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Abstract— Pairwise point cloud registration is a critical task
for many applications, which heavily depends on finding correct
correspondences from the two point clouds. However, the low
overlap between input point clouds causes the registration to
fail easily, leading to mistaken overlapping and mismatched
correspondences, especially in scenes where non-overlapping
regions contain similar structures. In this paper, we present
a unified bird’s-eye view (BEV) model for jointly learning of
3D local features and overlap estimation to fulfill pairwise
registration and loop closure. Feature description is performed
by a sparse UNet-like network based on BEV representation,
and 3D keypoints are extracted by a detection head for 2D
locations, and a regression head for heights. For overlap
detection, a cross-attention module is applied for interacting
contextual information of input point clouds, followed by a
classification head to estimate the overlapping region. We
evaluate our unified model extensively on the KITTI dataset
and Apollo-SouthBay dataset. The experiments demonstrate
that our method significantly outperforms existing methods on
overlap estimation, especially in scenes with small overlaps. It
also achieves top registration performance on both datasets in
terms of translation and rotation errors.

I. INTRODUCTION

Pairwise point cloud registration aims to align two par-
tially overlapped point clouds, which is a fundamental task in
many applications, such as LiDAR SLAM [1], [2], LiDAR-
based mapping [3], [4], and localization [5], [6]. Another
equally important module in the SLAM system is loop clo-
sure, which ensures a globally consistent map. Recent works
have made substantial progress in loop closure detection [7]–
[10] and point cloud registration [11]–[13]. For loop closure
detection, it is common practice to encode the entire point
cloud into a global descriptor [7], [8]. The advantage of this
encoding method is that it is lightweight and convenient for
retrieval. However, due to the lack of information interaction,
this encoding is not robust to occlusions and small overlaps.
The same problem exists in the field of point cloud registra-
tion. Some recent point cloud registration works [12], [14],
[15] have begun to focus on small overlapping scenarios.
However, most of these works are mainly aimed at indoor
scenes. Point cloud registration of outdoor scenes with low
overlap is very challenging because the point cloud gets
sparser with distance.

Loop closure detection is inherently related to overlap
estimation, and the latter can be considered as a similarity
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Fig. 1: An illustration of our method. The upper part of the figure
shows the detected overlapping regions (in red) in an outdoor scene.
The lower part shows the correspondences (inliers in green and
outliers in black) found by our method.

metric. Intuitively, pairwise registration is directly affected
by the overlap of the two point clouds; e.g., the overlap can
be utilized to filter out mismatched correspondences. To go
further, in the training stage, the overlap can effectively su-
pervise the contrastive learning of the two input point clouds
for feature description and keypoint detection. Therefore,
overlap estimation is important for loop closure and pairwise
registration of point clouds.

In this work, we seek to jointly learn overlap estimation
and 3D local features in a unified BEV model. BEV form
is a compact and natural representation of point clouds in
outdoor scenes, which are usually collected using LiDAR
sensors mounted on vehicles. We represent input point clouds
as multi-layer BEVs and apply a UNet-like network to
extract multi-scale features. We detect keypoints on the 2D
BEV representation and extract local descriptors. For 6-DoF
registration, we obtain the height of each 2D BEV cell in a
regression way. We adopt a cross-attention module to interact
with the input point clouds and then perform overlapping
region classification on the 2D BEV plane. For pairwise
registration, we only detect corresponding keypoints within
the overlapping area. For loop closure detection, we take
the area of the overlapping region as a measure of their
similarity. Fig. 1 is an illustration of our method.
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To summarize, our main contributions are:
• A joint learning framework for overlap estimation and

3D local features, which effectively fulfills loop closure
and 6-DoF registration in urban scenes.

• A novel overlap estimation method that fully interacts
with pairwise information, yielding high precision and
recall under low overlap scenes.

• Based on BEV, the separation of 2D keypoint detection
on the BEV plane and height regression makes it an
efficient and practical 3D keypoint detection method.

