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Abstract—We propose a fast and near-optimal approach to
joint channel-estimation, equalization, and decoding of coded
single-carrier (SC) transmissions over frequency-selective chan-
nels with few-bit analog-to-digital converters (ADCs). Our ap-
proach leverages parametric bilinear generalized approximate
message passing (PBiGAMP) to reduce the implementation com-
plexity of joint channel estimation and (soft) symbol decoding
to that of a few fast Fourier transforms (FFTs). Furthermore, it
learns and exploits sparsity in the channel impulse response. Our
work is motivated by millimeter-wave systems with bandwidths
on the order of Gsamples/sec, where few-bit ADCs, SC trans-
missions, and fast processing all lead to significant reductions
in power consumption and implementation cost. We numerically
demonstrate our approach using signals and channels generated
according to the IEEE 802.11ad wireless local area network
(LAN) standard, in the case that the receiver uses analog
beamforming and a single ADC.

Index Terms—Low resolution analog-to-digital converter, mil-
limeter wave, joint channel estimation and equalization, turbo
equalization, approximate message passage.

I. INTRODUCTION

The trend towards ever-wider-bandwidths in communica-

tions systems results in major implementational challenges.

This trend is evident in millimeter-wave (mmWave) systems,

which exploit large chunks of bandwidth at carrier frequencies

of 30 GHz and above [1]. For example, the IEEE 802.11ad

standard [2] specifies channels of bandwidth 1.76 GHz cen-

tered near 60 GHz. Future 5G cellular systems are also likely

to incorporate mmWave technology [3], [4].

A main challenge in wideband systems comes from the

analog-to-digital converters (ADCs) used at the receiver. At

bandwidths above 1 Gs/sec, ADC power consumption grows

approximately quadratically with bandwidth [5], [6]. Mean-

while, ADC power consumption grows exponentially in the

number of bits used in conversion. At GHz bandwidths, many-

bit (e.g., 10 bit) ADCs may consume several watts of power,
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which is impractical for handheld mobile devices. For this

reason, there has been a growing interest in few-bit (i.e., 1-

4 bit) ADCs for communications receivers (e.g., [7]–[25]).

Wide bandwidth also results in challenges at the transmitter.

In particular, wide-bandwidth linear amplifiers are expensive

in terms of power consumption and cost [26]. For this reason,

it is beneficial to transmit signals with low peak-to-average

power ratio (PAPR), which allow power-amplifier linearity

requirements to be relaxed. The desire for low PAPR suggests

single-carrier (SC) transmission, as opposed to multi-carrier

transmission such as orthogonal frequency division multiplex-

ing (OFDM) [27]. Because wide bandwidth receivers may

need to decode billions of bits per second, it is important that

the SC transmission is amenable to computationally efficient

channel-equalization, e.g., via fast Fourier transform (FFT)

processing [26].

Although wide bandwidth brings many challenges, there is

a silver lining: the measured channel responses are relatively

sparse in the angle and delay domains, in both indoor [28]

and outdoor [29], [30] settings. With sparse channels, the

fundamental performance of a communications link can be

significantly improved (e.g., [31], [32]).

We now review relevant existing work on few-bit-ADC

receiver design. For flat-fading multiple-input/multiple-output

(MIMO) channels, channel estimation (e.g., [7]–[11]), symbol

detection (e.g., [12]–[16]), and joint channel estimation and

symbol detection (e.g., [17], [18]) have been considered. How-

ever, wideband channels are frequency selective in practice.

For frequency-selective channels, channel estimation has

been considered in [19], [20] using comb-type pilots that

allow the channel to be treated as effectively flat-fading, but

these approaches perform poorly under PAPR limits. Channel

estimation for 2-tap channels was considered in [21], but re-

alistic wideband channels have many more taps. An approach

for longer channels was recently proposed in [22], but it

applies only to OFDM. An iterative expectation-maximization

(EM)-like channel estimation scheme for SC transmissions

was proposed in [23], but it is computationally expensive and

does not leverage sparsity. More recently, pilot-aided sparsity-

exploiting channel-estimation schemes were proposed in [24],

and a known-channel symbol-detection scheme was proposed

in [25]. Both [24] and [25] are made computationally effi-

cient by the use of generalized approximate message passing

(GAMP) [33] and FFT processing. But, as we will show,

significantly improved performance can be obtained through

joint channel estimation, symbol detection, and bit decoding.

A joint channel-estimation/decoding approach was proposed

in [34], but it does not leverage sparsity and requires OFDM.

http://arxiv.org/abs/1807.02494v2
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In this paper, we propose a computationally efficient ap-

proach to joint channel-estimation, equalization, and decoding

of single-carrier transmissions over frequency-selective chan-

nels with few-bit ADCs. Our approach is an instance of turbo-

equalization [35], [36], which iterates soft equalization (and,

in our case, joint channel estimation) with soft decoding. For

joint channel estimation and equalization, we use the recently

proposed Parametric Bilinear GAMP (PBiGAMP) framework

[37], which—when specialized to our application—consumes

only a few FFTs per equalizer iteration and demands relatively

few equalizer iterations. We then mate PBiGAMP to the

soft decoder using the turbo-AMP framework from [38].

To exploit the channel’s (approximate) sparsity, we use a

Gaussian mixture model (GMM), as in [39], and learn the

GMM parameters via the EM algorithm, building on [40].

Portions of this work were published in [41]. Relative to [41],

this paper includes detailed derivations and explanations, a

refined channel-estimation scheme, and additional numerical

experiments.

In this work, we assume the use of analog beamforming,

and thus a single (few-bit) ADC, at the receiver. Our approach

can be contrasted with digital (e.g., [24]) or hybrid (e.g.,

[42]) beamforming, which requires the use of multiple ADCs.

It is possible that, for large arrays, with our architecture,

the power consumption of the analog beamforming becomes

more significant than that of the ADCs; The exact calcula-

tion is architecture-specific (see, e.g., [43]) and we leave an

investigation of these issues to future work. Extensions of

our approach to digital beamforming systems and to hybrid

analog/digital systems are worthwhile, but outside the scope

of this work. To evaluate our receiver design, we consider

a system that complies with the IEEE 802.11ad 60 GHz

mmWave standard [2], which supports analog beamforming.

Our numerical results for the IEEE 802.11ad “conference

room” channel [44] (under perfect synchronization) show only

a 3dB SNR gap at a BER of 10−2 for a 2-bit ADC compared

to infinite bit resolution also using joint decoding. Further, we

show how embracing the nonlinearity of the quantization helps

to avoid a substantial SNR gap that arises when pilot-only

channel estimation is used or when Bussgang linearization is

used with very-few-bit ADCs at high SNR.

The paper is organized as follows. In Sec. II, we present our

models for SC block transmission, channel propagation, and

few-bit reception, as well the GMM-based channel model that

we use with PBiGAMP. In Sec. III, after a brief introduction

to belief propagation and PBiGAMP, we propose our soft

joint channel-estimation/decoding method and describe how

it can be mated with a soft decoder. We also describe our

EM-based method to learn the GMM channel parameters.

In Sec. IV, we detail several benchmarks that will be used

in our numerical comparisons, including Bussgang-linearized

PBiGAMP and linear-MMSE symbol decoding with pilot-

aided channel estimation. In Sec. V, we report numerical

results, and in Sec. VI we conclude.

Notation—We use boldface uppercase letters like B to

denote matrices and boldface lowercase letters like b to denote

vectors, where bi represents the ith element of b, and [B]i,j
represents the ith row and jth column of B. Also, IM is

xC xP xG xD,1 xG · · · xD,KD xG

ND NG

MKPM

(a)

xP,1 xP,2 · · · xP,KP

M

(b)

Fig. 1. (a) The transmission structure, containing cyclic-prefixed pilots
[xC,xP] and data blocks xD,k separated by guard blocks xG. (b) The block
structure of the pilot sequence xP.

the M × M identity matrix, 1M is the M -length vector of

ones, 0M is the M -length vector of zeros, Diag(b) is the

diagonal matrix formed from the vector b, diag(B) is the

vector formed from the diagonal of matrix B, FN is the

N×N unitary discrete Fourier transform (DFT) matrix, F 1:L
N

is the matrix formed by the first L columns of FN , f i
N is

the ith column of FN , and f ij
N is the (i+1, j+1)th element

of FN . For matrices and vectors, (·)T denotes transpose, (·)H

denotes conjugate transpose, (·)∗ denotes conjugate, and ⊗
denotes the Kronecker product. Likewise, ⊙, ⊘, and | · |⊙2

denote element-wise multiplication, division, and absolute-

value squared, respectively. Finally, the probability density

function (pdf) of a multivariate complex Gaussian random

vector x with mean x̂ and covariance Σ will be denoted by

CN (x; x̂,Σ).

