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Abstract

We design a wireless sensor network (WSN) in terms of rate and power alloca-
tion in order to send without loss the data gathered by the nodes to a common sink.
Correlation between the data and channel impairments dictate the constraints of
the optimization problem. We further assume that the WSN uses off-the-shelf com-
pression and channel coding algorithms. More precisely source and channel coding
are separated and Distributed Source Coding (DSC) is performed by pairs of nodes.
This raises the problem of optimally matching the nodes. We show that under all
these constraints the optimal design (including rate/power allocation and matching)
has polynomial complexity (in the number of nodes in the network). A closed form
solution is given for the rate/power allocation, and the matching solution is readily
interpreted. For noiseless channels, the optimization matches close nodes whereas,
for noisy channels, there is a tradeoff between matching close nodes and matching
nodes with different distances to the sink. This fact is illustrated by simulations
based on empirical measures. We also show that the matching technique provides
substantial gains in either storage capacity or power consumption for the WSN wrt
the case where the correlation between the nodes is not used.

1 Introduction

We consider a wireless sensor network (WSN) where spatially distributed sensors (or

sensor nodes) gather data and send them to a common center (or sink) in order to monitor

some physical or environmental phenomenon [1, 10]. A design issue for such a WSN is

to maximize the network lifetime while dealing with low-cost sensors exhibiting limited

1This work is supported by the Network of Excellence in Wireless Communications (NEWCOM), E.
C. Contract no. 507325.

2Part of this work was presented at the IEEE International Symposium on Information Theory (ISIT)
2007 [13].
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capabilities in terms of processing (computation capabilities, memory) and communication

(power).

A naive approach consists in transmitting all the data measured by the sensors directly

to the sink. This approach suffers two sub-optimalities: (1) First due to spatial correlation

between the measured data, the sufficient amount of data to transmit from the nodes to

the sink can be reduced (from the sum of individual entropies to the joint entropy).

Therefore taking into account the correlation between the nodes, communication power

and spectral ressource can be saved. (2) Second the Distributed Source Coding (DSC)

(aka. Slepian Wolf coding) theorem [14] states, that this reduced amount of data can be

sent without explicit cooperation between the nodes. Therefore using DSC techniques

can save not only some ressource (no communication between the nodes) but also some

processing (data of other nodes are not processed at a node). More precisely, in DSC, the

only knowledge required at each node is the rate at which this node needs to compress its

data. Note that all the processing complexity is transferred to the sink, since to achieve

optimal compression without encoding cooperation, joint decoding has to be performed.

Therefore, in the context of WSN, optimal strategies have been proposed in the litera-

ture based on DSC coding [5], where an optimal DSC coding for all the nodes is assumed.

However most existing DSC schemes concern two correlated sources. First attempt to

design codes for multiple (binary) sources has been proposed in [16] but it suffers some

loss wrt to the optimal compression rate. Therefore it is also of interest to consider DSC

coding for pairs of nodes. This strategy is referred to pairwise DSC in the following. Note

that pairwise DSC is close to the idea of clustering nodes as in in-network aggregation [9].

There is however some difference between the two approaches: in in-network aggregation,

nodes need to communicate their data to their neighbors, and then a decision whether

to compress or concatenate the data is taken, based on the correlation between the data.

In contrast, pairwise DSC avoids transmission between nodes, correlation measurement

and strategy optimization at the nodes. The only information required at each node, is

the power and rate at which to compress the data but not the global strategy. Another

reason for considering pairwise DSC is its flexibility. A system designed with DSC for two

sources is more flexible than a single multiple source code. This results from the existence

of DSC codes (for two sources) that can operate at any rate in the Slepian-Wolf region

and that can adapt to any change in correlation between the sources [17]. Therefore, this

unique code can be embedded in each sensor, and the matching (performed at the sink)

will take care of the changes in topology.

Therefore, we focus in this paper on pairwise DSC coding. This raises a new question:

how to optimally match the paired nodes. We address this problem in two different

communication scenarios. (i) Perfect node-sink channels. In that context, the goal is

to maximize the storage capacity. (ii) Orthogonal noisy channels. In that case, source

channel separation holds [2] and we optimize the compression rates and the node matching

in order to minimize the total used power.

In this paper, we assume that the sink has full knowledge of the individual, and
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pairwise joint entropies but also of the pairwise channel capacity regions. This is the

case, when these quantities only depend of the internode and node-to-sink distances and

when the sink has full knowledge of the network topology. If not, then these quantities

have to be estimated through training sequences sent by the nodes.

Main contributions of the paper. First we model the design of a pairwise DSC scheme

in a WSN. Then we show that the optimization of the pairwise DSC strategy can be

separated into a matching problem and a pairwise rate-power control problem (that ad-

mits a simple closed-form solution). Using this separation, we obtain an optimization

procedure of polynomial (in the number of nodes in the network) complexity. Finally, we

show that the overall optimization can be readily interpreted. For noiseless channels, the

optimization matches close nodes whereas for noisy channels, there is a tradeoff between

matching close nodes and matching nodes with different distances to the sink.

