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Region-of-Convergence Estimation for Learning-Based Adaptive
Controllers

John F. Quindlen1 Ufuk Topcu2 Girish Chowdhary3 Jonathan P. How4

Abstract— Recent learning-based extensions to popular adap-
tive control procedures offer improved convergence, but at
the cost of increased complexity. This complexity makes it
difficult to analytically compute level sets that bound the system
response. These level sets can be combined with the a priori
known Lyapunov function for such systems to provide barrier
certificates, verifying the safety of the system to maximum
allowable error limits. This paper presents a complementary
automated procedure for computing invariant level sets offline
using simulation data. These level sets encompass combinations
of safe initial conditions and parameters that will not cause
the adaptive system’s response to exceed constraints. First,
conditions for the complete set of safe initial states and pa-
rameters, known as the region-of-convergence, are established.
These conditions, coupled with the known Lyapunov functions
describing the adaptation, are used to form an optimization
procedure to construct verifiable level sets for the system
response. These levels sets thus provide barrier certificates
for safety and conservatively estimate the complete region-
of-convergence. Lastly, the procedure is demonstrated on an
adaptive control system.

I. INTRODUCTION

Adaptive control procedures combine parameter estima-
tion with control to achieve a desire level of performance
while maintaining robustness. In particular, popular model
reference adaptive control (MRAC) methods have been ex-
tensively studied in order to guarantee the stability of the
adaptation and the ability of the uncertain system to track
the desired reference model [1]–[3]. As a result, the stability
and convergence is defined using well-known Lyapunov
functions than can be used to prove Uniform Ultimate
Boundedness of the system and determine level sets that
bound the system response [3].

Recent approaches [4]–[6] have improved performance
and robustness of the baseline MRAC methods, but at the
cost of increased complexity. This complexity presents a
challenge towards the calculation of level sets that de-
scribe the system response. For instance, concurrent learning
MRAC (CL-MRAC) adds a history stack of saved data points
to improve convergence of the adaptation and decrease tran-
sient errors in the response, but this history stack complicates
analysis of the system. Analytical bounds on the CL-MRAC
response have been shown [7], but these bounds are difficult
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to calculate in practice as they explicitly depend on the
particular points saved in the history stack. Since CL-MRAC
periodically updates the history stack, the bounds will have to
be recomputed, making it difficult to provide more general
certificates. Until a bounding set can be determined, these
adaptive systems cannot be theoretically verified as safe.

In contrast, simulations of adaptive systems are an ex-
tremely useful tool to gain insight on the behavior of
the adaptive system. Model checking procedures [8], [9]
already utilize large batches of simulation traces to gener-
ate statistical guarantees on complex, stochastic, nonlinear
systems. When dealing with deterministic systems, these
guarantees can be tightened even further. In particular, recent
work in simulation-guided region-of-attraction [10], [11] and
Lyapunov function [12], [13] analysis procedures provide
theoretically guaranteed bounds generated using simulation
traces. These approaches intelligently sample the state space
to find falsifying simulation traces and construct a lin-
ear program that describes a Lyapunov function and its
maximum invariant level set that avoids such traces. The
crux of these methods is that if the Lyapunov function
and its corresponding maximum invariant set meets certain
conditions, then they create a barrier certificate that verifies
the stability of the complex nonlinear system. In short, if
the system starts within the region-of-attraction identified by
the procedure, then the system response will always remain
bounded and eventually converge towards the equilibrium
point. This provides a powerful method for automatically
and provably verifying the stability of a system of interest.

In this paper, a similar simulation-based methodology is
used to analyze the response of learning-based adaptive
controllers. For a given deterministic adaptive control system,
the system’s state and adaptation trajectory is completely
characterized by the initial state conditions and parameters.
When constraints are placed on the allowable limits of the
system response, the initial states and parameters determine
whether the system response will exceed those constraints. If
a certain combination of initial states and parameters do not
lead to a violation of these constraints, then the combination
is labeled as “safe”. The complete set of safe combinations
is defined as the region-of-convergence.

