
  

 

Abstract— A networked controlled system (NCS) in which the 

plant communicates to the controller over a channel with 

random delay loss is considered. The channel model is motivated 

by recent development of tree codes for NCS, which effectively 

translates an erasure channel to one with random delay. A causal 

transform coding scheme is presented which exploits the plant 

state memory for efficient communications (compression) and 

provides robustness to channel delay loss. In this setting, we 

analyze the performance of linear quadratic Gaussian (LQG) 

closed-loop systems and the design of the optimal controller. The 

design of the transform code for LQG systems is posed as a 

channel optimized source coding problem of minimizing a 

weighted mean squared error over the channel. The solution is 

characterized in two steps of obtaining the optimized causal 

encoding and decoding transforms and rate allocation across a 

set of transform coding quantizers. Numerical and simulation 

results for Gauss-Markov sources and an LQG system 

demonstrate the effectiveness of the proposed schemes. 
 

I. INTRODUCTION 

t is now widely recognized that many of the future 

applications of systems and control, such as those that 

arise in the context of cyber-physical systems, will pertain 

to problems of distributed estimation and control of multiple 

agents such as sensors and actuators over unreliable networks.  

While substantial research has been done on ways of 

constructing channel codes to facilitate reliable 

communications in network control systems (NCS), the 

design of source codes for rate efficient communications in 

such systems is much less explored. This paper presents the 

design of a transform-based source coding scheme for 

networked control systems communicating over channels 

with delay loss.  

    In NCS, one needs to deal with both the typical real-time 

constraints in control systems and the underlying unreliability 

of communications in a simultaneous and systematic way. A 

general framework to study such problems is introduced in [5] 

in the context of interactive communications over noisy 

channels. To solve the problem a new coding paradigm called 

“tree coding” is presented [5]-[7]. Subsequently in [8] the 

problem of stabilizing a plant over noisy links using tree 

codes is considered. To this end, they recognized that to 

stabilize an unstable plant over a noisy channel one needs 

real-time encoding and decoding, and a reliability that 

increases exponentially with delay. In [9], the existence with 

“high probability” of “linear” tree codes is proven and explicit 

codes with efficient encoding and decoding for the erasure 

channel are presented. The tree codes effectively replace a 

lossy link with a (asymptotically lossless) link with random 

delay.  

    In [4], a linear quadratic Gaussian (LQG) control problem 

where there is a lossy channel between the plant and the 

controller is considered. Under some rather general 

conditions, they show that the optimal LQG controller 

“separates” into a state-feedback controller and a “causal 

source coder” where the objective is to causally minimize a 

weighted mean-square-error of the plant state (the particular 

weighting coming from the LQG cost and plant dynamics). 

While this is quite nice, little is known about constructing 

appropriate causal source coding schemes.  

    Transform source coders ideally whiten the source signals 

and produces uncorrelated transform coefficients, which are 

more appropriate for quantization. Such a transform, which is 

known as the Karhunen Loeve transform (KLT), has the 

eigenvectors of the autocorrelation matrix of the source as its 

bases. Taking advantage of transform codes in controls 

applications calls for their equivalent causal counterparts. An 

interesting point is that one may still design a causal transform 

that optimally de-correlates the signal and hence achieves a 

coding gain similar to what is expected of KLT. The penalty 

though is that the transform will no longer be orthogonal and 

we require a more delicate quantization architecture[10]-[12].  

    In this paper, a causal transform code with vector 

quantization is presented for LQG closed-loop systems where 

the plant state is communicated over a channel with random 

delay. We analyze the system performance and the design of 

the optimal controller in this setting. The code is designed to 

minimize a weighted squared error measure and hence 

amounts to a joint source and channel coding or a channel 

optimized source coding scheme. To the best knowledge of 

the authors, this is the first work in this direction. 

   This paper is organized as follows. Section II presents the 

preliminaries including the system and channel models. 

Section III presents the structure of the proposed robust causal 

transform coding schemes. Section IV is devoted to the 

optimized design of controller and robust source coding. 