2 Sensor network model and problem statement

We consider a network with N nodes all communicating to a single sink. Let N be the

set of sensor indices: N = {1, . . . , N}. The data to be sent from node i ∈ N to the sink

are modeled as the realizations of a discrete random variable denoted Xi taking its value

in the alphabet X. Ri [resp., Pi] denotes the rate (in bits per source symbol) [resp., the

power] at which node i sends data.

The data of all the nodes are compressed without loss with a pairwise DSC scheme.

More precisely the data are encoded separately at each node but decoded (jointly) at the

sink, by pairs of nodes. This approach is suboptimal in comparison to the joint decoding

of the data of all nodes but is motivated by the availability of efficient DSC schemes for

two sources (see references in [8]). This raises the question of optimally partitioning the

nodes into pairs, which can be modeled as the selection of an optimal 2-partition defined

below.

Definition 1. A 2-partition P is a partition of N s.t. the cardinality of each subset is 2,

except for a set that contains only one element if N is odd. An element of 2-partition is

called a pair (even for the left alone node).

Let S denote the set of all possible 2-partitions.

Property 1. The total number of 2-partitions is:

|S| =
{

(N − 1)!! if N is even

(N)!! if N is odd

Proof. If N is even, |S| is the number of ways to choose N/2 disjoint pairs of items from

N items, which is (N − 1)!! = (N − 1)(N − 3) . . . 5.3.1 [15]. If N is odd, first a node is

chosen to build the set with 1 element (N choices), then for the N − 1 resulting nodes

(N − 2)!! different matchings can be build.
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The problem we address in this paper is how to send the data (measured by the

sensors) to the sink without loss. In a pairwise DSC scheme, the design parameters are:

the 2-partition, the compression rates and for noisy channels the powers used to send the

data. The cost function is application and communication dependent. In the following,

we consider different communication scenarios (noiseless and noisy) and define the related

cost functions.

3 Perfect node-sink channels

In this section, we assume that each node can communicate directly to the sink and

that the channels between each node and the sink are perfect. In this context, we want

to maximize the storage capacity of each node (sensors and sink) without losing any

information. Since pairwise DSC is used, the rates of each pair of nodes are constrained

to lie in the so-called Slepian and Wolf region [14]: two nodes i, j can separately code

their source symbols without loss of information if their compression rates (in bits per

source symbol) belong to the Slepian and Wolf region SWij defined as:

SWij ,





(Ri, Rj) :

Ri ≥ H(Xi|Xj)

Rj ≥ H(Xj|Xi)

Ri + Rj ≥ H(Xi, Xj)





(1)

Fig. 1 represents the set of rate pairs (Ri, Rj) for which lossless compression is possible.

The region in dark grey corresponds to separated source coding (separated encoding

and decoding). The SWij region corresponds to DSC (i.e. separated encoding but joint

decoding) and includes the dark and light grey region. DSC allows smaller rates (shown

in light grey): this reduces the total amount of data to be sent or stored for the same

amount of information captured by the WSN.

SWij

separated source
coding region

RiH(Xi)H(Xi|Xj)

Rj

H(Xj)

H(Xj |Xi)

Figure 1: Slepian Wolf region

Hence, from the definition of the DSC rate region (1), the sensor network pairwise

optimization for noiseless channels can be rewritten as Problem 1.
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Problem 1. The maximization of the storage capacity over all individual rates and over

all 2-partitions under the constraint of lossless pairwise DSC coding reads:

({R∗
i }N

i=1,P
∗) = arg min

{Ri}i, P∈S

N∑
i=1

Ri

subject to ∀ (i, j) ∈ P, (Ri, Rj) ∈ SWij

Since
∑N

i=1 Ri =
∑

(i,j)∈P Ri + Rj, this problem can be reformulated as

({R∗
i }N

i=1,P
∗) = arg min

{Ri}i, P∈S

∑

(i,j)∈P

Ri + Rj

subject to ∀ (i, j) ∈ P, (Ri, Rj) ∈ SWij

At first sight, this problem looks exponentially hard due to the large number of possible

2-partitions (see Property 1). However, Proposition 1 and its Corollary 1 show that in

fact it has polynomial complexity.

Proposition 1. Separation of rate allocation and 2-partition selection. The storage ca-

pacity maximization (Problem 1) can be separated in a rate allocation over all possible

distinct unordered pairs and a selection of the best partition. First, the rate allocation:

∀ (i, j) ∈ N2 s.t. i < j

R∗
ij = arg min

Rij∈SWij

Rij(1) + Rij(2) (2)

where Rij = (Ri, Rj) denotes a rate pair and Rij(1) = Ri [resp., Rij(2) = Rj] the first

[resp., second] element of the pair. This rate allocation is independent of the 2-partition.

