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Figure 1: (a) Our CNN-ViT collaborative learning framework can learn the compact ViT-models and CNN-based models simultaneously
while achieving the SoTA segmentation performance than prior methods. (b) We propose the first online KD framework to collaboratively
learn compact CNN-based and ViT-based models by selecting and exchanging reliable knowledge between them.

Abstract
In this paper, we strive to answer the question ‘how to

collaboratively learn convolutional neural network (CNN)-
based and vision transformer (ViT)-based models by select-
ing and exchanging the reliable knowledge between them
for semantic segmentation?’ Accordingly, we propose an
online knowledge distillation (KD) framework that can si-
multaneously learn compact yet effective CNN-based and
ViT-based models with two key technical breakthroughs to
take full advantage of CNNs and ViT while compensating
their limitations. Firstly, we propose heterogeneous fea-
ture distillation (HFD) to improve students’ consistency in
low-layer feature space by mimicking heterogeneous fea-
tures between CNNs and ViT. Secondly, to facilitate the two
students to learn reliable knowledge from each other, we
propose bidirectional selective distillation (BSD) that can
dynamically transfer selective knowledge. This is achieved
by 1) region-wise BSD determining the directions of knowl-
edge transferred between the corresponding regions in the
feature space and 2) pixel-wise BSD discerning which of the
prediction knowledge to be transferred in the logit space.
Extensive experiments on three benchmark datasets demon-
strate that our proposed framework outperforms the state-
of-the-art online distillation methods by a large margin, and
shows its efficacy in learning collaboratively between ViT-
based and CNN-based models.

1. Introduction

Semantic segmentation [6, 25, 39] is a crucial and chal-
lenging vision task, which aims to predict a category la-
bel for each pixel in the input image. Although the state-
of-the-art (SoTA) segmentation methods have achieved re-
markable performance, they often require prohibitive com-
putational costs. This limits their applications to resource-
limited scenarios, e.g., autonomous driving [12]. Conse-
quently, growing attention has been paid to model com-
pression aiming at obtaining more compact networks. It
can be roughly divided into quantization [10, 13, 38], prun-
ing [4,26,32], and knowledge distillation (KD) [27,30,33].
The standard KD paradigm aims to learn a compact yet ef-
fective student model under the guidance of a high-capacity
teacher model. For instance, CD [29] proposes a channel-
wise KD approach by normalizing the activation map of
each channel. IFVD [36] characterizes the intra-class fea-
ture variation (IFV) and makes the student model mimic the
IFV of the teacher model.

Recently, vision transformer (ViT) achieves compara-
ble or even better performance than that of CNNs thanks
to the computing paradigm, e.g., multi-head self-attention
(MHSA). For instance, PVT [34,35] and Swin Transformer
[9,24] extract the pyramid features from the high-resolution
images and achieve SoTA performance on various bench-
marks. To minimize the model complexity, SegFormer [39]
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proposes a hierarchically structured transformer encoder to
learn a simple yet efficient ViT-based model.

In this paper, we strive to collaboratively learn com-
pact yet effective CNN-based and ViT-based models for
semantic segmentation. Intuitively, we explore an online
KD paradigm for this goal. Existing online KD meth-
ods for classification employ a ‘Dual-Student’ framework
(without the pre-trained model) by enabling the students
to learn from each other in a one-stage learning manner
[1, 14, 31, 42]. For example, Deep Mutual Learning (DML)
[42] proposes to make the CNN-based students teach each
other in the training process. KDCL [14] enables the stu-
dents with different capacities to learn collaboratively to
generate reliable soft supervision and boost their classifica-
tion performance. However, naively applying these CNN-
based KD methods is less effective and even leads to perfor-
mance drops (see Fig. 1 (a)). The reasons are that: 1) The
discrepancies in the feature and prediction space between
CNNs and ViT caused by the distinct computing paradigms
make it challenging to perform online KD. 2) These meth-
ods only transfer knowledge in the logit space while more
reliable and informative knowledge does exist in the feature
space. 3) There are considerable model size gap and learn-
ing capacity gap between CNNs and ViT. Intuitively, we ask
a question: ‘how to collaboratively learn CNN-based and
ViT-based models by selecting and exchanging the reliable
knowledge between them for semantic segmentation?’

In light of this, we propose, to the best of our knowl-
edge, the first online KD strategy to further push the
limit of CNNs and ViT for semantic segmentation (See
Fig. 1 (b)). Our method enjoys two key technical break-
throughs. Firstly, we propose heterogeneous feature distil-
lation (HFD) to make the students learn the heterogeneous
features from each other for complementary knowledge in
the low-layer feature space. Concretely, the ViT-based stu-
dent takes the low-level features from the CNN-based stu-
dent as guidance and vice versa. Then, consistency be-
tween the low-layer features of CNN-based and ViT-based
students is imposed to encourage them to compensate for
their limitations. Secondly, to transfer reliable knowledge
between CNNs and ViT, we propose a bidirectional selec-
tive distillation (BSD) module that selectively distills the re-
liable region-wise and pixel-wise knowledge. Specifically,
the region-wise distillation dynamically transfers reliable
knowledge of regions in the feature space by determining
the directions of transferring knowledge. Similarly, pixel-
wise distillation discerns which of the prediction knowledge
to be transferred in the logit space. Note that these bidirec-
tional distillation approaches are both guided by the cross
entropy between predictions and ground-truth (GT) labels.

In summary, our main contributions are four-fold: (I)
We introduce the first online collaborative learning strat-
egy to collaboratively learn compact ViT-based and CNN-

based models for semantic segmentation. (II) We propose
HFD to facilitate CNNs and ViT learning global and local
feature representations correspondingly. (III) We propose
BSD to distill knowledge between ViT and CNNs in the
feature and logit spaces. (IV) Our proposed method con-
sistently achieves new state-of-the-art performance on three
benchmark datasets for semantic segmentation.

