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Abstract— Place recognition gives a SLAM system the abil-
ity to correct cumulative errors. Unlike images that contain
rich texture features, point clouds are almost pure geometric
information which makes place recognition based on point
clouds challenging. Existing works usually encode low-level
features such as coordinate, normal, reflection intensity, etc.,
as local or global descriptors to represent scenes. Besides,
they often ignore the translation between point clouds when
matching descriptors. Different from most existing methods,
we explore the use of high-level features, namely semantics,
to improve the descriptor’s representation ability. Also, when
matching descriptors, we try to correct the translation between
point clouds to improve accuracy. Concretely, we propose a
novel global descriptor, Semantic Scan Context, which explores
semantic information to represent scenes more effectively.
We also present a two-step global semantic ICP to obtain
the 3D pose (x, y, yaw) used to align the point cloud to
improve matching performance. Our experiments on the KITTI
dataset show that our approach outperforms the state-of-the-
art methods with a large margin. Our code is available at:
https://github.com/lilin-hitcrt/SSC.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has
rapidly developed in recent decades as critical technologies
for autonomous vehicles and robots. Place recognition rep-
resents the ability of robots to recognize previously visited
places, which can build global constraints for the SLAM
system to eliminate the odometry’s cumulative errors and
establish a globally consistent map [1]. Place recognition is
usually conducted by using images or point clouds. Since
point cloud data is rarely affected by environmental factors
such as illumination and seasonal changes, LiDAR-based
methods have received widespread attention in recent years.

Most existing works on LiDAR-based place recognition
are achieved by encoding the point cloud into global or local
descriptors and then matching the descriptors. They usually
use low-level features such as coordinates [2]–[6], normal
[7], reflection intensity [7]–[10], etc. In recent years, with
the development of point cloud deep learning, many LiDAR-
based object detection [11] and semantic segmentation [12],
[13] methods have been proposed, making it possible to
obtain semantic information from point clouds. However,
there are still only a few LiDAR-based works trying to use
semantic information [7], [14], [15].

For place recognition, when a robot passes through a place
visited before, it does not mean that the two poses are the
same. Instead, the robot may walk through the original area
from any direction, and there may be a small amount of
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Fig. 1: An example of place recognition using semantic scan
context. It is a partial map of the KITTI sequence 08, where
the frames 720 and 1500 form a reverse loop. The lower part
of the figure is the semantic scan context corresponding to
the two frames. Since the directions of them are opposite, the
descriptors are quite different, while the aligned one shown
in Fig. 2 is easy to distinguish.

translation from the original position. Many existing works
consider the robot’s orientation, namely rotation, and realize
the invariance of rotation [3], [4], [10], [14]. They may
think that the small translation will not strongly impact the
recognition result and therefore ignore it. However, we find
that simply ignoring the translation for the scan context-
based methods will greatly reduce the similarity of the
positive samples, making them difficult to identify.

In this paper, we propose a novel global descriptor named
Semantic Scan Context (SSC), which explores semantic
information to enhance the expressive power of descriptors.
We also propose a two-step global semantic ICP that can
produce reliable results regardless of the pose initialization,
to obtain the 3D pose (x, y, yaw) of the point cloud. The
pose is then used to align the point clouds to reduce the
influence of rotation and translation on the similarity of the
descriptors. Furthermore, it can also provide good initial
values for 6D ICP algorithms to refine the global pose
further. Fig. 1 is a demonstration of our results. The main
contribution is summarized as follows:

• We propose a novel global descriptor for LiDAR-based
place recognition, which exploits semantic information
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Fig. 2: The pipeline of our approach. It mainly consists of two parts: two-step global semantic ICP and Semantic Scan
Context. First, we conduct semantic segmentation on the raw point cloud. Then we use semantic information to retain
representative objects and project them onto the x-y plane. The two-step global semantic ICP is performed on the projected
cloud to get the 3D pose (∆x,∆y, θ). Finally, we use the 3D pose to align the original clouds and generate global descriptors
(Semantic Scan Context). The similarity score is obtained by matching SSC.

to encode the 3D scenes effectively.
• We propose a two-step global semantic ICP, which

doesn’t require any initial values, to obtain the 3D pose
(x, y, yaw) of the point clouds.