Then, the 2-partition optimization:

P∗ = arg min
P∈S

∑

(i,j)∈P

R∗
ij(1) + R∗

ij(2) (3)

Remark 1. Motivation for the the notation Rij. In order to justify the clumsy notation

Rij, we remark that the optimal value of Ri depends on i and on j. Therefore, we need

to introduce a new notation for the pair of rates.

Proof. To solve problem 1, we can first minimize over the rates (for a given P) and then

over the 2-partition. This is always true as stated in [3, page 133], but note that, the rate

minimization is performed for a given partition P. In the following, we show that this

rate allocation can be made independent of P.

Part 1: for a given P. First, consider the rate allocation problem for a given 2-partition

P:

{R∗
i }N

i=1 = arg min
{Ri}i s.t. (Ri,Rj)∈SWij

∑

(i,j)∈P

Ri + Rj

By definition of a 2-partition, a given rate Ri appears in only one constraint. There-

fore the constraints are pairwise independent and the minimization can be carried out

independently over each pair of P [3, page 133]. This can be rewritten as:

∀ (i, j) ∈ P, R∗
ij = arg min

Rij∈SWij

Rij(1) + Rij(2)
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where Rij = (Ri, Rj) denotes the pair of rates and Rij(1) = Ri (Rij(2) = Rj) an element

of the pair. The minimum of the sum rate is therefore

∑

(i,j)∈P

R∗
ij(1) + R∗

ij(2) (4)

Part 2: for any P. Now, for each P, a rate allocation (as presented above) has to be

performed, and the optimal 2-partition, solution of Problem 1, is the one that achieves

minimum sum rate (4). In this procedure, rate allocation will have been performed for

all possible unordered pairs. Note that if the same pair appears in two distinct partitions,

their rate allocation will be the same. In other words, the rate allocation does not depend

on the 2-partition chosen. Therefore we can first allocate the rates for all unordered pairs

and then choose the best 2-partition (with minimum sum rate). This strategy is more

efficient, since rate allocation for the same pair is made only once (and not each time the

pair appears in a 2 partition).

Corollary 1. The storage capacity maximization under lossless pairwise DSC coding is

polynomial in the number of sensor nodes.

Proof. From Proposition 1, the joint optimization separates into a rate allocation with

complexity O(N2) and a partition optimization. The latter is a classical problem in

combinatorial optimization, where it is known under the name of weighted matching for

non-bipartite graph [11]. It can be solved in polynomial time [6]. More precisely, a

straightforward implementation of Edmonds’ algorithm runs in time bounded by O(N4),

but more efficient implementations exist resulting in a bound of O(N3) [7]. A summary

of the complexity results of Edmonds’ algorithm is given in [4].

The rate allocation can be further simplified. First, notice that the minimum of the

sum Ri + Rj in SWij is achieved for Ri + Rj = H(Xi, Xj). It follows that partition

selection can be reformulated as:

P∗ = arg min
P∈S

∑

(i,j)∈P

H(Xi, Xj) (5)

Since (5) is independent of the rates, we can exchange the optimization order in Propo-

sition 1. Therefore, the joint optimization can be achieved by first optimizing the 2-

partition with respect to the joint entropies and then allocating the rates. This reduces

the complexity of the rate allocation from O(N2) to O(N). Further notice that the rate

allocation is not unique. Any rate of the dominant face of the Slepian Wolf region solves

Problem 1 (these rates are: (R∗
i , R

∗
j ) s.t. R∗

i + R∗
j = H(Xi, Xj) and R∗

i ≥ H(Xi|Xj) and

R∗
j ≥ H(Xj|Xi)). It leads to the following algorithm:

Algorithm 1. Design of a WSN (N nodes) with perfect node sink channels.

• Weight computation

for i = 1 : N ,
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for j = i + 1 : N ,

W (i, j) = H(Xi, Xj)

W (j, i) = H(Xi, Xj)

end

end

• Weighted matching with weights W (i, j) provides optimal 2-partition P∗, that mini-

mizes sum weight.

• Rate allocation for all pairs of the optimal 2-partition: P∗

for i = 1 : N/2,

Ri = H(Xi)

Rj = H(Xj|Xi), where j is the node matched to i in P∗

end

4 Noisy node-sink channels

In this scenario, the channels between the nodes and the sink are noisy. More precisely,

we assume independent additive white Gaussian noise (AWGN) channels. We also as-

sume orthogonality in the channel access (no internode interference). This orthogonality

can be achieved through protocols (Carrier Sense Multiple Access With Collision Avoid-

ance (CSMA/CA)) or multiple access techniques (such as TDMA, FDMA or orthogonal

CDMA). The capacity of the Gaussian channel (between node i and the sink) with trans-

mit power Pi and channel gain γi is

Ci(Pi) , log2(1 + γiPi)

where Pi represents the cost of sending Ci bits (per transmission) over the channel with

gain γi, and where the noise power is normalized to one. Notice that the function Ci(x) =

log2(1 + γix) depends on i upon γi. We further assume that the channel gains {γi}i are

fixed quantities, known by the sink.