• Rigorous tests and detailed ablations on the KITTI [16]
and Apollo-Southbay [6] datasets to comprehensively
verify the effectiveness of the proposed method.

II. RELATED WORK

A. LiDAR-based Loop Closure Detection

As a hot research field of SLAM, numerous researchers
have studied LiDAR-based loop closure detection, and many
excellent works have been proposed [7], [10], [17]–[25].

One of the common solutions is encoding the input point
cloud into a global descriptor [26], [27] as a 1D vector
or 2D matrix and comparing their similarity to find the
loop closures. Scan Context [9] globally describes the point
cloud as a bird’s-eye view (BEV) with height information
in polar coordinates, which makes the descriptor robust to
rotation and has good generalization. Extension works [10],
[17]–[20] encode additional semantic [10] and intensity [17]
information further to improve the detection performance.

Recently learning-based methods have shown impressive
results. Some works [7], [21]–[25] extract local features with
a deep network and aggregate them to a global descriptor
with NetVLAD [28] or other context gating techniques [29]–
[31]. Another common practice is to segment the point
cloud into objects as local features and then match them
directly [32], [33] or by a graph [34], [35].

The above methods only encode features from its single
input point cloud and do not know about the correlated
information from the counterpart one. Predator [12] fuses
the feature maps from two stream networks and implicitly
encodes the overlapping context with designated supervision
loss to handle the low overlap registration problem. Unlike
Predator, overlap estimation is an explicit network design
in our method, rather than supervision only, which is more
conducive to obtaining desired results. Furthermore, we use
the deepest feature maps that contain contextual information
for interacting instead of at the point level, which makes our
method more robust and is validated in our experiments.

B. Deep Point Cloud Registration

Point cloud registration is also a widely studied topic in
SLAM research society, in which deep learning methods
demonstrate promising results when solving challenge cases,
e.g., bad initialization or low overlap. Some of these methods
are based on directly inferring correspondences, in which key
points are extracted and described on local patches [36]–[38],
then the accurate transformation is obtained with robust pose
estimation, e.g., RANSAC [39] or weighted Procrustes [40].

In order to learn local features more effectively, point con-
volution backbones [41], [42] are adopted to extract dense
features in a single forward process [11], [12], [43].

Instead of directly finding correspondences, some other
methods estimate the transformation in an end-to-end man-
ner. Some of them [44]–[46] build soft correspondences by
learning patch features and use a differentiable weighted
SVD module to compute the transformation. Others [14],
[47], [48] directly use the extracted features to regress the
transformation.

These learning-based methods give competitive results,
but the performance drops drastically in small overlap
scenes. This problem already draws the attention of many
researchers, as [12], [13], [15] tried in indoor scenes. Our
method only detects keypoints in the estimated overlap, thus
avoiding wrong matches between non-overlapping regions.

III. METHODOLOGY

In this section, we describe the architecture of the pro-
posed unified BEV model for 3D local features and overlap
estimation in detail, as shown in Fig. 2. Inspired by DiSCO
[30], the two input point clouds are first converted to multi-
layer BEV representations and then fed into a 2D U-Net
backbone to extract multi-scale features. The deepest feature
maps of the two input point clouds interact with each other
via a cross-attention module to measure their relevance, after
which a classification head is used to calculate two overlap
score maps. Meanwhile, the multi-scale features are fed into
a description head, a detection head, and a regression head
to obtain feature descriptors and 3D keypoints, respectively.

A. Dense Feature Description

We first divide the input point clouds P and Q into
H × W × C grids, in which each voxel is set to 0 or
1 depending on its occupancy. By treating each pillar of
the grid as a C-dimension channel, the point clouds P and
Q are then converted into BEV representations, denoted as
BP ∈ RH×W×C and BQ ∈ RH×W×C .

