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Abstract— We present a boundary-aware domain adaptation
model for LiDAR scan full-scene semantic segmentation (Li-
DARNet). Our model can extract both the domain private fea-
tures and the domain shared features with a two branch struc-
ture. We embedded Gated-SCNN into the segmentor component
of LiDARNet to learn boundary information while learning
to predict full-scene semantic segmentation labels. Moreover,
we further reduce the domain gap by inducing the model to
learn a mapping between two domains using the domain shared
and private features. Additionally, we introduce a new dataset
(SemanticUSL1) for domain adaptation for LiDAR point cloud
semantic segmentation. The dataset has the same data format
and ontology as SemanticKITTI. We conducted experiments
on real-world datasets SemanticKITTI, SemanticPOSS, and
SemanticUSL, which have differences in channel distributions,
reflectivity distributions, diversity of scenes, and sensors setup.
Using our approach, we can get a single projection-based Li-
DAR full-scene semantic segmentation model working on both
domains. Our model can keep almost the same performance on
the source domain after adaptation and get an 8%-22% mIoU
performance increase in the target domain.

I. INTRODUCTION

Scene understanding is important for autonomous robotics
and vehicles. The semantic scene information can be used
for navigation, decision making, and semantic mapping.
Most autonomous vehicles these days are already equipped
with cameras and LiDAR. The camera can provide dense
color and texture information, making RGB images the first
choice for semantic segmentation. However, cameras can be
easily affected by varying illumination. Therefore semantic
segmentation for LiDAR scans is also important. The recent
advancement of deep learning technology has lead to a
significant development of semantic segmentation in 3D [1].
Meanwhile, the release of several datasets [2], [3], [4], [5]
from autonomous driving companies further promotes the
research for LiDAR scan semantic segmentation. However,
current learning-based methods mostly are supervised meth-
ods, of which training requires a large amount of annotated
data. Besides, the performance of well-trained models can
be hurt because of a slight departure of the test data from
training data. For LiDAR scans, the departure can come
from manufacture difference, sensor setup difference, scene
contents difference.

Without annotating new data, using old labeled data to
train a model that can work on new data is an unsupervised
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domain adaptation problem. The problem exists in both 2D
image data and 3D point cloud data, but the characteristics of
sparsity, irregularity and unstructured distribution make this
problem more difficult for the point cloud. To address the
domain gap between two LiDAR scan dataset, we observe
that LiDAR scans can be projected into 2D space and rep-
resented as range map. The projection reduces the difficulty
of domain adaption caused by the sparsity, irregularity, and
unstructured features of the LiDAR point cloud. Supervised
learning algorithms based on this projection representation
have achieved good performance on semantic segmentation
for LiDAR scan[6], [7]. This observation motivates us chose
a projection-based semantic segmentation model as the back-
bone and major task component of our model.

Moreover, inspired by work on private-shared components
separation [8], we designed a model with two extractors:
domain private extractor and domain shared extractor. The
domain private extractor extracts private features of each
domain, while the domain shared extractor extracts features
sharing information across domains. In our case, the domain
shared features contain the geometry and semantic meanings
of objects and the content relationship of the scenes such
as on-road scene. Meanwhile, the domain private features
are the different noise distributions, point cloud distributions,
and reflectivity distributions. To further reduce the domain
gap, we not only train our models to use the shared features
to perform our task: full scene semantic segmentation but
also use the two separated features to learn two mappings
between the source domain and target domain {G : S → T}
and {G : T → S}. Furthermore, we notice that after the
projection, the boundaries of objects are much easier to learn
than in 3D space and can be beneficial for segmentation.

Recent released datasets [2], [3], [4], [5] of LiDAR
scan for autonomous driving are mostly collected on ve-
hicles in traffic-road environments. To further verify our
adaptation model’s effectiveness, we introduce our LiDAR
dataset (SemanticUSL) for domain adaptation. Instead of
using vehicles, our dataset was collected on a smaller robot
with a 64-channels Ouster LiDAR. The data not only in-
cludes traffic-road scene but also have walkpath scenes and
off-road scenes. We perform evaluation experiments with
SemanticKITTI[4], SemanticPOSS, and our dataset. We also
compared our results with the pixel-level CyCADA method
[9]. The results show that our model has similar performance
on the source domain after adaptation and has a 8%-22%
improvement in mIoU in the target domain.
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II. RELATED WORK