Due to power limitation at the sensors, the transmit power is constrained by a so

called peak power constraint: ∀ i, Pi ≤ Pmax. In this context, a natural cost function is

the sum power that needs to be minimized. The constraints for this minimization are:

the above mentioned peak power constraints and the asymptotically (in the size of the

data length) small error probability.

We now detail the vanishing error probability constraint. Under the assumption of

orthogonal channels, DSC and channel coding separation holds [2]. Therefore, the achiev-

able (for vanishing error probability) rate region for distributed separated or joint source-

channel coding1 coincide. More precisely, for two sources, it is the set of rates (Ri, Rj)

1separated refers to separation of source and channel coding, whereas distributed refers to separation
of the processing between the sensor nodes.
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lying in the intersection of the Slepian Wolf region SWij (1) and of the TDMA capacity

region Cij defined as:

Cij(Pi, Pj) ,
{

(Ri, Rj) :
Ri ≤ Ci(Pi)

Rj ≤ Cj(Pj)

}
(6)

This achievable rate region (for distributed separated or joint source and channel coding)

is the darker grey region on fig. 2. Hence, the sensor network pairwise optimization for

SWij

capacity region Cij

Cij ∩ SWij

RiH(Xi)H(Xi|Xj) Ci

Rj

H(Xj)

H(Xj |Xi)

Cj

Figure 2: Slepian Wolf and capacity regions

orthogonal noisy channels can be stated as follows.

Problem 2. The minimization of the transmit sum-power that achieves rates with vanish-

ing error probability in a pairwise-distributed separated source and channel coding scheme2

can be written as:

({R∗
i }N

i=1, {P ∗
i }N

i=1,P
∗) = arg min

{Ri}i,{Pi}i,P∈S

N∑
i=1

Pi

= arg min
{Ri}i,{Pi}i,P∈S

∑

(i,j)∈P

Pi + Pj

subject to ∀ (i, j) ∈ P, (Ri, Rj) ∈ SWij ∩ Cij(Pi, Pj)

∀ i ∈ N, Pi ≤ Pmax

Before we discuss the solution (see Section 4.2), let us first simplify the problem.

4.1 Optimization separation

Proposition 2. Separation of rate-power allocation and 2-partition selection. The sum-

power minimization (Problem 2) can be separated in:

2Recall that for orthogonal channels, this scheme has same achievable rate region as the pairwise-
distributed joint source and channel coding scheme
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(i) a rate-power allocation over all possible distinct unordered pairs: ∀ (i, j) ∈ N2 s.t. i < j

Q∗
ij = arg min

Qij

Qij(3) + Qij(4) (7)

subject to (Qij(1), Qij(2)) ∈ SWij ∩ Cij(Qij(3), Qij(4))

Qij(3) ≤ Pmax

Qij(4) ≤ Pmax

where Qij = (Ri, Rj, Pi, Pj) denotes the four design parameters. The first two parameters

of the quadruple are the rates Qij(1) = Ri, Qij(2) = Rj, whereas the last two represent

the powers: Qij(3) = Pi, Qij(4) = Pj.

(ii) a matching (or 2-partition optimization):

P∗ = arg min
P∈S

∑

(i,j)∈P

Q∗
ij(3) + Q∗

ij(4) (8)

Proof. Same proof as for Proposition 1.

4.2 Sum of 2 powers minimization

In this section, we solve problem (7), a convex optimization problem of four variables.

First, we show that the number of variables can be reduced to two (Lemma 1) and then

to one (Lemma 2). In order to keep track of the meaning of the variables (which simplifies

the proofs of the two lemmas), we shall use the notation Ri, Rj, Pi, Pj instead of Qij. This

introduces no confusion, since the pair (i, j) is fixed in (7).

Lemma 1. The minimum power is achieved on the boundary Pi = 2Ri−1
γi

[resp., Pj =
2Rj−1

γj
].

Proof. (7) is a convex optimization problem. The optimum occurs either at a stationary

point or on the boundaries. Since there is no stationary point (linear function), the

optimum occurs on a boundary s.t. Pi is minimum. It follows that P ∗
i = 2R∗i −1

γi
. Similarly,

we can show that P ∗
j = 2

R∗j−1
γj

.

From Lemma 1, the rate-power optimization (ii) in Proposition 2 can be rewritten as:

Q∗
ij = arg min

Qij

2Q∗ij(1) − 1

γi

+
2Q∗ij(2) − 1

γj

(9)

subject to (Qij(1), Qij(2)) ∈ SWij ∩ Cij(Pmax, Pmax)

The following lemma allows to further reduce the number of variable.