2D UNet Backbone. Instead of using 3D (sparse) convo-
lutions or point convolutions, we directly apply 2D sparse
convolutions on BEV representations to extract deep fea-
tures. Concretely, we use a 2D UNet-like structure with
skip connections and residual blocks in the encoder and
decoder. Considering the sparsity of the inputs, 2D sparse
convolutions can be used to speed up. After performing
2D convolutions on BEV representations, we can obtain the
following multi-scale feature maps:

E1
t , . . . , E

s
t = E(Bt), t ∈ {P, Q} (1)

F s−1
t , · · · , F 1

t = F(Et), t ∈ {P, Q}, (2)

where E and F represent the encoder and decoder of the
backbone, respectively.

Description Head. The description head extracts feature
descriptors Dt from the feature map F 1

t , which consists of
a 1× 1 convolution and normalization layer as follows:

Dt = NormL2
(Conv1×1(F 1

t )), t ∈ {P, Q}, (3)
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Fig. 2: The architecture of the proposed unified BEV model for 3D local features and overlap estimation. We take multi-layer BEV
representations as the input of the 2D UNet backbone. The feature maps of the last layers of the encoder and decoder are used for
overlapping region detection and local feature extraction, respectively.

where NormL2 is the L2 normalization operation across
feature channels.

B. Dense Keypoint Detection
D3Feat [11] detects 3D keypoints of point cloud based

on the loal maximum of the channel and spatial dimensions
of the point features. Our keypoint detection also adopts a
similar way, except that we detect 2D keypoints {(x, y)}
on the BEV feature descriptors Dt and regress their heights
{z} to form the 3D keypoints {(x, y, z)}, which makes our
approach a more efficient implementation.

Detection Head. The spatial saliency of each pixel in
Dt is evaluated in its local neighborhood. Thanks to the
regularity of BEV representation, the neighborhood of each
pixel simply consists of the pixels within the square centered
around it, thus avoiding the heavy operation of kdtree search
in D3Feat [11]. The spatial saliency score of each pixel pij
is defined as

αkij = ln

1 + exp

Dk
ij −

1

|Nij |
∑

(i′j′)∈Nij

Dk
i′j′

 , (4)

where k = 1, ..., C, and Nij represents the non-empty
neighboring pixels of pij .

For each pixel pij , there will be at most s× s non-empty
pixels in its neighborhood, where s represents the length of
the square. In this way, for Equ. 4, we can use the AvgPool
operation to achieve an efficient implementation as follows.

αkij = ln

(
1 + exp

(
Dk
ij −

s2 ×AvgPool(D)kij
s2 ×AvgPool(B∗)ij

))
, (5)

where s is the window size of the average pooling, and s2×
AvgPool(D)kij is the sum of k-th channel values of neigh-
borhood, B∗ = maxk(Bk) is the channel max value repre-
senting the occupancy of pillars, and s2 × AvgPool(B∗)ij

represents the number of the non-empty neighboring pixels.
The s2 in the numerator and denominator can be eliminated.
In addition, a sparse AvgPool operation can be directly used
to calculate the average of non-empty pixels in Equ. 4, thus
replacing Equ. 5.

The channel max score is computed as

βkij =
Dk
ij

maxcDc
ij

. (6)

Both the spatial and channel scores are considered for
computing the final detection score:

sij = max
k

(αkijβ
k
ij). (7)

Regression Head. The 2D salient keypoints can be de-
tected in BEV representation with sij , but the heights still
need to be recovered. Here we apply a regression head to
predict a weight vector Wij ∈ [0, 1]C×1 for each pillar Bij .
Let Hij ∈ RC×1 denote the heights of voxels in a pillar,
then the height of the keypoint in Bij is predicted by a
convolutional layer and a sigmoid layer as

W = Sigmoid(Conv3×3(F 1
t )) (8)

zij = WT
ij ∗Hij . (9)

Finally, we obtain a regressed height z for each non-empty
pillar and denote the regressed point clouds as P ′ and Q′.

