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Feature selection is a central problem in machine learning and pattern recognition. On large datasets (in
terms of dimension and/or number of instances), using search-based or wrapper techniques can be com-
putationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also
take a prohibitively long time on high-dimensional datasets.

In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for
high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, appli-
cable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for
computationally intensive methods to focus their attention on smaller subsets of promising features. The
experimental results, with up to 105 features, show the time efficiency of our methods, with lower gen-
eralization error than state-of-the-art techniques, while being dramatically simpler and faster.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The need for feature selection (FS) often arises in machine learn-
ing and pattern recognition problems; FS may improve the accu-
racy of a classifier learnt from data, avoiding the well-known
‘‘curse of dimensionality’’, and may speed up the training process
(Escolano et al., 2009; Guyon et al., 2006; Hastie et al., 2009; Liu
and Motoda, 1998).

With high-dimensional data, typically many features are irrele-
vant and/or redundant for a given learning task, having harmful
consequences in terms of performance and/or computational cost.
Moreover, a large number of features requires a large amount of
memory or storage space. In this context, FS techniques play an
important role in reducing the number of features.

Furthermore, in high-dimensional datasets, search-based FS
techniques, such as floating search (Pudil et al., 1994a,b) and branch
and bound (BB) (Chen, 2003; Nakariyakul and Casasent, 2007; So-
mol et al., 2004) may easily become computationally too expen-
sive. The same happens with ‘‘wrapper’’ FS approaches, since
they involve repeatedly running some learning algorithm to evalu-
ate feature subsets.

1.1. Learning on high-dimensional data

High-dimensional datasets are increasingly common in learning
problems, in many different domains, such as text categorization
ll rights reserved.

ngenharia de Lisboa, Lisboa,
(TC) (Joachims, 1998, 2001), genomics (see Baldi and Hatfield,
2002), econometrics, and computer vision.

In TC, texts may be represented by feature vectors known as
bags-of-words (BoW), holding the frequency of terms/words
(Joachims, 2001; Manning et al., 2008). Usually, we have a large
vocabulary of d terms, thus each document is described by a
high-dimensional vector. A collection of n documents is repre-
sented by the n� d term-document (TD) (Manning et al., 2008) ma-
trix, holding the BoW representation of each document. Several FS
techniques have been proposed for TC; see Forman (2003), Hyun-
soo et al. (2005), Mohamed et al. (2006), Torkkola (2003), and ref-
erences therein.

Gene expression microarray data contains the expression levels
of a large number (d) of genes in a few (n) samples, and thus a large
data matrix (Baldi and Hatfield, 2002). Like in TC, these matrices
typically have d� n. In microarray gene expression data, the quest
for learning to detect cancer and other diseases has a high scientific
value and has stimulated the creation of several public domain
datasets (see Table 1).
1.2. Our contributions

We propose filter-type (Guyon and Elisseeff, 2003) methods for
FS, scalable for high-dimensional datasets, with the following key
advantages: time-efficiency, since they are independent of the
classifier; applicability to supervised, semi-supervised, or unsuper-
vised learning for both binary and multi-class problems. The main
disadvantages, as compared to wrapper approaches, are: sub-opti-
mality, since the selected subset of features may not be the best for
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any classifier; the sub-optimality of our efficient redundancy
assessment process implies that, in some cases, the number of se-
lected features could be further reduced without significantly
penalizing the accuracy. Our methods can also act as a pre-screen-
ing stage, followed by a more expensive (possibly a wrapper)
method, removing irrelevant and redundant features, commonly
found in high-dimensional data (Yu and Liu, 2003; Yu et al.,
2004; Peng et al., 2005).

The remaining sections are organized as follows. Section 2 re-
views some successful supervised and unsupervised FS techniques.
Section 3 details the proposed filters for FS. Section 4 reports the
experimental evaluation of our methods against other techniques.
Finally, Section 5 presents concluding remarks and hints for future
work.
2. Feature selection for high-dimensional data

In this Section, we review some unsupervised and supervised FS
techniques that have proven successful for machine learning prob-
lems, focusing on their application to high-dimensional datasets.
There is a vast literature on FS; for a comprehensive coverage see
Escolano et al. (2009), Guyon and Elisseeff (2003), Guyon et al.
(2006), and Hastie et al. (2009); see also the special issue
jmlr.csail.mit.edu/papers/special/feature03.html.

Let D ¼ fðx1; c1Þ; . . . ; ðxn; cnÞg be a training set where xj 2 Rd, for
j ¼ 1; . . . ;n, denotes the feature vector of the jth training sample
and cj is its class label (absent in unsupervised learning). We col-
lect all the feature vectors in a n� d matrix X, where the jth row
contains xj, the feature vector of the jth training sample, while
the ith column, denoted Xi 2 Rn, contains the n samples of the ith
feature. Finally, we denote as Xij the jth sample of the ith feature.

FS techniques are classically grouped into two types of ap-
proaches: filters (Das, 1994; Guyon et al., 2006; Guyon and Elis-
seeff, 2003) and wrappers (Das, 1994; Kohavi and John, 1997). A
wrapper assesses the adequacy of a subset of features based on
the performance of some classifier operating with that subset of
features and learnt from the training data. In contrast, filters assess
the quality of a given subset of features using solely characteristics
of that subset, without any learning algorithm. A third type of
methods embeds the FS procedure into the learning algorithm,
using the ability to ignore a subset of features. Although, filters
are the simplest approach, thus expected to perform worse than
the other types of methods, it is often the case that they are the
only applicable option, on high-dimensional datasets, where wrap-
pers and embedded methods can be too expensive. Below we
briefly review these three types of methods.
2.1. Wrappers and embedded methods

2.1.1. Wrappers
Wrappers require some method to search the space of all

possible subsets of features, assessing their quality by learning
and evaluating a classifier with that feature subset. This is a com-
binatorial problem, with an objective function that is costly to
compute, making wrappers inadequate for high-dimensional data-
sets. The floating search (Pudil et al., 1994a,b) and branch and bound
(BB) (Chen, 2003; Nakariyakul and Casasent, 2007; Somol et al.,
2004) algorithms are two examples of methods used to perform
this search.