A. Semantic segmentation

Semantic segmentation is the task of assigning an object
label to each basic unit of data like a pixel of an image or a
point of a point cloud. Before the prevalence of deep learn-
ing, traditional segmentation methods of point cloud mainly
relied on handcrafted features from geometric constraints and
assumed prior knowledge [10], [11]. Due to the irregularity
and lack of structure, point cloud has several representation
forms, and it is not very easy to apply deep learning on
point clouds directly. The simplest form is to represent point
cloud as dense voxel grids and use 3D convolution to predict
the results[12], [13], [14]. Dense voxel representation is
redundant, and 3D convolution operation is also computa-
tionally inefficient. [15], [16], [17], [18] have made an effort
to reduce the computation cost and improve performance.
Meanwhile, point cloud-based methods [19], [20], [21], [22]
try to directly operate on point set to reduce computation
cost and achieve good performance. Point clouds can also
be represented as graphs and meshes further to explore the
relationship between points. Moreover, a LiDAR scan can
also be projected on 2D space and represented as a dense
range map without losing much information. The projection
allows us to apply 2D convolutional directly on the LiDAR
scan. The projection-based methods [6], [7], [23] directly
apply 2D convolution on the LiDAR scan and achieve good
performance on accuracy. We chose the projection-based
model as our domain adaptation model’s task component and
tried to improve its domain transferability.

B. Unsupervised Domain adaptation

Unsupervised Domain adaptation (UDA) is a subfield of
transfer learning, to learn a discriminative model in the pres-
ence of domain shift between domains. Accompany with the
development of deep learning, a lot of UDA method has been
come up[24], [25], [26], [27], [9]. Hoffman et al. [9] intro-
duce the CycleGAN mechanism into the domain adaptation
field and proposed a discriminatively-trained cycle consistent
adversarial domain adaptation model (CyCADA).There are
also some work specifically designed to address domain
adaptation for point cloud. Wu et al. [28] utilize geodesic
correlation alignment to perform adaptation between real
and synthetic LiDAR data. Rist et al.[29] designed a voxel-
based architecture to extract features of LiDAR point cloud
and processed a supervised training methodology to learn
traversable features. Salah et al. [30] convert LiDAR into
bird-eye view images and used a CycleGAN method to adapt
the synthetic lidar domain to real domains. Wang et al.[31]
also use the bird-eye view as representation and a two-scale
model to perform cross-range adaption for LiDAR 3D object
detection. Qin et al. [32] propose a multi-scale 3D adaption
network to align global and local features in multi-level
jointly. Yi et al[33] represent point cloud as voxel and address
the LiDAR sampling domain gap for car and pedestrain by
converting the problem into surface completion task. Zhao
et al[34] proposed used ePointDA to to bridge the domain

shift at the pixel-level by explicitly rendering dropout noise
for synthetic LiDAR and at the feature-level by spatially
aligning the features between different domains. Langer et
al [35] fuse sequential labeled lidar scans into a dense mesh
and create semi-synthetic data to perform training. Jaritz et al
[36] explore how to learn from multi-modality and propose
cross-modal UDA (xMUDA) to adapt 2D images semantic
information to and 3D point clouds.

III. OUR APPROACH

A. Input Representation

This paper focuses on the domain adaptation for full-
scene semantic segmentation from one real-world Lidar scan
dataset to another real-world Lidar scan dataset. Our model
used a projection-based model as the segmentor backbone.
The input of a projection-based model is the projected Li-
DAR scan refer to Eq.1, where r is the range, (x, y, z) are the
coordinates, (w, h) are width and height of the image, f is
the angle of the field of view of Lidar, and fup is the up angle
of the field of view. After the projection, we can get a range
image and a point index image. Furthermore we also get a
3D coordinate map of the point cloud. Many projection-based
models [28], [6], [7] use the range image, reflectivity map,
and coordinate map as input. But the point cloud from the
different platforms has different coordinate systems, which
is not good for domain adaptation. Meanwhile, the normal
map have fixed range for all LiDARs. Besides, according to
[37], the normal map can help the model perform semantic
segmentation for depth image. Therefore, we use a normal
map accompanying with the range image, reflectivity map,
as input.(

u
v

)
=

(
1
2 [1− arctan(y, x)π

−1]w
[1− (arcsin(zr−1) + fup)f

−1]h

)
(1)

In our experiment, we notice that a lot of stripe pat-
tern appears on projected images and labels (see Fig.2(a)),
which affects the domain adaptation process. To reduce
the negative effect, we pre-process the data (see Fig.2(b)).
We utilize Closing morphological and subtract operations
to locate stripe pattern on mask image. Then we inpaint
the reflectivity and range image using the Navier-Stokes
inpainting algorithm [38], and fill the label using the holes’
nearest neighbors. And the normal map is computed from
the inpainted range image.