Simulations of the adaptive system at various combi-
nations can be employed to estimate this region with an
invariant level set and create barrier certificates. The sim-
ulations help compute an absolute lower bound on the failed
trajectories. Paired with the fact that the known Lyapunov
function for such systems is bounded, this information forms
a maximum invariant level set on safe trajectories. The com-



bination of the Lyapunov function and maximum invariant
set provides a barrier certificate such that any trajectories
started within some initial region will never exceed the
constraints.

The paper is organized as follows. First, a background on
recent learning-based model reference adaptive controllers is
given. In particular, the concurrent learning MRAC algorithm
is used as a case study for these approaches. This background
is then used to motivate and define the region-of-convergence
problem for these adaptive systems. Once the region-of-
convergence has been defined, the next section describes the
simulation-based procedure to estimate this set using simu-
lation traces. The procedure uses an optimization problem to
maximize an invariant set within the region-of-convergence,
which also provides a barrier certificate verifying the safety.
The last section demonstrates the procedure on an adaptive
control system.

II. MODEL REFERENCE ADAPTIVE CONTROL

Consider the following uncertain dynamical system

ẋ(t) = Ax(t) +B(u(t) +W ∗Tφ(x)) (1)
x(0) ∈ Xinit

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the
corresponding control input vector. Assume x(t) is available
for measurement and the pair of matrices A ∈ Rn×n and B ∈
Rn×m are both known and controllable. This pair (A,B)
defines the nominal system dynamics; however, uncertainties
∆(x) ∈ Rm are also present in the actual dynamics. These
uncertainties ∆(x) are assumed to have a known structure
parameterized by an unknown constant weighting matrix
W ∗ ∈ Rkn×m and a known regressor vector φ(x) ∈ Rkn

∆(x) = W ∗Tφ(x) (2)

where φ(x) can be either a linear or nonlinear basis vector
without loss of generality. Let regressor φ(x) be Lipschitz
continuous to ensure the existence and uniqueness of the
simulation trace [1]. While the exact values of the parameters
in the system are unknown, the set of all possible parameters
W ∗

feas ∈ Rk is known, that is all possible W ∗ ∈ W ∗
feas with

k = kn × m. Additionally, the initial state x(0) may be
uncertain, but is also assumed to fall within some known
feasible region Xinit ∈ Rn.

The adaptive controller forces the system to track a known,
stable reference system with desirable characteristics. In this
paper, the underlying reference model is assumed to be linear
and the resulting reference model dynamics are given by

ẋm(t) = Amxm(t) +Bmr(t) (3)

where xm(t) ∈ Rn is the reference state and r(t) ∈ Rmr ,
mr ≤ m is the external reference command, assumed to be
piecewise continuous and bounded. The state tracking error
between the reference state trajectory and the actual state
trajectory is given by e(t) = xm(t)−x(t). It is assumed that
all xm(0) start at the same nominal initial condition xnom
and any uncertainty on x(0) can be treated as disturbances
to the known xnom.

The control system then attempts to minimize the state
tracking error e(t) using control inputs u(t). The control
input is the combination of three components:

u = urm + upd − uad (4)

a feedforward term urm = Krr(t) where Bm = BKr and
Kr ∈ Rm×mr , a feedback term upd = −Kx(t) where Am =
A−BK, and an adaptive control input uad.

In the absence of uncertainties, the feedforward urm and
feedback upd terms would force the nominal system to track
the reference trajectory. Now, the adaptive control input uad
attempts to suppress the uncertainty ∆(x) by estimating the
parameterization of ∆(x) and updating uad accordingly. The
adaptive inputs follow the same known structure of ∆(x):

uad = ŴTφ(x) (5)

with estimated parameters Ŵ in place of actual W ∗. The
resulting estimation error is W̃ = Ŵ − W ∗. Usually, the
initial estimates can be set to zero, Ŵ (0) = 0, as any known
quantities are assumed to be included in the nominal system
(A,B).

