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A Computationally Tractable Implementation of
Pointwise Minimum Norm State-Feedback Laws for Hybrid Systems

Ricardo G. Sanfelice

Abstract—We propose a computationally tractable implemen-
tation of state-feedback laws for hybrid systems given by dif-
ferential equations capturing the continuous dynamics or flows,
and by difference equations capturing the discrete dynamics
or jumps. By exploiting the availability of a control Lyapunov
function, along with other properties of the system, we show
that pointwise minimum norm control laws can be implemented
in a sample-and-hold fashion, with events triggered by timers,
to render a desired compact set semiglobally and practically
asymptotically stable. Examples illustrate the results.

I. INTRODUCTION

We consider the problem of controlling hybrid plants,
namely, dynamical systems with a state, denoted z, that flows
according to

ż = FP (z, uc)

for a given input uc and that jumps according to

z+ = GP (z, ud)

for a given input ud. Without yet making precise what a
solution means and when flows or jumps occur, our goal is
to design state-feedback laws for these systems that exploit
the existence of a quantity V – a control Lyapunov function
– that can be made to decrease along solutions, both during
flows and jumps, by properly choosing the control inputs.
More precisely, given a smooth enough function z 7→ V (z),
design uc so that during flows

〈∇V (z), FP (z, uc)〉 < 0

and design ud so that at jumps

V (GP (z, ud))− V (z) < 0

where by “< 0” we mean negative definiteness relative to
a desired compact set that is to be rendered asymptotically
stable. Note that due to the presence of variables such as
timers, logic variables, and memory states, the origin is of
little interest in stabilization of hybrid systems.

While theoretical results guaranteeing the existence of such
feedback laws are informative [1], our goal in this paper is to
devise a computationally tractable way1 to choose the inputs
uc and ud using feedback. To this end, we propose hybrid
algorithms that are able to stabilize a class of hybrid systems
by implementing event-driven mechanisms that sample the
state of the plant, compute the control signal, and assign it
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1By computationally tractability of an algorithm, we mean that a computer
can calculate the outcome of the algorithm in a reasonable amount of time;
see [2, Chapter 8].

to the inputs. More precisely, we show that, under the avail-
ability of a control Lyapunov function and certain properties
of the hybrid system, a static state-feedback with pointwise
minimum norm allows for a time-triggered, sample-and-hold
type implementation that guarantees semiglobal practical sta-
bilization of a desired compact set. The interest in implemen-
tations of pointwise minimum norm feedback laws is because
such laws require the solution of an optimization problem,
which can seldom be solved analytically or implemented
in continuous time. We propose an implementation of such
feedback laws that gives the optimization solver a finite
amount of time to terminate. The implementation uses two
timers, one to trigger the computations of the feedback laws
and another to take samples of the state of the plant. In this
time-triggered implementation, the events occur periodically
and is essentially a sample-and-hold implementation of the
feedback law. The proposed construction uses ideas from [3]
for sample-and-hold of hybrid feedbacks for the control of
continuous-time systems. The overall proposed approach of
solving an optimization problem to compute the feedback
laws controlling a hybrid system is also related to the
receding horizon control approach, though in our setting, an
expression of the feedback law is available. We are not aware
of previous computational approaches for the control of the
general class of hybrid systems modeled as in [4].

