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Abstract— This paper investigates the problem of finding
optimal paths in single-source single-destination accumulative
multi-hop networks. We consider a single source that communi-
cates to a single destination assisted by several relays through
multiple-hops. At each hop, only one node transmits, while the
rest of nodes receive the transmitted signal, and store it after
processing/decoding and mixing with the signals received in
previous hops. This is, we consider that terminals make use of
advanced energy accumulation transmission/reception techniques
such us maximal ratio combining reception of repetition codes,
or information accumulation with rateless codes. Accumulative
techniques increase communication reliability, reduce energy
consumption, and decrease latency. We investigate the properties
that a routing metric must satisfy in these accumulative networks
to guarantee that optimal paths can be computed with Dijkstra’s
algorithm. We model the problem of routing in an accumulative
multi-hop networks, as the problem of routing in a hypergraph.
We show that optimality properties in traditional multi-hop
network (monotonicity and isotonicity) are no longer valid and
derive a new set of sufficient conditions for optimality.

I. INTRODUCTION

Introducing relay capabilities in a network has a strong
effect on the information flow that extends to all communica-
tion levels, from the achievable rates to the routing strategy.
A fundamental understanding of the role that relays play in
wireless networks is of paramount importance to the design
of efficient protocols for future communication systems.

The problem of routing in a traditional multi-hop (TM)
network model, where each relay node only listens to the
immediately previous node is quite well understood today. For
the purpose of routing, these networks are well modeled by
directed graphs. Given a routing metric criteria, the optimality
conditions that guarantee that efficient path search algorithms,
such as Dijkstra’s algorithm, find the optimal path were studied
in [1], [2].

The problem of routing in an accumulative multi-hop (AM)
network model, in which we are instead interested, is however
far from being understood today. In accumulative multi-hop
networks, a single source communicates to a single destination
assisted by several relay nodes that can accumulate the re-
ceived energy/information from previous relay transmissions.
In practice, there are two main accumulation mechanisms
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at relays: energy and mutual-information accumulation. En-
ergy accumulation can be performed at the receiving nodes,
e.g., through space-time coding or repetition coding [3], [4].
Mutual-information accumulation [5], [6] can be realized using
rateless codes e.g. fountain or raptor codes [7]. Accumulation
mechanisms are considered in current and next generation
standards since they increase communication reliability and
reduce energy consumption.

The work presented here builds, mainly, on top of the
works conducted in [1], [2]. We show that graphs can not
model the AM network, and thus, the results derived in [1],
[2] for routing over graphs can not be invoked. We model
the AM network by a hypergraph, and find new sufficient
conditions to guarantee the optimality of Dijkstra’s algorithm
in hypergraphs. We then discuss the optimality of Dijkstra’s
algorithm for the minimum energy routing in static AM
networks. In the case of decoded-and-forward (DF) relaying
this problem has been previously addressed in [3], [4], [7]-
[10]. DF relay nodes decode the source message completely
by accumulating energy, or information from all previous
transmissions. From [3] and [4], we already know that finding
the optimal transmission order for these networks is an NP-
complete problem. We show the optimality of Dijkstra’s algo-
rithm for DF accumulative networks where nodes decode the
source message by only accumulating the energy/information
coming from the immediately previous relay, and from the
source. Besides the DF relaying, we also consider the cut-set
bound (CB) for AM networks [11, Th. 14.10.1]. For the CB,
we show that Dijkstra’s algorithm finds the minimum energy
route.

The remainder of the paper is organized as follows. The
AM network model is presented in Section II. In Section III,
the minimum energy accumulative path weight function for
DF relaying and for the CB are derived. The optimality of
Dijkstra’ algorithm in AM networks is discussed in Section
IV, and particularized for the minimum energy accumulative
routing metrics in Section V. Finally, conclusions are drawn
in Section VI.

II. THE ACCUMULATIVE NETWORK MODEL

Consider a static network with N nodes. The traffic is
unicast, from a source node (S) to a destination node (D)
with the help of relay transmissions. Relay nodes transmit
according to a given transmission order described by a path
vector p, where p[0] =S, p[L+1] =D, and L is the number of
relays. Notice that we only allow one relay node in each path



Fig. 1: A directed hypergraph . The arrow on a hyperedge in
the figure points to the vertices in the head of the hyperedge.

position. Communications are either point-to-multipoint as in
wireless channels, or point-to-point as in wireline channels.