A. Concurrent Learning Adaptive Control

Many possible techniques exist for adapting the parameter
estimates [1]–[6], but MRAC-based procedures all update
their estimates based upon the reference model tracking error
e(t). For the remainder of the paper, the concurrent learning
MRAC (CL-MRAC) procedure will be used as the adaptive
process, but other techniques can also be employed. The
concurrent learning adaptive law is given by

˙̂
W = −Γφ(x)eTPB − Γc

p∑
i=1

φ(xi)ε
T
i (6)

where learning rates Γ and Γc are positive scalars. The
symmetric positive definite matrix P is determined from the
Lyapunov equation ATmP +PAm = −Q with Q = QT > 0.
The innovation of the concurrent learning adaptive law is
the history stack, which stores a fixed, finite number p
of measurements of the state vector and estimation error
εi = uad,i − ∆i = W̃Tφ(xi) alongside the instantaneous
tracking error. Central to this process are measurements of
ẋ to obtain ∆(x). The derivative ẋ can be either measured
directly or estimated using a fixed point smoother [4].

∆(x) = (BTB)−1BT (ẋ−Ax−Bu) (7)

An important aspect of this CL-MRAC procedure is the
singular value maximizing (SVM) algorithm that periodically
replaces the least-informative data points (φ(xi), εi) in the
history stack with more-informative ones as they are encoun-
tered. This ensures the matrix S(x, t) =

∑p
i=1 φ(xi)φ(xi)

T

is positive definite and results in a net increase in the rate
of convergence. However, this periodic update of the history
stack makes it difficult to compute analytical bounds, as dis-
cussed in Section III. Proofs and more detailed discussions of
this algorithm can be found in [4] or in an extended version
of the paper at http://tinyurl.com/jk4fzfz.



MRAC procedures use a known Lyapunov function to
prove the stability of the system. This Lyapunov function
V is differentiable, positive definite, and radially unbounded
and describes both the stability of the reference model
tracking error and parameter estimation error with V (0) = 0.

V = eTPe+ trace(W̃TΓ−1W̃ ) (8)

For the CL-MRAC procedure, the derivative of this Lya-
punov function is a strictly negative definite function that
asymptotically converges to the solution e = 0, W̃ = 0.

V̇ = −eTQe− 2Γ−1Γctrace(W̃T

p∑
i=1

φ(xi)φ(xi)
T W̃ )

(9)
This Lyapunov function and its derivative was shown in [4]
to prove the stability and convergence of the CL-MRAC con-
troller. Similar proofs for other adaptive procedures establish
the Lyapunov stability of the adaptation and convergence
toward the stable reference model, thus also establishing
stability of the adaptive system.

III. REGION-OF-CONVERGENCE OF CONSTRAINED
ADAPTIVE SYSTEMS

The Lyapunov function in (8) is common to most MRAC-
based adaptive procedures. If V (e, W̃ ) > 0 and V̇ (e, W̃ ) ≤
0 for all (e, W̃ ) 6= 0, this function establishes the Lyapunov
stability and convergence of the controlled system towards
the desired reference trajectory. Additionally, this also indi-
cates that in the absence of restrictions on u(t), any value
for W ∗ and x(0) will not destabilize the adaptation. Because
the Lyapunov function (8) is radially unbounded, the adaptive
system is globally stable.

While the ultimate stability of the adaptation is invariant
to the particular values of x(0) and W ∗, the transient
response of e(t) and W̃ (t) during the adaptation must also be
considered. Many systems place additional constraints on the
system response, such as maximum allowable thresholds on
the tracking error e(t). Stability alone does not guarantee
these performance constraints will be met. For instance,
consider Figure 1, which depicts a sample trajectory taken
from the CL-MRAC controlled system in Section V-A. The
adaptation is known to be stable, but the transient tracking
error e(t) response exceeds the allowable threshold. The
error dynamics are dependent upon the particular x(0), W ∗

values used; therefore, it is desirable to identify whether a
set of initial conditions x(0) and parameters W ∗ will cause
the adaptive system to exceed any performance thresholds.