2. Related work
KD for Segmentation. The mainstream methods [1, 2, 16,
18,21,23,29,36,40] for segmentation mostly focus on learn-
ing a compact CNN-based student model by distilling the
knowledge from a cumbersome CNN-based teacher model
with the same network architecture. CD [29] proposes a
channel-wise KD approach by normalizing the activation
map of each channel. IFVD [36] characterizes the intra-
class feature variation (IFV) and makes the student mimic
the IFV of the teacher. SSTKD [19] exploits the structural
and statistical knowledge to enrich low-level information of
the student model. Differently, we propose a first online KD
approach, which collaboratively learns compact yet effec-
tive CNN-based and ViT-based models for segmentation.
Vision Transformer has demonstrated its effectiveness on
several vision tasks but is less applicable in case of limited
computational resources. Recently, several attempts have
been made to obtain compact ViT models via network prun-
ing [41] or KD [20]. Moreover, some works [7] combine
the advantages of CNNs and ViT, and design hybrid mod-
els for classification. By contrast, we explore simultane-
ously learning compact yet effective CNNs and ViT models
by bidirectionally learning the feature and prediction infor-
mation from both models for semantic segmentation.
Online KD. Some works [1, 5, 21, 42] focus on the on-
line KD without a pre-trained teacher model. DML [42]
proposes a mutual learning strategy, where an ensemble
of students’ logits is deployed, for classification task. Co-
distillation [1] further extends this idea and explores the po-
tential in distributed learning. ONE [22] constructs a multi-
branch network and assembles the on-the-fly logit informa-
tion from the branches to enhance the performance on the
target network. CLNN [31] proposes multiple generated
classifier heads to obtain supplementary information for
improving the generalization ability of the target network.
KDCL [14] aggregates the outputs of numerous students
with different learning capacities to generate high-quality
labels for supervision. PCL [37] integrates online ensemble
and collaborative learning into a unified framework. Unlike
these works generating a soft target in the logit space and
transferring knowledge between the isomorphic CNN-based
models, we introduce a collaborative learning strategy be-
tween the heterogeneous CNN-based and ViT-based models.
We propose to bidirectionally exchange the reliable knowl-
edge in feature and logit spaces for semantic segmentation.
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Figure 2: Illustration of the proposed framework, containing three parts: ViT-based student, CNN-based student, and KD
modules. (a) Heterogeneous feature distillation (HFD) enables CNN-based and ViT-based students to learn from each other
in the low-layer feature space. (b) Our proposed framework. The online KD strategy is optimized via three loss functions:
(i) a cross entropy loss, (ii) heterogeneous feature distillation loss, and (iii) a bidirectional selective distillation (BSD) loss.

3. The Proposed Approach
3.1. Overview

An overview of the proposed framework is depicted in
Fig. 2(b), which consists of three components: a CNN-
based student f

(
θC

)
, a ViT-based student f

(
θV

)
, and the

proposed KD modules. Given an input image set X , our
objective is to enable f

(
x; θV

)
and f

(
x; θC

)
to learn col-

laboratively that can assign a pixel-wise label l ∈ 1, . . . ,K
to each pixel pi,j in image x ∈ X(x ∈ RH×W×3) more
accurately than the student itself, where H and W are the
height and width of x,K is the number of categories. To
achieve this goal, given specific input x, we attain the seg-
mentation prediction maps

(
PC and PV

)
and feature rep-

resentations ( FC and FV
)

from the two students f
(
x; θC

)

and f
(
x; θV

)
, respectively, which can be formulated as:(

PC, FC
)
= f

(
x; θC

)
,

(
PV, FV

)
= f

(
x; θV

)
.

The pixel-wise segmentation loss CE(·) is based on the
cross-entropy (CE) loss with the ground-truth (GT) label :

LC
CE =

1

H×W

H∑

h=1

W∑

w=1

CE
(
σ
(
PC

(h,w)

)
, y(h,w)

)
,

LV
CE =

1

H×W

H∑

h=1

W∑

w=1

CE
(
σ
(
PV

(h,w)

)
, y(h,w)

)
.

(1)

Here, σ is the softmax function, and y(h,w) denotes the
GT of the (h,w)-th pixel of image x. Our key ideas are
two folds. To compensate for the limitations of CNNs and
ViT, we first propose HFD to align the features in the low-

layer feature space. Secondly, we propose a BSD module
to selectively enable both two students to mimic the region-
wise and pixel-wise information from each other. We now
describe the technical details.

3.2. Heterogeneous Feature Distillation (HFD)

Inspired by the observations that CNNs are hard-coded
to attend only locally while ViT does not learn to attend
locally in earlier layers [28], we propose a novel HFD mod-
ule to make the students learn the heterogeneous features
from each other for complementary knowledge in the low-
layer feature space. Specifically, it is efficiently achieved
by aligning the transformed features between CNNs and
ViT (see Fig.2 (a)). At the top of Fig.2 (a), we transfer
knowledge from the ViT-based student to the CNN-based
student. To match the shapes and channels between the first-
layer features FC

1 of CNN-based student and the first-stage
features FV

1 , we utilize a linear transformation ΓC
1 which

consists of 1 × 1 convolution (conv) and pooling layers.
And FC

1 is transformed to be F Ĉ
1 = ΓC

1 (F
C
1 ). Then, the

second-stage ViT block ‘Attn’ has two inputs: (a) the fea-
ture FV

1 and (b) the transformed feature F Ĉ
1 and outputs

second-stage feature FV
2 = Attn(FV

1 ) and Attn(F Ĉ
1 ). To

enable the low-layer features of CNNs to mimic low-layer
features of ViT, we align FV

2 and Attn(F Ĉ
1 ) by using cosine

distance and use the discrepancy to optimize CNNs. Simi-
larly, as shown in the right of figure of Fig. 2(a), we exploit
the linear transformation ΓV

1 to match the spatial size of
CNNs and ViT. We also utilize a linear transformation ΓV

1



comprising of 1 × 1 convolution (conv) and pooling layers
to transform FV

1 as F V̂
1 = ΓV

1 (F
V
1 ). The second-layer of

CNNs MLP takes the transformed features F V̂
1 and FC

1 as
inputs, and outputs MLP(F V̂

1 ) and FC
2 = MLP(FC

2 ), cor-
respondingly. Then, aligning these outputs with the cosine
distance facilitates ViT-based student to learn from CNN-
based student and thus improves the performance of ViT.
Finally, we make ViT-based student learn the local feature
representations and CNN-based student learn global feature
representations by HFD, which is defined as:

LC
HFD = cos(Attn((F Ĉ

1 )), FV
2 ),

LV
HFD = cos(MLP(F V̂

1 ), FC
2 ),

(2)

here cos is the cosine distance measuring the consistency
between CNNs and ViT. Attn((F Ĉ

1 ) is defined as

Attn(F Ĉ
1 ) = softmax

(
F Ĉ
1 WQ(F Ĉ

1 WK)T√
d

)
(F Ĉ

1 WV ),

where WQ, KQ, and V Q are the projections of Attn and
d is the number of multi-head in ViT. Similarly, MLP block
is the second layer of CNNs.