II. SYSTEM MODEL

A. Single-Carrier Block Transmission Model

We consider a single-carrier block transmission system

where the transmitted frame takes the form

x̃ = [xT
P ,x

T
D]

T, (1)

with xP a pilot frame and xD a data frame. For compati-

bility with the IEEE 802.11ad standard [2], we assume that

the data frame consists of KD guard-separated data blocks

with guard length NG, and the pilot frame consists of KP

pilot blocks with a cyclic-prefix (CP) structure. In particular,

xD = [xT
G,x

T
D,1,x

T
G, . . . ,x

T
G,x

T
D,KD

,xT
G]

T, where xG ∈ CNG ,

xD,k ∈ SND , and S is a 2A-ary complex symbol alphabet.

Note the CP structure induced by the guards. Furthermore,

we assume that xP = [xC,x
T
P,1, . . . ,x

T
P,KP

]T, where the last

NC elements of each xP,k ∈ CM equal xC ∈ CNC , so that

the tail of each pilot block acts as the CP for the next block.

Finally, we assume that M = ND +NG. The assumed frame

structure is illustrated in Fig. 1(a).

The data sequences xD,k are constructed as follows. First,

Nb information bits b , [b1, . . . , bNb
]T are coded and then

interleaved, yielding the coded bits c ∈ {0, 1}AKDND and a

code rate of R = Nb

AKDND
. Next, the coded bits are partitioned

into KDND groups of A bits, c , [cT
0 , . . . , c

T
KDND−1]

T, where

each group cn , [cn,1, . . . , cn,A]
T determines the value of one

data symbol. By partitioning the KDND data symbols into KD

blocks of ND symbols, one obtains the data sequences xD,k

for k = 1, . . . ,KD.
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B. Propagation and Few-Bit ADC Model

The frame x̃ is modulated using a square-root raised-cosine

pulse, upconverted, propagated through a noisy and frequency-

selective channel (using possibly many antennas with analog

beamforming at the transmitter and/or receiver), downcon-

verted, filtered with a square-root raised cosine pulse, and

sampled at the baud rate. We will assume that the beamformed

baseband channel impulse response, h , [h0, . . . , hL−1]
T, has

length L ≤ min{NC, NG} − 1 and is invariant during the

transmission of x̃. In this case, after discarding the received

samples corresponding to the first xC and xG sequences, the

unquantized received samples can be collected into the matrix

U = HX +W , (2)

where K , KP + KD. In (2), H ∈ CM×M is the circulant

matrix with first column [hT
0

T
M−L]

T, W ∈ CM×K contains

additive white Gaussian noise (AWGN) with variance σ2
w,

which is assumed to be known,1 and the kth column of X ∈
C

M×K equals xP,k when k ∈ {1, . . . ,KP} or [xT
D,k−KP

,xT
G]

T

when k > KP. Likewise, we can write (2) in vectorized form

as

u = (IK ⊗H)x+w, (3)

with u , vec(U), x , vec(X), w , vec(W ), and ⊗
denoting the Kronecker product. It can be shown that x equals

x̃ with the first xC and xG sequences removed.

The output of the few-bit ADC is modeled as

y = Q
(
u
)
, (4)

where the quantization Q(·) applies component-wise. Al-

though not required by our methodology, we will assume in

our numerical experiments that b-bit uniform mid-rise quan-

tization [46] is separately applied to the real and imaginary

parts, i.e.,

ym = sign(Re(um))

(
min

{⌈ |Re(um)|
△Re

⌉
, 2b−1

}
− 1

2

)
(5)

+ j sign(Im(um))

(
min

{⌈ |Im(um)|
△Im

⌉
, 2b−1

}
− 1

2

)
,

where △Re ,

√
E
[
Re(um)2

]
△b, △Im ,

√
E
[
Im(um)2

]
△b,

and △b is chosen to minimize the mean-squared error (MSE)

E
[
|ym − um|2

]
under Gaussian um. The average powers

E
[
Re(um)2

]
and E

[
Im(um)2

]
can be measured by analog

circuits before the ADC. When b > 1, such measurements

are typically performed as part of automatic gain control.

C. Channel Model for Propagation

For signal propagation, we used the 60 GHz wireless

local area network (WLAN) channel model adopted by the

IEEE 802.11ad task group [44], which was a result of

extensive channel measurement studies in [28]. It speci-

fies that the continuous-space/time channel impulse response

1The noise variance could be estimated using the EM-PBiGAMP procedure
described in [37], but we leave the verification of this approach to future work.
See [45] for AWGN-variance learning under 1-bit quantization, referred to as
the “probit link” in the context of binary classification.

h(t;φtx, θtx, φrx, θrx), as a function of the lag t, the azimuth

angles (φtx, φrx), and the elevation angles (θtx, θrx), takes the

form

h(t;φtx, θtx, φrx, θrx)

=

I∑

i=1

α(i)C(i)
(
t− τ (i);φtx − Φ

(i)
tx , θtx −Θ

(i)
tx ,

φrx − Φ(i)
rx , θrx −Θ(i)

rx

)
(6a)

C(i)(t;φtx, θtx, φrx, θrx)

=
U(i)∑

u=1

α(i,u)δ(t− τ (i,u))δ(φtx − Φ
(i,u)
tx )δ(θtx −Θ

(i,u)
tx )

× δ(φrx − Φ(i,u)
rx )δ(θrx −Θ(i,u)

rx ), (6b)

where

• α(i) and C(i)(t;φtx, θtx, φrx, θrx) are the gain and channel

impulse response of the ith cluster, respectively,

• τ (i), Φ
(i)
tx , Θ

(i)
tx , Φ

(i)
rx , Θ

(i)
rx are the delay-angle coordinates

of the ith cluster,

• α(i,u) is the gain of the uth ray of the ith cluster,

• τ (i,u), Φ
(i,u)
tx , Θ

(i,u)
tx , Φ

(i,u)
rx , Θ

(i,u)
rx are the relative delay-

angle coordinates of the uth ray of the ith cluster,

• I is the number of clusters and U (i) is the number of

rays in the ith cluster, and

• δ(·) is the Dirac delta.

The discrete-time impulse response coefficients {hl} are

constructed from h(t;φtx, θtx, φrx, θrx) via pulse-shaping and

beamforming, i.e.,

hl =

∫
h(t;φtx, θtx, φrx, θrx)g(lT − t)

× btx(φtx, θtx)brx(φrx, θrx) dt dφtx dθtx dφrx dθrx, (7)

where g(·) is the pulse shape specified in the 802.11ad

standard (i.e., raised-cosine with rolloff 0.25), T is the baud

interval, and btx(φtx, θtx) and brx(φrx, θrx) are beam responses.

Based on extensive physical channel measurements, statis-

tical models for the 60GHz WLAN channel parameters were

proposed in [44], and Matlab code to generate realizations

from this model (including optimized analog beamforming)

was provided in [47]. Typical realizations of the resulting

{|hl|}L−1
l=0 from the “conference room” environment are shown

in Figs. 2(a)-(b), which show that the channel taps are ap-

proximately sparse. The channel power-delay profile (PDP),

E{|hl|2} versus l, is plotted in Fig. 2(c), with the expectation

approximated by an average of 50 000 realizations. There it

can be seen that the PDP decays exponentially with lag l, i.e.,

the index into h.

D. Channel Model for Estimation

The channel model as given in (7) is difficult to directly ex-

ploit for channel estimation. Therefore, for channel estimation,

we propose to use a D-state Gaussian-mixture model (GMM)
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Fig. 2. For the 802.11ad 60 GHz “conference room” channel, typical
realizations of |hl| versus l are shown in (a) and (b), and the power-delay
profile is shown in (c).

for the channel vector h, as suggested in [39] for D = 2. For

general D ≥ 1, the GMM specifies a pdf of the form

p(h;λ,ν) =

L−1∏

l=0

p(hl;λl,νl) (8a)

p(hl;λl,νl) =
D∑

d=1

λl,d CN (hl; 0, νl,d), (8b)

where λl,d ≥ 0 and νl,d > 0 are the weight and variance of

the dth mixture component of the l tap, and
∑D

d=1 λl,d = 1 ∀l.
Also, λl , [λl,1, . . . , λl,D]T and λ , [λT

0 , . . . ,λ
T
L−1]

T, with

similar definitions for νl and ν. In principle, the GMM param-

eters, λ and ν, could be empirically estimated from a corpus of

training data using the standard EM-based approach to fitting

a GMM [48, p. 435]. As an alternative, these parameters can

be estimated online from the quantized measurements y using

the EM-AMP-based method described in Sec. III-E.