The set of all possible combinations of initial condi-
tions x(0) and parameters W ∗ is the feasible search region
Rfeas ∈ Rn+k, where Rfeas := Xinit∪W ∗

feas. Since different
combinations of x(0) and W ∗ will either cause the system
to exceed the constraints or not, the feasible region Rfeas can
be broken up into two independent subsets. In order to define
these subsets, first define the space outside these constraint
thresholds, called the failure region Rfail.
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Fig. 1. State space diagram of the response of a CL-MRAC system. Even
though the system is stable [4], the actual state exceeds the allowable error.

Definition 1 The failure region Rfail ∈ Rn is the set of
infeasible tracking errors efail ∈ Rn outside the allowable
bounds.

Rfail := {||e|| > elimit}

From this, the region-of-convergence (ROC) R0 ⊂ Rfeas

is defined below.

Definition 2 The region-of-convergence R0 ∈ Rn+k is
the set of W ∗ ∈ W ∗

0 and x(0) ∈ X0 such that the solution
to (1), trajectory Φ(t : x0, w0), never enters the region Rfail.
The trajectory Φ(t : x0, w0) is initialized at values x0 ∈ X0

and w0 ∈W ∗
0 , where W ∗

0 ⊆W ∗
feas and X0 ⊆ Xinit.

This region-of-convergence is generally unknown ahead of
time, so the task is to estimate this region. Due to the
nonlinear nature of the adaptive system, the shape of this
region in Rn+k space can be complex and even non-convex,
as will be seen in Section V-A.

The second subset of Rfeas is the region-of-failure, RF .
Just like R0, RF considers initial conditions x(0) and W ∗

rather than the space of all e(t) like Rfail.

Definition 3 The region-of-failure RF ∈ Rn+k is the set
of W ∗ ∈ W ∗

0 and x(0) ∈ X0 such that the trajectory Φ(t :
x0, w0) enters the region Rfail, again where W ∗

0 ⊆ W ∗
feas

and X0 ⊆ Xinit. Note that the intersection RF ∩R0 = ∅.

Previous work has provided some analytical tools for
estimating the ROC. More specifically, extensions to the
respective Lyapunov convergence proofs can be used to
calculate upper bounds on the state tracking error ||e(t)||
for each MRAC method under consideration [3], [7], as well
as other approaches such as L1 adaptive control [14]. These
upper bounds will then determine whether the system will
exceed any of the indicated constraints. However, with more
complex procedures, these analytical bounds on e(t) become
increasingly difficult and unwieldy to calculate offline, thus
complicating a priori safety verification.

For instance, consider the following bound on tracking
error for a CL-MRAC system. This bound is taken from the
proof for Corollary 2 in [7]. It states that the tracking error
e(t) is bounded by an exponential function

||e||L∞ ≤ (k1||e(0)||22 + k2||W ∗||22)
1
2 e−k3t (10)



where k1 and k2 are functions of known constants P , Γ, and
Γc. The difficulty in computing the analytical bounds arises
from the fact that function k3 depends explicitly on the saved
values of φ(xi) and εi stored in the history stack from the
adaptive law in (6) and is periodically updated with new
information. As mentioned in Section II-A, these values are
gradually replaced with more-informative ones as the system
evolves, changing the value of k3. Since k3 is not constant
and evolves as the system executes, it is extremely difficult
to compute the analytical bounds for e(t) offline and ensure
the system is safe before execution.

In comparison, it is rather straightforward to generate large
numbers of simulations of the adaptive systems of interest
and these simulations give insight into the sensitivity of the
performance to Xinit and W ∗

feas. While simulation traces of
the system at various samples of Xinit and W ∗

feas can provide
statistical bounds on the system response, they generally lack
the guarantees of the difficult, but verifiable, analytically
determined bounds. Simulation-guided verification methods
provide a bridge between the two. Simulation traces can be
used to construct verifiable invariant level sets to estimate
the region-of-convergence and form barrier certificates.

IV. ESTIMATION OF THE REGION-OF-CONVERGENCE

Large numbers of simulations are used to estimate the
region-of-convergence of learning-based MRAC systems.
The following procedure selectively samples Rfeas and per-
forms simulations at these values to find the smallest bound-
ary between R0 and RF . The simulation traces are then used
to construct barrier certificates to ensure a system will never
enter Rfail if the system is initialized within set Rinit.