The remainder of the paper is organized as follows. After
a brief section on preliminaries, Section III presents the
proposed implementation and associated properties of the
closed-loop system. The effect of discretization in the
solutions to the closed-loop system and its robustness are
discussed in Section III-A and Section III-B, respectively.
Examples are given in Section IV.
Notation: Rn denotes n-dimensional Euclidean space, R
denotes the real numbers. R≥0 denotes the nonnegative real
numbers, i.e., R≥0 = [0,∞). N denotes the natural numbers
including 0, i.e., N = {0, 1, . . .}. B denotes the closed unit
ball in a Euclidean space. Given a set K, K denotes its clo-
sure. Given a set S, ∂S denotes its boundary. Given x ∈ Rn,
|x| denotes the Euclidean vector norm. Given a set K ⊂ Rn
and x ∈ Rn, |x|K := infy∈K |x− y|. Given x and y, 〈x, y〉
denotes their inner product and [x>y>]> is equivalently
represented by (x, y).s A function α : R≥0 → R≥0 is said to
belong to class-K∞ if it is continuous, zero at zero, strictly
increasing, and unbounded. A function β : R≥0 × R≥0 →
R≥0 is a class-KL function, also written β ∈ KL, if it
is nondecreasing in its first argument, nonincreasing in its
second argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0,
and lims→∞ β(r, s) = 0 for each r ∈ R≥0. Given a closed
set K ⊂ Rn × U? with ? being either c or d and U? ⊂
Rm? , define Π(K) := {x : ∃u? ∈ U? s.t. (x, u?) ∈ K }
and Ψ(x,K) := {u : (x, u) ∈ K } . That is, given a set
K, Π(K) denotes the “projection” of K onto Rn while,



given x, Ψ(x,K) denotes the set of values u such that
(x, u) ∈ K. Then, for each x ∈ Rn, define the set-valued
maps Ψc : Rn ⇒ Uc, Ψd : Rn ⇒ Ud as Ψc(x) := Ψ(x,C)
and Ψd(x) := Ψ(x,D), respectively. Given a map f , its
graph is denoted by gph(f).

II. PRELIMINARIES

In this section, we recall some concepts and results from
[4], [5].

A. Hybrid plant, controller, and closed-loop system
We consider plants modeled as a hybrid system with state

denoted z ∈ RnP and dynamics

HP
{
ż = FP (z, uc) (z, uc) ∈ CP
z+ = GP (z, ud) (z, ud) ∈ DP

(1)

where (CP , FP , DP , GP ) is the data. Specifically, the set
CP ⊂ RnP ×Uc is the flow set, the map FP : RnP ×Rmc ⇒
RnP is the flow map, the set DP ⊂ RnP × Ud is the jump
set, and the map GP : RnP × Rmd ⇒ RnP is the jump
map. The space for the state is RnP and the space for the
input u = (uc, ud) is U = Uc × Ud, where Uc ⊂ Rmc and
Ud ⊂ Rmd .

The state z of the hybrid system HP can include multiple
logic variables, timers, memory states as well as physical
(continuous) states, e.g., z = (q, τ, ξ) is a state vector with
a state component given by a logic variable q taking values
from a discrete set Q, a state component given by a timer
τ taking values from the interval [0, τ∗], where τ∗ > 0 is
the maximum allowed value for the timer, and with a state
component ξ ∈ Rnc representing the continuously varying
state – note that in such a case, Q × [0, τ∗] × Rnc can be
embedded in RnP for nP = 1 + 1 + nc.

We will design a hybrid controller HK with the same
structure as the hybrid plant, but with state denoted ζ and
the jump map being set valued. When controlling a hybrid
plant, the feedback interconnection will result in a hybrid
system without inputs. The model of this closed-loop system
is given in the next section.

The hybrid system HP under the effect of the hybrid
controller HK leads to a closed-loop system given by a
hybrid system, which we denote Hcl.

Solutions to a hybrid systems H are given in terms of
hybrid arcs and hybrid inputs on hybrid time domains; see
[4].

For a hybrid system H, a compact set A is said to be pre-
asymptotically stable if for each ε > 0 there exists δ > 0
such that each maximal solution φ starting from A + δB
satisfies φ(t, j) ∈ A + εB for each (t, j) ∈ domφ, and
there exists µ > 0 such that each maximal solution starting
from A + µB is bounded and the complete ones satisfy
limt+j→∞ |φ(t, j)|A = 0. When the attractivity property
holds for any µ > 0, we say that A is globally pre-
asymptotically stable.

B. Well-posedness
We will require the hybrid plant and the resulting closed-

loop system Hcl to satisfy the following mild properties. We
state these conditions for a general hybrid systemH with data

(C,F,D,G), which reduce to conditions for the closed-loop
system when the inputs are removed.