• We align point clouds with the obtained 3D poses to
eliminate the influence of rotation and translation error
on the similarity of the descriptors, which can also
further benefit the SLAM system as good initial poses.

• Exhaustive experiments on the KITTI odometry dataset
show that our approach achieves state-of-the-art perfor-
mance both in place recognition and pose estimation.

II. RELATED WORK
According to the features used, we can divide the place

recognition methods into three categories: geometry-based,
semi-semantic-based, semantic-based.

Geometry-based methods: Spin image [2] establishes
a local coordinate system for each point, then projects
the point into the 2D space and counts the number of
points in different areas in the 2D space to form a spin
image. ESF [16] proposes a shape descriptor that combines
angle, point-distance, and area to boost the recognition rate.
M2DP [5] projects the point cloud into multiple 2D planes
and generates a density signature for each plane’s points.
The left and right singular vectors of those signatures are
used as the global descriptors. Scan context [3], [4] converts
the point cloud to polar coordinates and then divides it
into blocks along the azimuth and radial directions. Lastly,
it encodes the z coordinate of the highest point in each
block as a 2D global descriptor. LocNet [6] divides a point
cloud into rings, generates a distance histogram for each

ring, and stitches all histograms to form a global descriptor.
Then a siamese network is used to score the similarity
between the descriptors. LiDAR Iris [17] extracts a binary
signature image for each point cloud then uses the Hamming
distance of two corresponding binary signature images as
the similarity. Seed [18] segments the point cloud into
different objects and encodes the topological information of
the segmented objects into the global descriptor. The above
methods have achieved good results by encoding low-level
geometric structures into descriptors. It can be expected that
integrating more advanced features can further enhance the
discriminative power of descriptors.

Semi-semantic-based methods: Some methods use non-
geometric information to construct descriptors, such as re-
flection intensity or learning-based features extracted by
neural networks. Such features are related to the object type
but do not clearly indicate the semantic category, so we
classify these methods as semi-semantic based. ISHOT [9]
and ISC [10] exploit the intensity information of the point
cloud for place recognition. SegMatch [19] and SegMap [20]
cluster a point cloud into segments. Then they extract fea-
tures for each segment and use the kNN algorithm to identify
corresponds. PointNetVLAD [21] combines PointNet [22]
and NetVLAD [23] to extract global descriptors from the
3D point clouds end-to-end. L3-Net [24] selects key points
from the given point cloud then uses a PointNet to learn
local descriptors for each key point. OREOS [25] projects
the 3D point cloud into a 2D range image and proposes a
convolutional neural network to extract the global descriptor.
DH3D [26] designs a siamese network to learn 3D local



features from the raw 3D point clouds, then use an attention
mechanism to aggregate these local features as the global
descriptor. LPD-Net [27] proposes the adaptive local fea-
ture extraction module and the graph-based neighborhood
aggregation module to extract local features of the point
cloud; then, as the PointNetVLAD, they use the NetVLAD
to generate the global descriptor. MinkLoc3D [28] uses a
sparse voxelized point cloud representation and sparse 3D
convolutions to compute a discriminative 3D point cloud
descriptor. SeqSphereVLAD [29] projects the point cloud
onto a spherical view, extracts features on it and sequences
those features to form a descriptor. SpoxelNet [30] voxelized
the point cloud in spherical coordinates and defines the
occupancy of each voxel in ternary values. Then they use
a neural network to extract the global descriptor. The above
methods combine more advanced features with geometric
features. However, most of them use neural networks to
extract abstract features, which are more complicated and
not well interpretable.