This approach is an extension of recent work in
simulation-guided region-of-attraction estimation, which ad-
dresses a closely related problem. These procedures [10],
[11] attempt to find which system trajectories converge to
the origin in asymptotically stable, but not globally attractive,
nonlinear systems. Not surprisingly, these approaches can be
readily adapted to address the region-of-convergence estima-
tion problem. In particular, the robust estimation procedure
[10], [11] provides a good groundwork for a region-of-
convergence estimation procedure. The ROC procedure will
utilize many of the same functions. A much more detailed
analysis and discussion of these functions can be found in
[15].

While the region-of-attraction (ROA) procedures and
region-of-convergence (ROC) procedure are very similar,
they do address different problems. Unlike ROA procedures,
the ROC procedure already starts with a known Lyapunov
function. The procedure does not need to search for a
suitable Lyapunov function to characterize the system as
it is provided by the respective adaptive control method
under consideration. For MRAC systems, this will look like
(8). Additionally, the ROC method must enforce stricter
conditions (boundedness) in place of attraction to the origin.
These differences require a slightly different approach for
region-of-convergence estimation. The following subsections
describe the ROC estimation procedure.

A. Invariant Subsets of the Region-Of-Convergence

The estimation of the region-of-convergence relies upon
invariant sublevel sets of R0 to form the basis of an opti-
mization procedure. These invariant sublevel sets describe a
set of (e, W̃ ) for which the system trajectory will fall below
a set threshold and ensure the system remains out of Rfail.
For MRAC systems, sublevel sets can be written in terms of
the Lyapunov function as follows.

Definition 4 For η > 0 and Lyapunov function V :
Rn+k → R from (8), the η-sublevel set of V is:

ΩV,η := {e ∈ Rn, W̃ ∈ Rk|V (e, W̃ ) ≤ η}. (11)

Sublevel sets of Rfeas can then be used to define a set of
initial values x(0) and W ∗, Rinit, such that the Lyapunov
function V of the corresponding response falls below some
bound β. If all trajectories that enter Rfail have V (e, W̃ ) >
β, then the initial set Rinit is a subset of R0 and provides a
barrier certificate B(e, W̃ ) to verify the safety of the system.

Definition 5 Given an initial set Rinit ⊂ Rfeas and a
failure region Rfail ⊂ Rfeas, a function B: Rfeas → R is
a barrier certificate if:

B(e, W̃ ) ≤ 0 for all (e, W̃ ) ∈ Rinit (12)

B(e, W̃ ) > 0 for all (e, W̃ ) ∈ Rfail (13)

[ė;
˙̃
W ]T ∇B(e, W̃ ) < 0 for all (e, W̃ ) ∈ Rfeas (14)

such that B(e, W̃ ) = 0.

With this definition, the following Lemma provides a de-
scription of barrier certificates for the system response in
terms of sublevel sets of the Lyapunov function.

Lemma 1 Given 1) a continuously differentiable Lya-
punov function V : Rn+k → R such that

V (0) = 0 and V (e, W̃ ) > 0 for all (e, W̃ ) 6= 0 (15)

V̇ (e, W̃ ) < 0 for all (e, W̃ ) 6= 0, (16)

2) a η-sublevel set ΩV,η of V , and 3) an initial set Rinit ⊂
ΩV,η and Rinit ⊂ Rfeas, if set Rinit meets these conditions

V (e, W̃ ) ≤ η for all (e, W̃ ) ∈ Rinit (17)

V (e, W̃ ) > η for all (e, W̃ ) ∈ Rfail, (18)

then B(e, W̃ ) = V (e, W̃ ) − η defines a barrier certificate
and Rinit ⊂ R0.

Proof: A proof for Lemma 1 is omitted here for space,
but can be found online in an extended version of this paper
at http://tinyurl.com/jk4fzfz.

Remark 1 If two additional weak assumptions are met,
then the η-sublevel set can be increased slightly from the
result in Lemma 1. This is further discussed and proven in
the extended paper.