III. TURBO EQUALIZATION WITH PBIGAMP

Our principle goal is to infer the information bits b from the

few-bit measurements y under the block-transmission model

from Sec. II-A, the few-bit ADC model from Sec. II-B, and

the GMM channel model from Sec. II-D. In particular, we aim

to compute the marginal posterior probabilities {p(bi|y)}Nb

i=1,

b1

b2

b3

c1,1

c1,2

c2,1

c2,2

M0

M1

M2

M3

x0

x1

x2

x3

y0

y1

y2

y3

h0

h1

h2

soft decoding soft equalization with an unknown channel

uniform
prior

coding &
interleaving

symbol
mapping

observation
likelihood

GMM
prior

Fig. 3. The factor graph corresponding to a toy example with Nb = 3
information bits {bi}, 4 interleaved/coded bits {cn,a}, A = 2 bits/symbol,
ND = 2 data symbols per block, NG = 0 guard symbols per block, KP = 1
pilot blocks, KD = 1 data blocks, block length M = ND + NG = 2, pilot
symbols x0 and x1, data symbols x2 and x3, and L = 3 channel taps. The
node ym represents p(ym|zm) and the node Mn represents the bit-to-symbol
mapping for data symbols or the indicator pmf for pilot symbols.

which can be decomposed as

p(bi|y) =
∑

b−i

p(b|y) =
∑

b−i

p(y|b)p(b)
p(y)

∝
∑

b−i

p(y|b) (9)

=
∑

b−i,x,c

∫

CL

p(y|h,x)p(h)p(x|c)p(c|b) dh (10)

=
∑

b−i,c

p(c|b)
∑

x

∫

CL

[
MK∏

m=1

p(ym|h,x)
][

L−1∏

l=0

p(hl)

]
dh

×
[

KD∏

k=1

ND−1∏

n=0

p(x(KP+k−1)M+n|c(k−1)ND+n)

]
, (11)

for b−i , [b1, . . . , bi−1, bi+1, . . . , bNb
]T. Above, (9) is due

to Bayes rule and the assumption that the information bits

b are uniformly distributed; (10) is due to the dependency

relationships among the random vectors y, h, x, c, and b;

and (11) is due to the separable nature of p(y|h,x), p(h), and

p(x|c). In particular, the pmfs p(x(KP+k−1)M+n|c(k−1)ND+n)
for k = 1, . . . ,KD and n = 0, . . . , ND − 1 are determined

by the bit-to-symbol mapping, and the likelihood function

p(ym|h,x) can be obtained from (3)-(4). Details are provided

in the sequel.

The structure in (11) can be visualized using the bipartite

factor graph shown in Fig. 3, where the solid rectangles

represent the pdf factors and the open circles represent the

variable nodes. We find it convenient to partition the factor

graph into two subgraphs: the left subgraph corresponds to

soft decoding and the right subgraph corresponds to soft

equalization with an unknown channel.

A. Belief Propagation

The posterior bit marginals {p(bi|y)}Nb

i=1 can in principle

be computed from (11), but doing so is impractical from

the standpoint of complexity. A practical alternative is to

perform belief-propagation (BP) using the sum-product algo-

rithm (SPA) [49], which passes messages along the edges of

the factor graph in Fig. 3. For discrete-valued variables like
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bi, cn,a, xn, these messages come in the form of pmfs, while

for continuous variables like hl, these messages come in the

form of pdfs. When there are no loops (i.e., cycles) in the

factor graph, BP computes exact marginals. But Fig. 3 has

loops, and so BP computes only approximate marginals. This

is to be expected, given that exact inference in loopy graphs

is NP hard [50]. Still, loopy BP often gives very good results,

and so it has become popular for, e.g., turbo decoding, LDPC

decoding, turbo equalization, inference of Markov random

fields, multiuser detection, and compressive sensing.

Exact implementation of the SPA is intractable for the soft-

equalization subgraph in Fig. 3. For exact SPA, the messages

in and out of the hl nodes would take the form of Gaussian

mixtures, with a mixture order that grows exponentially in the

iterations. As an alternative, one might consider passing only

Gaussian approximations of these problematic SPA messages,

an approach known as expectation propagation (EP) [51]. But

since there are MKL edges between the {hl} and {ym}
nodes in Fig. 3, the per-symbol complexity of EP would be

O(L), which contrasts with the O(logL) complexity of FFT

processing. Also, the fixed-points of EP are generally not well

understood.

B. Background on PBiGAMP

We now briefly provide some background on PBiGAMP,

since many readers may not be familiar with the algorithm.

PBiGAMP [37] is a computationally efficient approach to

approximating the marginal posteriors of independent random

variables {xn}N−1
n=0 and {hl}L−1

l=0 from measurements y =
[y0, . . . , yP−1]

T generated under a likelihood of the form

py|z(y|z) =
P−1∏

m=0

pym|zm(ym|zm) (12a)

zm =

N−1∑

n=0

L−1∑

l=0

xnz
(n,l)
m hl, (12b)

where z
(n,l)
m are known parameters. Throughout this subsec-

tion, we typeset random variables in san-serif font (e.g., ym)

and non-random variables in serif font (e.g., ym) for clarity.

Note that, in (12), zm can be interpreted as noiseless bilinear

measurements of the random vectors x , [x0, . . . , xN−1]
T and

h , [h0, . . . , hL−1]
T, and pym|zm(ym|zm) can be interpreted

as a noisy measurement channel. Applications of (12) include

matrix compressive sensing, self-calibration, blind deconvolu-

tion, and joint channel/symbol estimation.

The PBiGAMP algorithm from [37] is summarized in

Table I. There, the priors on xn and hl are denoted by pxn(xn)
and phl

(hl), respectively. The approximate marginal poste-

riors, denoted by pxn|qn
(xn|q̂n; νq

n) and phl|rl(hl|r̂l; νr
l), are

specified in lines (D2)-(D3). Here, q̂n, ν
q
n, r̂l, ν

r
l are quantities

computed iteratively by PBiGAMP.

In [37], PBiGAMP was derived as a computationally ef-

ficient approximation of the SPA for the likelihood model

(12), assuming that z
(n,l)
m are independent realizations of a

zero-mean Gaussian random variable. This approximation is,

in fact, exact in the large-system limit (i.e., P,N,L → ∞
with fixed N/P and L/P ). In [52], PBiGAMP was analyzed

TABLE I
THE SCALAR-VARIANCE PBIGAMP ALGORITHM FROM [37]

Definitions:

pzm|pm

(
z | p̂; νp

)
,

pym|zm
(ym | z)CN (z;p̂,νp)

∫
pym|zm

(ym | z′) CN(z′;p̂,νp) dz′
(D1)

phl|rl
(h | r̂; νr),

phl
(h) CN (r̂;h,νr)

∫
phl

(h′)CN (r̂;h′,νr) dh′ (D2)

pxn|qn
(x | q̂; νq),

pxn(x) CN (q̂;x,νq)∫
pxn(x′)CN(q̂;x′,νq) dx′ (D3)

Initialization:

∀m : ŝm[0] = 0 (I1)

∀n, l : choose x̂n[1], ν
x[1], ĥl[1], ν

h[1] (I2)

For t = 1, . . . Tmax

∀n : ẑ(n,∗)[t] =
∑L−1

l=0 z(n,l)ĥl[t] (R1)

∀l : ẑ(∗,l)[t] =
∑N−1

n=0 x̂n[t]z
(n,l) (R2)

ẑ(∗,∗)[t] =
∑N−1

n=0 x̂n[t]ẑ
(n,∗)[t] or

∑L−1
l=0 ĥl[t]ẑ

(∗,l)[t] (R3)

νp[t] = 1
P

(
νx[t]

∑N−1
n=0 ‖ẑ(n,∗)[t]‖2

+νh[t]
∑L−1

l=0 ‖ẑ(∗,l)[t]‖2
)

(R4)

νp[t] = νp[t] + νx[t]νh[t] 1
P

∑N−1
n=0

∑L−1
l=0 ‖z(n,l)[t]‖2 (R5)

p̂[t] = ẑ(∗,∗)[t] − ŝ[t−1]νp[t] (R6)

νz[t] = 1
P

∑P−1
m=0 var{zm | pm= p̂m[t]; νp[t]} (R7)

∀m : ẑm[t] =E[zm | pm= p̂m[t]; νp[t]] (R8)

νs[t] = (1 − νz[t]/νp[t])/νp[t] (R9)

ŝ[t] = (ẑ[t] − p̂[t])/νp[t] (R10)

νr[t] =
(
νs[t] 1

L

∑L−1
l=0 ‖ẑ(∗,l)[t]‖2

)−1
(R11)

∀l : r̂l[t] = ĥl[t] + νr[t]ẑ(∗,l)H[t]ŝ[t]

−νr[t]νs[t]νx[t]ĥl[t]
∑N−1

n=0 ‖z(n,l)‖2 (R12)

νq[t] =
(
νs[t] 1

N

∑N−1
n=0 ‖ẑ(n,∗)[t]‖2

)−1
(R13)