B. Network Structure

Generally, we expect a model that can complete a task
for data from similar domains. However, feature difference
between two similar domains causes a model, which learns
from one domain (called source domain S), can not perform
well on another domain (called target domain T ). Therefore,
we expect a method that can adapt a model from one domain
to another domain. If the target domain does not provide
ground truth, the problem is called unsupervised domain
adaptation. In this paper, the task is full-scene semantic
segmentation for Lidar scan. In this problem, we use XS



Fig. 1: Information Flow Graph: The data (source and target) are fed into two branches: one branch is composed of a domain
private extractor fP and a domain private classifier fD which can differentiate the input from the two domains, another
branch is a domain shared extractor fC which extracts the common feature between the two domains including semantic
information Y and boundries information B. A segmentor fSeg predicts labels Ŷ and boundries information B̂ based on
the features from domain shared extractor. The predicted boundaries are sent to a boundaries discriminator DB , and the
predicted labels are sent to a labels discriminator DY . Next, the domain private features and domain shared features are
fed into domain converters (fS→T converts source data into target domain, fT→S converts target data into source domain).
The coversion are learning through an adversarial learning procedure. Therefore, the coverted data are seperately fed into
domain discriminators (DT and DS). Along with this, the converted data are also fed back to the model to repeat the above
procedures.

Fig. 2: (a) the original label; b) the inpainted label;

denotes source data, YS denotes source labels, and XT

denotes target data, but target labels are not accessible.
Based on the intuition that two similar domains should

contain shared information across the two domains and
private information to each domain. And the adaptable
information should be contained in shared information of
two domains. Therefore, we designed an end-to end trainable
model that splits input data into domain shared and private
features. The model then utilizes the extracted shared features
to perform semantic segmentation. The model contains two
extractors: a shared feature extractor fP and a private feature
extractor fD see Fig.1. To induce the two extractors to
produce such split information, we add a loss function that
encourages the independence of these parts, and connect the
private feature extractor to a classifier fC to differentiate the
data from two domains. Besides, we feed the output of the
domain shared extractor to a segmentor to complete the same
task (predict semantic labels Ŷ ).

To ensure that the private features are still useful and
to further reduce the domain gap, we introduce the Cycle-
GAN mechanism [39] to induce the models to learn two
mappings between two domains. The domain private and
shared features are fed into domain converters to convert the
data from one domain to another domain: (fS→T converts

source data into target domain, fT→S converts target data
into source domain). The conversion is learning through
an adversarial learning procedure. Therefore, the converted
data are separately fed into domain discriminators (DT and
DS). Meanwhile, we add Gated-SCNN [40] on the side of
the segmentor to extract boundary maps B while learning
to predict semantic segmentation. The boundary maps are
the predicted boundary of semantic labels. We utilize the
output boundaries to penalize the label predictions from the
target domain. To further penalize the label output, we add a
boundaries discriminator DB , and a labels discriminator DY

to penalize the output label and boundary.

C. Multi-task Learning

The domain adaptation procedure is essentially a multi-
task learning procedure. The tasks include domain private
feature classification, boundaries extraction, semantic seg-
mentation, domain mutual conversion, similarity measure-
ment of domain shared features and divergence measurement
of the domain private features. The complete loss function
can be written as follows:

L = λPLP +λBLB+λSegLSeg+λMLM +λCLC+λDLD

(2)
where LP , LB , LSeg, LM , LC and LD correspond to
the loss of domain private feature classification, boundaries
extraction, semantic segmentation, domain mutual conver-
sion, domain similarity and domain difference and λP , λB ,
λSeg, λM λC and λDare hyperparameters that control the
weighting between losses.



The domain private feature classification task is a binary
classification problem, which uses standard binary cross-
entropy loss Eq. (3).