Performance evaluations of the proposed schemes in isolation 
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and in the context of an LQG system are presented in Section 

V. Section VI concludes the paper.     

II. PRELIMINARIES 

Figure 1 depicts the system model under consideration. We 

consider the following linear quadratic Gaussian plant: 
 

     𝒙𝑡+1 = 𝐹𝒙𝑡 + 𝐺𝒖𝑡 + 𝒘𝑡                
             𝒚𝑡 = 𝐶𝒙𝑡 + 𝒗𝑡 

 

(1) 

where  𝒙𝑡 ∈ ℝ
𝑑 is a vector of states, 𝒖𝑡 ∈ ℝ

 𝑛 is a vector of 

control signal, and 𝒚𝑡 ∈ ℝ
𝑚  is a vector of plant output. The 

terms 𝒘𝑡 ∈ ℝ
𝑑 and 𝒗𝑡 ∈ ℝ

𝑚 are independent and identically 

distributed (iid) zero-mean Gaussian vectors modeling the 

plant and measurement noise, respectively, with covariance 

matrices 𝐾𝒘 and 𝐾𝒗. We have 𝐹 ∈ ℝ𝑑×𝑑, 𝐺 ∈ ℝ𝑑×𝑛, 𝐶 ∈
ℝ𝑚×𝑑 and the pair of (𝐹, 𝐺) is controllable. 

   Assuming the system state is to be communicated over the 

channel, the encoder maps each continuous plant state vector 

to an index in a finite alphabet. More specifically, the plant 

state is sampled with period 𝑇𝑠 and is encoded with a causal 

transform code 𝐴 of length 𝑁 and quantizer set 𝑸. We have 
 

 𝒙𝒄 = ℰ𝐴,𝑸(𝒙) (2) 
 

where 𝒙𝒄 is the encoder output that represents a reconstruction 

codevector, whose index is communicated over a lossy 

channel. In Section IV, we elaborate on the optimized design 

of the causal transform code. 

    We consider a channel model with random independent 

delay. Each encoder output index when communicated over 

the channel is subject to a time varying random independent 

delay 𝛿 which follows an exponential distribution with mean 

1/𝜆, 

 𝑓𝛿(𝛿) = 𝜆𝑒
−𝜆𝛿 . (3) 

 

Other models of channels with delay are available in [13]. 

    The decoder maps back the indices received in time over 

the channel to a signal in ℝ𝑚, i.e., 𝒟: ℐ ⋃  {Erasure}  ⟶ ℝ𝑚. 

In parallel to encoding, the decoding involves a reverse 

quantization that uses the reproduction codebook 𝒞 and a 

transformation 𝐴̂ which is not necessarily equal to 𝐴 because 

of the channel. Hence, we have     
 

              𝒙 = 𝒟𝐴,𝒞(𝒙𝑐) (4) 
 

 

where as shown in Figure 1, 𝒙𝑐 is the channel output.  

If a decoding delay of Δ is acceptable, any communicated 

index that is not available at the time of signal reconstruction 

is assumed erased. Since decoding of each sample relies on 

(up to) the past 𝑁 indexes, while a given index may be 

determined erased at a given decoding time, it may arrive for 

the subsequent decoding. The channel state at time 𝑖 is then 

described by a binary 𝑁 dimensional vector [𝑏𝑖𝑗]𝑗=1
𝑁

, which 

indicates the availability or unavailability of each of the 

indices at the receiver with a one or zero, respectively. 

When there is no channel between plant and controller, i.e., 

under full state observation, the optimal control policy is the 

 

 
Fig. 1. System Model  
 

 

certainty equivalent control. The addition of communication 

channel to the system changes the problem to partially 

observed problem [4]. The LQG cost when plant states are 

sent over the channel turns into the following performance 

metric 

     lim
𝐾→∞

sup
1

𝐾
∑ 𝐸𝑋,𝐵[𝒙̂𝑡′𝑅𝒙̂𝑡 + 𝒖𝑡

′𝑆𝒖𝑡]

𝐾−1

𝑡=0

+ 𝐸𝑋,𝐵[𝒆𝑡
′𝑅𝒆𝑡] 

 
(5) 

 

 

where 𝑅 and 𝑆 are positive definite matrices with appropriate 

dimensions and the pair of (𝐹, 𝑅
1

2) is observable [4]. 

Moreover, 𝒙𝑡 is the decoder output, and the vector 𝒆𝑡 = 𝒙𝑡 −
𝒙𝑡 indicates the state estimation error. Note that if the plant 

output is sent over the channel instead of the states, 𝑅 is 

replaced with 𝑅̅ = 𝐶′𝑅𝐶 in (5), where 𝐶 describes how states 

and plant outputs are related in (1). 
 