∀n : q̂n[t] = x̂n[t] + νq[t]ẑ(n,∗)H[t]ŝ[t]

−νq[t]νs[t]νh[t]x̂n[t]
∑L−1

l=0 ‖z(n,l)‖2 (R14)

νh[t+1]= 1
L

∑L−1
l=0 var{hl | rl= r̂l[t]; ν

r[t]} (R15)

∀l : ĥl[t+1]=E[hl | rl= r̂l[t]; ν
r[t]] (R16)

νx[t+1]= 1
N

∑N−1
n=0 var{xn | qn = q̂n[t]; ν

q[t]} (R17)

∀n : x̂n[t+1]=E[xn | qn = q̂n[t]; ν
q[t]] (R18)

end

using the replica method from statistical physics. There it was

shown that the large-system-limit performance of PBiGAMP

can be accurately predicted by a scalar state-evolution. For the

case of i.i.d. Bernoulli-Gaussian xn and hl, this state evolution

was studied in detail and found to exhibit a sharp “phase-

transition” behavior. Moreover, for certain combinations of

measurement rates (i.e., N/P and L/P ) and sparsity rates on

xn and hl, PBiGAMP was shown to converge to the MMSE

estimates of x and h. For other, more difficult, combinations

of measurement and sparsity rates, PBiGAMP may not yield

accurate estimates. However, it is conjectured that no other

polynomial-time method will yield accurate estimates in that

case [52].

C. Soft Equalization via PBiGAMP

In this section, we describe how PBiGAMP can be applied

to soft equalization of SC block transmissions over unknown

FS channels measured by few-bit ADCs.

We begin by adapting the PBiGAMP likelihood model (12)

to the few-bit SC block-transmission model (3)-(4). First, we

write the circulant channel matrix as H =
∑L−1

l=0 hlJ l, where

J l ∈ RM×M is the l-circulant delay matrix. Then (4) becomes

ym = Q
(

L−1∑

l=0

MK−1∑

n=0

hl[IK ⊗ J l]m,nxn + wm

)
, (13)
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where [·]m,n extracts the mth row and nth column of its matrix

argument. From (12) and (13), we can readily identify the

PBiGAMP quantities

z(n,l)m = [IK ⊗ J l]m,n (14)

pym|zm(ym|zm) , Pr{ym = Q(zm + wm)} (15)

=

∫

Q−1(ym)

CN
(
w; zm, σ2

w) dw, (16)

where Q−1(ym) ⊂ C is the region quantized to ym. We also

identify the PBiGAMP dimensions P = N = MK .

For PBiGAMP’s prior on hl, we assign the GMM from (8).

For PBiGAMP’s prior on xn, we treat the indices n of data

symbols differently from those of pilot and guard symbols.

For the data indices n ∈ {(KP + k − 1)M, . . . , (KP + k −
1)M +ND − 1}KD

k=1, we assign

pxn(xn) =

2A∑

j=1

γn,jδ(xn − s(j)), (17)

where δ(·) is the Dirac delta, {s(1), . . . , s(2A)} , S is the

data-symbol alphabet, and γn,j = Pr{xn = s(j)} is the prior

data-symbol pmf, which depends on the decoder outputs as

described below. For pilot indices n = 0, . . . ,KPM − 1 and

guard indices n ∈ {(KP + k− 1)M +ND, . . . , (KP + k)M −
1}KD

k=1, we assign the trivial prior pxn(x) = δ(x−xn) because

the pilots and guards take on known deterministic values. Note

that, although the data symbols xn are discrete, PBiGAMP

treats them as continuous random variables in C.

The data-symbol pmf {γn,j}2
A

j=1 is determined by the coded-

bit priors Pr{cn,a = c
(j)
a } coming from the soft decoder, i.e.,

γn,j , Pr{xn=s(j)} =

2A∑

j′=1

Pr{xn=s(j), cn = c(j
′)} (18)

=

2A∑

j′=1

Pr{xn=s(j)|cn = c(j
′)}︸ ︷︷ ︸

δj−j′

Pr{cn = c(j
′)} (19)

= Pr{cn = c(j)} =

A∏

a=1

Pr{cn,a = c(j)a }, (20)

where c(j) = [c
(j)
1 , . . . , c

(j)
A ]T ∈ {0, 1}A is the coded-bit

sequence corresponding to the symbol value s(j), and δj is

the Kronecker delta sequence.

We are now ready to apply PBiGAMP from Table I. In the

sequel, we omit the iteration index “[t]” for brevity. From (14)

and z(n,l) , [z
(n,l)
0 , . . . , z

(n,l)
MK−1]

T, lines (R1)-(R3) of Table I

become

ẑ
(n,∗) =

L−1∑

l=0

ĥl[IK ⊗ J l]:,n = [IK ⊗ Ĥ ]:,n (21)

ẑ
(∗,l) =

MK−1∑

n=0

x̂n[IK ⊗ J l]:,n = vec
(
J lX̂

)
(22)

ẑ
(∗,∗) =

L−1∑

l=0

ĥl vec
(
J lX̂

)
= vec

(
ĤX̂

)
, (23)

where [·]:,n extracts the nth column of its matrix argument,

Ĥ =
∑L−1

l=0 ĥlJ l ∈ CM×M is the circulant matrix with first

column [ĥ
T
0

T
M−L]

T, and X̂ ∈ CM×K is such that x̂ =

vec(X̂). Given (21)-(23), the structure of Ĥ and J l imply

‖ẑ(n,∗)‖2 = ‖ĥ‖2 ∀n (24)

‖ẑ(∗,l)‖2 = ‖x̂‖2 = ‖X̂‖2F ∀l (25)

‖z(n,l)‖2 = 1 ∀n, l. (26)

With (23)-(26), PBiGAMP steps (R4)-(R6) reduce to

νp = νx‖ĥ‖2 + L

MK
νh‖x̂‖2 (27)

νp = νp + Lνxνh (28)

p̂ = vec(ĤX̂)− νpŝ. (29)

Furthermore, because Ĥ is circulant, its eigendecomposition

takes the form

Ĥ =
√
MF H

MDiag(F 1:L
M ĥ)FM (30)

after which the frequency-domain quantities

X̂ , FMX̂ (31)

ĥ , F 1:L
M ĥ (32)

can be used to rewrite p̂ as

p̂ = vec
(√

MF H
MDiag(ĥ)X̂

)
− νpŝ. (33)

Next we discuss PBiGAMP’s nonlinear steps (R7)-(R8),

which—according to (D1)—compute the posterior mean and

variance of zm given the likelihood function pym|zm(ym|zm)
from (16) and the prior zm ∼ CN (p̂m, νp). Recall that the real

and imaginary parts of CN (p̂m, νp) are independent Gaussian

with means p̂re
m and p̂im

m, respectively, and variance νp/2. Then,

because the quantization Q(·) is applied separately to real

and imaginary components, we can separately compute the

posterior means and variances for the real and imaginary

components of zm. Using (gu−1, gu] ⊂ R to denote the

interval of ure
m quantized to yre

m, the posterior mean and

variance of the real part of zm can be expressed as

ẑre
m = p̂re

m +
νp

2

Dre
m

Ere
m

(34)

νz,re
m =

νp

2
+

F re
m

Ere
m

(
νp

2

)2

− (ẑre
m − p̂re

m)2 (35)

where

Dre
m = N

(
p̂re
m − gu−1; 0, (σ

2
w + νp)/2

)

−N
(
p̂re
m − gu; 0, (σ

2
w + νp)/2

)
(36)

Ere
m = Φ

(
p̂re
m − gu−1√
(σ2

w + νp)/2

)
− Φ

(
p̂re
m − gu−1√
(σ2

w + νp)/2

)
(37)

F re
m =

p̂re
m − gu

(σ2
w + νp)/2

N
(
p̂re
m − gu; 0, (σ

2
w + νp)/2

)

− p̂re
m − gu−1

(σ2
w + νp)/2

N
(
p̂re
m − gu−1; 0, (σ

2
w + νp)/2

)
. (38)

Similarly, the posterior mean and variance of the imaginary

part of zm can be computed using the same procedure, but
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with p̂im
m replacing p̂re

m. Finally, for (R7)-(R8), the real and

imaginary parts are combined as

ẑm = ẑre
m + jẑim

m , νz =
1

MK

MK−1∑

m=0

(
νz,re
m + νz,im

m

)
. (39)

Equations (34)-(38) can be derived following the procedures

in [53, Chapter 3.9]; see [17, Appendix A] for further details.

