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Abstract— The economic management of a microgrid can
greatly benefit from energy storage systems (ESSs), which may
act as virtual load deferral systems to take advantage of the
fluctuations of energy prices and accommodate for demand-
production mismatches caused by the scarce predictability
of renewable sources. In a distributed energy management
scenario, an ESS may serve multiple users, a setting which calls
for the development of suitable resource allocation policies for
the storage capacity. In particular, distributed control policies
are of interest, where each user operates independently with
the least exchange of information with the other users. A
methodology is developed in the paper for such purpose, based
on an iterative resource allocation mechanism, realized by
means of a negotiation process among users, resembling stock
exchange dynamics. The resulting distributed strategy for the
management of the shared resource comes close to optimality
at a low computational cost, which is affordable in large
scale practical applications. It is also robust to communication
failures between users.

I. INTRODUCTION

Electrical energy production and distribution systems are

undergoing a dramatic revolution with a generalized increase

in energy demand, and a shift towards a highly distributed

generation scenario, where traditional big production plants

are complemented by many medium/small-size energy pro-

duction systems, geographically widely distributed at the

consumers sites and directly used for their own energy

needs. To further complicate the picture, the latter are often

associated to renewable energy sources, such as solar and

eolic, characterized by limited predictability. In this scenario,

the users are not plain consumers anymore, but play also the

role of energy providers, in that they can sell to the main

grid the production in excess. The traditional distribution

network, with a mono-directional energy flow from the

production plants to the consumers is thus replaced by a

network of bidirectional flows. In this framework, the energy

management problem must be addressed in a distributed

fashion, where each user actively operates to optimize its

own economic benefit, limiting to a minimum the interaction

and information exchange with the other users.

The users, with their loads and energy generators, are

organized in entities called “microgrids” with a common

connection to the grid. Given the high variability and the

limited predictability of the loads and generators, an es-

sential element of a microgrid is an energy storage system
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(ESS), which smooths the production/demand mismatch in

the microgrid and can act as energy buffer or as a means

of virtual load deferral, at the same time reducing network

congestion [1]. For example, the advantages of integrating a

battery with a wind farm facility have been investigated in

[2], [3]. The ESS allows to store energy when the production

exceeds the demand and subsequently consume the stored

energy when production is insufficient to meet the demand.

It can also be employed to reduce the overall energy cost,

since energy need not be bought on load request, but when

the price is lower, to be stored for later usage. For example,

the optimal usage of the ESS for electricity trading with the

grid is discussed in [4]. The importance of the ESS can be

further appreciated in the presence of constraints on the load

tracking error or on the energy exchange with the grid (in

the form of hard or soft tolerance levels).

ESSs add flexibility to the energy management system,

but are typically expensive resources, especially compared to

their actual usage. From the perspective of a single user the

energy storage is seldom charged at full capacity. A different

consumer with different energy requirements could then

benefit from it when not employed by the first user. More in

general, a smart cooperation of multiple energy consumers

with different needs would certainly decrease these usage

inefficiencies and increase the return on investment of the en-

ergy storage resource. To this aim, it is however necessary to

develop appropriate resource sharing strategies, to establish

what fraction of the storage system to assign to the individual

users depending on their consumption/production profiles, so

as to use the resource efficiently and avoid excessive costs.

This work fits in this scope and pursues the objective of

developing a distributed algorithm for the sharing of an ESS.

The optimal solution to the optimal dynamical distribution

of the storage resource can be obtained in a centralized,

full information setting that takes into account all the users

energy requirements. However, this is not necessarily the

more convenient approach in practice, due to the high

computational demand of centralized algorithms, especially

in large scale problems, and considering also the implied loss

of privacy (all users are required to release full information

on their consumption profiles). Furthermore, implicit in a

centralized scheme is that failure to provide such information

even for a single user can impair the optimization algorithm.

In other words, the centralized scheme relies on a faultless

connection network.

We here seek a distributed solution to this problem,

based on a Multi-Agent Resource Allocation mechanism

[5], capable of ensuring fairness among the users [6] while



aiming at the optimization of the overall system performance.