Semantic-based methods: SGPR [14] represents the
scene as a semantic graph then uses a graph similarity
network to score the similarity of the graphs. GOSMatch [15]
proposes a new global descriptor that is generated from the
spatial relationship between semantics. It also proposes a
coarse-to-fine strategy to efficiently search loop closures and
gives an accurate 6-DOF initial pose estimation. The two
methods represent the scene as a graph and abstract the
object as a node in the graph, which will cause the loss
of features such as the size of each object. OverlapNet [7]
designed a deep neural network that uses different types
of information, such as intensity, normal, and semantics
generated from LiDAR scans, to provide overlap and relative
yaw angle estimates between paired 3D scans. However, it
is too slow in preprocessing due to the need to calculating
the normal and inferring the complex network backbone. To
use the semantic information more effectively, we propose
our Semantic Scan Context approach.

III. METHODOLOGY

In this section, we present our semantic scan context
approach. Different from other scan context-based methods
that use incomplete semantic information and ignore small
translations between point clouds, we explore to exploit full
semantic information and emphasize that the small transla-
tion between point cloud pairs has a significant influence on
the accuracy of recognition.

As shown in Fig. 2, our method consists of two main parts:
two-step global semantic ICP and Semantic Scan Context.
The two-step global semantic ICP is divided into Fast Yaw
Angle Calculate and Fast Semantic ICP. First, we define
a point cloud frame as P = {p1, p2, · · · , pn}, with each
point pi = [xi, yi, zi, ηi], ηi represent the semantic label of
pi. Given a pair of point clouds (P1, P2), we first use our
Fast Yaw Angle Calculate method to get the relative yaw
angle θ between them. Then we use the Fast Semantic ICP
to calculate their relative translation (∆x,∆y) in the x-y
plane. Through the above two steps, we get the relative poses

(a) Yaw Aligned (b) Translation Aligned

Fig. 3: An illustration of the two-step global semantic ICP.

(∆x,∆y, θ) of the two frames of point clouds in 3D pose
space. In order to eliminate the influence of rotation (e.g.,
reverse loop closures) and small translation on recognition,
we use the obtained relative pose to align point cloud P2.
We mark the aligned point cloud as Pa. Finally, we use our
global descriptor – the Semantic Scan Context to describe
(P1, Pa) as (S1, S2). The similarity score is obtained by
comparing S1 and S2.

A. Global Semantic ICP
It is known that the general ICP algorithm based on local

iterative optimization is susceptible to local minimums [31].
For place recognition, we usually cannot get a valid initial
value, which leads to the failure of the general ICP algorithm.
To solve this, we propose the two-step global semantic
ICP algorithm consisting of Fast Yaw Angle Calculate and
Fast Semantic ICP. Benefited from the use of semantic
information, our algorithm does not require any initial values
to get satisfactory results.

Fast Yaw Angle Calculate. For scan context based meth-
ods, columns of their descriptor represent the yaw angle.
The pure rotation of the LiDAR in the horizontal plane will
cause the column shift of their descriptor. Scan context and
Intensity Scan Context get the similarity score and the yaw
angle at the same time. Specifically, they calculate similarity
(or distance) with all possible column-shifted descriptors and
find the maximum similarity (or minimum distance). How-
ever, there are two main disadvantages. Firstly, it’s inefficient
to compare the whole 2D descriptors by shifting. Secondly,
they still try to get the maximum score for point clouds from
different places (not loop closure). This obviously makes it
more prone to false positives. To draw the above issues, we
propose the semantic-based fast yaw angle calculate method.

Given a point cloud pair (P1, P2), we select representative
objects such as buildings, tree trunks, and traffic signs based
on semantic information. Then we convert the filtered clouds
to polar coordinate in the x-y plane:

pi = [ri, ϕi, xi, yi, ηi]

ri =
√
x2
i + y2

i

ϕi = arctan(
yi
xi

)

(1)

where pi is the ith point in each converted cloud, ri and
ϕi represent polar diameter and polar angle, respectively.



Fig. 4: An example of generating SSC. ρ and θ represent
the polar diameter and polar angle, respectively. A sector
corresponds to a descriptor column, while a ring corresponds
to a row of the descriptor.