C. Overlapping Region Classification

Cross attention has demonstrated its effectiveness in inter-
acting information [12], [13] and detecting overlap regions
[15] from encoded feature maps. Similar to ImLoveNet
[15], we adopt cross attention on two feature maps of the
input point clouds to learn relevant information, followed
by a classification head to solve the overlap as learning
a similarity score. Different from [15], we only use the
deepest feature maps for overlap estimation because the



deepest feature maps contain richer context information and
are easier to learn robust correlations.

Cross Attention. The cross attention module takes the
deepest feature maps, EsP ∈ RHs×Ws×Cs and EsQ ∈
RHs×Ws×Cs , to generate two relevant feature maps, MP ∈
RHs×Ws×Cs and MQ ∈ RHs×Ws×Cs , in a bilateral way.
Specific details are as follows.

MP =EsP + MLP(cat(EsP , att(EsP , E
s
Q, E

s
Q)))

MQ =EsQ + MLP(cat(EsQ, att(EsQ, E
s
P , E

s
P ))),

(10)

where MLP(·) denotes a three-layer fully connected net-
work, and att is the attention model, the detailed description
can be referred from [15].

Classification Head. With the correlated feature maps
MP and MQ from the cross attention module, we apply
a binary classification to predict the overlap score maps,
γP ∈ [0, 1]Hs×Ws and γQ ∈ [0, 1]Hs×Ws , of P and Q as

γt = Sigmoid (Conv3×3 (ReLU (Conv3×3 (Mt)))) , (11)

where two 3× 3 convolution layers, a sigmoid layer, and a
ReLU are used.

Similarity Score. By counting the overlapped regions, we
can obtain a similarity metric as

τ =
1

2

(∑
γP
VP

+

∑
γQ
VQ

)
, (12)

where VP and VQ denote the number of occupied pixels
of MP and MQ. In subsequent experiments IV-B, we will
demonstrate that this similarity metric can be used for the
loop closure detection task.

D. Loss Function

To train the network in an end-to-end manner, we utilize
multi-task loss functions for jointly optimizing the feature
description, keypoint detection, height regression, and over-
lap region classification.

Description Loss. Following [12], we take the circle
loss [49] to learn discriminative descriptors. We perform
random sampling to balance the number of positive and
negative samples. The positive samples Ωp are selected
correspondences, where the set of correspondences is defined
as points in Q′ that lie within a radius around point i in
P ′. The negative samples Ωn are formed from points of Q′
outside a larger radius of the point i. This loss function can
be expressed by:

LPdesc =
1

N

N∑
i=1

ln

1 +
∑
j∈Ωp

eθ
j
p(dji−∆p) ·

∑
k∈Ωn

eθ
k
n(∆n−dki )

 ,

(13)
where ∆p and ∆n are positive and negative margins, dji
and dki are feature distance of positive samples and negative
samples, θjp and θkn are the positive and negative weights,
computed for each sample individually with θjp = γ(dji −
∆p) and θkn = γ(∆n − dki ). We recommend referring to the
original paper [49] for details. Through the same process,
we can get the reverse loss LQdesc, and the total loss Ldesc is
the average of LPdesc and LQdesc.

Detection Loss. The detection loss aims to encourage the
easily matchable correspondences to have higher keypoint
detection scores than the correspondences which are hard to
match as

Ldet =
1

N

∑
i

(
dpos
i − d

neg
i

)
(sPi + sQi) , (14)

where (Pi, Qi) are correspondences of P ′ and Q′, sPi and
sQi denote their saliency scores, dpos

i is the feature distance
between positive samples, dneg

i represents the feature distance
between the hardest negative samples.