Lemma 2. The minimum power is achieved on the line Ri + Rj = H(Xi, Xj).

Proof. By contradiction. In the convex optimization problem (9), the convex objective

function is strictly increasing and admits no stationary points. Therefore the optimum
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occurs on a boundary.

We now show that the optimum can’t occur on the line:





Ri = H(Xi|Xj)

Rj ≥ H(Xj|Xi)

Rj > H(Xi, Xj)−Ri = H(Xj) ≥ H(Xj|Xi)

If P ∗
i > 2Ri−1

γi
is the optimum, then there exists ε > 0 s.t. P ∗

i = 2Ri−1
γi

+ ε. P ′
i = 2Ri−1

γi
is

in the region and P ′
i < Pi which contradicts the fact that P ∗

i is minimum.

A similar argument holds for the region Rj = H(Xj|Xi) and Ri > H(Xi, Xj) − Rj =

H(Xi).

Finally, the optimum occurs on the last boundary Ri + Rj = H(Xi, Xj).

Finally, the rate-power allocation can be reformulated as a convex optimization prob-

lem of one variable:

Q∗
ij(1) = arg min

Ri

2Ri − 1

γi

+
2H(Xi,Xj)−Ri − 1

γj

(10)

subject to lb ≤ Ri ≤ ub

where

ub , min
(
H(Xi), Ci(Pmax)

)

lb , max
(
H(Xi|Xj), H(Xi, Xj)− Cj(Pmax)

)

From Q∗
ij(1), all other variables can be deduced:

Q∗
ij(2) = H(Xi, Xj)−Q∗

ij(1)

Q∗
ij(3) = 2

Q∗ij(1)−1
γi

Q∗
ij(4) = 2

Q∗ij(2)−1
γj

Moreover, (10) admits a closed form explicit solution:

Q∗
ij(1) =





lb if r < lb

r if lb ≤ r < ub

ub if r ≥ ub

(11)

where

r , 1

2

(
H(Xi, Xj) + log2

γi

γj

)

Therefore the algorithm that solves Problem 2 is:

Algorithm 2. Design of a WSN with noisy node sink channels and channel gains {γi}i.

• Weight computation

for i = 1 : N ,
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for j = i + 1 : N ,

r =
1

2
(H(Xi, Xj) + log2

γi

γj

)

ub = min(H(Xi), Ci(Pmax))

lb = max(H(Xi|Xj), H(Xi, Xj)− Cj(Pmax))

if(r < lb) W (i, j) =
2lb − 1

γi

+
2H(Xi,Xj)−lb − 1

γj

elseif(r < ub) W (i, j) =
2r − 1

γi

+
2H(Xi,Xj)−r − 1

γj

else(r < lb) W (i, j) =
2ub − 1

γi

+
2H(Xi,Xj)−ub − 1

γj

W (j, i) = W (i, j)

end

end

• Weighted matching with weights W (i, j) provides optimal 2-partition P∗, that mini-

mizes sum weight. Minimal sum power is this sum weight.

Solution interpretation. This results admits a nice interpretation. First, we rederive

the rate-power optimization. More precisely, we seek for the optimal value of the sum

power using a convexity argument. Since, the function x 7→ 2x is convex, we have ∀ 0 ≤
α ≤ 1

2α(Ri−log2 γi)+(1−α)(Rj−log2 γj) ≤ α2Ri−log2 γi + (1− α)2Rj−log2 γj

In particular, for α = 1
2
, we have

2.2
1
2
(Ri+Rj−log2 γi−log2 γj)

a
= 2.2

1
2
(H(Xi,Xj)−log2 γi−log2 γj)

≤ 2Ri−log2 γi + 2Rj−log2 γj

where (a) follows from the constraint Ri + Rj = H(Xi, Xj). Therefore, the minimum of

the cost function is achieved for

R∗
i = 1

2

(
H(Xi, Xj) + log2

γi

γj

)

R∗
j = 1

2

(
H(Xi, Xj) + log2

γj

γi

) (12)

which is equivalent to the second case in (11). But due to rate constraints (Slepian Wolf

and capacity region) and peak power constraints, this optimal rate may not be achievable.

In this case, bounds as lb and ub have to be introduced.

Therefore, due to the convexity of the exponential function, the optimal rate allocation

(if feasible) corresponds to a balanced rate (up to the gain channel). More precisely, if
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γi = γj, then Ri = Rj = 1
2
H(Xi, Xj). Moreover, if these rates are feasible, the optimal

powers are

P ∗
i =

√
2H(Xi,Xj)

γiγj
− 1

γi

P ∗
j =

√
2H(Xi,Xj)

γiγj
− 1

γj

(13)

and the sum power is

2

√
2H(Xi,Xj)

γiγj

− 1

γi

− 1

γj

(14)

Case without peak power constraint. Notice that the solution detailed above en-

compasses the case without peak power constraint by letting Pmax tends to +∞. Let us

assume wlog that
2H(Xi|Xj)

γi

≥ 2H(Xj |Xi)

γj

the optimal rate reads

Q∗
ij(1) = H(Xi|Xj) +

[
1

2

(
H(Xi, Xj) + log2

γi

γj

)
−H(Xi|Xj)

]+

where [x]+ denotes max(x, 0). The quadruple Qij is completely determined with (11).