B. Computation of Barrier Certificates

The barrier certificate verifies the safety of the system as
long as the system is initialized within the initial set Rinit.
It identifies a region-of-convergence of the system; however,
as an estimate of the full ROC, Rinit may be conservative.
It is therefore advantageous to not only identify a barrier
certificate of the system, but also attempt to maximize the
region to include as much of R0 as possible.

The barrier certificate computation process is broken into
two steps: generate samples and compute bounds. These two
steps naturally extend from the earlier region-of-attraction
work. As such, the following overview focuses on the
particular modifications required for the ROC. The details
of the SimLFG and CWOpt algorithms discussed next can
be found with full descriptions in the earlier works [10], [15].

This first step involves selectively sampling x(0) and W ∗

in the Rfeas space, looking for points on either side of the
R0 boundary. This algorithm uses a search parameter βsim
to define a ball ∈ Rfeas and randomly selects points in that
region to run simulations. If the simulations return failures
or converged trajectories, βsim will shrink or expand accord-
ingly. Once the procedure has simulated Nconv converged
trajectories, it terminates.

After the procedure terminates, the C and D datasets of
trajectories that lead to success or failure can be used to
determine a candidate level set and barrier certificate. At a
minimum, the failed trajectories in D provide a strict upper
bound on the allowable size of the η-sublevel set, since
V (e, W̃ ) ≥ βUB for all (x(0),W ∗) ∈ D, and therefore
η < βUB .

Next, the invariant sublevel set for the Lyapunov function
can be computed using the following optimization problem.

Problem 1 Given the Lyapunov function V and a positive
definite function l2 ∈ R, define

γ∗l = maximize γ
γ,s2,s3

subject to (19)

γ > 0 (20)

s2, s3 ∈ Σ[e, W̃ ] (21)

− [(γ − V )s2 +∇V [ė;
˙̃
W ]s3 + l2] ∈ Σ[e, W̃ ] (22)

where Σ[e, W̃ ] refers to a positive semidefinite function
Rn+k → R. Notice that since V̇ < 0 for CL-MRAC systems,
the resulting level set ΩV,γ∗l can also be directly used to form
a barrier certificate as in Lemma 1.

The s2, s3 functions can be determined according to the
procedure described in [15]. In practice, these functions are
usually ε-scaled versions of the Lyapunov function, εV , for
some small real ε or another quadratic function of the system
dynamics.

The resulting γ∗l yields a suitable lower bound for the η-
sublevel set used to form a barrier certificate, so that γ∗l ≤
η < βUB . Therefore, by setting η = γ∗l , the process returns
a theoretically verified, albeit conservative, estimate Rinit of
the full region-of-convergence R0. A second algorithm from

[15], CWOpt, can also be used to attempt to maximize γ∗l
even further is available, but was not used here. Note, it is
also possible to use the βUB upper bound to generate barrier
certificates using counter-example based methods from [12],
[13], but requires additional toolboxes and software.

C. Discussion

In practice, this procedure will result in a conservative
estimate of the region-of-convergence. Even though the esti-
mate is conservative, it is still valuable as a certified bound.
Additionally, the process generates a number of samples
of x(0) and W ∗ in R0 that did not fall within the level
set. A parallel research effort has focused on using all the
converged trajectories to compute a tighter estimate of the
region-of-convergence. However, this approach replaces the
strong theoretical guarantees with statistical bounds. The
region-of-convergence estimation procedure within this paper
is intended as a complementary approach.

V. EXAMPLES

The following example demonstrates the region-of-
convergence estimation process for concurrent learning
MRAC system [4] described in Section II. For these
types of systems, the form of the Lyapunov function
V (e, W̃ ) is already known from (8). Additional examples
are included online in an extended form of the paper at
http://tinyurl.com/jk4fzfz. Those examples also
cover a more complex nonlinear wingrock model [4], but
were omitted here due to space.

A. Second order linear system

Consider the second oder linear system in (23) with two
unknown parameters, W ∗

1 and W ∗
2 .