In a TM network model, given a path p, the signal trans-
mitted by node pl[i] is only intended to node p[i + 1]. This
is so, even if transmissions are over wireless channels, and
the transmitted signals are also overhead by nodes in the path
other than the intended ones. These nodes ignore or treat as
interference the received signals. In TM routing problems, the
network is well modeled by a directed graph G(V, E), where
V is the set of nodes and E is the set of edges representing the
existence of links between pairs of nodes. Let e,, denote the
edge between nodes u and v. A path p exits if ep[;),p[i+1] € F
for all 4 = {0, ..., L}. Associated to each edge, there can be
one or several fixed metrics, e.g. the link distance, the link
bandwidth, the channel magnitude, the transmission delay, etc.
For simplicity, let us as assume that there is only one metric
per edge, then § (eyy) = Bu,» denotes the metric associated to
edge eyyv. In TM routing the objective is to find the better path,
or lightest path, between a source and a destination according
to some network metric. The weight of a path w(p) is a
function of the metrics of edges traversed by a path, namely
w(p) = w (Bp), where By = { Bpijplit1]:i =0, ..., L}.

In the AM model, in which we are instead interested,
relay nodes do not discard the received signals from previous
nodes in the path. This is, relay and destination nodes may
benefit from the signals received from all previous nodes in
the path. In AM routing, the network is better modeled by
a directed hypergraph H(V, E), as the one shown in Figure
1, where V denotes the set of nodes, or vertices, and F
denotes the set of hyperedge, or connections between nodes.
A directed hypergraph is a generalization of a directed graph
in which each hyperedge is allowed to have multiple source
(tail) vertices and multiple destination (head) vertices. The tail
and head vertices of an edge are denoted as T'(e¢) and H (e),
respectively. We restrict the analysis to hypergraphs where all
the edges have only one source node |T'(e)| = 1, and there
is only one edge per source node. This hypergraph model is
sufficiently general to consider any wireless communication
in accumulative network if there is only one node in each
path position. There are many different notions of hyperpaths,
see [12]. Here, we define a hyperpath as a sequence of nodes
p = [p[0],....,p[L + 1]] consisting of vertices p[i] € V. Let
ey denote the hyperedge associated to node u. A hyperpath
exists if for every node in the path p[i], 0 < i < L 4 1 there
exits at least one preceding node p[j], 0 < j < i, such that

pli] € H (ep[j]). The existence condition of a hyperpath is
illustrated in Fig. 1. Observe that since there is no edge link
connecting nodes C and D, the path (A,B,C,D,E) does not
exists in a graph. However, the hyperpath (A,B,C,D,E) exists,
as there is an hyperedge connecting nodes B and D. Associated
to an hyperedge there might be a set of metrics. For simplicity,
we assume that there is only one metric for each of the vertices
of the hyperedge, namely, 3 (ey) = {Buv, ¥V € H(ey)}. Then,
the weight of a hyperpath w(p) is a function of the metrics
of the edges traversed by the path, namely w(p) = w(fp),

where [, = {ﬁ (ep[i]) ,i={0,...,L+ 1}}

III. MINIMUM ENERGY ACCUMULATIVE ROUTING

The implications of accumulative nodes in multi-hop routing
problems are better understood by looking at specify examples
of path weight functions. The path weight functions derived
here will also be instrumental in subsequent sections.

We consider a very simplistic accumulative communication
model for wireless channels. The link between nodes u and v
is modeled by the channel gain g,, € {R*,0}. Let P, denote
the transmission power at node u, then the received signal
power at node v is g, vFy. A packet is correctly decoded at the
destination node if the received signal power at the destination
node exceeds a certain threshold level Hp. This model is valid
for network that operate in the wideband power limited regime.
This regime is realistic for some wireless networks, such as
sensor networks where there exist strong energy limitations
at nodes, the traffic load is low, and there is sufficient large
frequency bandwidth. Moreover, the analysis conducted here
can be extended to any other scenario where the resource
allocation problem is linear. Such linear dependence is forced
here by considering energy accumulation in wideband signals,
as in [3], or in [4], but it can also be found in other situations,
such as when considering full-duplex relay terminals as in
[8], or when optimizing over transmission durations instead
of transmitted power as in [7] and [13].