Each converted cloud is then segmented to Na sectors by
yaw angle. We only keep the point with the smallest polar
diameter in each sector. Finally, we get two clouds PI1 and
PI2, with Na elements. We sort the points in PI1 and PI2
according to the azimuth angle and save their corresponding
polar diameters as vectors R1 and R2. Similar to the scan
context, the shift of the column vector is related to the yaw
angle:

shift = argmin
i,i∈[0,Na]

Ψ(R1, R
i
2)

θ = 360− 360× shift
Na

(2)

where Ri2 is R2 shifted by ith element and Ψ is defined as:

Ψ(R1, R
i
2) =

∥∥R1 −Ri2
∥∥

1
(3)

Compared with Scan Context and Intensity Scan Context,
our method only needs to compare one-dimensional vectors;
therefore, it is more efficient. Moreover, our method does not
obtain the angle via maximizing the score, which is helpful
to identify non-loop-closure point-cloud pairs. Fig. 3 shows
the result of Fast Yaw Angle Calculate.

Fast Semantic ICP. Though most works ignore translation
between point clouds, ignoring the translation causes con-
siderable declines in our experiments. In fact, for methods
based on scan context, translation will affect both the row and
column of the descriptor. We can’t get the best result just by
the column-shifted descriptor. Therefore, we propose a fast
semantic ICP algorithm to correct the translation between
point clouds.

To find the relative translation, we firstly rotate PI2 to the

same direction as PI1, and the rotated point cloud is PIa,
which is defined as:

xai = xicos(θ)− yisin(θ)

yai = xisin(θ) + yicos(θ)
(4)

where (xi, yi) and (xai, yai) represent the ith point in PI2
and PIa respectively. Our ICP problem can be defined as:

(∆x,∆y) = argmin
∆x,∆y

L = argmin
∆x,∆y

Na∑
i=1

Γ(ηai, ηri)

× (xai + ∆x− xri)2 + (yai + ∆y − yri)2

2

(5)

where (xri, yri) represents the corresponding point of
(xai, yai), which is the point closest to (xai, yai) in PI1, ηai
and ηri are semantic labels of the points. If ηai is equal to
ηri, then the output of Γ(ηai, ηri) is 1; otherwise, 0. As our
point clouds are ordered, we can search for the corresponding
points near the position where the yaw angle is consistent
with the target point. Specifically, our search interval for the
ith target point is:

[i+ shift− Nl
2
, i+ shift+

Nl
2

] (6)

where Nl is the length of search interval and shift is defined
in Eq. 2. After a certain number of iterations, we can get the
relative translation between the input point clouds, shown in
Fig. 3.

B. Semantic Scan Context

Scan Context and Intensity Scan Context uses the points’
height and reflection intensity as features, respectively. Their
methods essentially take advantage of the different character-
istics of different objects in the scene. However, height and
reflection intensity is only low-level features of the object
which are not representative enough. We explore to use the
high-level semantic features to represent scenes and thus
propose the Semantic Scan Context descriptor.

Descriptor definition. Given a point cloud P , we first
convert it to the polar coordinate system as we did in
Section III-A. Then, like scan context, we divide the point
cloud into Ns × Nr blocks along the azimuthal and radial
directions. Each block is represented by:

Bij = {ηk|
(i− 1) ·Rmax

Nr
≤ rk <

i ·Rmax
Nr

,

(j − 1) · 2π
Ns

− π ≤ ϕk <
j · 2π
Ns

− π}
(7)

where Rmax is the the maximum effective measurement
distance of LiDAR, i ∈ [1, Nr] and j ∈ [1, Ns]. Our
descriptor can be defined by:

S(i, j) = f(Bij) = argmax
η∈Bij

E(η) (8)

f is an encoding function to encode features of Bij . Note
that if Bij = ∅, f(Bij) = 0. We manually set the priority
of different semantics in function E to show their represen-
tativeness. We believe objects that appear less frequently in
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Fig. 5: Precision-Recall curves on KITTI dataset.