ẋ1 = x2 (23)
ẋ2 = (−0.2 +W ∗

1 )x1 + (−0.2 +W ∗
2 )x2 + u

This uncertain system tracks a stable, second order linear
reference model with poles λ1,2 = −0.65 ± 1.038j. The
reference model is excited by commanded xm1

positions
zcmd = ±1.5. The resulting feedforward control input is
given by urm = −ω2

rmxm1 − 2ζωrmxm2 + ω2
rmzcmd where

ωrm = 1 rad/s and ζ = 0.5. As mentioned earlier, the actual
uncertain system is controlled by a CL-MRAC adaptive
control law. The adaptive parameters are set to Γ = 2,
Γc = 0.2, and p = 20 saved data points in the history stack.

In this example, there is no initial tracking error so that
e(0) = xm(0) − x(0) = 0, leaving only initial weight
estimation error W̃ (0) = −W ∗ to consider. This restricts the
search space to a two-dimensional problem in W ∗

feas, but even
with this restriction, the region-of-convergence estimation
problem is complex. The performance thresholds defining
Rfail were set to e1,limit = 1.0 and e2,limit = 20. Essentially,
the limit on e1(t) is the driving factor. The uncertain adaptive
system can then be simulated using the estimation procedure.

The results of the simulation samples are shown in Figure
2. This plot demonstrates the process from Section IV.
The algorithm uses the failed trajectories to calculate a
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Fig. 2. Sampled region-of-convergence for the adaptive system in (23). The
initial tracking error is removed, e(0) = 0, leaving only W̃ (0) = −W ∗.
The pairs (W ∗

1 ,W
∗
2 ) which lead to failure are labeled in red while the

successful pairs are labeled in green.

maximum upper bound βUB . The convergence (or lack of
it) of the trajectories changes the search parameter βsim
used to generate subsequent samples. This ends up clustering
the data points near the boundary of R0 at a ball with its
radius set to the current βUB . The inadvertent clustering is
apparent in Figure 2 by the large density of data points
clumped together near 4 ≤ ||W ∗|| ≤ 8. The emergent
clustering also explains why the successful region down near
0 ≤ W ∗

1 ≤ 5 and W ∗
2 < −9 is not explored further: the

procedure limited its βsim to search around βUB = 1.767.
After 3000 successful pairs were simulated, the procedure
returned the size of the η-sublevel set as γ∗l = η = 1.414.
Note that this discrepancy between βUB and η results from
the conservativeness necessary in computing a certifiable
bound. However, previous analytical methods [7] can only
provide verified estimate ηanalytic = 1.015.

For comparison, Figure 3 displays the actual region-of-
convergence for the system. The invariant set ΩV,η calculated
by the estimation procedure is also overlaid on top of the full
R0. This figure highlights a number of important consider-
ations. First, the region-of-convergence may be highly non-
convex as the boundary of R0 for W ∗ < 0 values is oddly
shaped and jagged. Additionally, this figure also highlights
the aforementioned conservativeness of ROC estimation pro-
cedures. The invariant set ΩV,η is not able to capture values
on the outskirts of R0 due to the limitations of the process.
While a tighter estimate of the ROC is desirable, the verified
barrier certificate is still extremely useful as a proven safe
set and larger than previous analytical methods.

VI. CONCLUSION

This paper presents a method for computing invariant sets
to produce verifiable estimates of the region-of-convergence
of learning-based adaptive controllers. These level sets can
subsequently be used to create barrier certificates for safety.
This procedure provides an automated offline tool to supple-
ment existing analytical methods that can become increas-
ingly unwieldy with the complexity of learning-based adap-
tive controllers. This work extends recent work in region-
of-attraction analysis, a similar but separate problem for
nonlinear systems without global attraction to the origin. The
paper presents results for a CL-MRAC example problem to
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Fig. 3. Full region-of-convergence for the adaptive system from Figure 2.
The conservative estimate of the ROC in blue is overlayed on top of the
full ROC R0. The analytical estimate ηanalytic is shown in cyan.

demonstrate the ability of the procedure to find verifiable es-
timates of the region-of-convergence. While these estimates
may be conservative, they do provide theoretical guarantees
of safety with their associated barrier certificates. Ultimately,
the procedure is intended as a step in the process to address
the larger problem of formally verifying adaptive systems.
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