III. CAUSAL TRANSFORM CODING STRUCTURE 

In this Section, we elaborate on the structure of causal 

transform code in an LQG networked control system. We 

consider a causal transform coding scheme of length 𝑁. The 

efficiency in such settings is characterized by the trade-off of 

rate and distortion that is typically quantified by mean squared 

error.  

   Figure 2 depicts the structure of the causal transform code. 

Within this structure, the encoder and decoder are designed 

by identifying the encoding matrix 𝐴, the decoding matrix 𝐴̂, 

and 𝑁 vector quantizers and their rates 𝑟𝑖 , 𝑖 = 1, … , 𝑁. The 

encoding matrix 𝐴 is an 𝑚𝑁 ×𝑚𝑁 unit diagonal lower 

triangular coding matrix 
 

𝐴 =

(

 
 

𝐼𝑚×𝑚 0
𝐴21 𝐼𝑚×𝑚 

⋯   
0           0
0           0

⋮ ⋱ ⋮
𝐴(𝑁−1)1 𝐴(𝑁−1)2
𝐴𝑁1 𝐴𝑁2

⋯
𝐼𝑚×𝑚 0
𝐴𝑁(𝑁−1) 𝐼𝑚×𝑚 )

 
 
,  

where  

𝐴𝑗𝑖 =

(

 

𝛼𝑗𝑖,1 0 … 0

0 𝛼𝑗𝑖,2 … 0

⋮
0

0
0

⋱
…

⋮
𝛼𝑗𝑖,𝑚)

 . 

 

𝐼𝑚×𝑚 is an 𝑚 ×𝑚 identity matrix. The decoding matrix 𝐴̂ is 

another 𝑚𝑁 ×𝑚𝑁 unit diagonal lower triangular matrix with 

the same structure as 𝐴 where:  
 

𝐴̂𝑗𝑖 =

(

 
 

𝛼′𝑗𝑖,1 0 … 0

0 𝛼′𝑗𝑖,2 … 0

⋮
0

0
0

⋱
…

⋮
𝛼′𝑗𝑖,𝑚)

 
 

 



  

 
Fig. 2. Structure of encoder, channel and decoder. 
 

The quantization noise may be considered as an additive noise 

vector 𝒒 of size 𝑚𝑁 × 1. The encoding operation in Figure 2 

may be described by 
 

 𝒙𝑐 = 𝐴
−1(𝒙 + 𝒒), (6) 

where 𝒙 and 𝒙𝑐 are the 𝑚𝑁-dimensional vectors of successive 

encoder input and output symbols, respectively.  

Each vector quantizer is allocated 𝑟𝑖 bits satisfying 

1

𝑁
∑𝑟𝑖

𝑁

𝑖=1

= 𝑟, 

 

     (7) 

where  𝑟 is the average encoder bitrate.   

At the decoder, the maximum allowable delay tolerated for 

reconstruction of each component is defined based on the 

requirements of the control system. Because of the ladder 

structure, the construction and reconstruction of each 

component affects the subsequent ones. At the time that the 

𝑖’th element of the transform coding frame is to be 

reconstructed, the 𝑗'th element (𝑗 ≤ 𝑖) has a maximum 

allowable delay of ∆ + (𝑖 − 𝑗)𝑇𝑠, and as a result 𝑝𝑟{𝑏𝑖𝑗 =

0} = 𝑝𝑟{𝛿𝑗𝑖 > ∆ + (𝑖 − 𝑗)𝑇𝑠}. For our channel model, based 

on (3) we have: 
 

     𝑃𝑟{𝛿𝑗𝑖 > ∆ + (𝑖 − 𝑗)𝑇𝑠} = e
−𝜆(∆+(𝑖−𝑗)𝑇𝑠).  (8) 

 
We define 𝑝𝑟{𝑏𝑖𝑖 = 0} = 𝑝𝑟{𝛿𝑖𝑖 > ∆} = 𝑝 and refer to it as 

delay violation probability in simulations. Note that for the 

reconstruction of elements that appear later in the transform 

coding frame, greater delay in reception of earlier elements 

could be tolerated.  