4.3 Solution and complexity

We now consider the global optimization problem 2.

Corollary 2. The sum power minimization under lossless pairwise-distributed separated

source and channel coding is polynomial in the number of sensor nodes.

Proof. From Proposition 2, the joint optimization separates into a power-rate allocation

with complexity O(N2) (see Section 4.2) and a partition optimization with complexity

O(N3) [4] (see Corollary 1).

Grouping N nodes? We note that the three dimensional matching problem is NP-

complete [11, Theorem 15.7]. Therefore, grouping more than two nodes will lead to high

complexity solution. This also explains why we restrict ourselves to the grouping of pairs

of nodes.

Solution interpretation (continued). We continue the solution interpretation started

in Section 4.2 and focus on the matching solution. For the sake of clarity, let us assume

that the rates (12) are feasible (i.e. lie in the intersection of the capacity and SW region).

The sum of two powers is given by (14). Therefore the 2-partition optimization matches

pairs in order to minimize:

P∗ = arg min
P∈S

∑

(i,j)∈P

√
2H(Xi,Xj)

γiγj

(15)
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In general, the joint entropy H(Xi, Xj) decreases with the internode distance. Therefore,

the minimization of an increasing function of joint entropies would rather match close

pairs. On the other hand, the minimization of
∑

(i,j)∈P
1√
γiγj

tends to match pairs with

different γ (see Corollary 4). Since the channel gain γ depends on the distance between

a node and the sink, it follows that nodes that have different distances to the sink, will

be matched.

The overall optimization (15) is therefore a tradeoff between matching close nodes and

matching nodes with different distances to the sink. This optimization results in a pairing

along radii from the sink. This fact is fully illustrated by our experiment later.

Theorem 1. Let {νi}i be a set of n ordered positive reals s.t. ν1 ≥ ν2 ≥ ... ≥ νn ≥ 0.

Suppose n is even. Let P be a 2-partition of n elements and S the set of all possible

2-partitions. We have that

min
P∈S

∑

(i,j)∈P

νiνj =

n/2∑
i=1

νiνn+1−i

In other words, the optimal 2-partition matches most distinct reals.

Proof. By induction, it is sufficient to show that ν1 and νn have to be matched in the

partition that minimizes the sum weight. This argument is shown by contradiction.

Assume that there exists i < n and j > 1 s.t. νi is matched with ν1 and νj with νn in the

perfect matching. From the ordering of the {νi}i, we have that νi − νn ≥ 0 and ν1 ≥ νj.

It follows that (νi − νn)ν1 ≥ (νi − νn)νj, which is equivalent to

ν1νi + νjνn ≥ ν1νn + νiνj

This contradicts the fact that 1 is matched with i, and that j is matched with n in the

optimal 2-partition.

Theorem 1 can be reformulated as:

Corollary 3. Consider a complete, undirected and non-bipartite graph. Each node is

given a positive weight, and the weight of an edge is the product of the weights of the

nodes it is connected to. The perfect weighted matching problem (that minimizes the sum

weight) admits a closed form expression.

Corollary 4. The minimization of
∑

(i,j)∈P
1√
γiγj

tends to match pairs with different γ.

Proof. Apply Theorem 1 with νi = 1/
√

γi.

4.4 Network Lifetime maximization

Up to now, we have addressed the total power minimization problem in a WSN. However,

in some contexts (multihop scenario for instance), one can prefer to maximize the lifetime

of the network, or equivalently minimize the maximum power (maximum taken over all

the sensors of the network). Hence, network lifetime maximization for orthogonal noisy

channels can be stated as follows.
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Problem 3. The minimization of the transmit max-power that achieves rates with vanish-

ing error probability in a pairwise-distributed separated source and channel coding scheme

can be written as:

(
{R4

i }N
i=1, {P

4
i }N

i=1,P
4
)

= arg min
{Ri}i,{Pi}i,P∈S

max
i∈N

Pi

= arg min
{Ri},{Pi},P

max
(i,j)∈P

(max(Pi, Pj))

subject to ∀ (i, j) ∈ P, (Ri, Rj) ∈ SWij ∩ Cij(Pi, Pj)

∀ i ∈ N, Pi ≤ Pmax

As for the sum-power minimization (see Problem 2), the lifetime maximization can be

efficiently simplified.