Each user performs a separate optimization, exchanging only

minimal information with the other users. This is achieved by

an iterated negotiation process, whereby the users adapt their

shares of the resource. This negotiation procedure involves

pair-wise agreements between the users that result in a re-

shaping of the respective storage capacity allocation profiles

at each iteration. This distributed scheme breaks down the

complexity of the optimization problem, by decomposing

it into smaller ones associated to the individual users, and

leaving it to the negotiation process to set individual bounds

for the shared resource. The proposed method approaches the

performance of the target centralized scheme, and provides

a robust way to deal with information failures.

The rest of the paper is organized as follows. A de-

scription of the system under consideration is provided in

Section II. The centralized problem setting is discussed in

Section III. The proposed decentralized control scheme for

solving the shared resource allocation problem is formulated

and addressed in Section IV. Section V is devoted to the

analysis of some case studies. Finally, Section VI presents

some conclusions and discusses possible implications of the

presented results.

II. SYSTEM DESCRIPTION

A. Batteries

A battery energy storage system (BESS) is made up

of a set of interconnected small-power battery modules to

achieve a desired electrical characteristic. In conventional

microgrids, the BESSs are “charged” when the supply from

the distributed generation sources exceeds the load demand.

They deliver the absorbed energy, or “discharge” when the

supply to the microgrid is insufficient. They can also be used

to curtail the energy cost by buying and storing energy during

light-load periods (when the price is typically lower), and

making it available later at peak-load times. Such economic

benefit can be achieved provided that the BESS efficiency

ηB exceeds the energy cost ratio:

ηB >
Clow

Chigh

,

where ηB = Ed
Ec

, Ec and Ed representing respectively the total

energy supplied to the BESS during charging and the total

energy delivered back when fully discharging the BESS, and

Clow and Chigh are the minimum and maximum energy cost,

respectively.

A BESS is essentially characterized by the following set

of parameters [7]:
Pmax

B maximum charging/discharging power

TB maximum discharging time under power Pmax
B

QB maximum discharging capacity (= Pmax
B TB)

ηB round-trip efficiency

CL life span (in cycles)
The level of charge in the battery is measured by the

State Of Charge (SOC), that takes values in [0,1]. The SOC

is updated periodically by accumulating electrical energy

flowing through the battery stack:

SOC(t +1) = SOC(t)+∆SOC,

where t is a time index and ∆SOC is the variation of the

SOC during one time period.

Besides the capital cost, associated to the one-time invest-

ment required to bring the BESS into an operative status,

other operating costs must be taken into account when

purchasing a battery. These are connected to the energy

losses due to battery inefficiencies (ηB ranges from 65%

to 85%), as well as system operation, maintenance and

replacement costs.

The BESS costs can be reduced for each energy consumer

by sharing the BESS amongst several users. This operation

will not only decrease the investment amount, but also

increase the return on asset acquisition. Indeed, in a multi-

user setting it is more convenient to invest on a single large

shared BESS, rather than multiple private ones (with an

overall equal storage capacity), provided that each user’s

share of the BESS is dynamically adapted to its current actual

needs (compatibly with those of the other users). To achieve

this result, however, a dynamical resource allocation problem

must be solved, in order to optimally distribute the storage

capacity among the users over time.

Regarding the storage allocation problem among the users,

we are interested in solutions that guarantee both efficiency

and fairness. Efficiency requires that the resource should

not, at any moment, be under-exploited. This implies that:

a) the chosen allocation should be such that there is no

alternative arrangement that is improving for some users

and not worsening for the others (Pareto optimality), and

b) the sum of all payoffs is maximal (utilitarianism). The

fairness property requires that all users should get returns in

proportion to their investments.

B. Microgrid configuration and user characterization

In this work, we consider a system that consists of a

grid providing electrical energy to several buildings which

have different energy requirements to fulfill, i.e. a number

of commercial and residential buildings that need electrical

energy to implement the daily demands of energy consumers,

and an energy storage facility available to all users (see

Fig. 1). The power generated by the power plant (or bought

from the grid) can be directly absorbed by the end users

or employed to charge the energy storage. Accordingly,

the energy consumers can obtain electricity from either the

power plant or the energy storage system.