    To describe the decoder output, we present the channel 

state information (discussed in Section II) within a transform 

coding frame with the following matrix:   
 

𝐵 =

(

 
 

𝐵11 0
𝐵21 𝐵22

⋯             
0         0
0         0

⋮ ⋱ ⋮
𝐵(𝑁−1)1 𝐵(𝑁−1)2
𝐵𝑁1 𝐵𝑁2

⋯  
𝐵(𝑁−1)(𝑁−1)  0

𝐵𝑁(𝑁−1) 𝐵𝑁𝑁)

 
 
, 

where 

 

𝐵𝑖𝑗 =

(

 

𝑏𝑖𝑗 0 … 0

0 𝑏𝑖𝑗 … 0

⋮
0

0
0

⋱
…

⋮
𝑏𝑖𝑗)

  

  
 
 (9) 

 
 

where as stated 𝑏𝑖𝑗 ∈ {0,1}, 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑁 is a Bernoulli  

random variable indicating the (un)availability of transform 

coding element 𝑗 at the decoder for the reconstruction of 

element 𝑖; 𝑏𝑖𝑗 = 0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁.  

    It is straightforward to verify that the 𝑚𝑁-dimensional 

reconstructed vector at the receiver may now be described as 

follows 
 

      𝒙 = (𝐴̂ ∘ 𝐵)𝒙𝑐 = 𝐻𝒙𝑐 = 𝐻𝐴
−1(𝒙 + 𝒒)  (10) 

                                  

where 𝐻 = 𝐴̂ ∘ 𝐵 and operator ∘ is element-wise Hadamard 

production.  
 

IV. CONTROLLER AND ROBUST SOURCE CODING 

DESIGNS 

In this section, the design of controller and robust causal 

transform coding for closed-loop LQG problem is presented.  

A. Optimal Control Policy 

Before dealing with the design, we consider the following 

definition. 

 

Definition: The control is said to have no-dual effect if for 

all {𝒖𝑡} and ∀𝑡, we have 
 

 𝐸{𝒆𝑡
′𝒆𝑡|𝒙𝑐

𝑡 , 𝒖𝑡−1} =  𝐸{𝒆𝑡
′𝒆𝑡|𝒙𝑐

𝑡}     (11) 
 

which implies that control has no role in reducing state 

uncertainty at the decoder or equivalently control has no 

effect on the second term of (5). In (11), 𝒖𝑡−1 =
(𝒖𝟏, 𝒖𝟐, … , 𝒖𝑡−1). The following proposition elaborates on 

optimal control policy when the robust causal transform code 

is utilized over the delay loss channel model presented.    

 

    Proposition 1: For a closed-loop LQG system with causal 

transform coding accompanying fine quantization and 

decoder reconstruction in (10), the subsystem from encoder to 

the decoder could be modeled by a block fading channel with 

additive independent noise and  the optimal control policy is 

certainty equivalent control law.  
 

Proof: Considering equation (9), it is evident that the block 

consisting of the encoder, the channel and the decoder is a 

fading channel with additive noise 
     

        𝒙 = 𝐻𝐴−1𝒙 + 𝐻𝐴−1𝒒 = 𝐻𝑒𝑞𝒙 + 𝒏𝑒𝑞    (12) 
 

where 𝐻𝑒𝑞 = (𝐴̂ ∘ 𝐵)𝐴
−1 is a lower triangular fading matrix 

which is constant over a transform coding frame, 𝑁, but varies 

frame to frame. When fine quantization assumption is 

invoked, the quantization noise, 𝒒, is independent of the input 

signal, 𝒙. Hence, the RHS of (12) indicates a block fading 

equivalent channel model for the encoder, lossy channel and 

the decoder. Such a model satisfies the requirements of 

lemma 5.2.1 in [16], and as a result the no-dual effect holds. 

And hence, the optimal control policy is certainty equivalent 

control law 𝒖𝑡 = 𝐿𝒙𝑡 [4] where, 
 

 𝐿 = −(𝐺′𝑃𝐺 + 𝑆)−1𝐺′𝑃𝐹 

 
      (13) 

in which 𝑃 is a matrix that satisfies the following Riccati 

equation 



  

 𝑃 = 𝐹′(𝑃 − 𝑃𝐺(𝐺′𝑃𝐺 + 𝑆)−1𝐺′𝑃)𝐹 + 𝑅.      (14) 

∎ 
     

Corollary 1: For small delay violation probability, 𝑝 → 0, the 

robust causal transform encoder, the lossy channel and the 

corresponding decoder can be modeled as an equivalent  

channel with additive independent noise, i.e., 
 

𝒙 = 𝒙 + 𝒒. 
 