Definition 2.1 (hybrid basic conditions): A hybrid system
H is said to satisfy the hybrid basic conditions if its data
(C,F,D,G) is such that

(A1) C and D are closed subsets of Rn×Uc and Rn×Ud,
respectively;

(A2) F : Rn×Rmc ⇒ Rn is outer semicontinuous rela-
tive to C and locally bounded, and for all (x, uc) ∈ C,
F (x, uc) is convex and nonempty.

(A3) G : Rn×Rmd ⇒ Rn is outer semicontinuous rela-
tive to D and locally bounded, and for all (x, ud) ∈ D,
G(x, ud) is nonempty.

Since the flow map and the jump map of the hybrid plant
HP are single valued, FP and GP satisfy (A2) and (A3),
respectively, when they are continuous.

C. Control Lyapunov functions and pointwise min-norm
feedback

Next, we recall the concept of control Lyapunov function
for hybrid systems; see [1] for more details.

Definition 2.2 (control Lyapunov function): Given a com-
pact set A ⊂ RnP and sets Uc ⊂ Rmc ,Ud ⊂ Rmd ,
a continuous function V : RnP → R, continuously dif-
ferentiable2 on an open set containing Π(C) is a control
Lyapunov function with U controls for the hybrid plant
HP = (CP , FP , DP , GP ) if there exist α1, α2 ∈ K∞ and
a positive definite function α3 such that

α1(|z|A) ≤ V (z) ≤ α2(|z|A) (2)
∀z ∈ Π(CP ) ∪Π(DP ) ∪GP (DP ),

inf
uc∈Ψc(z)

〈∇V (z), FP (z, uc)〉 ≤ −α3(|z|A) (3)

∀z ∈ Π(CP ),

inf
ud∈Ψd(z)

V (GP (z, ud))− V (z) ≤ −α3(|z|A) (4)

∀z ∈ Π(DP ).

Given a hybrid system H satisfying the hybrid basic
conditions, a compact set A, and a control Lyapunov function
V satisfying Definition 2.2, define, for each r ∈ R≥0, the set

I(r) := {z ∈ RnP : V (z) ≥ r } .

Moreover, for each (z, uc) ∈ RnP × Rmc and r ∈ R≥0,
define the function

Γc(z, uc, r) :=


〈∇V (z), FP (z, uc)〉+

1

2
α3(|z|A)

if (z, uc) ∈ CP ∩ (I(r)× Rmc),
−∞ otherwise

and, for each (z, ud) ∈ RnP×Rmd and r ∈ R≥0, the function

Γd(z, ud, r) :=


V (GP (z, ud))− V (z) +

1

2
α3(|z|A)

if (z, ud) ∈ DP ∩ (I(r)× Rmd),
−∞ otherwise.

2The locally Lipschitz case can be treated similarly using the (Clarke)
generalized directional derivative.



Then, respectively, evaluate the functions Γc and Γd at points
(z, uc, r) and (z, ud, r) where r = V (z) to define the
functions

(z, uc) 7→ Υc(z, uc) := Γc(z, uc, V (z)),
(z, ud) 7→ Υd(z, ud) := Γd(z, ud, V (z))

(5)

and the set-valued maps

Tc(z) :=Ψc(z) ∩ {uc ∈ Uc : Υc(z, uc) ≤ 0 } ,
Td(z) :=Ψd(z) ∩ {ud ∈ Ud : Υd(z, ud) ≤ 0 } . (6)

In [5], we established that pointwise minimum norm
control laws can be designed to pre-asymptotically stabilize
the compact set

Ar := {z ∈ RnP : V (z) ≤ r } (7)

In fact, under appropriate assumptions, the feedback laws

ρc(z) := arg min {|uc| : uc ∈ Tc(z) } (8)
ρd(z) := arg min {|ud| : ud ∈ Td(z) } (9)

guarantee a pre-asymptotic stability property of Ar. When
certain conditions hold for each r > 0, then the feedback
pair (ρc, ρd) is continuous and renders Ar pre-asymptotically
stable for a restriction of HP to I(r), while when further
conditions hold, the feedback pair is also continuous and
renders Ar pre-asymptotically stable, even with r = 0.