3.3. Bidirectional Selective Distillation (BSD)

Due to the different performance in different regions be-
tween the ViT and CNN students, we intend to dynamically
select useful knowledge between the two students in the fea-
ture space, so as to benefit each other. However, there is a
challenging problem: ‘how to decide the directions of trans-
ferring knowledge for different regions during training?’.
To this end, we propose to manage the directions of KD via
combining the predictions and GT labels, where we regard
the directions of KD for different regions as a sequential
decision-making problem. Consequently, we propose a di-
rectional selective distillation (BSD) for enabling students
to learn collaboratively, as shown in Fig. 3. Our BSD mod-
ule transfers knowledge in two aspects. Firstly, the region-
wise distillation determines the distillation direction of each
region for supervising students in each region. Secondly,
the pixel-wise distillation decides which of the prediction
knowledge to be transferred in the logit space.

3.3.1 Region-wise distillation

Given the last-layer feature FC
l ∈ RĤ×Ŵ×D̂ and the last-

stage feature FV
l , we exploit 1 × 1 conv and pooling lay-

ers to transform FC
l and FV

l for matching the channels
and shapes of them. The transformation functions are de-
noted as ΓC

l and ΓV
l , respectively. Then F Ĉ

l = ΓC
l (F

C
l )

matches the dimensions of F V̂
l = ΓV

l (F
V
l ) and F Ĉ

l ∈
RĤ×Ŵ×D̂. To transfer knowledge from regions between

Select

Decoder

Region-wise 

Decoder

Pixel-wise 

CE  

CE  

Figure 3: Illustration of the proposed BSD. For region-wise
BSD, the colorful cubes mean these regions have more reli-
able knowledge than the same regions from other students.
Then the reliable knowledge is transferred from colorful
cubes to white cubes and from more reliable regions to less
reliable regions. For pixel-wise BSD, the darker the color
of the square, the more accurate the predictions of pixels.
Like region-wise, pixel-wise teaches pixels with less accu-
rate predictions from the reliable knowledge of pixels with
more accurate predictions.

students, we calculate the cross-student region-wise simi-
larity matrix S(ĥ,ŵ) = cos(F Ĉ

l (ĥ,ŵ), (F
V̂
l )(ĥ,ŵ)). Then, we

exploit the cross entropy between the predictions and GT
labels to quantify the most reliable knowledge for each re-
gion between the students. As shown in Fig. 3, the red
grids {r1, r3, r8} indicate that the knowledge of these re-
gions are more reliable than the white cubes {r1, r3, r8},
which means the CE losses of these red regions are smaller
than blue regions. Then, the direction of KD for these three
regions is from red regions to white regions. Specifically,
we utilize the matrix m̂(ĥ,ŵ) ∈ RĤ×Ŵ which is 0 or 1 to
decides the direction of KD for each region. The value
of m̂(ĥ,ŵ) is 1 when the CE of this region in CNN-based
prediction map is smaller than that of ViT-based predic-
tion map, enabling the knowledge to be transferred from
F Ĉ
l (ĥ,ŵ) to F V̂

l (ĥ,ŵ), and vice versa for m̂(ĥ,ŵ)=0. Note

that for matching the size of F Ĉ
l and PC , we divide the pre-

diction map into Ĥ×Ŵ size. A H
Ĥ
×W

Ŵ
sized prediction map

PC at the same location corresponds to one region in F Ĉ
l .

After determining the direction of KD for each region, the
two students can exchange reliable region-wise knowledge.
Therefore, we weight the similarity matrix S(ĥ,ŵ) based on
the matrix m̂(ĥ,ŵ), which denotes the process of KD from



the more reliable regions to these less reliable regions. To
achieve this region-wise KD, we propose to minimize the
loss function as follows:

LC
R =

1

Ĥ×Ŵ−M̂

Ĥ∑

ĥ=1

Ŵ∑

ŵ=1

(1− m̂(ĥ,ŵ))S(ĥ,ŵ),

LV
R =

1

M̂

Ĥ∑

ĥ=1

Ŵ∑

ŵ=1

m(ĥ,ŵ)S(ĥ,ŵ),

(3)

where M̂ =
∑Ĥ

ĥ=1

∑Ŵ
ŵ=1 m̂(ĥ,ŵ).

3.3.2 Pixel-wise distillation

Previous KD approaches [29, 36] for semantic segmenta-
tion apply the fundamental response-based distillation loss
LKL for the stable gradient descent optimization: LKL =

1
H×W

∑H
h=1

∑W
w=1 KL

(
PC

(h,w)∥PV
(h,w)

)
, where KL(·)

is the Kullback-Leibler divergence (KL divergence) be-
tween two probabilities. However, due to the performance
gap, the heterogeneous students have their own strengths
in predicting different segmentation categories. Therefore,
the pixel-wise distillation aims to transfer the knowledge of
more reliable pixel-wise predictions to less reliable pixel-
wise predictions in the logit space. As shown in Fig. 3, the
black squares {p1, p5, p7} of PV means that the CE losses
of these pixels are smaller than the gray squares {p1, p5, p7}
of PC . Therefore, we transfer the reliable knowledge from
these more black squares to light black squares. Specifi-
cally, we utilize the matrix m(h,w) ∈ RH×W which is 0 or
1 to decide the direction of KD for each pixel. The value
of m(h,w) is 1 when the CE of pixel from CNN-based stu-
dent is smaller than that of ViT, enabling the knowledge
to be transferred from pC(h,w) to pV(h,w), and vice versa for
m(h,w)=0. Moreover, we use the KL divergence to the ef-
fectiveness of transferring knowledge from ViT-based stu-
dent to CNN-based student: KL

(
PC

(h,w)∥PV
(h,w)

)
. Af-

ter determining the direction of KD for each pixel, the two
students can exchange useful pixel-wise knowledge. There-
fore, we weight the KL divergence KL