Proof: In Proposition 1, as 𝑝 → 0, 𝐵𝑖𝑗 ≈ 𝐼, 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑁 in 

(9) and 𝐴̂ ≈ 𝐴 and 𝐻𝑒𝑞 ≈ 𝐼.  

∎ 
 

B. Code Design Problem Formulation and Analysis 

We here investigate the design criteria for the robust causal 

transform code based on the control policy prescribed in 

Proposition 1. We also analyze the performance of the closed-

loop LQG system with robust causal transform coding.  

We consider the partially observed LQG problem of (1). As 

stated in [4], this could be converted to a fully observed LQ 

problem with 𝒘̅ = 𝐸[𝐹𝒆𝑡 +𝒘𝑡|𝒖, 𝒙𝑐
𝑡+1]. Hence, the 

covariance of this equivalent matrix is   

 

 𝐾𝒘̅ = 𝐹
′Λ𝐹 + 𝐾𝒘 − Λ   (15) 

where Λ = Λ𝑡 = Cov(𝒆𝑡) and the optimal LQ cost is equal to 

𝑡𝑟(𝑃𝐾𝒘̅) .  
Considering (5) and (15) we have 
 

lim
𝐾→∞

sup
1

𝐾
∑𝐸𝑋,𝐵[𝒙𝑡′𝑅𝒙𝑡 + 𝒖𝑡

′𝑆𝒖𝑡]

𝐾−1

𝑡=0

+ 𝐸𝑋,𝐵[𝒆𝑡
′𝑅𝒆𝑡]      

       
(16.a) 

           = 𝑡𝑟(𝑃𝐾𝒘̅) + 𝑡𝑟(𝑅Λ) (16.b) 

         = 𝑡𝑟(𝑃(𝐹′Λ𝐹 + 𝐾𝒘 − Λ)) + 𝑡𝑟(𝑅Λ) (16.c) 

         = 𝑡𝑟(𝑃𝐾𝒘) + 𝑡𝑟((𝐹
′𝑃𝐹 − 𝑃 + 𝑅)Λ). (16.d) 

 

In fact, the effect of coding scheme on both terms of (16.a) 

has been collected in the second term of (16.d) to provide us 

with a criterion for code design. Based on this analysis, we 

consider the arithmetic mean of the weighted mean square 

error between the plant states and the decoder outputs as the 

joint source channel coding design criteria 
 

       AM −WMSE =
1

𝑚𝑁
𝐸𝑋,𝐵[‖𝒙 − 𝒙‖𝑀

2
] (17) 

                              =
1

𝑚𝑁
 𝐸𝑋,𝐵[(𝒙 − 𝒙)′𝑀(𝒙 − 𝒙)]         

 

Comparing equations (16.d) and (17), according to causal 

transform coding structure the weight matrix is  𝑀 is given by 
 

𝑀 =

(

 

𝑅𝑒𝑞 0 … 0

0 𝑅𝑒𝑞 … 0

⋮
0

0
0

⋱
…

⋮
𝑅𝑒𝑞)

  

Where 

    𝑅𝑒𝑞 = 𝐹
′𝑃𝐹 − 𝑃 + 𝑅.                          (18) 

The weight matrix 𝑀 depends on the LQG cost and system 

matrices and indicates that while different components of a 

transform coding frame are equally weighted (over time), the 

elements within each vector may be weighted differently. 

   Formally for a given channel and channel code the desired 

robust transform code design problem is formulated as a 

distortion-rate optimization problem as follows 

min
𝐴,𝐴,{𝑟1,𝑟2,...,𝑟𝑁}

     
1

𝑚𝑁
𝐸𝑋,𝐵[‖𝒙 − 𝒙‖𝑀

2
] 

 

(19) 

𝑠. 𝑡. : 
1

𝑁
∑𝑟𝑖

𝑁

𝑖=1

= 𝑟 
 

This means specifically identifying the optimized causal 

transform 𝐴𝑚𝑁×𝑚𝑁, the corresponding decoding transform 

𝐴̂𝑚𝑁×𝑚𝑁 , and the rates of the associated 𝑁 quantizers 
{𝑟1, 𝑟2, . . . , 𝑟𝑁} over the lossy channel. 