Our network metric is the aggregated transmission power
consumption needed to successfully transmit a packet from
the source to the destination node by using wireless links.
Accordingly, we define the weight of the path p as

If the above network is modelled by graph, then the metric
associated to the edge e, is the channel gain B(eyy) = guy-
In contrast, if the network is described by a hypergraph, then
the metric associated to the edge of node u is the set of channel
gains from node u to all the network nodes, namely 5 (e,) =
{guy, ¥V}

For the sake of simplicity, when there is no ambiguity on
which path p we are referring to, we denote g; ; = gpi,p|
and R = Pp[i].
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A. Decode-and-forward relaying

Let us first suppose that relay nodes must decode the source
message before transmission, and thus, they need to receive
an aggregated signal power also exceeding Hp. Consider a
predetermined power transmission strategy, in which, node
pli — 1] transmits the minimum power need for node p]i]
to accumulate exactly Hp units of energy.

In a TM network, according to this communication model,
the power transmitted by the source node must satisfy Hp =
90,1 Fo. The weight of the partial path between the source and
the first relay, denoted as pg,1, is given by
P 1
Hp  go1’

In the next hop, given that node p[2] ignores the signal power
received from the source node, the power transmitted by node
p[l] must satisfy Hp = g12P;, and thus, the weight of the
partial path pg 2 is given by

Py + P

w(P0,2) = H

1 1

go,1

w(po,l) =

91,27
-+ w(po.)
= — +w(po,1).
12 0,1
It can be shown, that the weight of the partial path pg; is
computed recursively as

w(po,i) = + w(po,i—1)- (1)

i—1,i

In the AM network, instead, all the nodes except the source,
and the first hop relay node can get multiple energy leakages
from previous transmissions, and thus accumulate energy from
them. The power transmitted by the source node must also
satisfy Hp = go.1 Py, and thus, w(po1) = ﬁ. However, the
power transmitted by the first relay must satisfy

Hp = g1,2P1 + 90,2 F. 2)
The weight of the partial path w(po2) is given by

Py + P
H )

1 1
(-2
go,1 91,2 go,1

L + 91,2 — go,zw(
g1,2 91,2
Observe that, if go2 > go,1, or, equivalently, if w(pg2) <
w(po,1), then the relay node p[2] has already received suf-
ficient power from the source node, and thus enforcing (2)
implies P; < 0, which is not possible. In that case, we set
w(po,2) = 00, as it can be shown, see [4], that if we remove
node p[l] from the path, we obtain a smaller (better) path
weight. It can be shown, that then the weight of the partial
path po,; is computed recursively as

U}(Po,z) =

Po,l)-

1—1
1 LN G T

w ; 3
P (Po.j) (3)

w(po,i) = .y
1—1,2 j=1

. . 3
if w(po,;) > w(po,i—1), and w(po;) = oo otherwise.

Observe that this accumulative path weight function could
not be computed over a directed graph.

B. Cut-set bound

In the AM network model, asking every node to decode the
source message is not always needed. Relays can, for example,
amplify or compress and forward the received signals, without
decoding the information. We can have an idea of the path
weight functions that may appear for these non-regenerative
relaying strategies by looking at the cut-set bound. In addition,
recent results [14] have shown that the cut-set bound rates
can be achieved within a constant rate gap by compress and
forward like strategies. To model these communication, we
remove the decoding constraint at nodes, and consider a power
transmission policy in which the power transmitted by node
pli] is such that subsequent nodes in the path p[j], j > 4
receive an aggregated power equal to the power that node p|i]
has received from previous nodes p[j], j < 7, namely

L+1 1—1
P; Z gi,j = ijgj,i- “)
j=it1 =0

In this case, it is more convenient to compute the weight of a
path in a backward manner, from the destination to the source.
Only for this case, let us reverse the ordering of nodes, so that
the destination is refereed to as D= p[0], and the source as
S= p[L+1], the channel gain from node 7 to node j is denoted
as g;,;, and the path from node ¢ to the destination is denoted
as po,; = (p[], ..., p[0]). Then, the signal power received from
the last relay at the destination node is given by go 1P, and
the weight of the partial path po1 = (p[1], p[0]) is

P 1
goaP1 go1’

U}(Po,1) =

For the partial path po2 = (p[2], p[1], p[0]) the destination
receives an aggregated power of go 1P + go 2P», accordingly,
the weight of the partial path pg o is
w (p ) . P+ P

02) = —FH 5
' 90,1 P1 + go,2o P>

by enforcing at node p[1], the input-output power flow condi-
tion in (4), we require g; 2P = P go,1, obtaining