TABLE I: F1 max scores and Extended Precision on KITTI dataset
Methods 00 02 05 06 07 08 Mean
SC [3] 0.750/0.609 0.782/0.632 0.895/0.797 0.968/0.924 0.662/0.554 0.607/0.569 0.777/0.681

ISC [10] 0.657/0.627 0.705/0.613 0.771/0.727 0.842/0.816 0.636/0.638 0.408/0.543 0.670/0.661
M2DP [5] 0.708/0.616 0.717/0.603 0.602/0.611 0.787/0.681 0.560/0.586 0.073/0.500 0.575/0.600

LI [17] 0.668/0.626 0.762/0.666 0.768/0.747 0.913/0.791 0.629/0.651 0.478/0.562 0.703/0.674
PV [21] 0.779/0.641 0.727/0.691 0.541/0.536 0.852/0.767 0.631/0.591 0.037/0.500 0.595/0.621
ON [7] 0.869/0.555 0.827/0.639 0.924/0.796 0.930/0.744 0.818/0.586 0.374/0.500 0.790/0.637

SGPR [14] 0.820/0.500 0.751/0.500 0.751/0.531 0.655/0.500 0.868/0.721 0.750/0.520 0.766/0.545
Ours-RN 0.939/0.826 0.890/0.745 0.941/0.900 0.986/0.973 0.870/0.773 0.881/0.732 0.918/0.825
Ours-SK 0.951/0.849 0.891/0.748 0.951/0.903 0.985/0.969 0.875/0.805 0.940/0.932 0.932/0.868
F1 max scores and Extended Precision: F1 max scores / Extended Precision. The best scores are marked in bold and
the second best scores are underlined.

the scene are more representative (e.g., traffic signs are more
representative than roads).
Similarity Scoring. Given aligned clouds P1 and Pa, we can
get their descriptors S1 and S2 by Eq. 8. Then the similarity
score between them can be calculated by:

score =

∑
1≤i≤Nr

∑
1≤j≤Ns

I(S1(i, j) = S2(i, j))∑
1≤i≤Nr

∑
1≤j≤Ns

I(S1(i, j) 6= 0 or S2(i, j) 6= 0)
(9)

where I is the indicator function, defined by:

I(x) =

{
1 x is true

0 x is false
(10)

Fig. 4 shows Semantic Scan Context creation.

IV. EXPERIMENTS

A. Experiment Setup

We conduct experiments on the KITTI odometry dataset
[32] collected by a 64-ring LiDAR, which contains 11

training sequences (00-10) with ground truth poses. We
choose sequences with loop-closure (00,02,05,06,07,08) for
evaluation and note that sequence 08 has reverse loops while
others are in the same direction. Similar to SGPR [14],
we regard the point cloud pair with a relative distance less
(greater) than 3m (20m) as a positive (negative) sample.
Since there are too many negative samples, we only select
a part of the negative samples for evaluation. Specifically,
if there are Np positive samples in a sequence, we will
randomly select α ·Np negative samples. We can adjust the
proportion of negative samples by changing the coefficient
α.

The ground-truth semantic labels are from the Se-
manticKITTI dataset [33]. We also test our method with
the semantic segmentation algorithm (RangeNet++ [34]) to
prove that our method can be applied to noisy predictions in
real situations. In our experiments, we set Na = 360, Nl =
20, Ns = 360, Nr = 50. All experiments are done on the
same system with an Intel i7-9750H @3.00GHz CPU with



(a) Average F1 max scores (b) Average EP

Fig. 6: Average F1 max score and Average Extended Precision corresponding to different α.

16 GB RAM.

B. Place Recognition Performance

As mentioned in Section IV-A, we use both ground-truth
semantic labels (Ours-SK) and predicted semantic labels
(Ours-RN) for testing. We compare our approach with the
state-of-the-art methods, including Scan Context [3] (SC),
Intensity Scan Context [10] (ISC), M2DP [5], LiDAR Iris
[17] (LI), PointNetVLAD [21] (PV), OverlapNet [7] (ON),
and SGPR [14]. For SGPR, we use their pre-trained models
trained with the 1-fold strategy. As we cannot reproduce the
results of OverlapNet, we use the pre-trained model provided
by the author. The model is trained on sequences 03-10, so
sequences 05, 06, 07, 08 are included in the training set.