To characterize the users’ energy requirements we make

here reference to data on building loads collected by the

US Department of Energy for their System Advisor Model

(SAM) program [8]. The energy request of a building varies

widely depending on its category. For example, a house-

hold usually has more devices on early in the morning, in

the evening, and during the weekend, while an office is

commonly running during the day and only five days per

week. In other words, two users of these categories would

typically have out-of-phase load requests. It is precisely this



Fig. 1. Configuration of the microgrid system.

difference that can be exploited by the approach proposed

here. For this reason, we will consider users of three different

typologies, namely residential buildings, small hotels and

office buildings. The corresponding energy requirements [8]

are depicted in Fig. 2 over a period of 3 days (data have

been rescaled to be of comparable amplitudes). Most of the

energy consumption of the residential building occurs in the

afternoon with a peak around hour 17 and the lowest point at

night. The energy consumption of the small hotel typically

presents one smaller peak in the mornings and a larger one in

the evenings. Finally, the office building has a more uniform

consumption profile during working hours and displays a

reduced energy consumption throughout the whole weekend.

With such different profiles it is expected that these buildings

should present very different requirements for the storage

capacity.
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Fig. 2. Energy requirement profiles for a residential building (black), a
small hotel (blue), and an office building (red).

Finally, the energy cost is assumed variable according to

the graph of Fig. 3, [9].
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Fig. 3. Daily variation of energy prices.

III. THE CENTRALIZED CONTROL CASE

Prior to formulating the distributed control problem, it is

convenient to address a centralized problem setting, in which

the storage facility manager operates in the interest of the

community of consumer buildings as a whole, minimizing

the overall cost. In the centralized framework fairness among

the individual users is not necessarily a concern, the overall

benefit of the community being the objective. Nevertheless,

it is always true that the optimal centralized solution can also

enforce fairness if a suitable revenue redistribution strategy

is adopted a posteriori. Therefore, it provides a consistent

benchmark for the distributed design.

The optimal economic management of the microgrid can

be achieved by minimizing the following cost function

J =
T

∑
t=1

N

∑
i=1

ci(t)(Gi(t)+Ci(t)), (1)

where Gi(t) is the direct energy transfer from the grid to the

ith user at time t and Ci(t) is the energy taken from the grid to

charge the battery share of the ith user at time t, all expressed

in kWh, so that Gi(t)+Ci(t) is the total energy bought from

the grid by the ith user at time t, at price ci(t) ≥ 0. Notice

that the energy cost is not only a function of time, but may

vary also with the consumer category.

In expression (1) time t is measured in hours, T denoting

the optimization horizon, and N is the number of users

involved in the decision process. In the following we will

assume that energy can only be bought from the grid (Ci(t)≥
0 and Gi(t)≥ 0).

The following constraints must be fulfilled in the opti-

mization process. First of all, the energy Si(t)≥ 0 stored in

the BESS for the ith user at each time step t must respect

the following dynamic equation:

Si(t +1) = Si(t)+Ci(t)−Di(t), i = 1, . . . ,N, (2)

where Di(t)≥ 0 is the energy discharged from the battery to

the ith user at time t. The stored energy must also respect

the following bound at every time t:

Si(t)≤ S̄i(t), i = 1, . . . ,N, (3)

where S̄i(t) is the storage share of the ith user for time slot t.

At each time instant the following equality constraint holds:

N

∑
i=1

S̄i(t) = S̄, (4)

S̄ denoting the maximum battery capacity.

In addition, the charging and discharging variables are

bounded from above by the maximum energy quantities that

can be charged and discharged in a time period, denoted

respectively C̄ and D̄. For simplicity and fairness we will

assume equal bounds for all the users:

Ci(t)≤ C̄/N, i = 1, . . . ,N (5)

Di(t)≤ D̄/N, i = 1, . . . ,N (6)

The more general case where the individual bounds appear-

ing in the previous equation are also subject to adaptation

will be considered in a subsequent work.