Liang et al. (2008) proposed an FS algorithm that addresses the
problem of the high computational cost and overcomes some
drawbacks of suboptimal schemes. Their method is able to find a
good feature subset without resorting to exhaustive search.
Casado-Yusta (2009) applies the combinatorial algorithm
known as greedy randomized adaptive search procedure (GRASP),
proposed by Feo and Resende (1989). They concluded that tabu
search and GRASP outperformed other techniques. Esseghir et al.
(2010) proposed another GRASP-based FS hybrid filter-wrapper
method, which is prohibitive for high-dimensional datasets. An
improvement over the methods of Casado-Yusta (2009) and Esseg-
hir et al. (2010) was proposed by Bermejo et al. (2011), making
fewer wrapper evaluations.

Veenman and Bolck (2011) introduced a sparse model for high-
dimensional data, aiming at selecting a small number of features. It
uses a linear program, being competitive with state-of-the-art
methods. Khushaba et al. (2011) proposed a method based on a dif-
ferential evolution algorithm. Also recently, Jung et al. (2011) pro-
posed a criterion for estimating the redundancy between feature
sets, by the conditional mutual information between the selected
and candidate features to each class variable.
2.1.2. Embedded approach
In the embedded approach, FS is intrinsic to the learning algo-

rithm, which simultaneously learns the classifier and chooses a
subset of features. These methods typically work by including in
the objective function of the learning algorithm a sparsity-inducing
regularizer or prior, which encourages the weights assigned to
some features to become zero. Examples of such an approach are
the sparse multinomial logistic regression (SMLR) algorithm pro-
posed by Krishnapuram et al. (2005a) and the sparse logistic regres-
sion (SLogReg) method of Shevade and Keerthi (2003). Other
related methods are the Bayesian logistic regression (BLogReg) of
Cawley and Talbot (2006), a more adaptive version of SLogReg,
and joint classifier and feature optimization (JCFO) (Krishnapuram
et al., 2005b), which applies FS inside a kernel function.
2.2. Filters

In the past years, some computationally efficient filter FS meth-
ods tailored to high-dimensional data have been proposed. In this
Subsection, we review some of these unsupervised and supervised
methods. In Section 4, we compare our proposals against most of
these methods.
2.2.1. Unsupervised
The term-variance (TV) criterion (Liu et al., 2005) sorts the fea-

tures Xi based on their sample variance,

TVi ¼ varðXiÞ ¼
1
n

Xn

j¼1

ðXij � XiÞ2; ð1Þ

where Xi is the sample mean of feature Xi;Xi ¼ ð1=nÞ
Pn

j¼1Xij.
Although it is a scale-variant measure, variance has been found
effective for TC problems with sparse data (Liu et al., 2005; Ferreira
and Figueiredo, 2011), with many features having a high fraction of
zeros; in other terms, their so-called ‘‘zero-norm’’, ‘ðiÞ0 (the number
of patterns where the feature is not zero), is small.

The Laplacian score (LS) (He et al., 2005) assumes that data from
the same class is close to each other and the local geometric struc-
ture is crucial for discrimination. The relevance of a feature is given
by its power of locally preserving it, that is, its LS. Experiments on
different tasks show the efficiency of LS, as compared to TV and
Fisher’s ratio (FiR) (see SubSection 2.2.2).

The extended LS (LSE) combines LS with a distance-based entro-
py (Liu et al., 2009). The distance-based entropy replaces the k-
means clustering of LS, showing higher stability and efficiency on
high-dimensional datasets.

http://jmlr.csail.mit.edu/papers/special/feature03.html
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The LS and LSE methods are based on concepts from spectral FS,
which identifies relevant features by measuring their capability of
preserving sample similarity. Spectral FS provides a framework for
supervised and unsupervised FS. Usually, spectral FS algorithms
evaluate features individually, being unable to identify redundant
features. Zhao et al. (2010b) addressed this limitation by proposing
a new spectral FS algorithm to handle feature redundancy, adopt-
ing an embedded model.

Zhao and Liu (2007) exploit ideas and properties common to
supervised and unsupervised FS algorithms, and proposes a unified
framework for FS based on spectral graph theory. The proposed
framework, named SPEC, generates families of algorithms for
supervised and unsupervised FS.

2.2.2. Supervised
The Relief algorithm is based on a measure of relevance of each

feature (Kira and Rendell, 1992). This relevance is proportional to
how well its values distinguish between the instances of the same
and different classes. The method randomly samples instances
from the training set and updates the relevance of each feature
based on the difference between the selected instance and the
two nearest instances of the same and opposite classes. It scales
well for high-dimensional datasets, but it does not remove redun-
dant features. Considering s randomly sampled training instances
it has overall complexity of OðsndÞ; usually, with s > d. The ReliefF
algorithm (Kononenko, 1994) is an extension of Relief, which ap-
plies feature weighting and searches for several nearest neighbors.
ReliefF can also be seen as a wrapper algorithm.

The correlation-based filter selection (CFS) method of Hall, 2000;
Hall, 1998 is based on test theory (Ghiselli, 1964) concepts and re-
lies on a set of heuristics to assess the adequacy of subsets of fea-
tures. These heuristics take into account both the usefulness of
individual features to predict the class label as well as their corre-
lation. It copes with missing values on the data and has Oðnd2Þ
complexity.

The fast correlation-based filter (FCBF) of Yu and Liu (2003); Yu
et al. (2004) follows a relevance-redundancy approach with two
steps: compute the symmetrical uncertainty (SU), see (9) value of
each feature and sorts these values into a list; remove redundant
features from the list. Feature relevance alone is found insufficient
for FS on high-dimensional data and a new framework decoupling
relevance and redundancy analysis is introduced. The experimen-
tal results in Yu and Liu (2003); Yu et al. (2004) show the efficiency
of the FCBF method, with complexity Oðnd logðdÞÞ, being faster
than both ReliefF and CFS.