14 g10w(po,)
w (Po,z) - .
91,2 + go.2

Similarly, for the partial path pg 3, the destination receives an
aggregated power of go 1P + go,2P> + go,3P3, and the input-
output power flow condition at relay nodes p[2], and p[1],
requires
g1,2P> 4+ g1.3P3 = P1go 1,
g2.3Ps = Py (go2+91,2) -
The weight of the partial path pg 3 is then given by
1+ g13w (Po,1) + g2, 3w (Po,2)
92,3 + 91,3 t 90,3

w (po,:s) =



It can be shown that the weight of the partial path pg; is
computed recursively as

i—1

1+ Zgj,iw (Po,j)

Jj=1
i—1
E 9j,i
j=0

Observe that we can only compute this path weight over a
hypergraph.

w (po,i) = (5)

IV. OPTIMALITY OF DIJKSTRA’S ALGORITHM IN
ACCUMULATIVE NETWORKS

In this section, we present sufficient conditions to guarantee
that Dijkstra’s algorithm finds the lightest path over a directed
hypergraph H(V, E). We begin by providing the mathematical
representation of a path selection criteria which is usually
called as routing metric. We represent a routing metric follow-
ing the notation in [2] as an algebra on top of a quadruplet
(Q,®,w, =), where Q is the set of all possible paths, @ is a
binary operation that maps pairs with a path and an ordered
sequence of nodes into a path, i.e. if the path a €@ and the
last node in a coincides with the first node of the ordered
sequence of nodes b, then a @ b denotes the concatenation of
path a with the ordered sequence of nodes b, with ag b €Q),
w is a function that maps a path to a weight, and < is an
order relation, where w(a) < w(b) means the path a is lighter
(better) that or equal to b. Given a routing metric (Q, ®, w, <),
a routing protocol operates with the path weights of the paths
in @ to find the lightest path q* € Q between a source and a
destination.

The concatenation operation as defined above differs
slightly from the one defined in [2] for graphs. In [2], &
concatenates two paths in (), and returns a path also in Q.
The definition of & presented here is motivated by the fact
that in a hypergraph, even if the ordered set of nodes b does
not belong to @, the path a & b might belong to Q.

A. Optimality Conditions in Traditional Multi-hoping

Here we review the conditions that guarantee that Dijkstra’s
algorithm finds the lightest path in a directed graph G(V, E),
and discuss their extension to directed hypergraphs H(V, E).

Given a graph, references [1] and [2] developed a compre-
hensive framework to identify the specific conditions a routing
metric needs to satisfy in order to be combined with a certain
type of optimal routing protocol to obtain the optimal path. In
particular, it was shown that Dijkstra’s algorithm with source
routing is optimal if and only if, the routing metric satisfies
right-monotonicity and right-isotonicity. These properties are
here stated, mostly, as they appear in [2] with the necessary
modifications to account for the new definition of the binary
operation .

Definition 1: The quadruplet (Q,®,w,=) 1is right-
monotonic if w(a) <X w(a®b), for any paths a,a ® b in

Q.

Algorithm 1 Dijkstra’s algorithm
Dijkstra(R, w, o)
1: for each node t€ R do

20 log <= 005 Py <~ NIL

3: end for

4 oo < 1; Poo < 05

5. while R # () do

6:  u= argminger lor;

7:  Extract u from R

8:  for each node re R do

9: compute wygr = w (Py, @ (Wr)))
10: if [, = wyg: then

11: lox 4= Wugr Py < (Pou ® (W)
12: end if

13:  end for
14: end while

Definition 2: Given the paths a and b between two nodes
A and B, and the paths a®c and b&c from A to a third node
C, sharing the nodes in ¢. If w(a) < w (b), the quadruplet
(Q,®,w, X) is right-isotonic if w(a®c) < w(b®c) for
any paths a, b, a® c in Q.

This definition of right-monotonicity differs from the one
presented in [2], in that it does not restrict the paths b
to belong to @. Similarly, the definition of right-isotonicity
differs form the one in [2] in that it does not restrict the paths
c to those in Q.