LBCE(Y, Ŷ ) = Ey∼Y [y log (ŷ) + (1− y)log(1− ŷ)] (3)

Therefore, the classification loss is 4, where δ(X) = {1 :
x ∈ XS ; 0 : x ∈ XT }.

LP = LBCE(δ(X), fD(fP (X)) (4)

For the boundaries extraction task, we have access to
labels of source data, which allows us to get the boundaries
of source data BS . We then use standard binary cross-entropy
(BCE) loss on predicted boundary maps B̂s of source data.
From experiments, the network inclines to generate blank
results if there was no penalty on target data. Therefore,
we add a GAN loss to encourage the network to predict
boundaries for target data too. We express GAN loss as
Eq.(5)

LGAN (G,DY , X, Y ) = Ey∼Y [logDY (y)]

+ Ex∼X [log(1−DY (G(x)))]
(5)

Then, the complete loss function of boundary extraction task
can be written as Eq.(6), where GB(x) equals fC(x) ,and
λBGAN

, λBBCE
are hyper-parameters for balancing the effect

between the GAN loss and BCE loss.

Lbd = λBBCE
LBCE(BS , B̂S)

+ λBGAN
LGAN (GB , DB , XT , BT )

(6)

For the semantic segmentation task, LSeg consist of two
parts: LS

Seg of source data and LT
Seg of target data. We

employ standard cross-entropy (CE) loss with dual boundary
regularizer [40] and Lovász-Softmax loss on predicted labels
of source data.

LS
Seg =λSS1LCE(YS , ŶS) + λSS2Ldual(YS , ŶS , B̂S)

+ λSS3LLoasz(YS , ŶS , B̂S)
(7)

Where GSeg(X) = fseg(fC(X))).
For target data, we employ GAN loss to learn segmen-

tation [41]. Besides, because learning the boundary map
is easier than learning semantic segmentation. Therefore,
we used the boundary prediction B̂T to penalize the label
predictions ŶT of the target data. We add a Laplacian layer
to extract the boundary of the predicted labels and use the
L1 loss to measure the difference between the boundray
prediction and the predicted label boundary. In the end, the
segmentation loss of source data is Eq.(8)

LT
Seg = λST1LGAN (GSeg, DSeg, XT , YS)

+ λST2E
bt∼B̂T

xt∼XT
[‖ Laplacian(GSeg(xt))− b̂t ‖1]

(8)

In order to further eliminate the effect of domain dif-
ference, we introduce the CycleGAN mechanism into our
model, which leads to the fourth task: domain mutual conver-
sion task. We expect that through learning the domain mutual
conversion, the model can find the interior relationship
between two domains. The mutual conversion task requires
two mapping functions: GS→T maps data from the source

domain to target domain, GT→S maps data from target
domain to source domain. The two mappings function can
be expressed as 9.

GT→S(X) = fT→S(fP (fH(xt)), fC(X))
GS→T (X) = fS→T (fP (fH(xs)), fC(X))

(9)

Based on the two mapping functions, we can define the
domain mutual conversion loss as follows:

L = λMinvLinv + λMcycLcyc (10)

Where Linv and Lcyc represent domain invariance loss and
cycle consistency loss.

The domain invariance means that the data domain will
not be changed if it passes through its domain convertor. For
example, we will get data in source domain XS(S) after data
from source domain XS pass the mapping function GT→S .
This invariance character of the mapping function can be
learned through the following function:

Linv(GS→T , GT→S , XS , XT ) =

Exs∼XS
[‖ x̂s(s) − xs ‖1]

+ Ext∼XT
[‖ x̂t(t) − xt ‖1]

+ LGAN (GS→T , DT , X̂S(S), XT )

+ LGAN (GT→S , DS , X̂T (T ), XT )

(11)

On the other end, cycle consistency means that after data
passes two different mapping functions, its domain should
be in its original domain. For example, source domain data
XS first passes the mapping function GS→T . The converted
results XT (S) passes the mapping function GT→S . We will
finally get data XS(T (S)), which should be in the source
domain. The cycle consistency loss can be defined as:

Lcyc(GS→T , GT→S , XS , XT ) =

Exs∼XS
[‖ x̂s(t(s)) − xs ‖1]

+ Ext∼XT
[‖ x̂t(s(t)) − xt ‖1]