For binary problems (ci 2 f0;1g), the Fisher ratio (FiR) (Fisher,
1936), of the ith feature is defined as

FiRi ¼
Xð0Þi � Xð1Þi

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXiÞð0Þ þ varðXiÞð1Þ

q ; ð2Þ

where Xð0Þi ;Xð1Þi ; varðXiÞð0Þ, and varðXiÞð1Þ, are the sample means and
variances of feature i, for the patterns of each class. The FiR has been
used successfully for microarray data (Furey et al., 2000).

The minimum redundancy maximum relevancy (mrMR) criterion
(Peng et al., 2005) computes both the redundancy between fea-
tures and the relevance of each feature. Redundancy is computed
by the mutual information (MI) (Cover and Thomas, 1991) between
pairs of features, whereas relevance is measured by the MI
between each feature and the class labels. The mrMR method has
also been applied successfully to microarray data (Ding and Peng,
2003).

Xing et al. (2001) proposed a hybrid filter-wrapper approach,
able to successfully classify microarray data with 72 data points
in a 7130-dimensional space. It applies a sequence of simple filters,
followed by the Markov blanket filter (Koller and Sahami, 1996), to
select particular feature subsets for each subset cardinality.

A game theoretic FS method, named cooperative feature selection
(CoFS), was proposed and experimentally assessed by Sun et al.
(2012). The method addresses the drawback of several informa-
tion-theoretic FS methods, that rank poorly some features with
strong discriminatory power as a group, being individually weak.
For a recent survey on information-theoretic FS methods, see the
work of Brown et al. (2012) and the many references therein.
3. Proposed filters

This Section describes the proposed FS filters. The first one ex-
ploits the idea that feature relevance is proportional to its disper-
sion. The second also includes a redundancy measure among
relevant features.

The use of feature relevance/redundancy analysis is not novel
for FS methods; we can find it, e.g., in the CFS, mrMR, and FCBF
methods. However, those previous approaches have the drawback
of not scaling well for high-dimensional datasets. Our proposals fill
in the gap of relevance/redundancy analysis for high-dimensional
data, with two key contributions:

� assess relevance through dispersion, regardless of the class
label;
� an efficient process to eliminate redundant features in high-

dimensional datasets.

3.1. Dispersion measures

3.1.1. Existing measures
We now review some well-known dispersion measures that we

use to compute relevance. One of the widely used dispersion mea-
sures is the variance (1), which is the relevance criterion of the TV
method.

The mean absolute difference (MAD), defined as

MADi ¼
1
n

Xn

j¼1

Xij � Xi

�� ��; ð3Þ

computes the absolute difference from the mean value. The main
difference between the variance and MAD measures is the absence
of the square in the latter. The MAD, like the variance, is also scale-
variant.

Another measure of dispersion applies the arithmetic mean (AM)
and the geometric mean (GM). For a given (positive) feature Xi on n
patterns, the AM and GM are given by

AMi ¼ Xi ¼
1
n

Xn

j¼1

Xij; GMi ¼
Yn

j¼1

Xij

 !1
n

; ð4Þ

respectively; since AMi P GMi, with equality holding if and only if
Xi1 ¼ Xi2 ¼ � � � ¼ Xin, then the ratio

Ri ¼
AMi

GMi
2 ½1;þ1Þ; ð5Þ

can be used as a dispersion measure. Higher dispersion implies a
higher value of Ri, thus a more relevant feature. Conversely, when
all the feature samples have (roughly) the same value, Ri is close
to 1, indicating a low relevance feature.
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3.1.2. Modified and proposed measures
We now describe dispersion measures that, to the best of our

knowledge, have not been used for FS. If feature i has at least one
zero occurrence, then GMi ¼ 0, making Ri in (5) useless. We over-
come this issue by applying the exponential function to each fea-
ture yielding

AMGMi ¼
1
n

Pn
j¼1 expðXijÞQn

j¼1 exp Xij
� �� �1

n
¼ 1

n exp Xi
� �Xn

j¼1

expðXijÞ: ð6Þ

We also propose another dispersion measure, named mean-
median (MM), given by

MMi ¼ jXi �medianðXiÞj; ð7Þ

i.e., the absolute difference between the mean and median of Xi.
Although this is not a classical dispersion measure, we have found
it adequate for FS (see the experimental results in Section 4).
:

3.2. Similarity measures

3.2.1. Existing measures
We now address some similarity/redundancy measures that

have been used for FS. Mitra et al. (2002) used the well-known
sample correlation coefficient (CC)

qðXi;XjÞ ¼
1
n

Pn
k¼1ðXik � XiÞðXjk � XjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðXiÞvarðXjÞ
p : ð8Þ

For uncorrelated variables qðXi;XjÞ ’ 0, whereas for linearly depen-
dent variables we have qðXi;XjÞ ¼ 1.

Mitra et al. (2002) also proposed the maximal information com-
pression index (MICI)

2kðXi;XjÞ ¼ varðXiÞ þ varðXjÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvarðXiÞ þ varðXjÞÞ2 � 4varðXiÞvarðXjÞð1� qðXi;XjÞÞ

q
The FCBF method applies the symmetrical uncertainty

SUðXi;XjÞ ¼ 2
HðXiÞ �HðXijXjÞ

HðXiÞ þHðXjÞ
; ð9Þ

where Hð:Þ and Hð�j�Þ denote estimates1 of the entropy and condi-
tional entropy, respectively (Cover and Thomas, 1991).
3.2.2. Proposed measure
In order to quantify the redundancy between two features, say

Xi and Xj, we propose to treat them as vectors and compute the
absolute cosine (AC) of the relative angle between these vectors

j cosðhXiXj
Þj ¼ hXi;Xji

Xik k Xj

�� ��
�����

����� ¼
Pn

k¼1Xik XjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1X2

ik

Pn
k¼1X2

jk

q ; ð10Þ

where h�; �i denotes the inner product and :k k the Euclidean norm.
We have 0 6 j cosðhXiXj

Þj 6 1, with 0 meaning that the two features
are orthogonal (maximally different) and 1 resulting from colinear
features.