In the remainder of this paper, we will assume that the
feedback pair (ρc, ρd) in (8)-(9) is continuous and renders
a given compact set A ⊂ RnP globally pre-asymptotically
stable.

III. IMPLEMENTATION OF POINTWISE MINIMUM-NORM
CONTROL LAWS

We propose an implementation of the feedback pair
(ρc, ρd) in (8)-(9) using timers and memory states, which
resembles the sample-and-hold paradigm. Let τs ∈ [0, Ts]
and τu ∈ [0, Tu] be timers, `s ∈ RnP be a memory state
storing a sample of the state z, `c ∈ Rmc be a memory state
storing the value of the flow control law ρc, and `d ∈ Rmd

be a memory state storing the value of the jump control law
ρd, respectively. The parameters Tu and Ts determine the
time elapsed between updates of the memory variables and
reset of the timers. These variables are used to implement
the following logic:
• At every Ts units of time, store the value of the state z

in `s and compute the control laws;
• At every Tu units of time:

– Update `c to the computed control law ρc if the
stored value of the state and of the control law for
flows are nearby the flow set;

– Update `d to the computed control law ρd if the
stored value of the state and of the control law for
jumps are nearby the jump set;

Since the samples of z as well as the stored values of ρc
and ρd may not always belong to the regions where these
functions are defined, we treat ρc and ρd as set-valued maps
that are empty outside of these regions and use continuous
functions δc : RnP × RnP → [0, δ] and δd : RnP → [0, δ],
δ > 0, to determine how far from these regions the state and
the memorized values of the feedbacks can be while still

allowing the closed-loop system to evolve. More precisely,
updates of `c will occur when τu = 0 and

(`s + δc(`s, `c)B, `c + δc(`s, `c)B) ∩ CP 6= ∅ (10)

in which case `c will be updated to a point in3

Kc(`s, `c) := {`′c : `′c = ρc(`
′
s), `

′
s ∈ `s + δc(`s, `c)B,

(`′s, `c + δc(`s, `c)B) ∩ CP 6= ∅}
(11)

Note that (10) holds when (`s, `c) is δc(`s, `c) close to points
in CP . Though Kc collects all values of ρc around those
points, one only needs to compute one such value of ρc
at one such point. Moreover, one would typically pick the
function δc to be zero in CP , at which points Kc would be
single valued, and nonzero outside of CP , so as to permit the
solutions to continue evolving nearby CP ; see Section III-A
for more details on this issue.

Similarly, `d will be updated when τu = 0 and (`s +
δd(`s, `d)B, `d + δd(`s, `d)B) ∩ DP 6= ∅, in which case `d
will be updated to a point in

Kd(`s, `d) := {`′d : `′d = ρd(`
′
s), `

′
s ∈ `s + δd(`s, `d)B,

(`′s, `d + δd(`s, `d)B) ∩DP 6= ∅}
(12)

Combining the above constructions, the state of the
controller implementing this logic is denoted as ζ =
(τs, τu, `s, `c, `d) ∈ [0, Ts]×[0, Tu]×Rn×Rmc×Rmd =: OK
and its input is denoted v ∈ RnP . The controller HK =
(CK , FK , DK , GK , κK) is given by the following data:
• Flow set:

CK := {ζ ∈ OK : τs ∈ [0, Ts], τu ∈ [0, Tu] }

• Flow map:

FK(ζ) := (1, 1, 0, 0, 0) ∀ζ ∈ CK

• Jump set:

DK := DK,s ∪DK,c ∪DK,d

where
DK,s := {ζ ∈ OK : τs = Ts }

DK,c := {ζ ∈ OK : τu = Tu,
(`s + δc(`s, `c)B, `c + δc(`s, `c)B) ∩ CP 6= ∅}

and

DK,d := {ζ ∈ OK : τu = Tu,
(`s + δd(`s, `d)B, `d + δd(`s, `d)B) ∩DP 6= ∅}

• Jump map:

GK(ζ, v) := GK,s(ζ, v) ∪GK,c(ζ) ∪GK,d(ζ)

where
GK,s(ζ, v) = (0, τu, v, `c, `d)

for all ζ ∈ DK,s and v ∈ RnP , and empty everywhere
else;

GK,c(ζ) = (τs, 0, `s,Kc(`s, `c), `d)

3An alternative approach is to project the states `s and `c to the flow set
when nearby it.



for all ζ ∈ DK,c and v ∈ RnP , and empty everywhere
else; and

GK,d(ζ) = (τs, 0, `s, `c,Kd(`s, `c))

for all ζ ∈ DK,c and v ∈ RnP , and empty everywhere
else.

• Output map: ζ 7→ κK(ζ) given by κK(ζ) = (`c, `d).
The closed-loop system is defined by the assignments

uc = `c, ud = `d, v = z

and is given by the following hybrid system:

Hcl



[
ż

ζ̇

]
=

[
FP (z, `c)
FK(ζ)

]
(z, `c) ∈ CP , ζ ∈ CK ,[

z+

ζ+

]
=

[
GP (z, `d)

ζ

]
(z, `d) ∈ DP , ζ 6∈ DK ,[

z+

ζ+

]
∈

[
z

GK(ζ, z)

]
(z, `d) 6∈ DP , ζ ∈ DK ,[

z+

ζ+

]
∈

{[
GP (z, `d)

ζ

]
,

[
z

GK(ζ, z)

]}
(z, `d) ∈ DP , ζ ∈ DK ,

This closed-loop system model enforces flows when both
flows of the plant and controller are possible, and allows
jumps according to the three possible conditions triggering
a jump: jumps due to being in the jump set of the plant but
not of the controller (first difference equation), jumps due to
being in the jump set of the controller but not of the plant
(next difference inclusion), and jumps due to being in both
the jump set of the plant and of the controller (last difference
inclusion).

Theorem 3.1: Suppose that the hybrid plant HP =
(CP , FP , DP , GP ) in (1) satisfies the hybrid basic conditions
and that GP (DP ) ∩Π(DP ) = ∅. Let A,K ⊂ RnP be com-
pact sets, r and ∆ be given positive numbers, and (ρc, ρd) be
a globally pre-asymptotically stabilizing continuous feedback
pair given as in (8)-(9), where V is a control Lyapunov
function for HP with U controls, with associated compact
set A, functions α1, α2 ∈ K∞, and positive definite function
α3. Suppose that either

1) for some λ̃ > 0

λ̃V (z) ≤ α3(|z|A) ∀z ∈ LV (∆)

or
2) for some k > 0

α3 ◦ α−1
2 (s) ≥ ks ∀s ≥ 0

Then, for every ε > 0 there exist β ∈ KL and positive
parameters Ts, Tu, and δ such that each solution φ to Hcl
with z component φz , φz(0, 0) ∈ K ∩ LV (∆), satisfies

|φz(t, j)|Ar ≤ β(|φz(0, 0))|Ar , t+j)+ε ∀(t, j) ∈ domφ
(13)

Sketch of Proof: The closed-loop system satisfies the hybrid
basic conditions – this follows by its construction and the fact
thatHP satisfies the hybrid basic conditions and the feedback
pair (ρc, ρd) is continuous. Let r > 0 and ∆ > 0 be given.
Since GP (DP )∩Π(DP ) = ∅ and I(r)∩LV (∆) is compact,
by arguments similar to those in establishing [6, Lemma 2.7],

there exist T > 0 such that every solution φ to the closed-
loop system that starts from I(r) ∩ LV (∆) has jump times
tj satisfying tj+1 − tj ≥ T for all j ∈ N \ {0}.