+ Exs∼XS
[‖ GSeg(x̂s(t(s)))−GSeg(xs) ‖1]

+ Ext∼XT
[‖ GSeg(x̂t(s(t)))−GSeg(xt) ‖1]

(12)

We meausure the similarity of the shared features between
the original data and converted data using L1 loss:

LC(fC , GS→T , GT→S , XS , XT ) =

Exs∼XS
[‖ fC(x̂t(s))− fC(xs) ‖1]

+ Ext∼XT
[‖ fC(x̂s(t))− fC(xt) ‖1]

(13)

To measure the divergence of the shared features and
private features, we define the loss via as soft subspace
orthogonality constraint between the private and shared fea-
tures [8]:

LD =‖ Hs
c
>Hs

p ‖F + ‖ Ht
c
>
Ht

p ‖F (14)

Where ‖ • ‖F is the squared Frobenius norm. Hs
p and are

Ht
p are the matrices whose row are the private features from

the source domain and target domain respectively. And Hs
c

and are Ht
c are the matrices whose row shared features from

the two different domain.



TABLE I: Domain Adaptation Experiment results on SemanticKITTI, SemanticPOSS and SemanticUSL

Source Target Method person rider car trunk vegetation traffic-sign pole object building fence bike ground mIoU

KITTI

KITTI

kitti 62.09 74.21 93.59 61.15 91.11 37.99 57.94 50.36 84.82 54.64 15.48 94.13 64.79
cycposs 64.22 76.44 92.36 60.64 90.57 37.75 57.09 46.80 84.08 51.35 15.35 93.80 64.20
cycusl 58.42 69.05 92.31 56.33 90.53 37.23 56.09 44.70 82.04 47.51 13.63 93.66 61.79

oursposs 47.46 68.52 94.06 73.90 47.62 37.33 59.15 58.24 88.45 27.75 29.41 56.11 57.33
oursusl 46.04 68.86 94.95 69.91 81.49 38.60 63.65 50.05 88.07 22.20 37.74 91.19 62.73

POSS
source 22.77 1.78 35.91 16.86 39.84 7.08 9.73 0.18 57.03 1.64 18.17 41.99 21.08
cycada 0.00 0.00 0.00 1.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12

ours 31.39 23.98 70.78 21.43 60.68 9.59 17.48 4.97 79.53 12.57 0.78 82.41 34.63

USL
source 33.90 0.00 27.45 10.68 36.89 16.20 12.72 5.68 41.61 3.55 31.60 75.95 24.69
cycada 0.38 0.00 28.70 13.83 57.11 20.70 23.83 3.78 53.14 22.30 9.24 72.36 25.45

ours 33.17 0.00 67.75 38.95 85.60 49.93 43.44 8.94 72.86 44.06 23.07 93.18 46.75

POSS

POSS

source 64.47 48.25 85.77 29.71 62.71 27.29 38.19 8.07 84.90 48.50 65.56 72.56 53.00
cyckitti 64.80 48.05 84.52 29.16 61.81 26.42 33.99 8.44 84.15 47.45 65.52 71.87 52.18
cycusl 32.82 17.73 71.88 16.76 53.41 16.89 16.96 1.03 71.43 24.20 49.45 67.25 36.65

ourskitti 61.13 45.33 82.88 30.93 60.82 32.60 32.46 7.05 82.82 37.42 60.05 72.64 50.51
oursusl 60.70 44.93 85.19 31.33 61.60 35.12 35.33 9.83 84.30 41.21 65.10 71.62 52.19

KITTI
source 5.20 0.50 22.57 0.54 44.00 1.90 12.83 0.08 43.09 0.70 0.40 5.62 11.45
cycada 0.28 0.68 4.67 0.32 23.75 0.75 5.01 0.49 12.29 0.83 0.06 6.94 4.67

ours 23.64 24.86 73.31 23.67 72.38 4.17 31.28 2.48 59.41 0.36 0.53 68.68 32.06

USL
source 2.45 0.00 16.15 1.21 27.94 1.34 4.52 0.62 44.37 0.12 1.16 8.05 8.99
cycada 0.00 0.00 0.00 0.05 9.40 0.19 1.12 0.15 5.06 0.28 0.00 28.01 3.69

ours 30.38 0.00 45.73 28.69 63.08 22.29 33.92 4.12 63.70 1.89 9.42 77.49 31.73

USL2

USL source 51.96 0.00 12.57 26.29 72.89 11.18 47.22 15.11 59.78 39.61 0.00 85.61 35.19