Finally, we will assume that the energy request Li(t)≥ 0

of each user is exactly met at each time step t, taking the



necessary energy either from the grid or the BESS, which

implies that Gi(t) equals:

Gi(t) = Li(t)−Di(t), i = 1, . . . ,N. (7)

Notice that the non-negativity conditions on all the involved

energy variables imply that Di(t) ≤ Li(t) and Gi(t) ≤ Li(t),
i = 1, . . . ,N.

The equality constraint (7) just defined allows one to elim-

inate variable Gi(t) from the formulation, leaving Ci(t) and

Di(t) as the decision variables. Indeed, the basic decisions

that the control system has to take concern when and at

what rate to charge the BESS, given the battery constraints,

the SOC, and the energy cost. Notice finally that Ci(t) and

Di(t) should never be simultaneously strictly positive, which

can be enforced a posteriori by subtracting min(Ci(t),Di(t))
from both variables in the optimal solution (the value of

the cost function is not modified since it depends on the

difference Ci(t)−Di(t)).
Notice that the formulation can be easily extended to

account for the users selling energy to the grid, or to include

distributed and/or renewable energy generators. However, the

focus is here on the allocation of the shared resource, so these

extensions have been overlooked for the time being.

IV. THE DISTRIBUTED SETTING

The distributed setting formulates the energy management

problem in a slightly different way, in that each individual

user is in charge of its own energy management and has a

pre-assigned share of the battery, proportional to its invest-

ment in that facility. Some flexibility is allowed in the use

of the battery, in that one user can rent part of its storage

share to other users provided that a suitable compensation is

obtained in return.

This requires a two-layer optimization scheme, where the

lower layer is devoted to the economic optimization of each

individual user for some given battery shares, and the upper

layer modifies the battery shares based on a negotiation

process.

A. Individual economic optimization

Let us first assume that the battery shares (in terms of max-

imum storage availabilities) S̄i(t), i = 1, . . . ,N, t = 1, . . . ,T ,

are assigned. Obviously, such assignments must comply with

condition (4). Then, the individual economic optimization

problem for the ith user can be formulated as follows:

min Ji =
T

∑
t=1

ci(t)(Li(t)+Ci(t)−Di(t)) (8)

subject to:

Si(t +1) = Si(t)+Ci(t)−Di(t)

Si(t)≤ S̄i(t)

Ci(t)≤ C̄/N

Di(t)≤ D̄/N

where, as before, variables Ci(t), Di(t), and Si(t), are non-

negative. Notice that problem (8) relative to user i is com-

pletely decoupled from the other users, once S̄i(t) is assigned

for t = 1, . . . ,T .

Let J◦i denote the optimal value of Ji. Then, the sum

∑N
i=1 J◦i can be interpreted as the optimal overall cost associ-

ated to the battery sharing distribution defined by coefficients

S̄i(t), i = 1, . . . ,N, t = 1, . . . ,T . A second optimization layer

must therefore be added to establish the optimal distribution

of the shared resource.

B. Negotiation process for the optimization of the resource

shares

In the interest of achieving a distribution of the shared

resource among the users without having to resort to a

super-user responsible of managing the storage facility based

on full information on the users’ load requirements, some

kind of communication between the actors is needed. The

objective is to find a communication protocol that can lead

the different agents to behave so as to reach the most efficient

redistribution of the resource and maximize the savings

for the entire system. A secondary, but not less important

objective, consists in solving the problem with the least

possible information exchange between the agents.

The basic negotiation process involves a pair of users and

focuses on adapting the storage capacity S̄i(t) at each time

step, with the objective of improving the overall solution. As

explained later, this basic negotiation scheme provides the

cornerstone for devising multi-user negotiation processes.

1) Negotiation involving a pair of users: In a negotiation

between users i and j, user i bids for a portion of storage

of user j at some given time instants. The following scheme

is adopted to establish if the transaction has to take place.

Both users perform an initial optimization with the original

storage capacity shares, resulting in costs J◦i and J◦j . Then,

the ith agent repeats the evaluation with an increase in the

storage capacity bound

S̄new
i (t) = S̄i(t)+∆S, ∀t

where ∆S represents a fixed small portion of the storage. We

denote the updated cost J◦ new
i . By construction, J◦ new

i ≤ J◦i .