Next we consider PBiGAMP steps (R11)-(R14). From (21)-

(22), steps (R11) and (R13) become

νr =
1

νs‖x̂‖2 (40)

νq =
1

νs‖ĥ‖2
. (41)

For step (R12), we use (22) and (26) to write

r̂l = ĥl + νrẑ
(∗,l)H

ŝ− νrνsνxĥl

MK−1∑

n=0

‖z(n,l)‖2 (42)

= ĥl(1−MKνrνsνx) + νrvec(J lX̂)Hvec(Ŝ) (43)

= ĥl(1−MKνrνsνx) + νr

K∑

k=1

(J lx̂k)
Hŝk, (44)

where Ŝ ∈ CM×K is a reshaping of ŝ and where x̂k and ŝk
are the kth columns of X̂ and Ŝ. Thus r̂ , [r̂0, . . . , r̂L−1]

T

takes the form

r̂ = ĥ(1 −MKνrνxνs) + νr

K∑

k=1

[
J0x̂k, . . . ,JL−1x̂k

]H
ŝk.

(45)

Since
[
J0x̂k, . . . ,JL−1x̂k

]
are the first L columns of the

circulant matrix with first column x̂k, (30) implies

[
J0x̂k, . . . ,JL−1x̂k

]
=

√
MF H

MDiag(FM x̂k)F
1:L
M . (46)

Plugging (46) into (45), and defining x̂k , FM x̂k (i.e., the

kth column of X̂) and ŝk , FM ŝk, we get

r̂ = ĥ(1 −MKνrνxνs) +
√
Mνr(F 1:L

M )H

K∑

k=1

x̂
∗
k ⊙ sk.

(47)

A similar derivation reduces PBiGAMP step (R14) to

q̂ = x̂(1 − Lνqνhνs) +
√
Mνqvec

(
F H

MDiag(ĥ)HŜ
)
, (48)

where Ŝ , FM Ŝ.

Next we consider PBiGAMP steps (R15)-(R16), which—

according to (D2)—compute the posterior mean and variance

of hl given the GMM prior (8) and the likelihood function

CN (r̂l;hl, ν
r). From [40], the posterior is

phl|rl(hl | r̂l; νr
l) =

D∑

d=1

λl,dCN
(
hl;

νl,dr̂l
νl,d + νr

l

,
νl,dν

r
l

νl,d + νr
l

)

(49)

λl,d =
λl,dCN (r̂l; 0, νl,d + νr

l)∑D
d′=1 λl,d′CN (r̂l; 0, νl,d′ + νr

l)
, (50)

which is also a GMM. The corresponding mean and variance

follow straightforwardly as

ĥl =

D∑

d=1

λl,d
νl,dr̂l

νl,d + νr
l

(51)

νh
l =

D∑

d=1

λl,d

(
νl,dν

r
l

νl,d + νr
l

+
∣∣∣ νl,dr̂l
νl,d + νr

l

∣∣∣
2
)
− |ĥl|2. (52)

Finally, we consider PBiGAMP steps (R17)-(R18), which—

according to (D3)—compute the posterior mean and variance

of xn given the discrete symbol prior (20) and the likelihood

function CN (q̂n;xn, ν
q). In this case, the posterior is

pxn|qn
(xn | q̂n; νq

n) =

2A∑

j=1

γn,jδ(xn − s(j)) (53)

γn,j =
Pr{xn=s(j)}CN

(
s(j); q̂n, ν

q
n

)
∑2A

j′=1 Pr{xn=s(j′)}CN
(
s(j′); q̂n, ν

q
n

) , (54)

which is a discrete distribution with support on S. The

posterior mean and variance follow as

x̂n =

2A∑

j=1

γn,js
(j) (55)

νx
n =

2A∑

j=1

γn,j |s(j) − x̂n|2. (56)

Note that {γn,j}2
A

j=1 is the posterior pmf on xn. It can be

converted to posterior pmfs on the coded bits {cn,a}Aa=1 via

Pr{cn,a=1 | q̂n} =
∑

j=1...2A|c(j)a =1

Pr{cn=c(j) | q̂n} (57)

=
∑

j = 1...2A

c(j)a = 1

2A∑

j′=1

Pr{cn=c(j)|xn=s(j
′)}︸ ︷︷ ︸

δj−j′

Pr{xn=s(j
′) | q̂n}︸ ︷︷ ︸

γn,j′

(58)

=
∑

j=1...2A|c(j)a =1

γn,j. (59)

The PBiGAMP-based soft equalization procedure is sum-

marized in Table II using (M ×K)-matricized versions of p̂,

q̂, and x̂ denoted by P̂ , Q̂, and X̂ , respectively. Its complexity

is dominated by the 4K + 2 DFT-matrix multiplies in steps

(E1), (E2), (E5), (E10), (E12), and (E14), which consume a

total of O(MK logM) operations per iteration, or O(logM)
operations per symbol per iteration, when an FFT is used. All

other lines in Table II consume a total of O(MK) operations

per iteration, or O(1) operations per symbol per iteration.

For notational simplicity, the table does not reflect the fact

that the first KP columns of X̂ are known pilots and the

last NG elements of the remaining columns in X̂ are known

guards. For those known elements, the mean and variance

computations in (E17)-(E18) can be omitted. Likewise, there

is no need to compute the first KP columns of X̂ in (E1) or

the first KP columns of Q̂ in (E14), reducing the number of

required FFTs by 2KP.
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TABLE II
SOFT EQUALIZATION VIA SCALAR-VARIANCE PBIGAMP

Definitions:

pzm|pm

(
z | p̂; νp

)
,

pym|zm
(ym | z)CN(z;p̂,νp)

∫
pym|zm

(ym | z′) CN(z′;p̂,νp) dz′
(D1)

phl|rl
(h | r̂; νr),

phl
(h) CN (r̂;h,νr)

∫
phl

(h′)CN (r̂;h′,νr) dh′ (D2)

pxn|qn
(x | q̂; νq),

pxn(x) CN (q̂;x,νq)∫
pxn(x′)CN(q̂;x′,νq) dx′ (D3)

Initialization:
x0G = [0T

ND
,xT

G]
T

X̂[1] =
[
xP,1, . . . ,xP,KP

,x0G, . . . ,x0G

]
, νx[1] =

KDND
MK

ĥ[1] = ĥinit, νh[1] = νh
init, Ŝ[0] = 0M×K

For t = 1, . . . Tmax

X̂[t] =FMX̂[t] (E1)

ĥ[t] =F 1:L
M ĥ[t] (E2)

νp[t] = νx[t]
∥∥ĥ[t]

∥∥2 + L
MK

νh[t]
∥∥X̂[t]

∥∥2

F
(E3)

νp[t] = νp[t] + Lνh[t]νx[t] (E4)

P̂ [t] =
√
MF H

MDiag(ĥ[t])X̂[t] − νp[t]Ŝ[t−1] (E5)

νz[t] = 1
MK

∑M−1
m=1

∑K
k=1 var{zmk | p̂mk[t]; ν

p[t]} (E6)

∀m,k : ẑmk[t] =E[zmk | pmk = p̂mk[t]; ν
p[t]] (E7)

νs[t] =
(
1 − νz[t]/νp[t]

)
/νp[t] (E8)

Ŝ[t] =
(
Ẑ[t] − P̂ [t]

)
/νp[t] (E9)

Ŝ[t] =FM Ŝ[t] (E10)

νr[t] =
(
νs[t]

∥∥X̂[t]
∥∥2

F

)−1
(E11)

r̂[t] = νr[t]
√
M(F 1:L

M )H
(
X̂[t]∗ ⊙ Ŝ[t]

)
1K

+
(
1 − MKνr[t]νx[t]νs[t]

)
ĥ[t] (E12)

νq[t] =
(
νs[t]

∥∥ĥ[t]
∥∥2)−1

(E13)

Q̂[t] =
√
Mνq[t]F H

MDiag(ĥ[t])HŜ[t]

+
(
1 − Lνq[t]νh[t]νs[t]

)
X̂[t] (E14)

νh[t+1]= 1
L

∑L−1
l=0 var{hl | rl = r̂l[t]; ν

r[t]} (E15)

∀l : ĥl[t+1]=E[hl | rl= r̂l[t]; ν
r[t]] (E16)

νx[t+1]= 1
MK

∑M−1
m=0

∑K
k=1 var{xmk | q̂mk[t]; ν

q[t]} (E17)

∀m, k : x̂mk[t+1]=E[xmk | qmk = q̂mk[t]; ν
q[t]] (E18)

end

D. Turbo Equalization

As described in Sec. III-A, we would like to compute (ap-

proximate) posterior marginal bit probabilities {p(bi|y)}Nb

i=1

using the SPA, which is the usual approach to turbo equal-

ization [36]. Because exact SPA is intractable for the soft-

equalization subgraph in Fig. 3, we use the PBiGAMP ap-

proximation, as described in Sec. III-B, on that subgraph. We

now detail the remaining steps in the SPA, for completeness.