If we consider zero-mean features (Xi ¼ Xj ¼ 0), the CC of (8)
satisfies

qðXi;XjÞ ¼
< Xi;Xj >

Xik k Xj

�� �� ¼ cosðhXiXj
Þ; ð11Þ

showing a connection between AC and CC. The AC measure uses the
1 Entropy estimate for a discrete feature can be easily obtained from its histogram
For real-valued features, some method for estimating entropy must be used (Beirlan
et al., 1997).
.
t

mean value of each feature; the centering procedure of removing the
mean from each feature may influence the result of FS criteria.

For high-dimensional sparse data (large d, small n), the estima-
tion of probabilities and entropies can be biased due to scarce data.
As a consequence, information-theoretical FS methods perform
better on dense than on sparse data (Ferreira and Figueiredo,
2011). This leads us to consider this geometric view of features,
using angles to measure similarity.
3.3. Algorithm 1: Relevance-only filter

The first proposal applies one of the dispersion measures in or-
der to assess the relevance of each feature. Given a pre-specified
maximum number of features mð6 dÞ, compute one of the disper-
sion measures described above (MAD, MM, TV and AMGM) of all
the features, sort these values by decreasing order, and keep the
top m (for simplicity, this is named Algorithm 1).
3.4. Algorithm 2: Filter based on relevance and redundancy

Although Algorithm 1 is very efficient, it is based solely on the
individual feature relevances. However, it may happen that two
(or more) relevant features are redundant and it is desirable to se-
lect only one of them. To achieve this goal, we propose to compute
the redundancy between the most relevant features, that is, after
sorting the d features by decreasing relevance, we compute up to
d� 1 pairwise similarities (� dðd� 1Þ=2 possible comparisons) be-
tween consecutive features. In the end, we keep only features with
high relevance and low (i.e., below some threshold MS) similarity
among themselves.

It is not expected that redundant features are consecutive in the
ranked sorted feature list. However, it is a waste of time to com-
pute the redundancy between weakly relevant and irrelevant fea-
tures, so we perform the redundancy check only among the top
relevant features. Our method can be seen as a sub-optimal proce-
dure for finding redundancy, since it allows removing the most
redundant features from the subset of the most relevant features.

Algorithm 2 describes our relevance-redundancy FS procedure.
In line 6, Sð�; �Þ refers to one of the feature similarity measures de-
scribed in Section 3.2. Due to the redundancy elimination proce-
dure, fewer than m features, say m0, may be selected, depending
on the value of parameter MS; smaller values of MS lead to smaller
(and less redundant) feature subsets. We have found experimen-
tally that on high-dimensional data, this redundancy check and
elimination procedure usually stops after considering only a small
percentage of the most relevant features.

Fig. 1 plots relevance and similarity of the consecutive m top-
ranked features of the Brain-Tumor1 and Dexter datasets
(d ¼ 5920 and d ¼ 20000 features, respectively; see Table 1). Rele-
vance is computed by the MM measure (7) and similarity by the AC
measure (10).

For both datasets, there are many pairs of consecutive features
with similarity above 0.5 (some even close to 1), among the 1000
most relevant features. As referred by several authors (e.g., Yu
et al., 2004; Peng et al., 2005), we should remove this redundancy
among the most relevant features. On the Brain-Tumor 1 dataset,
the linear SVM classifier on the original features attains 8.0% error
rate, whereas with the first 1000 features selected by Algorithms 1
and 2, we get 8.0% and 6.0%, respectively; on the Dexter dataset, we
have 11.0%, 11.3%, and 9.0%, respectively.

Notice that Algorithms 1 and 2 can also work in supervised
mode. In that case, the relevance and/or the redundancy measures
should make use of the class labels (see Tables 3 and 4).



Algorithm 2: Alg-relevance-redundancy unsupervised feature selection

Input X : n� d matrix, n patterns of a d-dimensional training set.
m ð6 dÞ: maximum number of features to keep.
MS: maximum allowed similarity between pairs of features.

Output FeatKeep: an m0�dimensional array (with m0 6 m) containing the indexes of the selected features.eX : n�m0 matrix, reduced dimensional training set, with features sorted by decreasing relevance.

1: Compute the relevance ri of each feature Xi (columns of X), for i 2 f1; . . . ; dg, using one of the dispersion measures (AMGM, MAD,
MM, or IQR).

2: Sort the features by decreasing order of ri. Let i1; i2; . . . ; id be the resulting permutation of f1; . . . ; dg (i.e., ri1 P ri2
P . . . P rid ).

3: FeatKeep½1� ¼ i1; {/⁄ Keep the most relevant feature (the first). ⁄/}
4: prev = 1; next = 2; {/⁄ The first (current) and next feature. ⁄/}
5: for f ¼ 2 to d do
6: s ¼ SðXif ;Xiprev Þ; {/⁄ Compute similarity of pair if and iprev. ⁄/}
7: if s < MSthen
8: FeatKeep½next� ¼ if ; {/⁄ Low similarity; keep feature if . ⁄/}
9: eXnext ¼ Xif ; {/⁄ Store the feature values in eX . ⁄/}
10: prev = if ; {/⁄ prev holds the last selected and kept feature. ⁄/}
11: next = next + 1; {/⁄ Move onto the next feature. ⁄/}
12: end if
13: if next = m then
14: break; {/⁄ We have m features. Break loop. ⁄/}
15: end if
16: end for
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Fig. 1. Relevance and similarity of the top-rank m ¼ 1000 and m ¼ 2000 features, by the MM measure, of a single fold for the Brain-Tumor 1 (d ¼ 5920) and the Dexter
(d ¼ 20000) datasets.
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3.4.1. Complexity analysis
The dispersion measures considered have OðndÞ computational

cost, while the sorting operation, using quicksort, has Oðd log dÞ
complexity. Thus, the overall cost of Algorithm 1 is
C1 ¼ OðndÞ|fflffl{zfflffl}
Relevance