If there is a strict gain, let T bid
i = {t ∈ {1, . . . ,T} | Snew

i (t)>
S̄i(t)} be the set of time steps where the original storage

bound of user i has been exceeded by the solution Snew
i of the

updated problem with increased storage capacity. Then, T bid
i

is communicated to user j, that repeats the optimization with

less capacity wherever requested by agent i. More precisely,

S̄new
j (t) = S̄ j(t)−∆S, ∀t ∈ T bid

i .

The resulting cost J◦ new
j is communicated back to user i.

Briefly, the bid results in an increase in S̄i(t), t ∈ T bid
i and a

corresponding equivalent decrease in S̄ j(t). This modification

is acceptable if the gain that user i can realize thanks to this

bound relaxation exceeds the loss of user j resulting from

the tightening of its bound, i.e.:

−∆J◦i > ∆J◦j ,

where ∆J◦i = J◦ new
i − J◦i ≤ 0 and ∆J◦j = J◦ new

j − J◦j ≥ 0 are

the performance variations induced by the modifications in

the storage shares. To make the bargain advantageous for

both users, user j is compensated of its loss, and both users



share equally the residual economic benefit. In other words,

the following corrections are applied to the individual cost

functions:

J̃◦ new
i = J◦ new

i + ci j

J̃◦ new
j = J◦ new

j − ci j

where

ci j =
∆J◦j −∆J◦i

2
.

It is easy to verify that both J̃◦ new
i < J◦i and J̃◦ new

j <
J◦j hold. Also, the benefits for both users are equal, i.e.

J̃◦ new
i − J◦i = J̃◦ new

j − J◦j . Notice that the compensation term

ci j does not influence the underlying optimization process

(i.e., repeating the optimization with Ji + ci j instead of Ji as

a cost function, yields the same solution). Also, the presence

of the compensation terms does not affect the overall cost

(J̃◦ new
i + J̃◦ new

j = J◦ new
i + J◦ new

j ).

2) Negotiation involving multiple users: In the case of

multiple users all possible pair-wise bids are evaluated in

terms of the net economic advantage achievable. The corre-

sponding values are stored in a matrix:

G =











0 g12 . . . g1,N

g21 0 . . . g2,N
...

...
. . .

...

gN,1 gN,2 . . . 0











where gi j = J̃◦ new
i −J◦i denotes the net gain that both users i

and j would have as a consequence of user i bidding for some

storage capacity of user j. Notice that to calculate matrix G

one has to make one first round of 2N optimizations, i.e.

two for each user: one with the original individual storage

bounds first and then one with the increased bounds. Then,

for each possible bid (N(N − 1)) the optimization has to

be recalculated for the bidded user, taking into account the

decreases in the storage capacity bounds at specific time

instances requested by the bidding user. This amounts to

a total of N(N + 1) optimization runs. In the logic of the

distributed approach these can be calculated in parallel by the

N users (each being required to perform N+1 optimizations).

Then, each user broadcasts its best result, and the most

convenient bid is actually implemented, and the storage

shares are updated for the agents involved.

At each subsequent step, the elements of matrix G asso-

ciated to any of the users involved in the bid implemented

at the previous step are updated and the best current bid

is actually implemented. The process ends when no further

element of G is strictly negative.

To avoid the full calculation of all possible pair-wise bids,

various heuristic policies can be enforced. For example, only

the user with greatest gain potential can be analyzed for

possible advantageous bids. Notice also that the proposed

scheme is robust to failures of the communication networks.

Indeed, the bid optimization phase can still be carried out

using the available entries of matrix G, though obviously

to a suboptimal outcome. Also, an isolated agent can still

operate based on the pre-assigned storage share.

V. EXAMPLES AND SIMULATION STUDIES

A. The 2-user case

We first consider a simple 2-user case to analyze in detail

the negotiation process. In this example, user 1 is a hotel

and user 2 an office building (refer to Fig. 2). Both have

a charging bound of C̄i = 25 kW, i = 1,2 and a maximum

initial storage capacity of S̄i = 200 kWh (the storage unit has

an overall capacity of 400 kWh). The optimization problem

is set over a 3-day horizon and the sampling time is 1

h. For better readability, storage usage will be graphically

represented using antagonistic plots, in which user 1 is shown

from bottom to top while user 2 is represented from top to

bottom. The distance between the two lines indicates the

non-used portion of the storage.