(
PC

(h,w)∥PV
(h,w)

)

based on the matrix m(h,w), which denotes the process of
KD from the more reliable pixels to these less reliable pix-
els. To achieve pixel-wise distillation, we propose to mini-
mize the loss function as follows:

LC
P =

1

H×W−M

H∑

i=1

W∑

i=j

(1−m(h,w))KL
(
PC

(h,w)∥PV
(h,w)

)
,

LV
P =

1

M

H∑

i=1

W∑

i=j

m(h,w)KL
(
PV

(h,w)∥PC
(h,w)

)
,

(4)
where M =

∑H
h=1

∑W
w=1 m(h,w). Finally, combining

the region-wise and pixel-wise KD losses, the BSD loss is

defined as:
LC

BSD = LC
R + αLC

P ,

LV
BSD = LV

R + αLV
P ,

(5)

where α is the trade-parameter to balance the region-wise
and pixel-wise losses, and α is set to 1.

3.4. Optimization

Overall, the objectives of the proposed method for CNN-
based and ViT-based students are given as

LC = LC
CE + βLC

HFD + γLC
BSD,

LV = LV
CE + βLV

HFD + γLV
BSD,

(6)

where β and γ are hyperparameters and set to 0.1 and 1,
respectively.

4. Experiments and Evaluation
4.1. Setup

Datasets. In this work, we conduct extensive exper-
iments to demonstrate the effectiveness of the proposed
method on three public datasets: PASCAL VOC 2012
[11], Cityscapes [8], and CamVid [3]. Following pre-
vious works [29, 36], we adopt the augmented PASCAL
VOC 2012 set [15] consisting of 10,582 training and 1,449
validation images with 21 pixel-wise annotated classes.
Cityscapes is a dataset for urban scene understanding and
consists of 5,000 fine-annotated 1024 × 2048 images with
19 categories for segmentation. CamVid is another widely
used urban scene dataset with 11 classes, such as building,
tree, sky, car, road, etc., and the 12th class indicates unla-
beled data. It contains 367 training, 101 validation, and 233
testing images of 720 × 960, where we resize them to 360
× 480 following previous work.
Implementation and Evaluation We implement our
method on PyTorch framework. For CNN-based students,
we adopt the widely applied segmentation architecture
DeepLabV3+ with encoders of MobileNetV2 and ResNet-
50; for ViT-based students, we utilize the efficient Seg-
Former with encoders of MiT-B1 and MiT-B2, which have
comparable or smaller parameters with their CNN counter-
parts, respectively. Due to the page limit, we put the details
in the supplementary.

In each dataset, CNN-based students are trained by mini-
batch stochastic gradient descent (SGD) where the momen-
tum is 0.9, and weight decay is 0.0005; and ViT-based stu-
dents are trained by AdamW optimizer with a learning rate
0.00006 and weight decay of 0.01. We train Pascal VOC
2012 for 60 epochs with image size 512 × 512, where the
learning rate for CNN-based models is set to 0.0025 and
ViT-based to 0.00006. We evaluate the performance by the
mean Intersection over Union (mIoU) score and report our
results on the validation sets. We use center-crop evaluation



Dataset Method MobileNet MiT-B1 ∆ ResNet-50 MiT-B2 ∆

PASCAL VOC 2012

Vanilla 67.54 78.48 0.00 76.05 82.03 0.00
Offline KD 67.40−0.14 78.87+0.39 +0.25 76.77+0.68 82.19+0.16 +0.88

DML 67.43−0.11 78.76+0.28 +0.17 76.51+0.46 82.10+0.07 +0.53
KDCL 67.41−0.13 78.76+0.28 +0.15 76.46+0.41 82.01−0.02 +0.39
IFVD 67.70+0.16 77.61−0.87 -0.71 76.52+0.47 81.52−0.51 -0.03
Ours 69.57+2.03 79.17+0.69 +2.72 76.99+0.94 82.67+0.64 +1.58

Table 1: Comparison with the SoTA KD methods on the PASCAL VOC 2012 dataset for our CNN-based (MobileNetV2 and ResNet-50)
and ViT-based (MiT-B1 and MiT-B2) students.

(a)

(b)

(c)

(d)

Img Sup KD DML IFVD Ours GT

Figure 4: Visual results on PASCAL VOC 2012. (a) MobileNetV2, (b) ResNet-50, (c) MiT-B1 and (d) MiT-B2.

for Pascal VOC 2012 and sliding windows evaluation for
Cityscapes. We randomly crop images as 512 × 512 inputs
trained with a batch size of 4. It is worth mentioning that
for Offline KD and IFVD approaches, the CNN-based and
ViT-based students guide each other as teachers.

4.2. Experiments results

We conduct experiments with two pairs: MobileNetV2
and MiT-B1; ResNet-50 and MiT-B2. It is worth noting that
we build two tasks on online KD, which means that students
can transfer knowledge from each other. And we compare
our proposed method with some SoTA KD methods Offline
KD [17], DML [42], KDCL [14], and IFVD [36]. Further-
more, the ∆ is the sum of the performance improvement of
each pair compared with Vanilla.
Results on PASCAL VOC 2012. We first evaluate the pro-
posed method on the PASCAL VOC 2012 dataset and report
the quantitative results in Tab. 1. Our findings show that ex-
isting SoTA KD methods designed for isomorphic models
have inferior generalization abilities in online KD between
CNN and ViT, compared to the vanilla KD method. In

contrast, our proposed approach exhibits significantly better
performance. Specifically, our method improves the mIoU
of MobileNetV2 and MiT-B1 by +2.72%. In contrast, the
prior SoTA KD methods DML and KDCL only achieved a
mIoU increment of +0.25% and +0.15%, respectively.

Note that the offline KD method IFVD, designed to
transfer knowledge between isomorphic models, impedes
the performance of online KD between CNN and ViT. This
leads to a drop in performance of -0.71% in mIoU. The first
reason mentioned in the introduction causes this outcome.
Our proposed method consistently outperforms SoTA KD
methods with larger backbone models, ResNet50 and MiT-
B2, by achieving a +1.58% mIoU increment. This result
indicates the superiority of our method, which enables stu-
dents to learn heterogeneous features from each other to ac-
quire complementary knowledge in the feature space.