Regression Loss. For the input point cloud P , to recover
the heights of keypoints, we use both the origin point cloud
P and its counterpart Q to supervise the recovered heights
as

LPreg =
1

N

∑
i

(
‖zP ′

i
− zPj

‖+ ‖zP ′
i
− zQ′T

i
‖
)
, (15)

where zP ′
i

is the predicted height of point P ′i in regressed
point cloud P ′, zPj

is the height of closest point Pj to P ′i
in point cloud P , and Q′T is the point cloud Q′ transformed
into frame of P ′, zQ′T

i
is the predicted height of correspond-

ing point of P ′i in the Q′T .
Classification Loss. A binary cross entropy is used in the

classification loss as

Lbce = BCE(γP , lP ) + BCE(γQ, lQ), (16)

where BCE denotes the binary cross entropy, lP ∈
[0, 1]Hs×Ws and lQ ∈ [0, 1]Hs×Ws are ground-truth labels. In
addition, we found that additional supervision of strengthen-
ing contrastive distance on the deepest feature map is helpful
for network convergence. Therefore we construct another
circle loss Lsg similar to Equ. 13 on the deepest feature map
and forms the classification loss together with BCE loss Lbce.

IV. EXPERIMENTS

A. Datasets and Implementation Details

Our method has been extensively tested in real-world ur-
ban scenarios, primarily using two public datasets, the KITTI
dataset [16], and the Apollo-SouthBay dataset [6], [39]. Code
is available at https://github.com/lilin-hitcrt/BEVNet.

KITTI Odometry Dataset. The KITTI odometry dataset
collected point clouds captured with a Velodyne HDL64
LiDAR. It contains a total of 22 sequences, of which only the
first 11 have ground-truth pose annotations. We use the last
11 sequences to train our network and use the poses provided
by semantic KITTI [50] for supervision. We validate the
performance of our method in detecting loop closures on
six sequences (00, 02, 05, 06, 07, 08). Like other methods,
we verified the performance of point cloud registration on
08-10 sequences.

Apollo-SouthBay Dataset. The Apollo-SouthBay dataset
collected point clouds using the same model of LiDAR as the
KITTI odometry dataset, but in the San Francisco Bay area,
United States. Similar to KITTI, it covers various scenar-
ios, including residential areas, urban downtown areas, and
highways. Our model is trained on sequence Columbia-Park

https://github.com/lilin-hitcrt/BEVNet
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Fig. 3: We show the results of overlapping region detection on two pairs of point clouds with different distances. The first and fourth
columns are the original point clouds, the second and fifth columns are the actual overlapping regions, and the third and sixth columns
are the predicted overlapping regions.

TABLE I: Overlap classification results on KITTI dataset

Distance(m) IOU(%) Precision(%) Recall(%)
OP [12] Ours OP [12] Ours OP [12] Ours

10 73.5 88.8 91.5 99.0 78.9 89.5
20 65.9 85.9 82.4 97.2 76.6 87.9
30 56.3 83.2 70.0 94.9 74.3 86.6
40 42.5 78.5 52.8 91.0 69.6 84.1
50 29.5 74.1 35.5 85.3 67.1 83.2
60 15.9 61.5 18.1 72.5 63.5 76.6

Mean 47.3 78.6 58.4 90.0 71.7 84.7
The best scores are marked in bold.

and tested on sequence Sunnyvale-Big-Loop to demonstrate
the method’s performance on small overlap loop closure
detection and point cloud registration. Considering points are
sparse in the region far from the LiDAR center in a single
frame, we stitch point clouds from several consecutive frames
into a submap. Additionally, the submap is cropped within
100m× 100m and voxelized into 50cm voxels for use.

Implementation Details. The BEV representation is
formed into the shape of 256 × 256 × 32. The backbone is
configured with four layers in the encoder and three layers
in the decoder, so the deepest feature, E4, has the shape
of 32 × 32 × 512. In constructing the training data, point
cloud pairs with distances ranging from 0 to 80 meters are
used. We adopt spconv [51] to implement our backbone. Our
code is based on PyTorch using the Adam optimizer with a
learning rate of 10−4.

