, respectively. The phase shift matrix of IRS is defined as

Θ , diag([θ1, ..., θN ]), where |θn| = 1 is the phase shift of

the n-th reflecting element, diag(·) denotes the diagonalization

operation, and x =
∑K

k=1 wksk is the transmit signal at the

BS, where wk ∈ CM×1 and sk satisfying E{sks∗k} = 1 denote

the transmit beamforming vector and the information symbol

for the k-th user, respectively. Besides, nk ∼ CN (0, σ2)
denotes the noise at the k-th user with variance σ2.

Define W , [w1, ...,wk] and Hr , [hrT
1 , ...,hrT

K ]T ,

the effective channel matrix is defined as H , Hr
ΘG ∈

C
K×M . Then, the received signal-to-interference-plus-noise

ratio (SINR) at the k-th user can be expressed as

γk =
wH

k HH
k∗Hk∗wk

Jk
, (3)

for k = 1, · · · ,K, where Jk , σ2+
∑K

i=1,i6=k w
H
i HH

k∗Hk∗wi

is the energy of interference plus noise at the k-th user and

Hk∗ denotes the k-th row vector of H . We aim to maximize

the sum rate of all users R, by jointly optimizing the transmit

beamforming matrix W and the IRS phase shift matrix Θ.

The optimization problem is given by

max
Θ,W

R =

K
∑

k=1

log(1 + γk) (4a)

s.t.

K
∑

k=1

wH
k wk ≤ Pmax, (4b)

|θi| = 1, ∀i = 1, 2, ..., N, (4c)

where (4b) is the transmit power constraint and Pmax denotes

the maximum transmit power at the BS, while (4c) is the unit

modulus constraint of phase shifts of IRS reflecting elements.

Fig. 2. IRS-aided multi-user MIMO system

B. Detailed Designs of the Proposed Online DNN

According to (2), (3), and (4a), we can easily find the

counterparts of the main components of the general framework

in this specific problem. Apparently, G, Hr, and σ2 make

up known parameters a = {G, Hr, σ2}, while Θ and W

make up optimization variables x = {Θ,W } and R is the
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Fig. 3. Network architecture for joint beamforming in IRS-aided multi-user MIMO systems.

objective function f . Besides, the unconstrained counterparts

of Θ and W as well as proper transforms are required to

handle constraints (4b) and (4c).

The detailed network structure is illustrated in Fig. 3. It

is straightforward to implement two layers representing Θ

and W , respectively. First of all, G and Hr are input into

the Θ layer. Inside the Θ layer, the arguments of phase

shifts of IRS reflecting elements, φ1, · · · , φN , are defined as

N trainable network parameters. The forward computation

first transforms φ to θ by θi = ejφi , i = 1, · · · , N . Then,

the effective channel matrix H is computed based on G,

Hr, and Θ. Afterwards, H output by the Θ layer flows

into the W layer together with σ2. Inside the W layer, the

power unconstrained real and imaginary parts of the transmit

beamforming matrix W ’s elements W ′
real and W ′

imag , are

defined as 2KM trainable network parameters. The forward

computation first realizes the transform of power normalization

by Wreal&imag = W ′
real&imag/

√

∑K

k=1 w
′H
k w′

k × √
Pmax.

Then, the SINRs of users γk, k = 1, · · · ,K , are computed

based on W , H , and σ2. Eventually, the sum rate of all users,

R, can be readily computed and the loss function defined as

L = −R is used for network training.

C. Simulation Results

Next, the superiority of the proposed approach is validated

through simulation. Adopt the Rician channel model, the

channels of the BS-IRS link and the k-th IRS-user link are

G = L1(

√

ǫ

ǫ+ 1
aN (ν)aM (φ)H +

√

1

ǫ+ 1
G), (5)

hr
k = L2,k(

√

ǫ

ǫ+ 1
aN(ζk) +

√

1

ǫ+ 1
hr
k), (6)

where L1 and L2,k are path-losses in dB calculated as

35.6 + 22.0lg(d) with d denoting the distance, aM and aN are

the steering vectors of uniform linear array at the BS and the

IRS, respectively, while ν, φ and ζk are angular parameters.

The Rician factor ǫ is set to 10, while G and hr
k are non-

line-of-sight components following CN (0, 1). The distance

between the BS and the IRS is fixed to 200 m, users are

uniformly distributed in a circle 30 m away from the IRS

with a radius of 10 m, and Pmax/σ
2 is fixed to 20 dB.