Fig. 4 shows the qualitative results and a comparison of
the SoTA KD methods on the PASCAL VOC 2012 dataset.
Intuitively, the vanilla KD method (3rd column) and DML
(4th column) produce unsatisfactory predictions and even
erroneous segmentation. In contrast, the results of our



Dataset Method MobileNet MiT-B1 ∆ ResNet-50 MiT-B2 ∆

Cityscapes

Vanilla 73.23 74.95 0.00 76.83 78.77 0.00
Offline KD 74.11+0.84 75.50+0.55 +1.43 77.68+0.85 78.84+0.07 +0.92

DML 73.68+0.45 75.13+0.18 +0.63 77.22+0.39 78.91+0.14 +0.53
KDCL 73.41+0.28 75.51+0.56 +0.74 77.94+1.11 78.81+0.04 +1.15
IFVD 73.13−0.10 75.25+0.30 +0.20 77.57+0.74 78.90+0.13 +0.83
Ours 74.42+1.19 75.62+0.37 +1.86 78.03+1.20 79.71+0.94 +2.14

Table 2: Comparison with the SoTA KD methods on the Cityscapes dataset for our CNN-based (MobileNetV2 and ResNet-50) and ViT-
based (MiT-B1 and MiT-B2) students.

Dataset Method MobileNet MiT-B1 ∆ ResNet-50 MiT-B2 ∆

CamVid

Vanilla 71.28 76.10 0.00 73.97 77.04 0.00
Offline KD 69.48−1.80 75.76−0.34 -2.14 71.90−2.07 77.29+0.21 -1.28

DML 70.73−0.55 75.85−0.25 -0.80 73.75−0.22 77.15+0.11 -0.41
KDCL 71.96+0.68 76.40+0.30 +0.98 73.19−0.78 77.56+0.51 -0.26
IFVD 71.08−0.20 75.38−0.72 -0.92 74.22+0.25 77.25+0.21 +0.46
Ours 73.09+1.81 77.04+0.94 +2.75 75.26+1.29 78.52+1.48 +2.77

Table 3: Comparison with the SoTA KD methods on the CamVid dataset for our CNN-based (MobileNetV2 and ResNet-50) and ViT-based
(MiT-B1 and MiT-B2) students.

Ls LHFD LBSD MobileNetV2 MiT-B1 ∆

✓ ✗ ✗ 67.54 78.48 0
✓ ✓ ✗ 67.89+0.35 78.78+0.30 +0.65
✓ ✗ ✓ 69.19+1.65 78.91+0.43 +2.08
✓ ✓ ✓ 69.57+2.03 79.17+0.0.69 +2.72

Table 4: Ablation of two components of the proposed method eval-
uated on PASCAL VOC 2012.

method are closer to the ground truth with better segmen-
tation. These outcomes demonstrate the effectiveness and
superiority of the proposed BSD module, which selectively
distills the reliable region-wise and pixel-wise knowledge.
Results on Cityscapes. Tab. 2 presents the quantitative
results on Cityscapes validation set. Our proposed method
consistently outperforms the SoTA KD methods. In com-
parison with other online KD methods, our method demon-
strates a remarkable increase of mIoU by +1.86%, which
is much higher than the online DML’s improvement of
+0.63%, while KDCL and IFVD show only +0.74% and
+0.20% improvements in mIoU, respectively. Our method
also outperforms the offline KD methods, Offline KD and
IFVD, in terms of segmentation results. Specifically, our
method achieves an improvement of +2.14% in mIoU with
the larger backbone ResNet-50 and MiT-B2, while IFVD
and KDCL only show +0.83% and +1.15% improvements,
respectively.
Results on CamVid. Tab. 3 presents a comparison of our
proposed method with SoTA KD methods on the CamVid
dataset. The results demonstrate the significant perfor-
mance improvement of ViT-based and CNN-based student
models achieved by our method. In contrast to the students
without distillation, our method produces a remarkable im-
provement of 1.81%, 0.94%, 1.29%, and 1.48% in Mo-

LR LP MobileNetV2 MiT-B1 ∆

✗ ✗ 67.54 78.48 0
✓ ✗ 67.92+0.38 78.82+0.34 +0.72
✗ ✓ 68.87+1.33 78.81+0.33 +1.66
✓ ✓ 69.19+1.65 78.91+0.43 +2.08

Table 5: Ablation of two components of BSD evaluated on PAS-
CAL VOC 2012.

bileNetV2, MiT-B1, ResNet-50, and MiT-B2, respectively.
While most of the previous KD methods show decreased
performance on this dataset, our method exhibits better gen-
eralization and enables the students to learn collaboratively.
Additionally, our method outperforms the compared KD
methods, regardless of the choice of different architectures
and backbones for the student networks.

4.3. Ablation study and analysis

Effectiveness of the two proposed modules. We investi-
gate the impact of enabling and disabling the two compo-
nents of our proposed method on the PASCAL VOC 2012
dataset using MobileNetV2 and MiT-B1. Tab. 4 reports the
results of the different student settings. The table shows that
both proposed components can enhance the performance of
both students, and the selection of reliable knowledge aids
better collaborative learning. Specifically, the BSD module
improves performance by 2.08%, demonstrating the effec-
tiveness of selecting reliable knowledge to transfer between
heterogeneous models.
Effectiveness of the Two Components of BSD. Tab. 5
demonstrates the effectiveness of the different components
in the BSD module. The CNN-based and ViT-based stu-
dents with the region-wise distillation module achieve re-



Method MobileNetV2 MiT-B2 ∆ ResNet-50 MiT-B1 ∆

Vanilla 67.54 82.03 0.00 76.05 78.48 0.00
Ours 69.21+1.67 82.27+0.24 +1.91 77.59+1.54 79.56+1.08 +2.62

Table 6: Comparison with the Vanilla methods on the PASCAL VOC 2012 dataset for our CNN-based (MobileNetV2 and ResNet-50) and
ViT-based (MiT-B1 and MiT-B2) students.

α 0.1 0.5 1.0 2.0 5.0

MobileNetV2 68.14+1.41 68.76+1.22 69.19+1.65 69.47+1.93 70.69+3.15

MiT-B1 78.94+0.46 78.83+0.35 78.91+0.48 78.55+0.07 78.25−0.23

∆ 1.06 +1.57 +2.08 +2.00 +2.92

Table 7: Sensitivity of α evaluated on PASCAL VOC 2012.