Proposition 3. Separation of rate-power allocation and 2-partition selection. The max-

power minimization (Problem 2) can be separated in:

(i) a rate-power allocation over all possible distinct unordered pairs: ∀ (i, j) ∈ N2 s.t. i < j

W
4
ij = min

Qij

max(Qij(3), Qij(4)) (16)

subject to (Qij(1), Qij(2)) ∈ SWij ∩ Cij(Qij(3), Qij(4))

Qij(3) ≤ Pmax

Qij(4) ≤ Pmax

where Qij = (Ri, Rj, Pi, Pj) denotes the four design parameters, and where Wij is the

weight to be used for weighted matching.

(ii) a matching (or 2-partition optimization):

P
4

= arg min
P∈S

max
(i,j)∈P

W
4
ij (17)

Proof. Since
∑N

i=1 Pi =
∑

(i,j)∈P Pi + Pj and maxi∈N Pi = max(i,j)∈P (max(Pi, Pj)), sum-

power and max-power minimization are similar problems. Therefore, the same proof as

for Proposition 1 applies.

Polynomial complexity? To the best of our knowledge there exists no algorithm to

solve the minimum max-weight matching problem, but we conjecture that it is also poly-

nomial. Hence, we conjecture that the max-power minimization under lossless pairwise-

distributed separated source and channel coding is polynomial in the number of sensor

nodes.

We now analyze the solution of problem (16). As in section 4.2, we shall use the

notation Ri, Rj, Pi, Pj instead of Qij, in order to keep track of the meaning of the variables.

Lemma 3. The minimum max power (16) is achieved for P
4
i = P

4
j .

14



Proof. Let E denotes the set of feasible (Ri, Rj, Pi, Pj) defined by the constraints in (16).

The next trick consists in defining the two sets: E1 = E ∩ {(Ri, Rj, Pi, Pj) : Pi ≤ Pj}
and E2 = E ∩ {(Ri, Rj, Pi, Pj) : Pi ≥ Pj}. Since E = E1 ∪ E2, we have that minE =

min (minE1 , minE2). More precisely, we have

min
E1

= min
E∩{Pi≥Pj}

max(Pi, Pj)

= min
E∩{Pi≥Pj}

Pi

= min
E∩{Pi=Pj}

Pi

= min
E∩{Pi=Pj}

Pj

The second equality follows from the fact that max(Pi, Pj) = Pi, when Pi ≥ Pj. The

fourth equality is due to the fact that in the constraint Pi = Pj. The third equality can

be shown by contradiction, as detailed below.

Proof for the third equality. By contradiction. Let (R◦
i , R

◦
j , P

◦
i , P ◦

j ) = arg minE1 max(Pi, Pj).

Assume that P ◦
i > P ◦

j . Now, (R◦
i , R

◦
j , P

◦
i , P ◦

j ) ∈ E1 ⇒ R◦
i , R

◦
j , P

′
i = P ◦

j , P ◦
j ) ∈ E1. Since

P ′
i = P ◦

j < P ◦
i , it contradicts the fact that P ◦

i is minimum.

Similarly, we have that minE2 = minE∩{Pi=Pj} Pj. Since minE1 = minE2 , we get that

min
E

= min

(
min
E1

, min
E2

)
= min

E1

= min
E∩{Pi=Pj}

Pi

Therefore, the optimum is achieved for Pi = Pj.

Solution interpretation (continued). As intuition would suggest, the max-power

minimization results in allocating equal powers (see Lemma 3). However for the sum-

power minimization (see paragraph “Solution interpretation” in section 4.3), the optimal

rate/power allocation will result in equal power (13) iff the matched nodes have equal

channel gain γi = γj. Hence if nearest neighbors are matched (case of transmission of

high data rates: 2H(Xi,Xj) À γiγj), max-power and sum-power minimizations will lead to

similar results.

5 A sensor network example

In order to illustrate, the gain achieved by a pairwise sensor network optimization, we

consider a WSN in a bounded square area where sensors are randomly placed. A sink

is either placed at a corner or at the center. We consider AWGN channels between the

nodes and the sink and assume that the channel gain is inversely proportional to the

square distance between the nodes communicating together.

We consider the entropy model of [12] based on empirical measure of daily rainfall

precipitation. All individual entropies are assumed equal. The joint entropy of two sources

is a function of the individual entropy, of a coefficient c that captures the correlation, and
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of the distances dij between the sources:

H(Xi, Xj) = H(Xi) +

(
1− 1

1 +
dij

c

)
H(Xi) (18)

The greater c, the more correlated the sources are.

5.1 Numerical examples

The sensors lie in a bounded area such that the coordinates of each sensor are in [0, 1]2.
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Figure 3: Perfect node-sink channel case. The normalized sum rate (
∑N

i=1 Ri/H(X1)) as

a function of the number of sensors. Result of the sum rate minimization, Problem 1, for

different correlations c. Curves averaged over 10 realizations of the sensor positions.