Now, let λs, λu > 0 to be fixed later and define

W (z, ζ) := exp(λsτs) exp(λuτu)V (z) (14)

During flows of Hcl, we have

〈∇W (z, ζ),

[
FP (z, `c)
FK(ζ)

]
〉 ≤ (λs + λu)W (z, ζ)

− exp(λsτs) exp(λuτu)
1

2
α3(|z|A)

+ exp(λsτs) exp(λuτu)χ(z, e1)

where e1 := `c − ρc(z) and

χ(z, e1) := |∇V (z)| |FP (z, ρc(z) + e1)− FP (z, ρc(z))|

The function χ is continuous and vanishes with e1. It follows
that for each ε > 0, there exists δ1 > 0 such that

|χ(z, e1)− χ(z, 0)| = χ(z, e1) ≤ ε ∀e1 ∈ δ1B (15)

Then, there exists δ > 0 and c ∈ (0, 1) such that, on
{z ∈ RnP : δ ≤ V (z) ≤ ∆ },

χ(z, e1) ≤ c(λs + λu)V (z)

Using the upper bound on V , we get

〈∇W (z, ζ),

[
FP (z, `c)
FK(ζ)

]
〉 ≤ (1 + c)(λs + λu)W (z, ζ)

− exp(λsτs) exp(λuτu)
1

2
α3(|z|A)

Then, using the assumptions on α2, α3, and V , and picking
λs and λu positive and small enough, there exists λ′ > 0
such that

〈∇W (z, ζ),

[
FP (z, `c)
FK(ζ)

]
〉 ≤ −λ′W (z, ζ)

At jumps, we have the following:
• If (z, `d) ∈ DP , ζ 6∈ DK ,

W (GP (z, `d), ζ)−W (z, ζ) =
exp(λsτs) exp(λuτu)(V (GP (z, `d))− V (z))

Using smoothness of the functions, we have that there
exist positive δ2 and δ3 such that

W (GP (z, ρd(`s)), ζ)−W (z, ζ) ≤
− 1

4 exp(λsτs) exp(λuτu)α3(|z|A)
(16)

for each (z, `s, `d) such that |`s − z| ≤ δ2 and |`d −
ρd(`s)| ≤ δ3.

• If (z, `d) 6∈ DP , ζ ∈ DK,c ∪ DK,d, for any ρu ∈
[exp(−λuTu), 1), we have

W (z,GK(ζ))−W (z, ζ) ≤ −(1− ρu)W (z, ζ)

• If (z, `d) 6∈ DP , ζ ∈ DK,s, for any ρs ∈
[exp(−λsTs), 1),

W (z,GK(ζ))−W (z, ζ) ≤ −(1− ρs)W (z, ζ)

• If (z, `d) ∈ DP , ζ ∈ DK , for each η ∈{[
GP (z)
ζ

]
,

[
z

GK(ζ)

]}
, we have that, if η =



(GP (z), ζ), then W (η)−W (z, ζ) is bounded as in (16),
while if η = (z,GK(ζ)), from the above bounds, we
have that

W (η)−W (z, ζ) ≤ −(1−max{ρs, ρu})W (z, η)

for each (z, `s) such that |`s − z| ≤ δ2 and |`d −
ρd(`s)| ≤ δ3.

Then, combining the bounds above on the change of W and
using the lower bound on V , there exists a positive definite
function α4 such that at jumps

W (η)−W (z, ζ) ≤ −α4(|z|A)

for each

η ∈
{[
GP (z)
ζ

]
,

[
z

GK(ζ)

]}
for each (z, `s) such that |`s−z| ≤ δ2 and |`d−ρd(`s)| ≤ δ3.

The bounds during flows above are guaranteed to hold
when

e1 = `c − ρc(z), e2 := `s − z, e3 := `d − ρd(`s)

are smaller than δ′′ := min{δ1, δ2, δ3}. Under the stated
assumptions, the following result establishes that for each
given δ′′ > 0 the parameters Ts and Tu can be appropriately
chosen so that for each maximal solution φ to the closed-loop
system from I(r) ∩ LV (∆), there exists (T ∗, J∗) ∈ domφ
such that the trajectory e := (e1, e2, e3) obtained from the
solution φ, which we denote as φe = (φe1 , φe2 , φe3), has
components bounded by δ′′ after (T ∗, J∗) amount of hybrid
time. The claim follows by combining this property with the
properties of W stated above.