Roughly speaking, messages are passed on the factor graph

in Fig. 3 from the left to the right and back again. One

such forward-backward pass will be referred to as a turbo

iteration. During a single turbo iteration, soft equalization

using PBiGAMP is alternated with soft decoding using a

standard decoder/interleaver. The SPA dictates that “extrinsic”

information is passed between nodes on the graph and hence

between the subgraphs in Fig. 3. For a discrete random

variable, the extrinsic message is a pmf formed by dividing the

posterior pmf by the prior pmf. Additional details are given

below.

During each turbo iteration, extrinsic information on the

coded bits cn,a is passed from the soft decoder to PBiGAMP,

where it is treated as prior information in (20) to determine

the symbol priors γn,j . PBiGAMP is then run to convergence,

generating the symbol posteriors γn,j . The symbol posteriors

are used in (59) to determine the coded-bit posteriors, which

are then converted to extrinsic form and passed to the soft

decoder. The soft decoder accepts this extrinsic information

from PBiGAMP, treating it as a prior on the coded bits. It

then computes posteriors on the coded bits, converts them to

extrinsic form, and passes them to PBiGAMP for the next

turbo iteration.

E. Learning the Channel Prior

The GMM prior (8) requires specification of the weights

and variances {λl,νl}L−1
l=0 . In the simple case where the

coefficients are modeled as identically distributed, the set

{λl,νl}L−1
l=0 reduces to the pair λ,ν. The “EM-GM-AMP”

paper [40] showed how this pair can be learned from the

observations y using a combination of EM and AMP, and

[37] showed how EM can be combined with PBiGAMP in

a similar manner. In Sec. V, we investigate the performance

of this EM-GM-PBiGAMP method on the channels described

in Sec. II-C using GMM order D = 2. More generally, one

could partition the coefficients {hl}L−1
l=0 into subsets and learn

a different weight and variance for each subset, as discussed in

[39]. Typically, the EM update is performed in line (E16) once

per PBiGAMP iteration, so that the computational burden of

EM is very minor.

F. Scaling the Channel Estimate

With few-bit ADCs, channel amplitude information is de-

graded due to quantization (and completely lost in the case

of a one-bit ADC). Thus, we find that channel-estimation

performance can be improved by appropriately scaling the

channel estimate. To do this, we exploit the fact that

E[‖u‖2 |h] = tr{E[uuH |h]} (60)

= tr{(IK ⊗H)E[xxH](IK ⊗H)H}+MKσ2
w (61)

= σ2
x tr{IK ⊗HHH}+MKσ2

w (62)

= Kσ2
x tr{HHH}+MKσ2

w (63)

= MKσ2
x‖h‖2 +MKσ2

w (64)

due to the circulant nature of H , and so

‖h‖ =

√
E[‖u‖2 |h]/(MK)− σ2

w

σ2
x

. (65)

Assuming that the average received-signal power

E[‖u‖2 |h]/(MK) can be measured2 prior to the ADC

(as is typically done as part of automatic gain control),

the true channel norm can be computed from (65) and the

channel estimate ĥ can be scaled so that its norm matches

the true one. We note that a similar technique was used in

[24]. With PBiGAMP, we scale the output of line (E16) in

this manner at each iteration.

IV. BENCHMARK METHODS

We now describe two methods that will be used later for per-

formance evaluation: PBiGAMP with Bussgang linearization,

and pilot-aided channel estimation plus LMMSE decoding.

2To measure the average received-signal power, it suffices to use an ADC
with a relatively low sampling rate, which is inexpensive in both cost and
power consumption.
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A. PBiGAMP with Bussgang Linearization

The PBiGAMP method proposed in Sec. III uses a non-

Gaussian likelihood function pym|zm that results directly from

the quantization model (5). An alternative explored in the

literature is the use of an AWGN approximation of pym|zm
based on a Bussgang linearization [54]. This leads to a

simplified approach that tends to perform well under mild

quantization. We briefly summarize the Bussgang approach

below.3

The Bussgang linearization first writes the nonlinear quan-

tization operation y = Q(u) as

y = Gyu+ e, (66)

where Gy is the LMMSE estimator of y from u, i.e.,

Gy = E[yuH]E[uuH]−1, (67)

and e , y − Gyu is the estimation error. Due to the

orthogonality principle, we know that E[ueH] = 0, i.e., the

Bussgang error e is uncorrelated with the quantizer input u.

Plugging the expression for u from (3) into (66), we get

y = Gy(IK ⊗H)x+Gyw + e︸ ︷︷ ︸
, w̃

, (68)

where we can interpret Gy(IK ⊗H) as the effective channel

and w̃ as the effective noise. Although non-Gaussian, w̃ is

approximately uncorrelated with the signal x, in that

E[xw̃H] = E[xwH]GH
y + E[xeH] (69)

= E[xeH] (70)

= E
{
E[xeH|u]

}
= E

{
E[x|u]eH

}
(71)

≈ E[Gxue
H] = GxE[ue

H] (72)

= 0, (73)

where (70) follows from E[xwH] = 0, (71) follows from the

fact that e = Q(u)−Gyu is deterministic when conditioned

on u, and (72) approximates E[x|u] by the LMMSE estimate

Gxu of x from u. This approximation becomes exact when

x and u are jointly Gaussian. Finally, equation (73) follows

from E[ueH] = 0.

Note that w and e are also uncorrelated, in that

E[weH] = E
[
E[weH|u]

]
(74)

= E
[
E[w|u]eH

]
(75)

= E[Gwue
H] = GwE[ue

H] (76)

= 0, (77)

where (75) results because e is deterministic conditioned on

u, (76) results because w and u are jointly Gaussian, with Gw

denoting the LMMSE estimator of w from u, and (77) follows

from E[ueH] = 0. As a consequence of (77), the covariance

of w̃ reduces to

E[w̃w̃
H] = σ2

wGyG
H
y + E[eeH]. (78)

3Our summary includes an explanation of why the effective noise w̃ is
uncorrelated with the signal x, which is missing from [54], as well as
specializations relevant to (3).

For uniform quantization with MMSE stepsize ∆b [55]

(recall (5)), the LMMSE matrix Gy has a simple form. To

see this, we first define the quantization error

q , y − u. (79)

Note, from (3) and the fact that H is circulant with first

column h, that um =
∑M−1

l=0 h〈m−l〉Mx⌊m/M⌋M+l , where

〈n〉M denotes n-modulo-M . Thus, if we treat the components

of x as i.i.d., then the components of u will be identically

distributed. Consequently, the components of y = Q(u) will

be identically distributed, as will those of q. In this case, the

results in [54] imply

E[uqH] = −ηE[uuH] = E[quH] (80)

E[qqH] ≈ ηE[uuH]− (1− η)η Nondiag(E[uuH]) (81)

= η2E[uuH] + (1 − η)ηDiag(diag(E[uuH])), (82)

where

η ,
E[|qm|2]
E[|um|2] . (83)

The approximation (81) would be exact if qm and ym′ were

jointly Gaussian for all m 6= m′. From (67), we now see that

Gy = E[(u + q)uH]E[uuH]−1 (84)

= (1 − η)I, (85)

where (85) follows from (80).

We can now compute the effective noise covariance (78).

Noting from (66), (79), and (85) that

e = y −Gyu = u+ q − (1 − η)u = ηu + q, (86)

we have

E[eeH] = E[(ηu + q)(ηu + q)H] (87)

= η2E[uuH] + ηE[uqH] + ηE[quH] + E[qqH] (88)

= E[qqH]− η2E[uuH] (89)

= (1 − η)ηDiag(diag(E[uuH])), (90)

where (89) follows from (80) and (90) follows from (82). Since

E[|um|2] = E
{
[I ⊗H ]m,:xx

H[I ⊗H ]Hm,:

}
+ σ2

w (91)

= σ2
xE[‖h‖2] + σ2

w, (92)

equations (78), (85), (90), and (92) imply

E[w̃w̃
H]

= (1− η)η(σ2
xE{‖h‖2}+ σ2

w)I + (1− η)2σ2
wI (93)

= (1− η)(ησ2
xE{‖h‖2}+ σ2

w)︸ ︷︷ ︸
, σ2

w̃

I. (94)

Note that, in practice, E[|um|2] can be estimated by measuring

the input power to the ADC.

Finally, plugging (85) into (68), we get

y = (1 − η)(IK ⊗H)x+ w̃. (95)

For the Bussgang approximation, we use (95), while treating

the non-Gaussian effective noise w̃ as if it was AWGN with

variance σ2
w̃ from (94).
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In going from standard to Bussgang-linearized PBiGAMP,

changes manifest only in lines (R7)-(R8) of Table I. In

either case, the complexity of lines (R7)-(R8) is O(MK)
operations per frame, or O(1) operations per symbol, recalling

the discussion at the end of Sec. III-C. So, like PBiGAMP, the

complexity of Bussgang-linearized PBiGAMP is O(logM)
operations per symbol.