KITTI
source 1.11 0.01 28.77 5.61 38.75 3.93 15.43 1.80 29.77 1.94 1.24 46.45 14.57
cycada 0.17 0.00 10.43 5.06 31.86 0.53 10.26 0.96 36.31 5.42 0.14 47.47 12.38

ours 14.91 0.00 66.72 28.28 67.61 12.95 30.67 1.00 57.15 18.82 3.94 75.60 31.47

POSS
source 4.67 0.00 21.66 3.04 27.96 1.61 6.03 0.09 41.67 2.55 5.93 63.08 14.86

cycposs 5.28 0.00 9.93 5.30 25.66 1.95 5.93 0.01 52.01 0.75 0.36 50.58 13.15
ours 11.50 0.00 44.41 19.33 41.39 5.97 13.27 0.00 71.37 0.99 1.53 66.08 22.99

Table Notes: 1). KITTI denotes SemanticKITTI; 2). POSS denotes SemanticPOSS; 3). USL denotes SemanticUSL; 4). source denotes “model was
trained on source data only”; 5). cyckitti/cycusl/cycposs denote “model was trained with pixel-adapted CyCADA method and tested on source domain”;
6). ourskitti/oursusl/oursposs denotes “model was trained with our method and tested on source domain”; 7). cycada denote “model was trained with
pixel-adapted CyCADA method and tested on target domain”; 8). ours denotes “model was trained with our method and tested on target domain”.

IV. EXPERIMENTAL EVALUATION

A. Dataset

Recent released datasets [2], [3], [4], [5] of LiDAR scan
for autonomous driving are most collected on vehicles in on-
road environments. However, for autonomous robotics, they
may have different sensor setup and pass not only on-road
environment. These differences will lead to different domain
gaps between current existing datasets. Therefore, to verify
our method’s effectiveness and provide data for research in
autonomous robotics in the future. We introduce our dataset
SemanticUSL.

SemanticUSL was collected on a Clearpath Warthog
robotics with an Ouster OS1-64 LiDAR. The data collection
location includes the campus site and off-road research
facility of Texas A&M University. The data include the
traffic-road scene, walk-road scene, and off-road scene 3.
Our dataset has 16578 unlabeled scans for domain adap-
tation training and 1200 labeled scans for evaluation. The
data uses the same format and ontology as SemanticKITTI
[4]; therefore, it can be easily used for domain adaptation
research between SemanticKITTI and SemanticPOSS.

We evaluated our algorithm on three datasets: Se-
manticKITTI dataset [4], SemanticPOSS [5], and our

2Because there’s only 1200 labeled data in SemanticUSL, therefore we
use all of the for training and not show the model evalutation results on the
SemanticUSL

dataset(SemanticUSL). The information on the other two
datasets is as followed:

• SemanticKITTI is labeled from the KITTI dataset col-
lected around Karlsruhe’s mid-size city, rural areas, and
highways. The data was collected using a Volkswagen
Passat B6 with a Velodyne HDL-64E. The Semantic
KITTI dataset has 23201 labeled scans and 28 classes.

• SemanticPOSS was collected at the Peking University
campus and contained many dynamic and complex
scenes, which are different from SemanticKITTI. The
platform is a JEEP with a Pandora 48 channel LiDAR.
The dataset has 2988 frames and 14 classes.

In summary, the three datasets were collected on different
platforms and different sites. These differences cause the di-
vergence of point cloud distributions, noise, and reflectivity,
etc.

Fig. 3: Dataset Collection Environment: (a) is campus envi-
ronment; (b) is off-road environment



B. Evaluation Metrics.

To evaluate performance of our model, we use the widely
used intersection-over-union (IoU) metric, mIoU, over all
classes [42], given by

mIoU =
1

C

c∑
c=1

TPc

TPc + FPc + FNc
(15)

where TPc,FPc and FNc represent the number of true
positive, false positive and false negative predictions for class
c and C is the number of classes.

