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Abstract—We present an algorithm for conversion of colour
images to greyscale. The underlying idea is that local perceptual
colour differences in the colour image should translate into local
differences in greylevel in the greyscale image. This is obtained
by constructing a gradient for the greyscale image from the
eigenvalues and eigenvectors of the structure tensor of the colour
image, which, in turn, is computed by means of perceptual colour
difference metrics. The greyscale image is then constructed from
the gradient by means of linear anisotropic diffusion, where the
diffusion tensor is constructed from the same structure tensor. By
means of psychometric experiments, it is found that the algorithm
gives the most accurate image reproduction when used with the
∆E99 colour metric, and that it performs at the level of, or better
than, other state-of-the-art spatial algorithms. Surprisingly, the
only algorithm that can compete in terms of accuracy is a
simple luminance map computed as the L

∗ channel of the image
represented in the CIELAB colour space.

Index Terms—colour-to-greyscale conversion, anisotropic dif-
fusion, perceptual colour metrics, psychometric evaluation

I. INTRODUCTION

For many image reproduction applications, it is necessary

to convert colour images to greyscale. The most common

way to achieve this, is to replace the colours with a correlate

of their luminance values. These can be computed, e.g., as

the L∗ channel of CIELAB or as a weighted sum of the

RGB colour channels. Although this approach works well

for many applications, there is a significant risk of loosing

image information in the conversion, since all chrominance

information is lost.

Bala and Braun [1] proposed a method to convert business

graphics from colour to grayscale to preserve detail visibility.

Their method depended on a discrete and finite colour palette

and made a global mapping from that to the greyscale values.

Rasche et al. [2] followed a similar approach, but formulated

it as a discrete optimization problem, optimising for global

contrast between colours. Grundland and Dodgson [3] fo-

cused instead on the ordering of colours, and construced an

algorithm that produced a continuous mapping with global

consistency, greyscale preservation, and a consistent ordering

of luminance, saturation and hue. Kim et al. [4] improved on

the ideas of Rasche et al. [2] by using a perceptual colour

difference equation based on CIELAB ∆Eab, and optimising

for a global mapping that was even temporally coherent for

video conversion. Cui et al. [5] found the greyscale image by

fitting the parameters of a prescribed linear global mapping in

order to minimize the loss of local gradients. Very recently,

Alsam and Rivertz [6] developed an image dependent global

luminance mapping method based on defining the grey axis as

a linear, quadratic, or root polynomial of the RGB channels

with weights optimized for preserving the structure tensor of

the original image.

Gooch et al. [7] introduced the idea to preserve local

colour differences, resulting in a discrete optimization prob-

lem that was solved by conjugated gradient descent. Alsam

and Drew [8] followed a similar approach, but local colour

differences were computed in the RGB domain, and the

optimization problem was formulated as a Poisson equation

that was solved by Jacobi iteration.

A combination of global and local approaches were fol-

lowed by Du et al. [9]. The local solution was found by

optimising a quadratic cost function. Their method was found

to outperform all previous methods in a perceptual experiment.

Similarly, Smith et al. [10] followed a similar approach, first

ordering the greys globally taking the Helmholtz–Kohlrausch

effect into account, and secondly improving the resulting

image locally in order to preserve the local contrast. In a thor-

ough perceptual evaluation of colour-to-greyscale conversion

algorithms performed by Čadı́k [11], the algorithms by Smith

et al. [10] and Grundland et al. [3] were found to have the best

overall performance in terms of both accuracy and preference.

In the present paper, we build on the ideas of Alsam and

Drew [8] with two major improvements. Firstly, we use per-

ceptual Riemannian or ‘Riemannized’ colour differences [12]

instead of Euclidean RGB colour differences. Secondly, we

change the Poisson equation to anisotropic diffusion [13]

based on diffusion tensors computed from the image structure

tensor [14]. The resulting algorithm is tested against the meth-

ods of Du et al. [9] and Smith et al. [10] as well as standard

luminance maps for various parameters and perceptual colour

metrics.