Reduction of compression sum rate and sum power. In the case of perfect node-

sink channel, Figure 3 shows the total sum rate needed to send all the data gathered

by the sensors to the sink. Since in our example the sum rate scales multiplicatively

with the individual entropy H(Xi) = H(X1), ∀i (18), we plot the normalized sum rate∑
Ri/H(X1). It is shown that the pairwise optimization helps to reduce the sum rate up

to half of the naive case where all nodes communicate to the sink (in this case
∑

Ri =

N.H(X1)). Interestingly, the sum rate presents a smooth behavior, whereas it is averaged

over only 10 realizations of the sensor placement. This may be explained by the fact that

the weighted matching algorithm tends to match pairs with similar distances.

Figure 4 presents the total sum power consumed as a function of the number of sensors

in the case of noisy channels. In this setup, we assume that the channel gain equals the

inverse square distance between the node and the sink. Actually there is no need to add

a scaling factor in the channel gain, because the rate allocation is insensitive to a scaling

factor in the channel gain (see (12)) and the sum power will then scales multiplicatively

with this constant (10). The reduction of sum power is even more important than the

reduction of rate. This is due to the exponential behavior of the power wrt to the rate.

Matching result. The coefficient c captures the correlation. We now choose c = 1, such

that if 2 sensors are distant by 1 (2 corners of the area), then the joint entropy is 3
2

the
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Figure 4: Noisy node-sink channel case. The total power consumed in the sensor network

(
∑N

i=1 Pi) as a function of the number of sensors. Result of the sum power minimization,

Problem 2, for different correlations c and different individual entropies H(X1). Curves

averaged over 10 realizations of the sensor positions. (a) H(X1) = 1 (b) H(X1) = 10.

individual entropy. We therefore consider a highly correlated sensor network, that helps

reducing the sum rate by about half (see fig. 3). Figure 5 shows the matching results for

20 sensors and a sink placed at the center of the area. The individual entropy is set to 1:

∀ i,H(Xi) = 1. The numerical results (in terms of rate or power) are given in the title of

each figure. As seen before, there is little variance of the sum rate and sum power wrt to

the realization of the sensor placement. Therefore these values are significative.

For perfect channels, the figure that matters is the entropy between two sources or

equivalently the distance. The optimization rather matches closest neighbors(see Fig. 5.a

and 6.a), which is very intuitive since the joint entropy H(Xi, Xj) decreases with the

internode distance.

Once the power comes into the picture, the matching result changes and comparing Fig. 5

(a) and (b) shows that matched pairs are located on radius emanating from the sink.

Fig. 6 and 7 highlight this observation. (On Figure 6 the sink is placed at the left bottom

corner of the area, whereas it is at the center on Figure 7.) This can be further explained

and understood with the help of the interpretation we gave in section 4.3. In these figures,

we decrease the value of the entropy, s.t. the matching is more due to the influence of the

γ and therefore distant nodes are matched together.

Effect of the peak power constraint. It is also interesting to note that adding a peak

power constraint does not change the matching result (compare Fig. 5 (b) and (c)).

However it can make the problem infeasible.

Maximum power. In the case of noisy channels, Figure 8 shows the distribution of the

powers needed to send all the data to the sink. We compare the naive case where the

nodes communicate directly to the sink (solid line) with the case, where the rate/power

allocation and matching are done in order to minimize the sum-power. It is shown that

the pairwise can significantly reduce the maximum power needed, especially when the
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Figure 5: WSN with 20 sensors (x) and 1 sink (o) placed at the center. 2 matched nodes

are linked by a line. Matching results for (a) perfect channel, (b) noisy channel without

peak power constraint, (c) noisy channel with peak power constraint.

data are highly correlated (c = 1). When the individual entropy is high (see Figure 8(b)

H(X1) = 10), the sum-power minimization tends to match nearest neighbors (see Figure

7(b)). In that case, max-power minimization and sum-power minimization have similar

rate/power allocation (as explained in section 4.4) and the reduction of the maximum

power is even more significant.

6 conclusion

We proposed a way to design wireless sensor network while using existing and low com-

plexity source and channel coding techniques. More precisely, only the correlation between

pairs of nodes was taken into account. In comparison with the global DSC scheme (that

processes the correlation between all the nodes), the complexity of our scheme is trans-

ferred to the sink. Indeed, an additional task is performed at the sink: it has to match

the nodes into pairs. But, we showed that the complexity of the optimal design (including

matching and rate/power allocation) is only polynomial in the number of nodes in the

network. Finally, numerical results showed that the pairwise strategy can save about half

the amount of data to be sent wrt the case where all the nodes transmit directly to the

sink.
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Figure 8: Noisy node-sink channel case. Distribution of the power {Pi}i) consumed in the

sensor network. Result of the sum power minimization, Problem 2, for different correla-

tions c and different individual entropies H(X1). Curves obtained for 5000 realizations

of a WSN with 200 sensors, sink placed at the center of the network. (a) H(X1) = 1 (b)

H(X1) = 10.
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