B. Overlap Estimation

Overlapping Region Detection. As shown in Table. I,
overlapping region evaluation metrics include intersection
over union (IOU), classification precision and recall. On
sequences 08-10 of the KITTI odometry dataset, different
distances between pairs ranging from 10m to 60m are used
to verify the influence of overlap size on our model’s per-
formance. The comparison method [12], marked as OP, was
retrained with the same distance configuration. The result
shows that our method can effectively detect overlapping
regions with average IOU, precision, and recall of 78.6%,
90.0%, and 84.7%, respectively. As the distance between

TABLE II: Loop closure detection results on KITTI dataset
Methods 00 02 05 06 07 08 Mean
OT [25] 89.3 85.2 92.8 100.0 86.3 71.8 87.6
DS [30] 90.6 86.6 90.7 99.6 91.9 88.8 91.4
LC [52] 92.5 - 91.0 98.2 92.5 90.7 93.0
RI [29] 97.5 92.7 91.2 100.0 89.4 97.5 94.7

Ours 97.0 94.5 97.2 98.9 95.7 96.6 96.7
Average Recall@1. The best scores are marked in bold. [52] failed
in sequence 02.

pairs is going large, the performance of Predator drops
drastically, while our method shows better results in each
distance range with only a slight fall, and still above 0.7
even under 60m distance. One of the causes is that overlap
classification on the raw, unorganized point cloud in Predator
is more difficult than in our method. The ablation studies
IV-D have shown support for this view. Two pairs of point
clouds and their ground truth and predicted overlapping
regions are visualized in Fig. 3.

Loop Closure Detection. To make the model robust to
loop closure detection, the issues of occlusion and small
overlaps need to be addressed. To compare with the existing
methods, Recall@1 in [30] is used as the evaluation metric.
The best matching result for each query frame is inferred
among the neighboring frames around the query, excluding
100 consecutive frames near the query. An inference is
considered correct when its distance from the query is less
than 10m. As shown in Table. II, our method outperforms
the existing methods on most sequences. We can conclude
that estimating the correct overlapping regions is the key
factor in making our method stand out. Most methods could
successfully detect loops in large overlapping scenes, while
only our method survives with small overlaps, as illustrated
in the right part of Fig. 3.

Loop closure detection is also tested on the Apollo-
Southbay dataset. The tested pairs are sampled at various
distances with 10m intervals. As shown in Tab. III, our
method outperforms others at all distance settings. Since
the Sunnyvale-Big-Loop sequence contains some quite dif-



TABLE III: Loop closure detection results on
Apollo-SouthBay dataset

Methods 0-10m 10-20m 20-30m 30-40m 40-50m 50-60m
OT [25] 86.3 34.3 15.9 15.0 10.8 9.7
DS [30] 90.8 43.8 12.5 13.7 7.0 7.9

Ours 97.9 85.7 62.5 66.0 57.3 57.1
Average Recall@1. The best scores are marked in bold.

TABLE IV: Registration results on KITTI dataset
Methods RTE(cm) RRE(◦) RR(%)

3DFeat [53] 25.9 0.25 96.0
FCGF [43] 9.5 0.30 96.6
D3Feat [11] 7.2 0.30 99.8
SpinNet [54] 9.9 0.47 99.1
Predator [12] 6.8 0.27 99.8
COFiNet [55] 8.2 0.41 99.8

GeoTransformer [13] 6.8 0.24 99.8
Ours 7.5 0.26 99.8

ferent scenes which are not included in the training data,
our method still works well, which demonstrates the better
generalization capacity of our method.

C. Point Cloud Registration

For pairwise registration, state-of-the-art methods [11]–
[13], [43], [53]–[55] are compared at a 10m distance setting,
and all keypoints are used. We use RANSAC with 50,000
max iterations to estimate the transformation following [11].
As shown in Tab. IV, the relative translation error (RTE),
relative rotation error (RRE), and registration recall (RR)
[11] of our method are 7.5 cm, 2◦, and 99.8%, respectively.
The comparable accuracy our method achieved illustrates
the effectiveness of our feature description and keypoint
detection on BEV representations.