B. Pilot-aided Channel Estimation and LMMSE Decoding

A computationally simpler benchmark is as follows. First,

using the standard correlation-based approach that leverages

the perfect aperiodic autocorrelation property of Golay se-

quences described in [56, Sec. 7.3.3.1], we obtain Ĥ . Next,

treating the channel estimate as if it were perfect, we perform

linear-MMSE (LMMSE) turbo decoding on the Bussgang-

linearized model (95). Details on the latter are provided below.

For each turbo iteration, we first convert the extrinsic

information output by the coder into the data-symbol pmfs

γn,j via (20), and then we convert these pmfs into the prior

symbol mean and variance vectors µ and v via (55)-(56). At

the very first turbo iteration, however, we set µn = 0 and

vn = 1 for data indices n (assuming unit-variance symbols)

and µn = xn and vn = 0 for the pilot/guard indices n. Next,

we compute the LMMSE symbol estimates x̂ and posterior

symbol variance vector νx as

x̂ = µ+G(y −Aµ) (96)

νx = v − diag(GADiag(v)), (97)

where

A , (1− η)(IK ⊗ Ĥ) (98)

G , Diag(v)AH
(
ADiag(v)AH + σ2

w̃I
)−1

. (99)

We then convert the posterior mean and variance x̂ and νx

to extrinsic quantities by solving for the q̂n and νq
n that yield

1/νx
n = 1/νq

n + 1/vn and x̂n/ν
x
n = q̂n/ν

q + µn/vn, which is

accomplished by

νq
n =

vnν
x
n

vn − νx
n

(100)

q̂n =
x̂nvn − µnν

x
n

vn − νx
n

. (101)

Finally we convert the extrinsic means and variances q̂n and νq
n

into extrinsic coded-bit probabilities using (54) and (59), and

pass them to the decoder. The decoder treats them as coded-bit

priors, computes coded-bit posteriors, and passes the extrinsic

information back to the LMMSE equalizer to begin the next

turbo iteration.

As a result of the matrix inverse in (99), the LMMSE

scheme (96)-(99) incurs a complexity of O(KM3) multiplies

per block of KM symbols, or O(M2) multiplies per symbol.

Compared to the O(logM) per-symbol per-iteration complex-

ity of PBiGAMP, this is not favorable with regards to the

scaling versus M . However, if in (99) we approximate the

vector v by its average value, then the per-symbol complexity

could be reduced to O(logM), since Ĥ is circulant and thus

amenable to fast convolution. In particular, this LMMSE ap-

proximation would use 4K+1 FFTs per symbol block (i.e., 1

to compute the eigenvalues of Ĥ , 2K for the multiplication by

A in (96), and 2K for the multiplication by G in (96)). Since

PBiGAMP uses 4K + 2 FFTs, its per-iteration complexity

would be only slightly higher. Of course, PBiGAMP performs

several iterations. Still, we show in Sec. V-D that the total

computational complexity of PBiGAMP is only a bit higher

than the fast LMMSE scheme, in part because it requires fewer

turbo iterations on average.

V. NUMERICAL RESULTS

We now present numerical results comparing the pro-

posed PBiGAMP method with the benchmarks discussed in

Sec. IV. As a reference, we also consider the performance of

PBiGAMP with perfect channel-state information (PCSI). In

this latter case, PBiGAMP reduces to GAMP.

A. Setup

Unless otherwise noted, our numerical experiments are

based on the following setup, which is compatible with the

802.11ad standard [2]. Recalling the SC block-transmission

model from Sec. II-A, Nb = 3584 information bits were

coded at rate R = 1/2 by an irregular low-density parity-check

(LDPC) code with average column weight 3, as specified by

[2]. The 7168 coded bits were then Gray-mapped to 1792 16-

QAM symbols (i.e., A = 4). The data symbols were then

partitioned into KD = 4 blocks of ND = 448 symbols,

resulting in {xD[k]}4k=1. Each data-symbol sequence xD[k]
was merged with an NG = 64-length guard sequence xG,

resulting in a M = 512-length data-guard sequence. The set

was then merged with KP = 2 blocks of M = 512 pilot

symbols, as shown in Figs. 1 and 4.

The 802.11ad standard specifies the use of Golay sequences

[57] for constructing both xP and xG. In particular, the pilot

xP is constructed using the Golay complementary sequences

{ga, gb} as shown in Fig. 4(b), where both ga and gb have

length M/4 = 128, and the guard xG is generated by

an NG = 64-length Golay sequence. A correlation-based

channel-estimation scheme that exploits the perfect aperiodic

correlation property of Golay sequences is described in [56,

Sec. 7.3.3.1]. We used that scheme for the benchmark de-

scribed in Sec. IV-B, as well as to initialize the proposed

PBiGAMP approach.

For the channel, we adopted the 60 GHz WLAN model

described in Sec. II-C, whose Matlab implementation was

obtained from [47]. We used the “conference room” scenario

at baud rate 1.76 GHz with default parameter settings. Interest-

ingly, the delay spread of this channel exceeds the guard length

(NG = 64), implying some amount of inter-block interference

(IBI). However, the PDP in Fig. 2(b) suggests that the IBI

power is relatively small.

In the experiments below, one should remember that Eb/No

values correspond to post-beamforming SNRs, which include

the gain of beamforming at both the transmitter and receiver. In

multi-antenna systems, the pre-beamforming SNRs are much

lower.
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STF CEF Header Data TRN

(a)

· · ·· · · ga gb ga gb ga gb ga gb ga gb

STF CEF

M (b) M

xD,1 xG xD,2 xG · · ·
M

ND NG (c)

Fig. 4. (a) SC packet structure in the IEEE 802.11ad standard, including
the Short Training Field (STF), Channel Estimation Field (CEF), Header
field, Data field, and optional Training (TRN) field for beamforming; (b)
inner structure of the CEF, constructed from length-128 Golay complementary
sequences {ga,gb}; and (c) inner structure of the Data block, composed of
data sequences {xD,1,xD,2} and guard intervals xG.
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Fig. 5. BER and channel NMSE versus Eb/No in dB for 16-QAM with
∞-bit ADC under 60 GHz WLAN “conference room” channel.

B. BER and NMSE Performance with π/2-16-QAM

Figures 5-8 show the bit error rate (BER) and the channel-

estimation normalized MSE (NMSE) versus Eb/No for ADCs

with ∞-bit, 4-bit, 3-bit, or 2-bit precision. With an ∞-

bit ADC (i.e., no quantization), PBiGAMP achieves a BER

that is nearly indistinguishable from the PCSI bound, while

Golay/LMMSE is 0.4 dB worse in BER and 10 dB worse in

NMSE. With a 4-bit ADC the results are similar: PBiGAMP

and PBiGAMP-Bussgang achieve BERs nearly indistinguish-

able from the PCSI bound (which has degraded 0.25 dB from

the ∞-bit case), while Golay/LMMSE is 0.5 dB worse in BER

and 10 dB worse in NMSE. With a 3-bit ADC, PBiGAMP’s

BER is still nearly indistinguishable from the PCSI bound

(which has degraded 0.8 dB from the ∞-bit case), while that

of PBiGAMP-Bussgang is 0.7 dB worse and Golay/LMMSE

is 0.9 dB worse in BER and 10 dB worse in NMSE. With a
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Fig. 6. BER and channel NMSE versus Eb/No in dB for 16-QAM with
4-bit ADC under 60 GHz WLAN “conference room” channel.
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Fig. 7. BER and channel NMSE versus Eb/No in dB for 16-QAM with
3-bit ADC under 60 GHz WLAN “conference room” channel.

2-bit ADC, PBiGAMP’s BER is still nearly indistinguishable

from the PCSI bound (which has degraded 3.2 dB from the

∞-bit case), but the PBiGAMP-Bussgang and Golay/LMMSE

BER traces show a large gap from the PCSI bound at high

Eb/No. The 2-bit NMSE traces are non-monotonic as a result

of the “stochastic resonance” phenomenon [8], [24], referring

to the phenomemon where noise improves the performance of

a nonlinear system [58].

C. BER and NMSE Performance with π/2-BPSK

In our experiments with 1-bit ADC, we found that none of

the schemes under test were able to reliably decode the 16-

QAM transmission described in Sec. V-B. We now show that

1-bit reception is feasible for π/2-BPSK transmissions, which

is a mandatory mode of the 802.11ad standard [2]. For this, we
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Fig. 8. BER and channel NMSE versus Eb/No in dB for 16-QAM with
2-bit ADC under 60 GHz WLAN “conference room” channel.
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Fig. 9. BER and channel NMSE versus Eb/No in dB for π/2-BPSK with
∞-bit ADC under 60 GHz WLAN “conference room” channel.

coded Nb = 896 information bits as before (i.e., at rate R =
1/2 using an irregular LDPC code with average column weight

3). The 1792 coded bits were then randomly interleaved and

Gray-mapped to ND = 1792 symbols using π
2 -BPSK (which

rotates a standard BPSK transmission by π/2 radians each

baud interval for improved PAPR). All other settings were the

same as described earlier.