β 0.05 0.1 0.5 1.0

MobileNetV2 67.60+0.06 67.89+0.35 67.76+0.22 67.44−0.10

MiT-B1 78.70+0.22 78.78+0.30 78.69+0.21 78.43−0.05

∆ +0.28 +0.65 +0.43 -0.15

Table 8: Sensitivity of β evaluated on PASCAL VOC 2012.

sults of 67.92% and 78.42%, respectively. The pixel-wise
distillation module boosts the improvement to 2.08%, a
substantial enhancement to the students’ performance. We
observe that pixel-wise distillation can enhance CNNs with
a small capacity guided by ViT with a larger capacity.
However, distilling knowledge from CNNs improves ViT
slightly, indicating a further potential for exploration.
Sensitivity of α, β, and γ. Tab. 7, 8, and 9 report the
mIoU(%) of the students with different ratios of α, β, and γ
on the PASCAL VOC 2012 dataset. The students’ encoders
are MobileNetV2 and MiT-B1.

As shown in Tab. 7, increasing the importance of α
significantly improves the performance of CNNs due to
the proposed BSD module’s transfer of reliable knowledge
from ViT to CNN. However, the performance of ViT de-
grades slightly when α=5.0. As our goal is to facilitate the
two students’ learning from each other, we choose α=1.0 as
it presents the best trade-off for both students.

From Tab. 8, it can be seen that aligning the heteroge-
neous features in the low-layer feature space directly may
degrade the students’ performance due to the considerable
learning capacity gap between CNNs and ViT. Therefore,
we set β as 0.1 to facilitate the students to learn from each
other, which leads to an absolute improvement of +0.65%,
demonstrating that the HFD module enables the students to
learn the heterogeneous features from each other for com-
plementary knowledge in the low-layer feature space.

In Tab. 9, it shows that as γ increases, the performance of
CNNs is continually improved, but the performance of ViT
degrades slightly. Therefore, we set γ to 1.0 as it shows
the best trade-off for improving the performance of both
CNNs and ViT simultaneously. The results prove that our
approach is suitable for situations when there is a significant
performance gap between homogeneous students.
Students with different performance ability. To demon-

γ 0.1 0.5 1.0 2.0 5.0

MobileNetV2 68.57+1.03 68.92+1.38 69.03+1.49 69.08+1.54 70.12+2.58

MiT-B1 79.10+0.62 78.95+0.47 78.94+0.46 78.60+0.12 78.30−0.18

∆ +1.65 +1.85 +1.95 +1.66 +2.40

Table 9: Sensitivity of γ evaluated on PASCAL VOC 2012.

strate the effectiveness of our proposed method, we conduct
experiments with two pairs: MobileNetV2 and MiT-B2, and
ResNet-50 and MiT-B1. Tab. 6 shows the quantitative re-
sults on the PASCAL VOC 2012 dataset. Compared to the
vanilla methods, our proposed method achieves a dramatic
increase in mIoU by +1.91% and +2.62%, respectively.
The results demonstrate the effectiveness of our proposed
method in improving the performance of different hetero-
geneous students with varying performance abilities. More
details of the method can be found in suppl. material.

5. Conclusion

This paper presented the first online KD framework
to collaboratively learn compact yet effective CNN-based
and ViT-based models for semantic segmentation. Specif-
ically, we proposed the heterogeneous feature distillation
(HFD) module to improve students’ consistency in the low-
layer feature space by mimicking heterogeneous features
between CNNs and ViT. Then, we also proposed bidirec-
tional selective distillation (BSD) to select reliable region-
wise and pixel-wise knowledge to transfer and enable stu-
dents to learn from each other better. Comparison with the
SoTA KD methods for semantic segmentation shows that
our proposed method significantly outperforms these SoTA
methods by a large margin and demonstrates our proposed
method’s effectiveness for semantic segmentation.
Limitation and future work: Our method has one limi-
tation. The cross-model distillation may lead to an unbal-
anced performance gain in the online KD training process.
That is, if one student’s knowledge is less instructive, the
performance of the other student may be marginally im-
proved. Therefore, we will explore the online KD between
the heterogeneous ViT-based and CNN-based models with
more distinct learning capacities. Moreover, it is promising
to extend the proposed collaborative learning paradigm to
learn other tasks than semantic segmentation or the cross
tasks between depth estimation and semantic segmentation.
Acknowledgement: This joint paper is supported by Al-
ibaba Cloud, Alibaba Group through Alibaba Innovative
Research Program, and the National Natural Science Foun-
dation of China (NSF) under Grant No. NSFC22FYT45.
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Abstract

Due to the lack of space in the main paper, we provide
more details of the proposed method and experimental re-
sults in the supplementary material. Sec.1 introduces the
details of the proposed method. Sec.2 provides the details
of the encoders used in this work. Lastly, Sec.3 provides
pseudo algorithm of the proposed method. Sec.4 shows
some discussions about our proposed method.

1. Details of the Proposed Method
Tab. 1 shows the architecture of MobileNetV2, ResNet-

50, MiT-B1, and MiT-B2, respectively. We take the collab-
orative learning between MobileNetV2 and MiT-B1 as an
example and present the details of our proposed method.

1.1. Heterogeneous Feature Distillation (HFD)

The first-layer feature FV
1 size of MobileNetV2 is

24×128×128 and the first-stage feature FV
1 size of MiT-B1

is 64×128×128. To match the sizes of features, we utilize
the linear transformations ΓC

1 and ΓV
1 to reshape the sizes

of FC
1 and FV

1 as 64×128×128 and 24×128×128, respec-
tively. Then, we can use the transformed feature to calculate
the HFD loss as follow:

LC
HFD = cos(Attn((F Ĉ

1 )), FV
2 ),

LV
HFD = cos(MLP(F V̂

1 ), FC
2 ),

(1)

where F Ĉ
1 and F V̂

1 is the transformed feature, the shapes of
which are 64×128×128 and 24×128×128, respectively.

1.2. Region-wise Bidirectional Selective Distillation

The last-layer feature FC
l size of MobileNetV2 is

96×64×64 and the last-stage feature FV
l is 512× 16×16.