Fixed α. In this experiment, we set α to 100, which means
the number of negative samples is 100Np. Fig. 5 shows the
precision-recall curve of each method. Additionally, we also
use the maximum F1 score and Extended Precision [35] (EP)
shown in Tab. I to analyze the performance. The F1 score is
defined as:

F1 = 2× P ×R
P +R

(11)

where P and R represent the Precision and Recall, respec-
tively; F1 is the harmonic mean of P and R. It treats P and
R as equally important and measures the overall performance
of classification. The Extended Precision is defined as:

EP =
1

2
(PR0 +RP100) (12)

where PR0 is the precision at minimum recall, and RP100

is the max recall at 100% precision. EP is specifically
designed metrics for place recognition algorithms.

As shown in Fig. 5 and Tab. I, Ours-SK surpasses other
methods in all indicators of all sequences with a large
margin. Especially in sequence 08, which has only reverse
loops, the performance of other methods drops significantly
while our method still performs well. This indicates that
our method is robust to view angle changes. OverlapNet
performs well on most sequences except 08. We guess this

TABLE II: Yaw error on KITTI dataset
sequences SC (deg) ISC (deg) ON (deg) Ours-SK (deg)

00 11.526 0.829 2.595 0.891
02 11.301 1.343 4.911 1.142
05 18.394 0.904 3.329 0.653
06 4.074 0.534 1.124 0.759
07 21.862 0.684 2.233 0.512
08 49.170 3.856 68.622 1.878

Average 19.388 1.358 13.802 0.973

is because it uses the normal of the point cloud, which will
change as the point cloud rotates. Therefore, this method
cannot robustly handle reverse loops. SGPR works well on
indicator the F1 max score but poorly on the Extended
Precision. We find that it gives some negative samples a huge
score, which causes the recall to be almost zero when the
accuracy reaches 100%. The result of Ours-RN is slightly
worse than Ours-SK as expected. As the difference is not
obvious, it means that our approach can adapt to semantic
segmentation algorithms for actual systems.

Change α. In this experiment, we change the value of α to
analyze the influence of the number of negative samples on
those algorithms. Fig. 6 shows the Average F1 max score and
Average Extended Precision corresponding to different α. It
clearly shows that our method performs better than others no
matter how much α is taken. As α increases, the performance
of all methods gradually decreases, but our method is less
affected, showing that our method can effectively identify
negative samples. For place recognition, negative samples are
generally far more than positive samples, which is one key
reason why our method leads in metrics far ahead. Moreover,
identifying negative samples is significant as false positives
will bring fatal crashes to the SLAM system.

C. Pose Accuracy

As described in Section III-A, our approach can estimate
the 3D relative pose (∆x,∆y, θ), while most other methods
cannot estimate pose or can only estimate 1D pose (yaw).
We compare our method with Scan Context, Intensity Scan



Fig. 7: Translation error.
TABLE III: Contribution of individual components

Yaw ICP Semantic F1/EP Decrease√ √
0.896/0.820 3.6%/4.8%√ √
0.757/0.685 17.5%/18.3%√ √
0.775/0.762 15.7%/10.6%√ √ √
0.932/0.868 0.0%/0.0%

Context, and Overlap. The ground-truth pose is calculated
by:

T = T−1
1 T2

(∆x,∆y, θ) = (T (1, 3), T (2, 3), arctan(
T (2, 1)

T (1, 1)
))

(13)

where T1 ∈ SE(3) and T2 ∈ SE(3) represent the pose of
P 1 and P 2, respectively. Since the pitch and roll angles are
hardly changed in autonomous vehicles, we ignore them.