þOðd log dÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Sort

: ð12Þ

Algorithm 2 adds to the complexity of Algorithm 1 the cost of com-
puting the pairwise similarities. Thus, when selecting up to mð6 dÞ
features, Algorithm 2 has a worst-case complexity of
C2 ¼ OðndÞ|fflffl{zfflffl}
Relevance

þOðd log dÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Sort

þ OðnmÞ|fflfflffl{zfflfflffl}
Redundancy

: ð13Þ
3.5. Estimation of the number of features

In practice, many FS methods face the problem of selecting an
adequate number (m) of features. This problem can be addressed
by expensive methods such as cross-validation (CV), if the subse-
quent learning algorithm is available when FS is being performed.
However, using CV defeats the purpose of using an unsupervised
filter approach (independent of the learning algorithm and not



Table 1
Datasets with c classes and n instances shown by increasing dimensionality d; in
some cases d� n and RFS is small. None of these datasets contains multinomial
variables.

Dataset d c n RFS Type of data

#1. Hepatitis 19 2 155 25.8 Biological
#2. Ionosphere 34 2 351 21.9 Radar
#3. Colon 2000 2 62 3.9 Microarray
#4. SRBCT 2309 4 83 2.6 Microarray
#5. AR10P 2400 10 130 1.6 Face
#6. PIE10P 2420 10 210 2.6 Face
#7. Lymphoma 4026 9 96 1.6 Microarray
#8. Leukemia1 5327 3 72 3.0 Microarray
#9. DLBCL 5470 2 77 4.8 Microarray
#10. TOX-171 5748 4 171 5.3 Microarray
#11. Brain-Tumor1 5920 5 90 2.3 Microarray
#12. Leukemia 7129 2 72 4.5 Microarray
#13. Example 1 9947 2 50 225.0 BoW
#14. ORL10P 10304 10 100 1.3 Face
#15. Brain-Tumor2 10367 4 90 1.6 Microarray
#16. Prostate-Tumor 10509 2 102 6.4 Microarray
#17. Leukemia2 11225 3 72 3.0 Microarray
#18. CLL-SUB-111 11340 3 111 4.6 Microarray
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using training class labels). We propose an efficient criterion to be
used in unsupervised filter mode, where the number of selected
features depends on a cumulative relevance (CR) measure. Let
ri1 ; . . . ; rid be the sorted relevance values and

cv ¼
Xv

f¼1

rif ð14Þ

be the CR of the top v most relevant features. In Algorithm 1, we
propose choosing the number of features as the lowest value m that
satisfiesPm

f¼1rifPd
i¼1ri

¼ cm

cd
P L; ð15Þ

where L is some threshold (e.g., 0.95), leading to the choice of a frac-
tion of the top-m ranked features. For Algorithm 2, we propose
inserting another CR criterion that stops adding features when the
sum of the relevance values of the already selected features exceeds
some fraction (say 0.95) of the total relevance cd.
#19. 11-Tumors 12553 11 174 1.9 Microarray
#20. Lung-Cancer 12601 5 203 5.1 Microarray
#21. SMK-CAN-187 19993 2 187 11.7 Microarray
#22. Dexter 20000 2 2600 75.0 BoW
#23. GLI-85 22283 2 85 5.3 Microarray
#24. Dorothea 1000000 2 1950 288.0 Drug Discovery
4. Experimental evaluation

We have evaluated our methods on public-domain datasets for
the task of supervised classification, using a 10-fold CV strategy.
We use the linear support vector machine (SVM) (Schölkopf and
Smola, 2002) from the PRTools2 toolbox (Duin et al., 2007), with
the ‘c’ parameter set to 1 (its default value) in all the experimentas.
Changing the SVM kernel or tuning ‘c’ could yield better results;
however, our main concern when assessing FS methods is to com-
pare the performance of these methods with a common classifier
and not necessarily with the best possible classifier. The filter and
embedded FS methods considered for comparison are publicly avail-
able at featureselection.asu.edu. All experiments were performed on
a laptop with 2.16 GHz CPU and 4 Gb of RAM.

Table 1 describes the datasets; we have datasets from the UCI
repository3 (Frank and Asuncion, 2010), text classification, face
database, and bioinformatics datasets from the gene expression
model selector (GEMS) project (Statnikov et al., 2005) 4 and from
Arizona State University (ASU)5 (Zhao et al., 2010a). Very recently,
(Brown et al., 2012) proposed to measure the difficulty of a FS task
by the ratio

RFS ¼
n

a� c
; ð16Þ

where a is the median arity of each feature, discretized with equal-
frequency binning (EFB) (Witten and Frank, 2005) into 8 intervals;
low values imply more difficult FS problems. Table 1 displays RFS

for each dataset.
Section 4.1 compares Algorithms 1 and 2, and the three differ-

ent similarity measures in Algorithm 2 are evaluated in Section 4.2.
A comparison with unsupervised and supervised FS techniques is
provided in Section 4.3 and 4.4, respectively. Section 4.5 evaluates
the running-time of our proposals against other methods, and Sec-
tion 4.6 summarizes the results.

4.1. Comparison between Algorithms 1 and 2

Fig. 2 shows the 10-fold CV estimates of the test set error rates
of linear SVM classifiers on the Hepatitis, Ionosphere, Prostate-Tu-
mor, and Leukemia2 datasets, with features selected by: Algorithm
2 http://www.prtools.org/prtools.html.
3 archive.ics.uci.edu/ml/datasets.html.
4 www.gems-system.org/.
5 featureselection.asu.edu/datasets.php.
1 with TV, MAD, and MM; Algorithm 2, with the AC measure and
MS ¼ 0:7. In each CV fold, the number of selected features m is ob-
tained by setting different values of L in the range from 0.5 to 0.9.
The dashed (blue) line is the baseline error (no FS).