Figures 9-12 show the bit error rate (BER) and the channel-

estimation normalized MSE (NMSE) versus Eb/No for ADCs

with ∞-bit, 3-bit, 2-bit, and 1-bit precision, respectively. With

an ∞-bit ADC (i.e., no quantization), PBiGAMP achieves a

BER that is nearly indistinguishable from the PCSI bound,

while Golay/LMMSE is 0.9 dB worse in BER and 13 dB

worse in NMSE. With a 3-bit ADC the results are similar:

PBiGAMP and PBiGAMP-Bussgang achieve BERs nearly
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Fig. 10. BER and channel NMSE versus Eb/No in dB for π/2-BPSK with
3-bit ADC under 60 GHz WLAN “conference room” channel.
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Fig. 11. BER and channel NMSE versus Eb/No in dB for π/2-BPSK with
2-bit ADC under 60 GHz WLAN “conference room” channel.

indistinguishable from the PCSI bound (which has degraded

0.3 dB from the ∞-bit case), while Golay/LMMSE is 0.9 dB

worse in BER and 13 dB worse in NMSE. With a 2-bit ADC,

the BERs of PBiGAMP and PBiGAMP-Bussgang are nearly

indistinguishable from the PCSI bound (which has degraded

0.6 dB from the ∞-bit case), while Golay/LMMSE is 1 dB

worse in BER and 13 dB worse in NMSE. With a 1-bit

ADC, PBiGAMP’s BER is still nearly indistinguishable from

the PCSI bound (which has degraded 2.2 dB from the ∞-bit

case), but the PBiGAMP-Bussgang and Golay/LMMSE BER

traces show a large gap from the PCSI bound at high Eb/No.

The 1-bit NMSE traces are non-monotonic as a result of the

“stochastic resonance” phenomenon [54].
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Fig. 12. BER and channel NMSE versus Eb/No in dB for π/2-BPSK with
1-bit ADC under 60 GHz WLAN “conference room” channel.

D. BER versus Runtime with 16-QAM

To assess the computational complexity of PBiGAMP rel-

ative to the benchmark methods, we now present the results

of runtime experiments in Matlab on a 3.3 GHz CPU.4 The

algorithms under test were PBiGAMP, Bussgang-linearized

PBiGAMP, the exact Golay/LMMSE scheme (96)-(99), and

the fast approximate Golay/LMMSE scheme described at the

end of Sec. IV-B. PBiGAMP was terminated at the smallest

iteration t ≥ 7 at which
∑

m,k |x̂mk[t+ 1] − x̂mk[t]|2 <

0.01
∑

m,k |x̂mk[t+1]|2.

Figures 13 and 14 plot BER versus average runtime for

16-QAM modulation and Eb/No = 14 dB at 2-bit and 3-

bit quantization, respectively. The markers in each trace show

the average BER and the average (cumulative) runtime at

the end of each turbo iteration, indexed from 1 through

20. For each Monte-Carlo trial, a parity check was used to

determine whether the BER was zero at the beginning of

each turbo iteration and, if so, the equalization and decoding

operations in that iteration were skipped. Thus, the average

runtime contribution of the ith turbo iteration decrease with

the iteration index i, because it is more likely that the BER

equals zero in later turbo iterations.

Figure 13 shows that, with 2-bit quantization, the fastest

output comes from Golay/LMMSE-Fast after a single turbo

iteration. However, the corresponding BER is relatively poor.

At 2 turbo iterations, PBiGAMP yields a much lower BER

than all other schemes, while consuming the same runtime as

only 3 turbo iterations of Golay/LMMSE-Fast. And PBiGAMP

yields even lower BERs after > 2 turbo iterations. Overall,

Fig. 13 shows that PBiGAMP’s accuracy-complexity tradeoff

is vastly superior to those of the other methods.

Figure 14 shows similar behavior with 3-bit quantization.

As before, Golay/LMMSE-Fast achieves the fastest decoding,

but its BER is relatively poor. After only 2 turbo iterations, the

4The runtimes would be much faster in an ASIC or FPGA implementation.
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Fig. 13. BER versus average runtime for several algorithms with 16-QAM
modulation and 2-bit quantization at Eb/No = 14 dB.
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Fig. 14. BER versus average runtime for several algorithms with 16-QAM
modulation and 3-bit quantization at Eb/No = 14 dB.

BER of PBiGAMP surpasses the BERs achieved by all other

methods. And the time it takes for PBiGAMP to complete

2 turbo iterations is only about 40% more than the time it

takes for Golay/LMMSE-Fast to complete 2 turbo iterations.

So, PBiGAMP gives a significant improvement in BER for a

modest increase in complexity.

Several other observations can be made from Figs. 13-14.

First the fast/approximate LMMSE scheme is much faster

than the exact LMMSE scheme, although it yields slightly

worse BER. Both behaviors are expected. Second, lower BER

translates to faster average runtime per turbo iteration, because

fewer turbo iterations need to be performed. So, more accurate

equalization leads to improvements in runtime.



14

-2 0 2
10-4

10-3

10-2
B

E
R

-2 0 2
-26

-25

-24

-23

-22

-21

-20

-19

-18

N
M

S
E

 (
dB

)
PSfrag replacements

σ2
w mismatch (dB)σ2

w mismatch (dB)

PBiGAMP

PBiGAMP

PBiGAMP-Bussgang

PBiGAMP-Bussgang

Golay/LMMSE

Golay/LMMSE

PCSI

Fig. 15. BER and channel NMSE versus noise-variance mismatch in dB
for 16-QAM with 3-bit quantization under the 60 GHz WLAN “conference
room” channel at Eb/No = 14 dB.

E. Robustness to Noise-Variance Mismatch

Recall that all methods under test take the noise variance

σ2
w as an imput. We now examine robustness to mismatch

between the assumed and true values of σ2
w.

Figure 15 shows the BER and channel-estimation NMSE

versus σ2
w-mismatch in dB for 16-QAM with 3-bit ADC

quantization at Eb/No = 14 dB. The figure shows that, as

the assumed value of σ2
w grows larger than the true σ2

w (i.e.,

the mismatch in dB grows positive), the BERs of all methods

degrade at a similar rate. However, as the assumed value of σ2
w

grows smaller than the true σ2
w (i.e., the mismatch in dB grows

negative), the BERs of all methods slightly improve before

finally degrading. Figure 15 also shows that PBiGAMP’s

channel estimation NMSE slightly degrades in the presence

of noise-variance mismatch, while that of the Golay/LMMSE

scheme remains relatively constant (but far worse than the

value achieved by PBiGAMP).

Importantly, the BER of PBiGAMP closely tracks that of

the perfect-CSI benchmark over the entire range of mismatch.

This is the best possible outcome among schemes that take the

noise variance σ2
w as an input parameter. Of course, it would

be better to learn σ2
w from y rather than trust the supplied value

of σ2
w. As discussed in footnote 1, while extending PBiGAMP

to learn σ2
w should not be difficult, we leave it for future work.

VI. CONCLUSIONS

In this paper we proposed a fast and near-optimal approach

to joint channel-estimation, equalization, and decoding of

coded SC transmissions over frequency-selective channels

with few-bit ADCs. Our approach leverages the PBiGAMP

algorithm to reduce the implementation complexity of joint

channel estimation and symbol decoding to that of a few

FFTs per iteration. Furthermore, it learns and exploits sparsity

in the channel impulse response. Our work is motivated by

millimeter-wave systems with bandwidths on the order of

Gsamples/sec, where few-bit ADCs, SC transmissions, and

fast processing all lead to significant reductions in power

consumption and implementation cost. We demonstrated our

approach using signals and channels generated according to

the IEEE 802.11ad wireless LAN standard, in the case that

the receiver uses analog beamforming and a single ADC. Our

experiments showed that the proposed approach yields BER

almost indistinguishable from the known-channel oracle for

ADCs with as few as 2-bit precision when recovering coded

16-QAM transmissions, and for ADCs with as few as 1-bit pre-

cision when recovering coded BPSK transmissions. Although

it should be possible to recover coded QPSK transmissions

with 1-bit ADCs, none of the schemes considered in this paper

were able to do reliably with the 802.11ad codes and 802.11ad

channels, and thus further work in this direction is warranted.

As future work, it would also be interesting to extend our

method to learn the noise variance σ2
w and to work with

multiple few-bit ADCs, as in digital or hybrid beamforming

systems.
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