A. On the Effect of Discretization on Maximal Solutions and
their Completeness

In the proposed time-triggered implementation, we have
that after a jump due to τu = Tu, (z, `+c ) is in CP or nearby
it. Then, since ˙̀

c = 0, the state z may flow to a value
from where, for the current held value of `c, the solution
may not be able to further evolve due to the definitions
of CP and DP (neither by flowing, because the state and
input pair reaches a point in CP from where flowing is not
allowed, nor by jumping, because the state and input pair
reaches a point that is not in DP ). Note that the property
guaranteed by Theorem 3.1 is for maximal solutions of the
closed-loop system, which are not necessarily complete. As
typically done for hybrid systems, completeness of maximal
solutions is a property that needs to be checked separately
from the Lyapunov inequalities; see [4, Proposition 6.10] for
a set of checkable conditions to assure that maximal solutions
are complete. In some cases, these issues can be resolved
by enlarging the sets using the functions δc, δd, augmenting
the plant dynamics to points nearby CP and DP , and by
exploiting the continuity of the CLF so that its properties
hold in a larger region while sacrificing some of the negativity
within the CLF bounds.

B. On the Robustness Properties of the Closed-loop System
The controller HK in Section III is such that, if HP

satisfies the hybrid basic conditions, then the resulting closed-
loop system also satisfies the hybrid basic conditions. This
fact already implies that the closed-loop system has structural
robustness properties to small perturbations. In particular,
[4, Proposition 6.14] and [4, Proposition 6.34] assure that,
over finite time horizons, small perturbations on the initial
conditions and on the data of the closed-loop system change
the behavior of the solutions only slightly. The latter kind
of perturbations allows for uncertainty in the model of the
hybrid plant and of the controller, such as unmodeled plant
dynamics and uncertainty in the values of Ts and Tu, as
well as the presence of small external disturbances, such as
small noise in the samples of z and in the computation of
the feedback laws; see [4, Definition 6.27] for more details.

IV. NUMERICAL EXAMPLES

Example 4.1 (impact control of a pendulum): We illustrate
our results in the control of a point-mass pendulum impacting
on a controlled slanted surface. Denote the pendulum’s angle
(with respect to the vertical) by z1 and the pendulum’s
velocity (positive when the pendulum rotates in the coun-
terclockwise direction) by z2. When z1 ≥ µ with µ denoting
the angle of the surface, its continuous evolution is given by

ż1 = z2, ż2 = −a sin z1 − bz2 + τ,

where a > 0, b ≥ 0 capture the system constants (e.g.,
gravity, mass, length, and friction) and τ corresponds to
torque actuation at the pendulum’s end. For simplicity, we
assume that z1 ∈ [−π2 ,

π
2 ] and µ ∈ [−π2 , 0]. Impacts between

the pendulum and the surface occur when

z1 ≤ µ, z2 ≤ 0.

At such events, the jump map takes the form

z+
1 = z1 + ρ̃(µ)z1, z+

2 = −e(µ)z2,

where the functions ρ̃ : [−π/2, 0] → (−1, 0) and e :
[−π/2, 0] → [0, 1) are continuous and capture the effect
of pendulum compression and restitution at impacts, respec-
tively, as a function of µ. As done in [5, Example 4.2], these
hybrid dynamical system can be written as a hybrid plant HP
as in (1). Furthermore, with A = {(0, 0)}. the function

V (z) = z>Pz, P =

[
2 1
1 1

]
is a CLF for HP .