If the network is modeled by a directed graph as in the
TM network model, then the right-monotonicity and right-
isotonicity conditions are necessary and sufficient conditions
for Dijkstra’s algorithm to find the lightest path. However,
if the network needs to be modeled as a hypergraph, as is
likely the case in AM networks, then these conditions are no
longer necessary. Satisfying both conditions is still sufficient
for Dijkstra’s algorithm to find the lightest path. The proof of
sufficiency follows exactly the one provided in [2] for graphs,
and is thus not reproduced here. The lack of necessity is
demonstrated next, by presenting an alternative set of sufficient
conditions for the optimality of Dijkstra’s algorithm.

B. Optimality Conditions in Accumulative Multi-hoping

Although right-monotonicity and right-isotonicity condi-
tions are sufficient to show the optimality of Dijkstra’s algo-
rithm, they might not be very helpful for path weight function
in AM networks. The right-isotonicity condition, for instance,
can only be satisfied if there is a certain decoupling between
the nodes in paths a, or b, and those in path c. However,
it is precisely, the connection between these nodes what we
want to include by considering AM networks. In the following,
we present a new set of sufficient conditions that guarantee
the optimality of Dijkstra’s algorithm in directed hypergraphs,
with only one hyperedge per node.

Definition 3 (Condition CI): Consider a route metric
(Q,®, w, =) defined in a hypergraph with only one edge per
node. Given any path a whose last node is A, and the paths



a® (A,B) and a® (A,C) sharing the common root path a, we
say that the route metric satisfies condition C1 if satisfying
any of the conditions below, implies satisfying all the others

w(a® (AB)) Jw(ad (AC)), (62)
w(a® (A,B)) < w(a® (AB,C)), (6b)
w(a® (AB,C)) X w(ad (AC)), (6¢)
w(a® (AB)) 2 w(a® (A,CB)), (6d)
w(a® (A,C,B)) 2w (a® (A,C)) (6e)

for any paths a®(A,B), a®(A,C) belonging to ). Observe that
for hyperpaths with only one edge per node it is guaranteed
that the paths a @ (A,B,C), and a @& (A,C,B) also belong to
Q.

Definition 4 (Condition C2): A path weight satisfies con-
dition C2 if for any ordered set of nodes c, with partial
paths ¢co; = (c[0],...,c[j]), j = 0,...,]|c| — 1 satisfying
w(a® (AB))) = w(as (A, ¢, ;)) for all j, implies that

w(a® (A,B,c)) < w(a® (A, c)) @)

for any paths a @ (A,B), and a @ (A,c) € Q.

Condition C1, basically, implies that given a path a® (A,C)
there exists a lighter path to node C given by a ® (A,B,C), if
and only if, the path a® (A,B) is lighter than a® (A,C). Con-
dition C2 replaces node C by any complete path c satisfying
w(a® (AB))) < w(ad (A, ¢, ;)) for all j.

The next theorem states the sufficiency of conditions C1
and C2 for the optimality of Dijkstra’s algorithm in a directed
hypergraph.

Theorem 1: If a routing metric (@, ®,w, <) satisfies con-
ditions C1 and C2, then Dijkstra’s algorithm finds the optimal
path.

Proof: Given a hypergraph H(V, E), the set of nodes
R =V, the path weight function w, and the origin node of
the path search o, Dijkstra’s algorithm returns a set of paths
Do, from node o to every other network node reé R/o, as
well as the weights associated to those paths [,,. The pseudo
code of Dijkstra’s algorithm is shown in Algorithm 1. Let us
denote as R, p((fr) and l((,r) , respectively, the state of the set R
(R = V), the paths p, and the weights [, at the beginning
of the i-th iteration. Suppose the initial iteration is ¢ = 0. Let

u[i] be the node extracted from R in lines 6-7 at iteration
i. We say that the path p,; from node o to uli] is found at
iteration ¢, as it is no longer updated by the algorithm.

We prove this theorem in two steps. First, we show that
for a routing metric satisfying condition C1 in Definition 3,
Dijkstra’s algorithm at iterations ¢ = {1,...,|V| — 1} finds
the path p,y[;) from the origin o to node uli] as ug; =
(ug,i—1,ufi]) where ug ;_1 is the path found at iteration 7 — 1,
(u[0] =0) and ul¢] is the node that satisfies

ufi] = arg min w((ug,;—1,r)) 8)
re R ()
where R() = RG=1) /ug ;1. Then, we show that for a routing
metric satisfying also condition C2, the path uy ; is the lightest
path from node o to node ul[i].