For the lower dimensional datasets, Algorithm 2 with any of the
three dispersion measures is advantageous with respect to Algo-
rithm 1. On the Prostate-Tumor dataset, the MM measure attains
better results than the other two measures, in both Algorithms 1
and 2, attaining test set error rates below the baseline. On the
Leukemia2 dataset, the use of TV and MAD yields adequate results,
reaching the baseline. With Algorithm 2, the MM measure and
relevance-redundancy analysis achieve the best results, attaining
error rates below the baseline.
4.2. Evaluation of similarity measures

Fig. 3 compares the use, in Algorithm 2, of the similarity
measures mentioned in Section 3.2: AC, CC, and MICI, together
with the AMGM relevance criterion, on the Hepatitis, Ionosphere,
Leukemia1, and Example 1 datasets. The results of Algorithm 1
with AMGM are shown for comparison purposes. Notice that
when using the MICI measure in Algorithm 2, the following feature
is kept if the maximum similarity is below MS �Mx, where Mx

is the maximum value of the MICI measure for that pair of
features.

On the Hepatitis dataset, Algorithms 1 and 2 outperform the
baseline, with any of the three similarity measures. On the Iono-
sphere dataset, neither algorithm attains better results than the
baseline; the AMGM relevance is not adequate for this type of data.
On the Leukemia1 dataset, the AC measure performs better than
the other two measures. On the sparse BoW Example 1 dataset,
the AC and CC measures attain the same results, better than MICI.
On the Leukemia1 and Example 1 datasets, Algorithm 2 with the
AC similarity measure reaches test errors below the baseline, using
less than 2000 features. The AC measure is simpler and less com-
putationally demanding than the other two measures, thus being
preferable in some learning problems.

http://featureselection.asu.edu
http://www.prtools.org/prtools.html
http://archive.ics.uci.edu/ml/datasets.html
http://www.gems-system.org/
http://featureselection.asu.edu/datasets.php
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Fig. 2. Test set error rates (%) of 10-fold CV for the Hepatitis, Ionosphere, Prostate-Tumor, and Leukemia2 datasets, with a linear SVM classifier, as functions of the number of
features for Alg1 and Alg2 (AC similarity with MS ¼ 0:7).
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4.3. Unsupervised methods

We now compare Algorithm 2 against the unsupervised FS ap-
proaches LS and SPEC. Table 2 shows the 10-fold CV estimates of
the test set error rates of linear SVM classifier on the features se-
lected by Algorithm 2 using the MAD, MM, AMGM, and TV rele-
vance, with AC similarity. In each of the 10-folds, the FS methods
select the same number of features, computed by the CR criterion
(15), for MAD relevance. On the Dexter and GLI-85 datasets, we
display results for different values of L and MS, to show their im-
pact on the error. For LS and SPEC, the similarity matrix W in each
fold is given by W ¼ ð1=2ÞXjX

T
j , where X is the training subset.

In most of these tests, all the FS methods are able to signifi-
cantly reduce the number of features, with lower error than using
the original set of features. The three dispersion measures pro-
posed, applied by Algorithm 2, attain better results than the TV
method. In many cases, Algorithm 2 selects subsets with less than
the displayed number of features (m), due to the redundancy elim-
ination procedure.

For the higher-dimensional datasets with sparse data, the LS
and SPEC methods attain higher error rates than Algorithm 2. This
suggests that LS and SPEC work better with lower-dimensional
dense data. Our proposals performs consistently and stably across
sparse and dense data. Among the four dispersion measures, MM
attains the best results.
We assessed the statistical significance of our results using
Friedman’s test (Friedman, 1937; Friedman and March, 1940), as
suggested by Demsar (2006) and Garcia et al. (2008). We obtained
a p-value of 0:0231 < 0:05, supporting the statistical significance of
the favorable comparison of the proposed approach against other
successful unsupervised FS techniques, on high-dimensional data-
sets. For further comparisons of the results on microarray datasets,
with recursive feature elimination (RFE–SVM) (Guyon et al., 2002),
the interested reader is referred to the works of Mundra and Rajap-
akse (2010), Mundra and Rajapakse (2007).

4.4. Supervised methods

We now compare Algorithm 2 against the supervised FS ap-
proaches ReliefF, CFS, FCBF, FiR, and mrMR. Table 3 shows the
10-fold CV estimates of test set error rates of linear SVM classifiers
on features selected by Algorithm 2 using the unsupervised MM
and the supervised FiR and MI relevance, with AC similarity using
MS ¼ 0:7. In each CV fold, the FS methods select the same number
of features m, computed by the CR criterion of (15), for the MM rel-
evance measure. As done by Yu and Liu (2003), ReliefF uses k ¼ 5
neighbors and t ¼ 30 instances.

In our experiments, the CFS method showed an acceptable run-
ning time (a few minutes) for datasets with upto d ¼ 2000 features.
Beyond this point, its execution time becomes too high (hours),



2 4 6 8 10 12 14
18.5

19

19.5

20

20.5

21

21.5

# Features (m)

 T
es

t S
et

 E
rro

r R
at

e 
[%

] 

Algorithms 1 and 2 on the Hepatitis dataset

No FS
AMGM (Alg.1)
AMGM (cosine)
AMGM (corr)
AMGM (maximal)

20 22 24 26 28 30 32
14

15

16

17

18

19

20

21

22

# Features (m)

 T
es

t S
et

 E
rro

r R
at

e 
[%

] 

Algorithms 1 and 2 on the Ionosphere dataset

No FS
AMGM (Alg.1)
AMGM (cosine)
AMGM (corr)
AMGM (maximal)

1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

# Features (m)

 T
es

t S
et

 E
rro

r R
at

e 
[%

] 

Algorithms 1 and 2 on the leukemia1 dataset

No FS
AMGM (Alg.1)
AMGM (cosine)
AMGM (corr)
AMGM (maximal)