Firstly, the impact of learning rate configuration is in-

vestigated. In the considered problem, the proposed DNN

already works well with randomly initialized Θ and W . The

training process terminates when the loss does not decrease

in 25 consecutive iterations. Fig. 4 illustrates the convergence

process of an exemplary sample when M = 8,K = 4 and

N = 64. As we can see, when the learning rate is fixed,

a large learning rate can cause severe oscillation while a

small learning rate can lead to slow convergence. In contrast,

Adam is more superior in terms of convergence speed and

performance and is less sensitive to the initial learning rate

thanks to its adaptive adjustment of learning rate. Therefore,

we adopt Adam with initial learning rate 0.1. Notice that, the

usage of the advanced Adam optimizer originally developed

in the area of deep learning benefits from our clever modeling

of the optimization problem as a DNN.
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Fig. 4. Convergence process of an exemplary sample.

The impact of initialization is illustrated in Fig. 5, where

M = 8,K = 4 and N = 128. The best result obtained by

running with multiple initializations are kept. The state-of-the-

art block coordinate descent (BCD) algorithm [9] is selected

as a baseline. For BCD, random phase shifts and weighted

minimum mean-squared error (WMMSE) beamforming based

on the effective channels serve as the initializations of Θ and

W , respectively, and the algorithm stops when the change of

sum rate between two consecutive iterations is less than 1e-5.

As we can see, the performance of both the proposed approach

and BCD improves with the number of initializations at the

cost of increased complexity, while the proposed approach

consistently outperforms BCD, which can be attributed to the

simultaneous update of all parameters. Besides, the perfor-

mance gap decreases with the number of initializations due to
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BCD’s larger performance variance of different initializations.
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Fig. 5. Impact of the number of initializations.

To save running time, we consider single initialization

next. The impact of the number of reflecting elements N is

illustrated in Fig. 6, where M = 8 and K = 4. The of-

fline DNN-based approach proposed in [2] with unsupervised

training is also compared to highlight the superiority of the

proposed online DNN. As we can see, the proposed approach

achieves similar performance as BCD when N is small, while

when N ≥ 80, the proposed approach outperforms BCD

and the performance gap increases with N . It is because the

probability of BCD converging to a worse local optimum

than the proposed approach is higher in systems with larger

scales. Nevertheless, both the proposed approach and BCD

outperform the offline DNN with various N . Notice that, for

the offline DNN, performance degradation can happen when

channel parameters changes [2], which does not exist in the

proposed approach thanks to its online optimization nature.
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Fig. 6. Impact of the number of reflecting elements N .

D. Complexity Analysis

The complexity of the BCD algorithm is O(IO(2KNM +
KM2 +K2N2)), where IO denotes the number of iterations

[9]. The complexity of the offline DNN proposed in [2] is

O(KNM). As for the proposed approach, the complexity is

O(IE(CF +CB)), where the forward computation complexity

CF is O(KNM +K2M +KM), the predominant backward

computation complexity CB is O(K2NM +K3M2), and IE
denotes the number of training iterations. Since usually N ≫
M and N ≫ K , the proposed approach has lower per-iteration

complexity than BCD. Besides, the proposed approach also

requires less iterations to converge in experiments. Although

the offline DNN has the lowest complexity, its performance is

apparently inferior and the generalization and interpretability

issues also hinder its practical applications. From a certain

point of view, the proposed online DNN achieves the best

performance-complexity tradeoff in the considered problem.

To make the comparison more intuitive, running time on the

same CPU is further shown in Table I. The proposed approach

runs much faster than BCD, especially in large scale systems.

Notice that, another benefit of the proposed approach is

the acceleration thanks to its DNN-based structure, including

the efficient implementation of matrix calculation and the

gradient backpropagation algorithm in deep learning libraries,

as well as the usage of dedicated hardware like GPU for

parallel acceleration. Besides, in some special problems, the

decomposition of loss calculation into independent blocks for

further acceleration is a future direction worth investigating.

M,N,K
Method

Proposed BCD Offline DNN

4,64,2 0.196 0.383 0.002

8,64,2 0.220 0.816 0.003

8,128,2 0.381 6.034 0.009

8,128,4 0.587 9.871 0.011

TABLE I. Average running time in seconds.

IV. CONCLUSION

In this article, we have developed a novel online DNN-based

approach to solve general optimization problems in wireless

communications. By treating the optimization variables and

the objective function as network parameters and loss function,

respectively, the optimization problem can be equivalently

solved through network training. The proposed approach has

strong generalization ability and interpretability, and outper-

forms conventional offline DNN and iterative optimization

algorithm with low complexity in a practical example.
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