5

Step 1: Suppose condition l, , > wygy is satisfied for every
node re R®, from iteration 0 to i. At these iterations, the
weights [, and paths p, , are updated Vre R in line 11, as

p{ =p{, @ (uil,n), ©)

15 = w (D). (10)

At iteration 0, line 6 of Dijkstra’s algorithm selects u[0] =o

and thus, the paths p,, Vre RO are updated, as

pi;) = (u[0].1). (11)

At iteration 1, line 6 selects u[l]. Note that pgll)l[l] =
(u[0],u[1]), and thus, the paths Vre R()) are updated as

p{Y) = (u[0], ull].1). (12)

Observe that at every iteration the paths p,, for every node

r, share the common root path uy; = (u[l],...,ufi]), i.e.
((,ffl) = ug; ® (ufi],r) = (ug,,r) for all r. Consequently,

node uf¢] in line 6 is chosen according to (8). Observe that

= 16
ufi] = arg nin &

= arg min w (p(()?) ,
reR® ’

= argrg;gl) w({ug,i-1,1)).

(13)
It only remains to show that condition /,, > wyg, in line 10
is always satisfied as previously assumed. We show that if
condition Iy, > wygy is satisfied from iteration 0 to ¢ — 1, it
is also satisfied at iteration 7. At the beginning of iteration 7,
we have that p((fz = (ug,—1,r) and l(r = w ((ug,i_1,1)). If
node u[i] is chosen in line 6, according to (8) it is satisfied
that w ({(wg ;—1,ufi])) < w((ugi_1,r)) for all r&¢ R, then,
in line 9, we compute

Wyer = W ((Ug i—1, ufi],r)) . (14)
It is then a direct consequence of condition Cl1, that
Wypr = W (<u0,i—17 u[i]a r)) )
= w ({(ug,—1,1)),
=15 (15)

and thus, condition l,; > wye, is also satisfied at the ¢—th
iteration for every node. Finally, notice that the condition [, , >
wyey 1 trivially satisfied at ¢ = 0, since initially /,, = oo for
all r.

Step 2: Next, we show that if a routing metric satisfies
conditions C1 and C2, then the path ug; is the lightest
paths from node u[0] to node ulfi]. We prove this result by
contradiction. Assume that the lightest path s between a given
source-destination pair S-D satisfies s[i] = u[i] for j < i but
s[i] # ul[é]. Given that ul[é] is choose according to (8), we have

that
w ((s0,i—1,uli])) = w((so,i—1,8[i])) -

Let us denote B=u[i]. We define a new path from the source
S to the destination D by including node B between nodes




s[t—1] and s[i], namely (S0 ;—1,B,S; z+1) . We show next that
this path is lighter than the original path s = (s¢;_1,S;,L+1)
which contradicts the assumption that s is the lightest path.
Denote a = sg;—1, and ¢ = s; ;41 with ¢[0] = s[i] =C.
In this case, the newly defined path reads (a, B,c), and from
condition (8), we have that

w((a,B)) 2w ({a,C)). (16)

We consider the following two possible situations: i) Assume
that the partial path c satisfies w ((a,B))) < w((a,co))
for all j. In this case, it is a direct consequence of condi-
tion C2 that w((a,B,c)) < w((a,c)) or, equivalently, that
w((S0,i—1,B.8i,L+1)) = w(s). ii) Instead, assume that the
partial path c satisfies

w({a,B))) = w((a,co,;)), (17)
for all j < m but not at j = m, this is
w ({(a,B)) = w((a, com—1,D)) (18)

with c[m] =D. In this case, we show next, that conditions
Cl and C2 require that w ({(a,B))) > w((a,D)), which
contradicts the assumption that node B is chosen in (8). To
prove this result, we iteratively remove the node prefixed to
node D in the path (a,B, cg m—1,D), until node B is finally
removed. We show that a lighter path to node D is obtained at
every iteration. We begin by removing node ¢[m — 1]. Denote,
c[m — 1]=C and a’ = (a, B, co,m—2). Then, combining (17)
for j =m — 1, and (18), we have that

w((a’,C,D)) < w({a,B)), (19a)
= w((a’,C)) (19b)
and thus, satisfying conditions C1 implies that
w((a’,D)) = w((a’,C,D)) (20)
or, equivalently,
w({(a,B,co,m-2,D)) < w((a,B,co,m-1,,D)). 21