500 1000 1500 2000 2500 3000 3500 4000

2.5

3

3.5

4

# Features (m)

 T
es

t S
et

 E
rro

r R
at

e 
[%

] 

Algorithms 1 and 2 on the Example1 dataset

No FS
AMGM (Alg.1)
AMGM (cosine)
AMGM (corr)
AMGM (maximal)

Fig. 3. Test set error rates (%) of 10-fold CV of linear SVM classifiers on the features selected by Alg2 ðMS ¼ 0:7Þ for different similarity measures: AC-‘cosine’, CC-‘corr’, and
MICI-‘maximal’) and Alg1, from the Hepatitis, Ionosphere, Leukemia1, and Example 1 datasets, with AMGM relevance.
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due to its search mechanism. Consequently, we did not evaluate
CFS beyond the AR10P dataset (symbol * in Table 3). Due to the
large memory requirements of the Dorothea dataset, the ReliefF,
FCBF, and mrMR methods from the ASU FS package were unable
to run (they crashed due to insufficient memory resources); our
methods and the FiR method from ASU were able to run.

The Friedman test on the average error (excluding the CFS
method and the Dorothea dataset) has a p-value of
0:139� 10�6 < 0:05, confirming statistical significance. Summariz-
ing: (i) our Algorithm 2 attains adequate results, comparable to
other techniques, performing consistently across different types
of data; (ii) the execution time of some existing supervised FS
methods becomes prohibitive on high-dimensional datasets,
whereas our methods are still applicable; (iii) by using MI rele-
vance in Algorithm 2, we make this criterion applicable to high-
dimensional datasets, in contrast to the standard mrMR approach.
4.5. Running-time analysis

We now compare the running-time of Algorithm 2 (with MAD
and FiR) with some filters and embedded approaches. Table 4
shows the total time taken by the FS methods to process the 10
CV folds and the test set error of the linear SVM classifiers. In each
of the 10-folds, the FS methods select the same number of features.
We have excluded the CFS and SMLR methods, since their running
time is prohibitive for high-dimensional datasets.

Our methods are usually faster than the other unsupervised and
supervised filter and embedded FS techniques, being closely fol-
lowed by the LS method. Algorithm 2 usually outperforms the LS
method.

Among the supervised FS filters, CFS is the slowest, being
impractical for high-dimensional datasets. The FCBF is the fastest
among the supervised filters. Our methods attain adequate results
in terms of both time and error; for instance, in the Lung-Cancer
dataset, Algorithm 2 is the fastest and achieves the lowest error.

4.6. Discussion

Our experimental results suggest the following remarks. The
AMGM relevance, is adequate only for sparse data. The MAD and
MM dispersion measures are good generic choices for sparse and
dense data, with MM slightly preferable; these measures attain
equal or better results than TV, with Algorithm 1 or 2. For Algo-
rithm 1, we propose to use L 2 ½0:7; 0:9�; for Algorithm 2,
L 2 ½0:7;0:99� and MS 2 ½0:7;0:8� are adequate choices; the pair
ðL;MSÞ ¼ ð0:95;0:8Þ is adequate for different datasets (see Tables
2 and 3).

Typically, Algorithm 2 yields better results than Algorithm 1,
since it eliminates redundant features, but still scales well for



Table 2
Test set error rates (%) of linear SVM for a 10-fold CV for Alg2 (with MAD, MM, AMGM, and TV), LS and SPEC. We set the threshold in (15) as L ¼ 0:95 and MS ¼ 0:8 (unless stated
otherwise). In each fold, the FS methods select m features, computed by CR for the MAD relevance (best result in bold face, the second best is underlined).

Dataset Alg2 (Unsupervised) Unsupervised Baseline

MAD MM AMGM TV LS SPEC No FS

Hepatitis, L ¼ 0:99 19.4 20.6 18.7 20.6 20.6 21.9 20.6

Ionosphere 15.1 13.1 15.1 13.1 16.2 14.2 13.7
Colon 21.0 17.7 19.4 17.7 21.0 22.6 19.4

SRBCT 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AR10P 0.8 3.8 3.8 0.8 1.5 1.5 1.5
PIE10P 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lymphoma 2.2 2.2 2.2 2.2 2.2 2.2 2.2
Leukemia1 4.2 4.2 5.6 4.2 5.6 4.2 4.2

DLBCL 31.2 23.4 48.1 23.4 10.4 27.3 6.5

TOX-171 14.6 11.7 22.8 11.7 12.9 1.8 9.9
Brain-Tumor1 14.4 12.2 12.2 12.2 13.3 28.9 12.2

Leukemia 2.8 2.8 2.8 2.8 2.8 30.6 2.8

Example 1 2.7 2.7 2.6 2.7 3.3 22.9 2.7
ORL0P 2.0 2.0 4.0 5.0 1.0 1.0 1.0

Brain-Tumor2 38.0 38.0 28.0 38.0 40.0 40.0 34.0
Prostate-Tumor 8.8 10.8 10.8 10.8 13.7 10.8 10.8
Leukemia2 5.6 5.6 5.6 5.6 4.2 6.9 4.2

CLL-SUB-111 30.6 36.0 35.1 36.0 33.3 36.0 29.7

11-Tumors 12.1 13.8 14.9 13.8 23.0 30.5 9.2

Lung-Cancer 4.9 5.9 4.9 5.9 5.4 6.4 4.9

SMK-CAN-187 41.7 41.7 41.7 41.7 26.2 25.7 26.2
Dexter 5.3 5.2 5.2 5.2 5.2 39.3 4.7

Dexter, L ¼ 0:8; MS ¼ 0:7 4.8 5.0 5.8 5.0 7.8 45.5 5.0
GLI-85 12.9 14.1 15.3 14.1 11.8 9.4 11.8
GLI-85, L ¼ 0:8; MS ¼ 0:7 12.9 16.5 20.0 16.5 14.1 16.5 15.3

Dorothea 24.0 24.0 24.0 24.0 25.0 22.0 24.0

Table 3
Test set error rates (%) of linear SVM for a 10-fold CV for Alg2 (with MM, FiR, and MI relevance) and supervised filter methods. We use ðL ¼ 0:99; MS ¼ 0:8Þ and in each CV-fold the
FS methods select m̂ features, computed for the MM relevance (best result in bold face, the second best is underlined).