Consider first the centralized control setting. With fixed

storage shares the optimal solution (see Fig. 4.top) indicates

that the storage unit has not be exploited to its full extent.

Both users at some point saturate their share, and in most of

these situations when one user saturates its storage capacity

the other agent is using very little of its own share. A

dramatic modification of the usage of the storage unit occurs

if flexible shares are allowed and the centralized solution is

computed (see Fig. 4.bottom). During the first 2 days the

storage is prevailingly allocated to user 1 (occasionally, the

entire storage capacity is allocated to user 1), with a storage

share that never goes below 40 %. In various occasions the

storage is fully used by the users (the 2 SOC levels sum up

to 100 % of the storage capacity). This occurs in particular in

the first 2 days (from hour 14 to hour 31) where the storage

usage rises from about 50 % to about 100 %.
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Fig. 4. Antagonistic plot of the SOC levels of the 2 users (centralized
control): fixed (top) and variable storage shares (bottom). In both graphs,
user 1 (blue line) is from bottom to top, and user 2 (red line) from top to
bottom. The black dashed line indicates the storage bound for both users.

In the distributed case the storage levels are adjusted as a

result of the negotiation process. Fig. 5 reports three different

stages of the negotiation process. Initially, user 1 bids for an

increase in its storage share in two different periods (around

t = 15 and t = 30). At the same time user 2 makes a bid at

time 54. Then the negotiation process continues (recall that

finite variations of the storage levels are applied), essentially



enlarging the previously accepted bids. The final solution is

apparently not dissimilar from the centralized one.
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Fig. 5. Antagonistic plot of the 2 users SOC levels (distributed control)
at various negotiation stages: initial stage (top), intermediate stage (middle)
and final solution (bottom). Color code as in Fig. 4.

Notice that while the shares (see the black dotted lines in

Fig.s 4.bottom and 5.bottom) appear to be rather different,

the two solutions in terms of actual storage occupancy are

almost identical.

B. The 6-users case

We also considered a larger example with 6 users, all

with different load profiles. As in the previous example,

all users have a charging limit of C̄i = 25 kW, i = 1, . . . ,6
and a maximum initial storage capacity of S̄i = 200 kWh,

i = 1, . . . ,6 (the storage unit has an overall capacity of 1200

kWh). Fig. 6 depicts the overall usage of the storage by the

6 agents. Again the difference between the centralized and

distributed solutions is neglectable.
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Fig. 6. Overall storage usage in the 6-users case: fixed shares (black
line), variable shares - centralized control (blue line), and variable shares -
distributed control (red line).

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an algorithm to achieve multi-agent

resource allocation in a distributed scheme, with the least

amount of information exchange between the users. The

method is based on a pair-wise negotiation scheme, whereby

users bid for a portion of the storage capacity allotted to

another user. Bids are successful when the gain of the bidder

is larger than the loss incurred by the other agent, so that

by equally dividing the difference both users can improve

with respect to their previous situation. Various policies can

then be enforced to find a successful bid. In this endeavor,

we envisaged a full bid assessment, where all possible pair-

wise bids are evaluated and only the best is implemented.

Solutions involving less computational effort can also be

applied.

In the provided scenarios, the presented method was able

to retrieve almost the same solution as the centralized control,

thus demonstrating its effectiveness.

Current research focuses on the elimination of the simpli-

fying assumptions regarding the charging/discharging vari-

ables made here to reduce the coupling between the individ-

ual optimization problems. It is also of interest to investigate

alternative bid choice policies, in order to reduce the overall

computational effort and information exchange.

An interesting extension, that is a topic for future research,

concerns time-varying storage units, as in the case of a

parking lot of electric vehicles (EVs). Indeed, EVs can be

employed as a responsive load capable of delivering energy

back to the grid [10]. More in general, let us note that,

although the distributed algorithm for resource allocation has

been developed for a shared energy storage system, it can be

as well applied in other contexts where one or more resources

are shared by multiple agents.
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