II. PROPOSED ALGORITHM

Let u : Ω → C denote the original colour image, where

Ω ⊂ R
2 is the image domain and C ⊂ R

3 is the colour space.



The contravariant components1 of u are denoted uµ(xi) where

µ indexes the three colour components, and i the two spatial

image dimensions. It was demonstrated by Pant and Farup [12]

that the most common perceptual colour difference metrics

(∆Eab etc.) either are Riemannian, or can be suitably ‘Rie-

mannized’ by local linearization. Letting gµν(u) denote the

components of the Riemannian metric tensor g (derived from

the colour metric in accordance with [12]), the components of

the structure tensor, S [14], can be generalized as

Sij = gµν(u)
∂uµ

∂xi

∂uν

∂xj
, (1)

with eigenvalues λ+ and λ− and corresponding normalized

eigenvectors e
+ and e

− that are stored as columns in the

eigenvector matrix E.

A one-channel estimate measure of the gradient of the image

can be taken as one of the following

v = e
+
√
λ+ , (2)

v = e
+
√
λ+ − λ− . (3)

Since there is an ambiguity in this definition in that both

e
± and −e

± will be valid eigenvectors corresponding to the

eigenvalues λ±, we select the sign such that e+ · ∇uL ≥ 0,

where uL denotes the luminance channel of the original image

(in our implementation we use CIELAB L∗ for this). We can

then find a greyscale image c corresponding to this prescribed

image gradient by solving the Poisson equation

∇2c = ∇ · v (4)

by means of gradient descent,

∂c

∂t
= ∇2c−∇ · v = ∇ · (∇c− v), (5)

subject to the constraint c ∈ [0, 1].
The main drawback of this approach is the potential produc-

tion of halos and other artefacts. This can be strongly reduced

by using anisotropic diffusion instead. The diffusion tensor

can, in agreement with Sapiro and Ringach [13], be defined

as

D = ET diag(d(λ+), d(λ−))E, (6)

where d(λ) is a nonlinear diffusion coefficient function,

d(λ) =
1

1 + κλ2
, (7)

and κ is a suitably chosen numeric constant. The anisotropic

diffusion equation can then be written

∂c

∂t
= ∇ · (D(∇c− v)), (8)

subject to the constraint c ∈ [0, 1].

1We do not require the colour space to be Euclidean, and thus we have to
distinguish between contravariant and covariant vector and tensor components.
These are indicated using raised and lowered greek indices, respectively. For
the spatial coordinates with latin indices, this distinction is not important,
since the image plane is taken to be Euclidean, and the coordinates Cartesian.
Einstein’s summation convention is used throughout.

The algorithm has been implemented in Python2 within the

framework by Farup [15] using FDM with explicit Euler time

integration, forward differences for the gradient and structure

tensor and backward differences for the divergence in order to

ensure an overall well balanced numerical scheme. Although

this is an efficient numerical method, it is still significantly

computationally heavier than global methods.

III. EXPERIMENTAL EVALUATION

A. Preliminary Studies

The algorithm was run on all the images of the Kodak3 (24

images), CSDD [9] (22 images), and CSIQ [16] (30 images)

data sets with both alternatives (2) and (3) for the gradient,

both isotropic (5) and anisotropic (8) diffusion (with κ = 104),

and the ∆Eab [17], ∆Euv [17], ∆E00 [18], ∆EE [19],

∆E99{·,b,c,d} [5], and the hyperbolic ∆E99c,hyp [20] colour

metrics for computing the structure tensor (1), resulting in a

total of (24 + 22 + 30) × 2 × 2 × 9 = 2736 greyscale image

reproductions. The following observations were made:

• There were no visible and barely any measurable differ-

ences between the two strategies (2) and (3) for com-

puting the gradient of the colour image (average PSNR

of 50.6 dB with a standard deviation of 2.9 dB). Thus,

we decided to use (3) for the following experiments in

agreement with Sapiro and Ringach [13].

• Whenever there was a visible difference between the

isotropic (5) and anisotropic (8) methods, it was clearly

in favour of the anisotropic method, being without the

halo artefacts typically produced by the isotropic method.