The analysis in (16) and the Proposition 1 enable the analysis 

of the LQG closed-loop system performance with robust 

causal transform coding and in presence of delay loss in 

communications. The following Proposition presents this 

result. 
 

Proposition 2: For a closed-loop LQG system with causal 

transform coding accompanying fine quantization and 

decoder reconstruction in (10), the LQG cost when the plant 

state is sent over the channel is given by 
 

𝑡𝑟(𝑃𝐾𝒘) + 𝑡𝑟(𝐸𝐵[(𝐼 − 𝐻𝑒𝑞)′𝑅𝑒𝑞(𝐼 − 𝐻𝑒𝑞)]𝐾𝒙)

+ 𝑡𝑟(𝐸𝐵[𝐻
′
𝑒𝑞𝑅𝑒𝑞𝐻𝑒𝑞]𝐾𝒒) 

(20) 
 

where, 𝐾𝒙 and 𝐾𝒒 are plant state and quantization error 

covariance matrices.  
 

Proof: From Proposition 1, we have  
 

𝒆 = (𝐼 − 𝐻𝑒𝑞)𝒙− 𝒏𝑒𝑞 

And 

𝐸𝑋,𝐵[𝒆′𝑅𝑒𝑞𝒆] = 𝐸𝑋,𝐵 [((𝐼 − 𝐻𝑒𝑞)𝒙 − 𝒏𝒆𝒒)
′
𝑅𝑒𝑞 ((𝐼 − 𝐻𝑒𝑞)𝒙 − 𝒏𝒆𝒒)] 

                    = 𝐸𝑋,𝐵 [𝒙′(𝐼 − 𝐻𝑒𝑞)
′
𝑅𝑒𝑞(𝐼 − 𝐻𝑒𝑞)𝒙] 

                            −2𝐸𝑋,𝐵 [𝒙
′(𝐼 − 𝐻𝑒𝑞)

′
𝑅𝑒𝑞 𝒏𝑒𝑞] + 𝐸𝑋,𝐵 [𝒏

′
𝑒𝑞𝑅𝑒𝑞𝒏𝑒𝑞] 

 

                     = 𝐸𝑋,𝐵 [𝒙′(𝐼 − 𝐻𝑒𝑞)
′
𝑅𝑒𝑞(𝐼 − 𝐻𝑒𝑞)𝒙] 

                        −2𝐸𝑋,𝐵 [𝒙
′(𝐼 − 𝐻𝑒𝑞)

′
𝑅𝑒𝑞𝒏𝑒𝑞] + 𝐸𝑋,𝐵 [𝒒′𝐻′𝑒𝑞𝑅𝑒𝑞𝐻𝑒𝑞𝒒] 

The second term of above with fine quantization assumption 

is zero, hence 

            𝑡𝑟(𝑅𝑒𝑞Λ) = lim
𝐾→∞

sup
1

𝐾
∑ 𝐸𝑋,𝐵[𝒆𝑡

′𝑅𝑒𝑞𝒆]
𝐾−1
𝑡=0  

                               = 𝑡𝑟(𝐸𝐵[(𝐼 − 𝐻𝑒𝑞)
′
𝑅𝑒𝑞(𝐼 − 𝐻𝑒𝑞)]𝐾𝒙)  

                                   + 𝑡𝑟(𝐸𝐵[𝐻
′
𝑒𝑞𝑅𝑒𝑞𝐻𝑒𝑞]𝐾𝒒) 

where, 𝐾𝒙 and 𝐾𝒒 are the plant state and quantization error 

covariance matrices. Hence , the optimal LQG cost will be 
 

           𝑡𝑟(𝑃𝐾𝒘) + 𝑡𝑟(𝐸𝐵[(𝐼 − 𝐻𝑒𝑞)
′
𝑅𝑒𝑞(𝐼 − 𝐻𝑒𝑞)]𝐾𝒙) 

                             +𝑡𝑟(𝐸𝐵[𝐻
′
𝑒𝑞𝑅𝑒𝑞𝐻𝑒𝑞]𝐾𝒒) 

∎ 
Note that using Proposition 2, given the transform coding 

matrices, the LQG system parameters and the covariance of 

the quantization noise, one may numerically analyze the 



  

system performance. The statistics of the quantization error 

with fine quantization (asymptotic regimes) have been studied 

in, e.g., [17].  
 