We conduct experiments with various distance settings
to address the low overlap cases. With registration recall
defined as RTE < 2m and RRE < 5◦, Predator [12]
and our method with/without overlap estimation detection
(O.w.O/O.w.o.O) are compared on the KITTI and Apollo-
Southbay datasets. Up to 250 keypoints per point cloud are
used. As shown in Tab. V, O.w.o.O achieves comparable
results to OP [12] on KITTI, and O.w.O always keeps top
performance, thus illustrating the usefulness of overlap esti-
mation in small overlapping scenes. The comparison of our
method shows the same conclusion on the Apollo-Southbay
dataset, O.w.O/O.w.o.O methods give 77%/47% RR at 80m,
respectively. The grouped comparison demonstrates that the

TABLE V: Registration results at different distances

Distance(m) KITTI Apollo
OP [12] O.w.o.O O.w.O O.w.o.O O.w.O

10 97.1 99.6 99.6 99.5 100.0
20 95.4 96.8 98.2 99.8 99.8
30 80.5 87.0 96.2 99.3 99.7
40 51.1 59.9 86.9 97.7 98.8
50 24.5 33.0 67.9 93.0 97.2
60 9.4 11.8 47.1 88.2 94.5
70 - - - 74.2 89.7
80 - - - 47.4 76.7

Registration Recall (%). The best scores are marked in bold.

TABLE VI: Ablation study on registration

Loss Registration Metrics
RR RTE RRE

Ldesc 1.46 119.4 3.97
Ldesc + Lreg 40.1 94.1 2.33
Ldesc + Lreg + Ldet 59.9 63.2 1.77
Ldesc + Lreg + Ldet + Lbce + Lsg 86.9 57.0 1.63

Loss Overlap Metrics
OI OP OR

Ldesc + Lreg + Ldet + Lbce 60.2 74.5 75.0
Ldesc + Lreg + Ldet + Lbce + Lsg 78.6 90.0 84.7

OP: overlap estimation precision. OR: overlap estimation recall.
OI: overlap estimation IOU.
The best scores are marked in bold.

TABLE VII: Ablation study on overlap estimation
Feature map Size IOU (%) Precision (%) Recall (%)

F 1 256× 256 50.3 62.2 74.2
F 2 128× 128 64.9 78.2 78.7
F 3 64× 64 73.8 85.2 83.2
E4 32× 32 78.6 90.0 84.7

The best scores are marked in bold.

overlap is crucial for registration: A better overlap estimation
makes better registration.

D. Ablation Study

We ablate the loss functions for registration and overlap
estimation tasks on the KITTI dataset. The ablation of
registration uses a 40m distance setting for the point cloud
pair and 250 keypoints for each point cloud, while the
ablation of overlap estimation is the same as in Section IV-B.
As shown in Tab. VI, height information supervised by Lreg
is indispensable for registration recall. The loss Lbce+Lsg for
overlap estimation improves the registration accuracy signifi-
cantly (recall+27%). The detection loss Ldet helping to select
discriminate key points also boosts recall with +20%, RTE
with -30cm. In addition, the loss term Lsg has a remarkable
influence on overlap estimation (precision+15%). Another
ablation is performed on the choices of feature maps for
overlap estimation. As shown in Tab. VII, the performance,
including IOU, precision, and recall consistently increases as
the size of feature maps becomes smaller. As mentioned in
Section III-C, the deepest feature maps are the best scale to
make overlap region classification.

V. CONCLUSION

We have presented a unified BEV model that jointly
learns 3D local features and overlap estimation for point
cloud registration and loop closure. The BEV representation
makes it convenient to use a shared backbone for related
multi-task processes. Overlap estimation plays a core role in
significantly enhancing performance on both registration and
loop closure, especially in low overlap scenarios. As a further
extension of this work, we plan to add a new task head to
generate a global descriptor that makes the method capable of
place recognition at global scope retrieval. Furthermore, we
will explore an end-to-end registration process that directly
generates the relative transformation without RANSAC post-
processing.
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