*Corresponding author

To match the sizes of features, we exploit the linear transfor-
mations ΓC

l and ΓV
l to reshape the sizes of FC

1 and FV
1 as

96×16×16 and 96×16×16, respectively. The transformed
features are donated as F Ĉ

l and F V̂
l , separately. It is worth

noting that the shapes of the predictions are 512×512. To
match the sizes of transformed features F Ĉ

l (or F V̂
l )and

predictions PC (or PV ), we divide the prediction map into
16 × 16 size. A 512

16 × 512
16 sized prediction map PC (or

PV ) at the same location corresponds to one region in F Ĉ
l

(or F V̂
l ). Then we use the sum of cross entropy loss of

512
16 × 512

16 sized prediction map to decide the transferred
direction between two students’ regions with the same lo-
cation. Finally, the region-wise BSD loss is defined as

LC
R =

1

16× 16− M̂

16∑

ĥ=1

16∑

ŵ=1

(1− m̂(ĥ,ŵ))S(ĥ,ŵ),

LV
R =

1

M̂

16∑

ĥ=1

16∑

ŵ=1

m(ĥ,ŵ)S(ĥ,ŵ),

(2)

where M̂ decides the direction of KD for each region and
calculate the cross-student region-wise similarity matrix
S(ĥ,ŵ) is the similarity matrix (as introduced in main pa-
per).

2. Parameters of Encoder
Tab. 2 shows the parameters of encoder for different

methods. For CNN-based students, we adopt the famous
segmentation architecture DeepLabV3+ with encoders of
MobileNetV2 and ResNet-50; for ViT-based students, we
utilize the lightweight SegFormer with encoders of MiT-B1
and MiT-B2, which have comparable or smaller parameters
with their CNN counterparts, respectively.

3. Algorithm
The pseudo algorithm of the proposed method is shown

in Algorithm. 1.
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Layer of MobileNetV2 First-layer FC
1 Second-layer FC

2 Third-layer Last-layer FC
l

Output Size 24×128×128 32×64×64 64×64×64 96×64×64

Layer of ResNet-50 First-layer FC
1 Second-layer FC

2 Third-layer Last-layer FC
l

Output Size 256×128×128 512×64×64 1024×32×32 2048×32×32

Stage of MiT-B1 First-stage FV
1 Second-stage FV

2 Third-stage Last-stage FV
l

Output Size 64×128×128 128×64×64 320×32×32 512× 16×16

Stage of MiT-B2 First-stage FV
1 Second-stage FV

2 Third-stage Last-stage FV
l

Output Size 64×128×128 128×64×64 320×32×32 512× 16×16

Table 1: Output size of each layer (stage) of different encoders.

Method Encoder Parameters(M)

DeepLabV3+ MobileNetV2 15.4
SegFormer MiT-B1 13.7

DeepLabV3+ ResNet-50 43.7
SegFormer MiT-B2 27.5

Table 2: The Parameters of methods with different encoder.

4. Discussion

4.1. Intuition of BSD

The design of BSD is one of the critical contributions of
this paper as it facilitates the two students to collaboratively
learn reliable knowledge from each other and the knowl-
edge is transferred bidirectionally. Due to the different per-
formance at different regions between the ViT and CNN
students, we intend to dynamically select reliable knowl-
edge between the two students in the feature space, so as
to benefit each other. However, there is a challenging prob-
lem: ‘how to decide the directions of transferring knowl-
edge fro different regions during training?’ To this end,
we propose to manage the directions of KD via combining
the predictions and GT labels, where we regard the direc-
tions of KD for different regions as a sequential decision
making problem. Consequently, we propose a directional
selective distillation (BSD) for enabling students to learn
collaboratively. As the principle of collaborative learning
requires bidirectional knowledge transfer, BSD should be
“bidirectional” to enable CNNs to learn from ViT while
ViT learns from CNNs. Our key idea is “selective” due to
the considerable model size gap and learning capacity gap
between CNNs and ViT. The reasons causing the gaps are
1): The discrepancies in features and predictions between
CNNs and ViT caused by the distinct computing paradigms
make it challenging to do online KD. 2): These methods
only transfer the knowledge in logit space; however, there
is more reliable and efficient knowledge in the features ex-
tracted by both models. 3) There are considerable model

Algorithm 1 The Proposed framework

1: Input: {X,Y }; max iterations: T
model: f(X, θC), f(X, θV );

2: Initialization: Set θC and θV ;
3: for for t←− 1 to T do
4: Attain the segmentation prediction maps and fea-

ture representations for each student, respectively:(
PC, FC

)
= f

(
X; θC

)
,
(
PV, FV

)
= f

(
X; θV

)
;

5: Compute the pixel-wise segmentation loss for each stu-
dent:
LC

CE = 1
H×W

∑H
h=1

∑W
w=1 CE

(
σ
(
PC

(h,w)

)
, y(h,w)

)
,

LV
CE = 1

H×W

∑H
h=1

∑W
w=1 CE

(
σ
(
PV

(h,w)

)
, y(h,w)

)
;

6: Compute the HFD loss for each student:
LC

HFD = cos(Attn((F Ĉ
1 )), FV

2 ),
LV

HFD = cos(MLP (F V̂
1 ), FC

2 );
7: Compute the region-wise BSD loss for each student:

LC
R = 1

Ĥ×Ŵ−M̂

∑Ĥ
ĥ=1

∑Ŵ
ŵ=1(1− m̂(ĥ,ŵ))S(ĥ,ŵ),

LV
R = 1

M̂

∑Ĥ
ĥ=1

∑Ŵ
ŵ=1 m(ĥ,ŵ)S(ĥ,ŵ);

8: Compute the pixel-wise BSD loss for each student:
LC

BSD = LC
R + αLC

P ,
LV

BSD = LV
R + αLV

P ;
9: Compute the total objective for each student:

LC = LC
CE + βLC

HFD + γLC
BSD,

LV = LC
CE + βLV

HFD + γLV
BSD.

10: Back propagation for LC and LV ;
11: Update the students θC and θV with LC and LV , respec-

tively.
12: end for
13: return θC and θV .
14: End.

size gap and learning capacity gap between CNNs and ViT.