Remark: In the setting of Corollary 1, when the delay 

violation probability is small, the LQG cost in Proposition 2 

simplifies as follows 

                         𝑡𝑟(𝑃𝐾𝒘) + 𝑡𝑟(𝑅𝑒𝑞𝐾𝒒)       
 

C. Code Design Scheme 

The robust source coding design optimization problem in 

(19) does not lend itself to a direct closed-from solution, due 

to the nonlinearity of the quantizers and the closed-loop 

structure of the system. Instead, we take a two-step 

approximate solution. To obtain 𝐴∗ and 𝐴̂∗, we consider fine 

quantization and invoke a numerical optimization approach in 

line with the non-gradient direct search method of Hooks and 

Jeeves [14]. Next, given the optimized transform matrices, we 

obtain the optimized rate allocation scheme to the set of 

quantizers.  

A very good initial point for the search algorithm is the 

causal transform corresponding to the ideal (lossless) 

communication aka the Prediction-based lower triangular 

transform (PLT) scheme [12]. Once optimized solutions of 𝐴∗ 

and 𝐴̂∗ are available in (19), it is straight forward to verify that 

the quantization rate allocation problem may be posed as a 

weighted quantization error [3] problem. We have  
 

 
min

{𝑟1,…,𝑟𝑁}
   
1

𝑚𝑁
 𝐸𝐵{𝒒′𝑊𝒒}
 

 

𝑠. 𝑡. : 
1

𝑁
∑𝑟𝑖

𝑁

𝑖=1

= 𝑟 

 
 
 (21) 

where, 𝑊 = (𝐻𝐴−1)′𝑀(𝐻𝐴−1). For a symmetric and 

positive definite 𝑊, decomposing 𝑊 = 𝑍′𝑍 with 𝑍 a lower 

triangular matrix, (21) coverts to an unweighted quantization 

error problem. The optimal bit allocation with fine 

quantization assumption using Karush–Kuhn–Tucker (KKT) 

conditions is 
 

 
𝑟𝑖
∗ = 𝑟 +

1

2
log2

𝜎̂𝑖
2

(∏ 𝜎̂𝑘
2𝑁

𝑘=1 )
1
𝑁

 , 𝑖 = 1,2, … , 𝑁 
 
(22) 

 

where, 𝜎̂𝑖
2  = [det (𝐸𝐵 [Cov (𝒅𝑖𝑒𝑞)])]

1

𝑚
  , 𝒅𝑖𝑒𝑞 = 𝑍𝒅𝑖  and 𝒅𝑖  

is the vector of inputs of the 𝑖-th quantizer. To derive (22), it 

has been assumed that the quantizer dimensions and input 

distributions are the same (here Gaussian). Note that in 

presence of the channel, even if we have 𝑀 = 𝐼, we still face 

a weighted quantization error problem as 𝑊 ≠ 𝐼.  
   Note that in the lossless scalar case, the rate allocation in 

(22) coincides with what was obtained in [12] for the PLT 

structure. It is noteworthy that the optimized rate allocations 

in (22) are obtained without regard to the non-negativity or 

possible integer constraints on quantization rates. In practice, 

one may resort to heuristic techniques to impose such 

constraints on the obtained results. In [2], related algorithms 

for the case of classic transform codes (non-causal) are 

reported. 

D. Structured Encoding and Decoding Matrices 

   In addition to optimized matrices for Robust Causal 

Transform Code (RC-TC), structured coding and decoding 

matrices could also be considered for reduced design and 

implementation complexity. One interesting structure is the 

unit diagonal lower triangular and Toeplitz matrices for 

coding and decoding. Such an encoding matrix is given by 
 

𝐴𝑇𝑜𝑒𝑝𝑙𝑖𝑡𝑧 =

(

 
 

𝐼𝑚×𝑚 
𝐴21

0
𝐼𝑚×𝑚 

 …    0            0
 …    0            0

𝐴31 𝐴21  ⋱    0            0
⋮
𝐴𝑁1

𝐴31
…

𝐴21
𝐴31

𝐼𝑚×𝑚     0
𝐴21 𝐼𝑚×𝑚 )

 
 

 

 

We refer to this as the Robust Toeplitz Causal Transform 

Code (RTC-TC). In RC-TC, because of the unit diagonal 

lower triangular structure there are 𝑚(𝑁2 − 𝑁) optimization 

variables whereas in the case of RTC-TC there are only  

2𝑚(𝑁 − 1) variables. This difference in complexity is 

considerable for large 𝑁. 