For given r > 0, a pointwise minimum norm control can
be employed to asymptotically stabilize Ar. For this purpose,
following Theorem 3.1, we implement the controller HK and
the plant HP in the Hybrid Equations Toolbox [7] to obtain
the closed-loop simulations shown in Figure 1. 4 For the
computation of the feedback laws via (11) and (12), we use
fmincon to find the optimizers. The large planar plot shows
that the resulting trajectory (blue with ?’s) is close to the
optimal trajectory (green) – the ?’s indicate the instants when
computations of ρc take place. The small snapshot in Figure 1

4Code at https://github.com/HybridSystemsLab/CLFPendComp

https://github.com/HybridSystemsLab/CLFPendComp


shows that the resulting trajectories approach the nominal
one (solid, green) as the computation time parameter Tu gets
smaller (Ts = 0.1 and r = 0.0015 in all simulations).
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Fig. 1. Closed-loop trajectories (and zoom in) to the pendulum system
on the plane starting from z(0, 0) = (2,−10) and evolving within{
z ∈ R2 : V (z) ≥ r

}
, r = 0.0015: ideal trajectory (solid, green),

Tu = 0.1 (?, blue), Tu = 0.01 (?, red), Tu = 0.005 (?, green),
Tu = 0.001 (?, magenta).

Example 4.2 (experimenting with resetting timers): Con-
sider the hybrid system with state z := (τ1, τ2) ∈ [0, τ̄ ] ×
[0, τ̄ ] =: [0, τ̄ ]2, with τ1, τ2 being timer states with threshold
τ̄ > 0 and input u1 and u2. The state z evolves contin-
uously according to the flow map FP (z) := (1, 1) when
z ∈ CP := [0, τ̄ ]2. The state z jumps when any of the timers
expires, namely, when max{τ1, τ2} = τ̄ . If τi expires, then
it is reset to zero while τj is reset to uj , where i, j ∈ {1, 2},
i 6= j. According to [8], a similar model can be used to
capture the hybrid dynamics of spiking neurons for the study
of synchronization and desynchronization – the models in
[8] essentially make a specific state-dependent choice of
the inputs according to the so-called phase response curve
associated to the type of neuron. Motivated by such appli-
cations, we are interested in the asymptotic stabilization of
the set A := {z ∈ CP : |τ1 − τ2| = k }, which, for k = 0,
corresponds to the two timers asymptotically synchronizing
and, for an appropriate k > 0, would correspond to the
two timers being desynchronized. Without using the explicit
constructions of the sets Ψ? and the function α3, we define
the function

V (z) = min {|z2 − z1 + k| , |z2 − z1 − k|}

and numerically experiment with the static state-feedback law
(ρc, ρd) as in Section III by computing the minimizer of V
after jumps. The range of possible valued for ui at jumps
are taken to be zi + γB, where γ > 0 characterizes the size
of input ranges allowed. From the initial condition z(0, 0) =
(0.6, 0.3) and with k = 0, Figure 2(a) shows a solution5 for
γ = 0.8 and Figure 2(b) shows a solution for γ = 0.95.
These plots indicate that solution components get closer to
synchronization as the range of the inputs gets larger. Perfect
synchronization can be achieved when γ ≥ 1. Figure 2(c)
shows a solution from z(0, 0) = (0.6, 0.5) with k = 0.5

5Code at https://github.com/HybridSystemsLab/CLFTimersComp

and γ = 0.05. Even though the range of inputs is small, the
feedback at jumps is capable of desynchronizing the solutions
since small input values can steer the solution components
to desynchronization.
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(a) k = 0, γ = 0.8
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(b) k = 0, γ = 0.95
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Fig. 2. Control of two timers with resets for synchronization (in (a)) and for
desynchronization (in (b) and (c)).

V. CONCLUSION

We established that the availability of a control Lyapunov
function enables event-driven implementations of a state-
feedback law with pointwise minimum norm for hybrid
systems. Granted the optimization problem has a solution,
which is guaranteed by the assumptions imposed in our
results, the proposed implementation guarantees computa-
tional tractability as it allows a finite amount of time for
computations to terminate. A particular challenge to the
implementation is guaranteeing that maximal solutions to the
closed loop are complete. Current research efforts focus on
corollaries for special cases of the dynamics of the hybrid
plants.
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