Tab. II shows the relative yaw error on the KITTI dataset.
We can see that our method outperforms other methods
in terms of the average relative yaw error. Especially in
the challenging sequence 08, affected by the reverse loop,
most methods perform poorly, while our method can still
accurately estimate the yaw angle. This again shows that our
method can handle the reverse loop well. As mentioned in
Section IV-B, OverlapNet performs poorly due to its inability
to handle reverse loops.

Fig. 7 shows the relative translation error of our approach
on the KITTI dataset. As shown, our method can estimate
accurate relative translation, which is currently not possible
with other methods to our knowledge. Thus, our Fast Yaw
Angle Calculate and Fast Semantic ICP approaches can give
accurate 3D pose estimation. This can provide a good initial
value for the ICP algorithm to obtain a 6D pose or directly
serve as a global constraint in the SLAM system.

D. Ablation Study

We design an ablation study to investigate the contribution
of each component. Specifically, we remove or replace a
module at a time and then calculate the F1 max scores
and Extended Precision. To show the contribution of our
Fast Yaw Angle Calculate method, we replace this module
with the method used in scan context – shift the column

TABLE IV: Average time cost on KITTI 08
Methods Size Description Retrieval ICP Total

SC 20× 60 4.825 0.158 - 4.983
ISC 20× 90 3.094 0.800 - 3.894
Ours 50× 360 2.563 0.066 2.126 4.755

The unit of time in the table is milliseconds.

of descriptors and calculate the maximum similarity score
while obtaining the yaw angle. Similarly, we replace the
semantic label in the descriptor by maximum z to see se-
mantic contribution. To evaluate the contribution of our Fast
Semantic ICP approach, we directly set ∆x and ∆y to 0. As
shown in Tab. III, after removing Yaw, ICP, and Semantic, the
average F1 max score decrease by 3.6%, 17.5%, 15.7%, and
the average Extended Precision decrease by 4.8%, 18.3%,
10.6%. Therefore, the following conclusions can be drawn:
• Compared with other methods, our approach can get a

more accurate yaw angle and translation.
• As we emphasized, the small translation has a signif-

icant impact on scan context-based methods. Simply
ignoring the translation will greatly weaken the perfor-
mance.

• High-level features, like semantics, can bring consider-
able improvements in the scene description.

E. Efficiency

To evaluate the efficiency, we set α to 1 and compare
the average time cost of our method with Scan Context
and Intensity Scan Context on sequence 08. As shown in
Tab. IV, the total time cost of our approach is acceptable.
As we use the obtained 3D pose to align the point clouds
in advance, we don’t need to shift the column of descriptors
during the matching stage, so our retrieval speed is extremely
fast. Our two-step global semantic ICP only takes 2.126
milliseconds on average. This algorithm is fast due to the
following reasons. Firstly, since we only keep Na (360 taken
in our experiments) points, the computational cost is greatly
reduced compared to the original point cloud (about 120,000
points). Secondly, We divide the algorithm into two steps,
first calculate the yaw angle, and then iteratively calculate
∆x and ∆y, which simplifies the algorithm and speeds up
the calculation. Thirdly, when calculating ∆x and ∆y, we
use the yaw angle to align the input clouds in advance.
Therefore we don’t need to traverse the entire point cloud
when looking for the corresponding points. Instead, we can
find them near the corresponding positions, which greatly
reduces the number of searches.

V. CONCLUSION

In this paper, we propose a novel semantic-based global
descriptor for place recognition. We propose a two-step
global semantic ICP to obtain the 3D pose (x, y, yaw) of
the point cloud pair, aligning the point clouds to improve
the descriptor matching accuracy. In addition, it can provide
good initial values for point cloud registration. We achieve
leading performance on the KITTI odometry dataset com-
pared to the state-of-the-art methods.



Our method also has some limitations. Like most place
recognition methods, our method does not consider pitch
angle and roll angle. Therefore, our method may fail in some
extreme scenarios.

In the future work, we will try to solve the above problems
and further explore the application of semantic information
in LiDAR-based SLAM systems.
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