 

V. PERFORMANCE RESULTS 

    In this Section, we study the performance of the proposed 

robust causal transform code (RC-TC) and the robust Toeplitz 

causal transform code (RTC-TC) for communication of a 

Gauss-Markov source over a lossy channel. We also 

investigate the performance of the proposed schemes in an 

LQG system. For comparisons, we consider plain 

quantization (no transform coding), and PLT [12] schemes. 

 

A. Robust Causal Transform Coding 

   We experimented with two scalar (𝑚 = 1) GM sources with 

orders 1 and 10 [15]. We here report the first order case where 

the source is zero mean with unit variance and coefficient 

equal to 0.9. We compare the AM-MSE performance (𝑀 =
𝐼) for the four schemes. In the analysis, the covariance matrix 

𝐾𝒒 is set based on 𝜎𝑞𝑖
2 = 𝑐2−2𝑟𝑖𝜎𝑑𝑖

2  for a Gaussian source, 

where 𝑐 is a constant depending on the type of quantizer [1]. 

Figure 3 shows the analytic and simulated AM-MSE 

performance results for the source. One sees that the 

performance of PLT structure is better than that without 

coding. In addition, the proposed RC-TC and RTC-TC 

schemes still improve the performance. According to the 

conducted simulations, the transform coding schemes provide 

a higher gain for coding of sources with higher orders, which 

may be attributed to their stronger memory structure. It is 

noteworthy that the RTC-TC provides a performance very 

similar to that of the RC-TC, albeit with much smaller 

(design) complexity especially for large values of 𝑁. herefore, 

in subsequent simulations we will focus on the RTC-TC.  

Our experiments (not reported here) reveal that RTC-TC 

and RC-TC with higher transform dimensions have better 

performance. A larger 𝑁 allows the transform to exploit the 

source dependencies more effectively and provides a greater 

opportunity for the delayed arrival of previous symbols at the 

cost of increased complexity. 

 



  

 
Fig. 3. Performance of different schemes for 𝑁 = 6, 𝑟 = 5, ∆= 50 

msec and 𝑇𝑠 =
∆

4
.   

 

B. Robust Causal Transform Coding in NCS 

   In this part, we examine the performance of the proposed 

robust causal transform coding schemes in a closed-loop LQG 

system. We consider the following LQG system 
 

 {
𝑥𝑛+1 = 1.49𝑥𝑛 + 0.05𝑢𝑛 + 𝑤𝑛

𝑦𝑛 = 𝑥𝑛 + 𝑣𝑛
 

(23) 

For this system, 𝑅 = 1, 𝑀 = 1 and variances of 𝑤𝑛 and 𝑣𝑛 

are 0.01 and 0.001, respectively. For numerical optimization 

of causal transform coding matrices, the plant states may be 

modeled approximately by a first order GM source with 

coefficient 0.8677.  

Figure 4 depicts the LQG cost of the system in (23) for the 

four schemes and 𝑁 = 8, 𝑟 = 5, ∆= 0.05sec and 𝑇𝑠 =
∆

4
. As 

evident, the proposed schemes significantly reduce the LQG 

cost of the system and enhance the resilience of the system to 

the delay loss over the channel.  

VI. CONCLUSIONS 

    The main purpose of this paper has been to design robust 

causal transform codes for networked control systems 

communicating over a channel with delay loss. Two channel 

optimized coding scheme were proposed which provide a 

trade-off of performance and complexity of design and 

implementation. The suggested schemes exploit the 

dependencies in the plant state for efficient communications 

(compression) and provide robustness to channel loss. We 

also analyzed the performance and the design of optimal 

controllers with fine quantization. Numerical results and 

simulations demonstrate the effectiveness of the presented 

schemes for closed-loop LQG systems and the effect of 

design parameters.  
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