C. Implementation Details

In our experiments, all our networks are implemented
using PyTorch[43]. Training is done on a lambda workstation
with two NVIDIA Titan RTX. The LiDAR scans are pro-
jected as 64 × 2048 resolution range maps. While training,
the maps were randomly cropped and resized into a size of
64 × 512, with a batch size of 18. The major task model
is a semantic segmentation model composed of the shared
features extractor and segmentor. In our implementation,
we use the encoder of SalsaNext[7] as the shared feature
extractor and its decoder as the segmentor. We add GSCNN
along with the second, third, and fourth layers of the seg-
mentor and fuse the boundary output through atrous spatial
pyramid pooling module [44]. The private feature extractor
is a copy of the shared feature extractor. And a 2D adaptive
average pool layer followed by a fully connected linear layer
composes the domain private classifier. The converter uses
an atrous spatial pyramid pooling module to fuse the shared
and private features and use the decoder of SalsNext to finish
the reconstruction. For the discriminators, we use the same
PatchGANs in CycleGAN[39]. Besides, we also change all
the batch normalization layer into instance normalization
layer [45], [39] for better conversion results. We train the
whole model from scratch with a learning rate of 0.001 and
an SGD optimizer. The training follows the same style as
CycleGAN see Fig.1. We first feed real data from the source
and target domain into the model and get two predicted
labels, two boundary maps, and two fake data. Then, we
feed the two fake data into the model and get another six
outputs.

D. Quantitive Evaluation

In this section, we study our approach’s domain adap-
tation ability among the SemanticKITTI, SemanticPOSS,
and SemanticUSL datasets by treating one as the source
domain and another as the target domain. We trained original
SalsaNext on source data to provide a reference. Besides,
we also compared our method with the pixel-level adapted
CyCADA method [46], because both approaches are using
the CycleGAN mechanism. And we also are interested in
how well the CyCADA can adapt projected 3D data. We
train a SalsaNext model on the adapted data by CyCADA.
We reported the results in Table I.

The pixel-level CyCADA methods do not work well on
the projected 3D points cloud. See Table.I(third column
with ”cyckitti/usl/poss”), most of the model can keep the

same performance trained with the adapted data but can’t
generalize to the target domain. In the SemanticPOSS→ Se-
manticUSL case, the model can’t keep the same performance
if trained with the adapted data. This adaptation method
tries to visually bring close two domains in global features
like reflectivity and norm distribution. However, there’s no
guidance for local features adaptation. Another reason could
be SemanticPOSS doesn’t have enough data to complete
CycleGAN conversion. The performance degrades a lot on
the transformation with SemanticPOSS.

On the other hand, see Table.I(third column with ”ours”
and ”ourskitti/usl/poss”), the results shows that our method
has better adaptation results. Firstly, after adaptation, the
performance of our model on the source domain decreased
slightly. Meanwhile, the model recovered over 60% perfor-
mance on the target domain. For example, in the case of
adapting POSS to USL, the model got 52.18%mIoU on the
SemanticPOSS dataset and got 31.72% on SemanticUSL.
The results indicate the amount of label data in the source
domain affects the results. In KITTI → USL case, the
adapted model’s performance on the SemanticUSL dataset
is even higher than the model trained with USL data only.
We also provide ablation studies about the effect of the
CycleGAN mechanism and the boundary penalty on the
adaptation results. Without the CycleGAN mechanism, our
model got 36.55% mIoU by adapting from SemanticKITTI
to SemanticUSL. Without the CycleGAN, the IoU of Car
decreased to 28.76% because car detection relies on re-
flectivity [23]. The CycleGAN mechanism can adapt the
reflectivity features between two domains. By disabling the
model’s boundary-aware part, the model got 37.20% mIoU
by performing domain adaptation from SemanticKITTI to
SemanticUSL. Compared with the model’s output after dis-
abling the boundary-aware function, the label with boundary-
aware parts has better shapes.

V. CONCLUSIONS

In this paper, we propose a boundary-aware domain adap-
tation approach for semantic segmentation of the lidar point
cloud. We design a model that can extract domain shared
features and domain private features. We utilize the Gated-
SCNN to enable the domain shared feature extractor to
keep boundary information in the domain shared features
and utilize the learned boundary to refine the segmentation
results. We conduct experiments on SemanticKITTI, Seman-
ticPOSS, and SemanticUSL datasets. The results show that
our model can keep almost the same performance on the
source domain after adaptation and get an 8%-22% mIoU
performance increase in the target domain. In future work,
we further explore more effective point cloud representation
and more efficient architecture to learn the general geometry
information.
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