Dataset Alg2 Supervised filters Baseline

MM FiR MI RF CFS FCBF FiR mrMR No FS

Hepatitis 18.1 18.7 18.1 21.3 19.4 20.0 20.0 20.6 18.7
Ionosphere 14.5 14.5 15.7 15.4 14.2 17.9 14.2 16.8 13.7

Colon 24.2 22.6 24.2 19.4 25.8 22.6 19.4 21.0 21.0
SRBCT 0.0 0.0 0.0 0.0 0.0 4.8 0.0 4.8 0.0

AR10P 2.3 1.5 0.8 0.8 6.2 13.1 0.8 56.2 0.8

PIE10P 0.0 0.0 0.5 0.0 * 1.0 0.0 24.8 0.0

Lymphoma 2.2 2.2 2.2 2.2 * 3.3 2.2 22.8 2.2

Leukemia1 5.6 2.8 6.9 6.9 * 5.6 4.2 9.7 5.6

DLBCL 16.9 24.7 36.4 10.4 * 2.6 7.8 16.9 5.2
TOX-171 15.8 21.1 11.1 10.5 * 15.2 10.5 36.8 15.8

Brain-Tumor1 13.3 12.2 13.3 11.1 * 18.9 11.1 25.6 10.0

Leukemia 2.8 12.5 2.8 2.8 * 4.2 4.2 8.3 2.8

Example 1 2.3 2.2 2.2 3.7 * 6.3 2.1 28.3 2.4

ORL0P 4.0 5.0 2.0 1.0 * 1.0 2.0 68.0 1.0

Brain-Tumor2 34.0 22.0 30.0 22.0 * 36.0 24.0 42.0 26.0

Prostate-Tumor 7.8 5.9 4.9 7.8 * 9.8 7.8 12.7 8.8

Leukemia2 6.9 5.6 5.6 5.6 * 4.2 5.6 8.3 6.9

CLL-SUB-111 35.1 30.6 39.6 36.0 * 38.7 36.0 19.8 36.0

11-Tumors 17.2 21.8 28.2 16.7 * 12.1 13.2 45.4 9.8

Lung-Cancer 5.9 6.4 4.9 4.9 * 6.4 5.4 11.8 5.9

SMK-CAN-187 41.7 40.6 53.5 24.6 * 33.2 23.5 33.2 24.1
Dexter 6.7 6.0 7.7 9.3 * 15.3 6.7 18.0 6.3
GLI-85 14.1 12.9 17.6 11.8 * 20.0 14.1 16.5 14.1

Dorothea 25.0 26.0 25.0 * * * 25.0 * 25.0
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Table 4
For each dataset, numbered as in Table 1, the first row contains the test set error rates (%) of linear SVM for a 10-fold CV for Alg2 (with MS ¼ 0:8) and other FS methods selecting m
features. The second row shows the total running time taken by each FS algorithm to select m features for the 10-folds. The best error rates and running times are in bold face; the
second best are underlined.

#, m Alg2 Filter Embedded Baseline

MAD FiR LS SPEC RF FCBF FiR mrMR BLogReg No FS

#3 24.2 30.6 21.0 24.2 24.2 25.8 24.2 17.7 21.0 21.0
m = 1000 0.3 7.4 0.4 1.5 9.0 147.0 7.1 19.8 2.2 –

#4 0.0 0.0 0.0 0.0 0.0 1.2 0.0 3.6 2.4 0.0

m = 1800 0.5 9.7 0.4 2.3 11.6 8.0 9.3 15.8 5.7 –

#7 2.2 2.2 2.2 3.3 2.2 3.3 3.3 25.0 8.7 2.2

m = 2000 0.8 29.5 0.8 9.0 21.7 25.2 29.2 24.7 143.7 –

#16 8.8 6.9 10.8 9.8 5.9 10.8 9.8 13.7 7.8 8.8

m = 4000 1.8 21.6 2.4 13.5 47.8 29.1 21.1 48.8 46.1 –

#20 5.9 6.4 6.4 8.4 6.9 7.4 6.9 11.3 7.4 6.4
m = 8000 3.8 54.9 7.5 47.5 95.5 208.8 54.1 88.5 207.4 –
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high-dimensional datasets. The similarity measure AC is more effi-
cient to compute and less dependent on the amount of data, as
compared to previous measures.

Our methods are much faster than embedded methods and
many filter methods (see Table 4) up to d ¼ 105. The restriction
of the redundancy analysis to pairs of the most relevant features
is the reason behind the speed of Algorithm 2.

5. Conclusions

We have proposed two feature selection filters for high-dimen-
sional datasets, with a relevance/redundancy approach, which can
work in unsupervised or supervised mode. In the unsupervised
case, relevance is based on simple statistical dispersion measures.
The redundancy analysis is efficient, being computed solely be-
tween a few pairs of the most relevant features.

The experimental evaluation showed the efficiency of our meth-
ods. In some cases, our unsupervised methods attain lower gener-
alization error than some supervised techniques, suggesting that
for some medium and high-dimensional datasets, the use of the
class labels does not necessarily help in choosing an adequate sub-
set of features, since this choice is essentially based on redundancy
analysis. Our filters are adequate for high-dimensional datasets,
regarding the trade-off between accuracy, time, and memory effi-
ciency. These methods yield reduced subsets of features that can
be subsequently used by more sophisticated methods, such as
embedded or wrapper techniques, lowering their cost and making
them practical for high-dimensional data.

As ongoing work, we are developing criteria to compute both
the maximum number of features and the maximum allowed sim-
ilarity between features.
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