4.2. Intuition of HFD

We make students learn the heterogeneous features from
each other in the first-layer feature space and align these
features in the second layer. That is, we input the trans-
formed features into the second layer and then align the out-



Method MobileNetV2 MiT-B2 ∆ ResNet-50 MiT-B1 ∆

Vanilla 67.54 82.03 0.00 76.05 78.48 0.00
Ours 69.21+1.67 82.27+0.24 +1.91 77.59+1.54 79.56+1.08 +2.62

Table 3: Comparison with the Vanilla methods on the PASCAL VOC 2012 dataset for our CNN-based (MobileNetV2 and ResNet-50) and
ViT-based (MiT-B1 and MiT-B2) students.

puts instead of directly aligning features of the first layer.
This way, it can make both students learn the global and
local features in the first-layer space.

4.3. Selection of Layers

We use the first-layer features as low-layer features of
CNNs and ViT are less distinct and heterogeneous, mak-
ing CNNs and ViT learn from each other more effectively.
Moreover, due to the different computing paradigms and
learning capacities of CNNs and ViT, aligning high-layer
features is less approachable and practical. Lastly, aligning
multiple low-layer features lead to an increase in the com-
putation cost. Tab. 3 in the paper shows the effectiveness of
our proposed method between heterogeneous students with
different performance abilities.

4.4. About MLP or Attn in HFD Module

MLP consisting of convolutional layers extracts the lo-
cal semantic features, and Attn consisting of a self-attention
module extracts the global semantic features. Therefore,
after inputting the local features into Attn or inputting the
global features into MLP, these output features are compa-
rable. As such, we use cosine similarity to measure the sim-
ilarity of these features and enable students to learn from
each other in the low-layer space.

4.5. About Operations in Eq.2

Attn updates the first-layer features of CNNs, while MLP
updates the first-layer features of ViT. However, if we ap-
ply Attn operation in ‘CNNs to ViT” and MLP in “ViT to
CNNs’, Attn operation can optimize the first two layers of
ViT while MLP operation can optimize the first two lay-
ers of CNNs. Both approaches can facilitate collaborative
learning between CNNs and ViT but optimizing the first two
layers increases computation cost.

4.6. About ViT-ViT setting

ViT is not absolutely better while CNN still matters;
therefore, we explore to take full advantage of CNN and
ViT while compensating for their limitations. Moreover, in
Tab.4, our method demonstrates superior performance com-
pared to previous studies in ViT-ViT setting.

4.7. Results on ADE-20K:

The effectiveness of our method is further demonstrated
by the results obtained on the more challenging ADE-20K

dataset, as shown in Tab. 4. The results will be included in
the final version.

4.8. Distillation on hybrid network:

We explore the potential of our framework between
the CNN-based (ViT-based) and hybrid network-based stu-
dents, to further demonstrate its effectiveness in Tab. 5.
The significant improvements +7.59% and +5.45% under-
score the effectiveness and practicality of employing our
proposed methodology within hybrid network architectures.

4.9. About the motivation

We argue that CNN is undoubtedly necessary for our
problem setting. 1⃝ As ViT is notoriously impeded by limi-
tations, such as the lack of certain inductive biases and poor
performance on small-scale datasets; while CNN excels at
capturing local features although CNN may underperform
ViT on large-scale datasets. Therefore, ViT is not abso-
lutely better while CNN still matters, and it is promising to
take full advantage of CNN and ViT while compensating for
their limitations. From this new perspective, prior arts [1,2]
adopting the CNN for an auxiliary purpose, are less optimal
and intuitive. So, our motivation is reasonable and novel.
Our key idea is to simultaneously learn compact yet ef-
fective CNN-based and ViT-based models by selecting and
exchanging reliable knowledge between them for semantic
segmentation. 2⃝ Although ‘ViT is shown to have higher
upper bounds than CNN’, we observe in Figs. 1(b) and 4
that ViTs may exhibit less accurate segmentation results
in certain regions compared to CNNs within the same im-
age. To address this, we introduce BSD to compensate for
students’ weaknesses in region-wise and pixel-wise levels.
We further demonstrate the effectiveness of our proposed
method in collaborative learning between CNN-based (or
ViT-based) and hybrid network-based students by conduct-
ing experiments as shown in Tab. 5.

4.10. About ’reliable‘ knowledge in BSD

Here, ‘reliable‘ does not indicate ‘regions’, but indicates
better predictions with relatively higher segmentation ac-
curacy (See Fig. 1). Predictions in region RV

1 (RC
2 ) of ViT

(CNN) is more reliable compared with predictions in region
RC

1 (RV
2 ) of CNN (ViT). Then we utilize BSD to enable RC

1

(RV
2 ) to learn from RV

1 (RC
2 ). Finally, we obtain more ac-

curate region predictions R̂C
1 (R̂V

2 ). BSD enables students
to learn collaboratively and guarantees the correctness and
consistency of soft label. Qualitative results are in Tabs. 4,



Method MiT-B1 MiT-B2 ∆ MobileNet MiT-B1 ∆

Vanilla

C
am

V
id

76.26 77.76 0.00

A
D

E
-2

0K

22.53 40.07 0.00
DML 75.84 77.40 -0.78 22.02 40.12 -0.46
KDCL 76.61 77.55 +0.14 22.16 41.62 +1.18
IFVD 76.43 77.45 -0.14 21.42 40.64 -0.54
Ours 77.89 78.01 +1.88 26.47 42.28 +6.15

Table 4: Comparison on the CamVid for MiT-B2 and MiT-B2 students, and ADE-20K for MobileNetV2 and MiT-B1
students.

Method ResNet-50 MaxViT ∆ MiT-B2 MaxViT ∆

Vanilla 58.12 61.89 0.00 77.76 61.89 0.00
DML 59.07 63.80 +2.86 77.09 60.61 -1.95
KDCL 58.64 61.61 +0.24 77.49 63.26 +1.10
IFVD 59.69 62.01 +1.69 77.08 63.10 +0.53
Ours 62.13 65.47 +7.59 77.96 67.14 +5.45

Table 5: Comparison on the CamVid for ResNet-50(MiT-B2) and MaxViT students.

5, 7, and 9 (in main paper), and visualized results in Fig. 4
specifically highlight the effectiveness of BSD.
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Figure 1: CNN and ViT learns collaboratively by exchanging reliable knowledge.