Thus, we decided to use only the anisotropic method for

the following experiments.

• Despite performing better as a colour difference metric,

there were no visible and barely any measurable differ-

ence between the Euclidean ∆E99c and its hyperbolic

counterpart ∆E99c,hyp (average PSNR of 52.0 dB with

a standard deviation of 6.1 dB). The few cases where

there was a significant difference between the images

were examined visually, but no clear trend was observed

in favour of one over the other. Thus, we decided to

use only the original Euclidean version for the following

experiments.

• A small psychometric pair comparison experiment with

two observers evaluating 9 different images reproduced

with the different parameters was conducted to select the

best parameters for the algorithm. The results indicated

that the Euclidean ∆E99 overall was more accurate.

B. Psychometric Experiment

The preliminary experiment showed that the anisotropic

Euclidean ∆E99 method was the overall most accurate, and

therefore this is selected for the comparison against other

methods. We also included the ∆E00, which is widely as-

sumed to be the best currenct colour metric. We evaluate this

2Available from https://github.com/ifarup/colourlab since v0.0.3 as
colourlab.image.c2g_diffusion.

3Downloaded from http://r0k.us/graphics/kodak/ January 2018.



TABLE I
ALGORITHMS INCLUDED IN THE PSYCHOMETRIC EXPERIMENT.

Algorithm Source Parameters
CIELAB L∗ – –

∆E00 proposed κ = 104

∆E99 proposed κ = 104

Du [9] –
Smith [10] r = 5, a = 0.15, γ = 1

method against CIELAB L∗, being one of the most commonly

used methods for colour to gray. We also include the method

from Smith et al. [10], as this was found to best the most

accurate colour to gray method in the study by Ĉadı́k [11]. At

last we include the method from Du et al., which was found by

the authors to be superior in a psychometric experiment [9].

An overview of the algorithms and parameters included in the

experiment is listed in Table I.

Five images from the CSIQ [16] and five images from

Kodak data set were selected for the experiment (Figure 1).

The images were chosen based on covering different attributes

(different levels of lightness, different levels of saturation,

larger areas of the same color, fine details, memory col-

ors, and different hues) following the recommendations from

Field [21].

The first evaluation was done as a paired comparison

experiment using QuickEval [22]. 15 observers, 2 female and

13 male, with an average age of 35 years. All observers had

normal or corrected-to-normal vision. The viewing distance

was set to approximately 50 cm, and the ambient illumination

was dark. The experiment was done on a BenQ SVV2700-

B, calibrated to sRGB (80 cd/m2 and a color temperature of

6500K). The original color image was shown in the middle

with two reproductions on each side. The observers were

asked to ‘Select the most accurate reproduction of the color

image’. This experiment is hereby referred to as the accuracy

experiment.

The second evaluation was also done as a paired comparison

experiment using QuickEval [22]. 16 observers participated in

an uncontrolled online experiment rating the same images as

in the accuracy experiment. Two reproductions were shown

(without the original) and the observers were asked to ’select

the image you prefer’. This experiment is referred to as the

preference experiment.

The raw data from the psychometric experiment is processed

into z-scores [23] with 95% confidence intervals. In addition,

we analyze the raw data with a binomial test at 5% significance

level with Bonferroni [24] correction to counteract the problem

of multiple comparison. For completeness, we tested also

with the Sidák [25] correction, and came to exactly the same

conclusions.

IV. RESULTS AND DISCUSSION

A. Behaviour of the proposed algorithm

Resulting images from running the algorithms on the test

images are shown in Figure 2 and 3 for the Kodak and

CSIQ images, respectively. Most of the algorithms provide

TABLE II
UNCORRECTED p-VALUE RESULTS OF THE BINOMIAL TEST FOR THE

ACCURACY EXPERIMENT. THE GREEN COLOUR DENOTES REJECTION OF

THE NULL HYPOTHESIS AT THE 5% SIGNIFICANCE LEVEL.