This is, by removing node c[m — 1], we obtain a lighter path
to node D. Next, we remove node c[m — 2|. By combining
(17) with (18) for j = m — 2, we can write
w(<37 B,c(),mffi; c[m - 2]>) i w((a, Bv C(),mfla D>)7 (223)
t w(<a7 B9CO,77L—2,D>)' (22b)
Now, denote C= c[m —2] and a' =
(22b) can be rewritten as

w((a’,C,D)) 2 w({a’,C))

<a7 B7 CO,'rn—S), then

(23)

and thus, following previous arguments, satisfying condition
C1 implies

U}(<a, B7C0,TYL—3,D>) j U}(<a, B7C0,m—2,a D>)7

j w((a, Bsc(),mfl,a D>)

(24a)
(24b)
This is, by removing node c[m — 2], we obtain a lighter path

to node D. We repeat this procedure until we remove node B.
|

V. OPTIMALITY ANALYSIS OF MINIMUM ENERGY
ACCUMULATIVE ROUTING METRICS

In this section, we study the optimality of Dijkstra’s al-
gorithm for the minimum energy accumulative path weight
functions presented in Section III.

A. Decode-and-Forward Relaying

We begin by discussing the optimality of Dijkstra’s algo-
rithm for the TM path weight function in (1). In this case,
the routing problem can be modeled using a graph, where
the metric of the edge between nodes u and v is given by
B (euy) = guy and thus, in that case, right-monotonicity and
right-isotonicity are not only sufficient but also necessary
conditions.

Let us consider any path weight function that admits the
following recursive computation in a graph

N { g T w(Po,i-1), if w(po,;) > w(po,i-1)
w(poy) = pli—11,p[i] X
’ 00 otherwise
(25)
where 3, is the metric associated to the edge ey.y.

We can obtain the path weight in (1) for the TM, from (25)
by setting 3 (eyy) = Buy = Guy for all u,v. Given that g,, > 0
for all u and v, it is also satisfied that w(po,;) > w(po,i—1)
for all 4.

Right-monotonicity is implicit in the path weight definition
(25) as we require w(po,;) > w(po,i—1). Notice that it is
satisfied even if Bp[;_1)p;) < 0. To show right-isotonicity,
consider the paths a and b between nodes A and B, with w (a)
and w (b) satisfying w (a) < w (b). Let us concatenate, node
C to the right of a and b, then the path weight at node C is
given by

w(a® (B,C)) = ﬁTlc +w(adC), (262)
w (b (B,C)) — ﬁTlc Fwbac). (6

If Bgc > 0 then w(a) < w(b) implies w (a® (B,C))
w (b ® (B,C)). Instead if fpc < 0, then w(a@ (B,C))
w(b & (B,C)).

The path weight in (3) for the decode-and-forward relaying
in AM networks can only be defined in a hypergraph. It is
well-know that the problem of finding the optimal path for
this routing metric is NP-complete [3] and [4]. Accordingly,
although this path weight satisfies right-monotonicity, it does
not satisfies right-isotonicity, nor conditions C1 and C2, and
thus, the optimality of Dijkstra’s algorithm can not be guar-
anteed.

Let us instead discuss the optimality of Dijkstra’s algorithm
for a simpler AM with DF relaying. Let us limit the accumu-
lative capabilities at nodes and suppose that every relay node
only listens to the source, and to the immediately previous
node. Then, the power received at node p[i] from nodes
0 < j <i—1is not accumulated. Substituting gp ;] p[; = 0
for 0 < j < i—1 into (3), we obtain the path weight function

A



for this situation as

1 91'71,1'“1([)0,1'71) - go,iw(Po,1)

w(po,i) = + )
i—1,i Gi—1,i
_ go,1 — go,i i U)(Po,iq) 27)
9i—1,i90,1

if w(po,i) > w(po,i—1) and w(po;) = oo, otherwise. This
path weight function can now be defined using a graph.
Suppose, the first relay is fixed, then, we could define the
metric associated to the edge between nodes u, and v, as

and write (27) as in (25). Now, we can find the optimal path
from a source-relay pair (S,R) to every other network node
using Dijkstra’s algorithm. We however need to repeat the
search for all possible first relay nodes in order to get the
optimal path from the source node.

B. Cut-set bound

Next, we study the optimality of Dijkstra’s algorithm for the
cut-set bound path weight function in (5). This path weight
function can only be computed over a hypergraph, it does not
satisfies right-monotonicity nor right-isotonicity. However, as
we show in next theorem it satisfies conditions C1 and C2, and
thus, the optimal path can be found using Dijkstra’s algorithm.