∆E00 ∆E99 Du Smith
L∗ 0.0114 0.6831 0.0000 0.0275

∆E00 0.0000 0.0179 0.1208
∆E99 0.0000 0.5675

Du 0.0000

stronger local contrasts than the classic CIELAB L∗, but this

also makes the L∗ images smooth and pleasing. The local

behaviour of the proposed algorithm can in some cases amplify

textures and noise in the original images to an unwanted

degree. See, e.g., the sky in the third image of the CSIQ data

set. The Du algorithm in some cases makes surprising choices

in the reproduction of saturated colours, in particular red, see,

e.g, the hat in the first image of the Kodak data set. For some

of the images, the Smith algorithm produces images that are

somewhat darker than what the other algorithms do. All in all,

the differences between the different algorithms are small but

visible.

B. Results of the psychometric experiment

The resulting Z-scores from the psychometric accuracy

experiment is shown in Figure 4. The non-overlapping con-

fidence intervals indicate that L∗, ∆E99 and Smith performs

statistically significantly better than ∆E00 and Du, and that

∆E00 performs statistically significantly better than Du.

However, the Z-scores are computed in agreement with

Thurstone’s case V [23], where the assumptions are that all

the measured variables are normally distributed with the same

variance. That is not necessarily the case here, and has not

been tested. Thus, we also computed the binomial test for all

the pairs of algorithms, for which no such assumptions are

made. The resulting p-values (before Bonferroni correction)

listed in Table II show that L∗, ∆E99 and Smith perform sta-

tistically significantly better than Du, and that ∆E99 performs

statistically significantly better than ∆E00.

Figure 5 shows the z-score for the preference experiment.

CIELAB L∗, ∆E99 and Smith perform significantly better than

∆E99 and Du. Compared to Figure 4 the results are similar,

but for the preference experiment Du is not significantly

different than ∆E00, indicating that Du performs better in

the preference experiment than in the accuracy experiment.

Table III shows the results of the binomial test for the

preference experiment. We can notice that the Du algorithm

performs better compared to the accuracy experiment.

Despite their clearly well-founded constructions, one of the

proposed algorithms perform significantly better than L∗, nei-

ther in terms of accuracy nor preference. This is contradicting

the results of Čadı́k [11], who found that the Smith algorithm

outperformed CIE L∗ both in terms of accuracy and prefer-

ence. However, Čadı́k used a mix of artificial and photographic

images, whereas only photographic images were used in this

study. This can influence the results significantly. Secondly,



Fig. 1. Images used for the psychometric experiment. The images in the top row are from from CSIQ and the images in the bottom row are from the Kodak
data set.

Fig. 2. Resulting greyscale images for the Kodak test images shown in Figure 1. Left to right: CIELAB L∗, ∆E00, ∆E99, Du, and Smith.



Fig. 3. Resulting greyscale images for the CSIQ test images shown in Figure 1. Left to right: CIELAB L∗, ∆E00, ∆E99, Du, and Smith.
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Fig. 4. Z-score with 95% confidence intervals from the psychometric
experiment for accuracy.
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Fig. 5. Z-score with 95% confidence intervals from the psychometric
preference experiment.

far more observers were used in Čadı́k’s experiments, making

it easier to obtain statistically significant results.

V. CONCLUSION

In terms of accuracy, the proposed algorithm for conversion

of colour images to greyscale based on linear anisotropic dif-

fusion of local perceptual colour difference metrics performs

better than some of the state-of-the-art spatial algorithms and

at the same level as others, including simple L∗ luminance

maps. For the anisotropic diffusion algorithm, the best results

are obtained with the ∆E99 colour metric. The same trends

are found also when the observers are asked to rate their

preference rather than the accuracy of the reproduction.

TABLE III
UNCORRECTED p-VALUE RESULTS OF THE BINOMIAL TEST FOR THE

PREFERENCE EXPERIMENT. THE GREEN COLOUR DENOTES REJECTION OF

THE NULL HYPOTHESIS AT THE 5% SIGNIFICANCE LEVEL.

∆E00 ∆E99 Du Smith
L∗ 0.0001 0.0409 0.2205 0.6832

∆E00 0.0000 0.3692 0.0000
∆E99 0.0069 0.0409

Du 0.0000
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