Theorem 2: Consider a hypergraph H(V, E') with only one
edge per node, where the metric associated to the hyperedge
of node u is defined as 3 (ey) = {guv, Vv}. The cut-set path
weight function in (5) satisfies conditions C1 and C2, and thus,
Dijkstra’s algorithm finds the optimal path.

Proof: We first show that condition C1 is satisfied. Let
a be a path with L, relays nodes, a = (a[0],...,a[L, + 1]).
Given the paths (a,X), where X is any network node Xe V,
define

Latl

Nx =1+ Z ap xw (a0,5) ,
=1
Lat1

Dx = Z Ja[l],X-
1=0

Then, the weight of the paths evaluated in condition C1 are
given by

wl(@,C) = 3, (8)
wl(aB)) = 72, 29)
ey - e g
w((a,C,BY) = B Focsw((a C)) 31)

Dg + gcB

;
Suppose that w({a,B)) < w ({(a,C)), and g c, gcp > 0, then
observe that

w((a,B,C)) = ¢ +D9CB,JciugJ](3<:,B>)
_ Ne +gocw((a,C))
B DC+gB,C
=w (<a7 C))

(32)

and

Ng + gcpw((a, C))
Dg + gcB

. Ns +gcpw((aB))

- Dg + gcB

= w({a,B)).

w((a,C,B)) =

(33)
By isolating w((a,B)) from (30) and using (32), we observe
that

w((a.B)) = u((a. B,C)) + 2@ C) = Ne,

9gB.C
< w((a,B,C)) + Dcw (<:;CC>) - Nc,
= w({a,B,C)). (34)

Notice that, the reverse is also true, i.e. satisfying (32) implies

w((a, B, C>) (DC —+ gB,C) — Nc¢
gB,C ’

w ((a,C)) (Dc + gs,c) — Nc

- gB,C ’

=w({a,C)).

w((a,B)) =

(35)

Next, by isolating w((a,C)) from (31) and using (33), we
observe that
a,C,B))Dg — N,
w((a,C)) = w((a,C,BY) + L2 CB)Ds = No
gc,B
B))Ds — N,
= w({a,C,B)) + w((a,B))Dg B
gc,B

= w((a, C,B)). (36)

Next, we show that condition C2 is also satisfied. Let
us consider the paths (a,c) and (a,B,c) where ¢ =
(c[0],...,c[Lc +1]) and denote the weight of the paths
(a,cp) as
N;
w((a, co;)) = E
for ¢ = 0,..., Lc + 1. Let us decompose N; and D; as N; =
Na,i + Nc,i and Di = Da,i + Dc,i where

37

La+1 La+1

Naji=1+ Z Gall].clijW (20,1) s Da,i = Z Gall] cfi]s
1=0 1=0

1—1 1—1
Ne,i = ch[l],c[i]w ((a,c0,1)) s Dei = Zga[z],c[i]-

=0 =0



Then, observe that if w ((a,B)) < w({a,cp;)) for all [ and
w((a,B,co)) = w((a,coy)) forl = 1to !l =i —1, then
w((a,B, CO,i>)
i—1
Na,i + gp.cjw ((a,B)) + ZZ 9epi) clijw ((a,B,co))
=0

Dai + gBcli) + De,i

)

(382)
i+ gpepyw ((a,B) (38b)
D; + gB e[
: L w(aB) N;
_ Ni+ 9B.cli)wiaee ;) D (38¢)
D; + gB e[ ’
N; g5t
| Nt onenr 380)
D; + gB.c[j
N;
=5, = wlfa o). (38)

where inequality (38b) is due to w((a,B,co;)) =
w ({a,co)) for I = 0,...,4 — 1 and inequality (38d) is due
to w ((a,B)) < w(a,co,). |

VI. CONCLUSIONS

In this paper, we studied the routing problem in accumu-
lative multi-hop networks. We showed that as opposed to
traditional multi-hoping where the network is well modeled by
graph, for routing in accumulative networks, the network needs
to be modeled by a hypergraph. We studied the properties
that guarantee that Dijkstra’s algorithm finds the optimal
path in such networks, and presented sufficient conditions
for the optimality. These conditions are particularized for the
minimum energy routing problem with decode-and-forward
relays and for the cut-set bound.
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