
OSIA: Out-of-order Scheduling for In-order Arriving in concurrent
multi-path transfer
Jingyu Wanga, Jianxin Liaoa , Tonghong Lib

a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, PR China
b Technical University of Madrid, Madrid 28660, Spain

A B S T R A C T

One major problem of concurrent multi-path transfer (CMT) scheme in multi-homed mobile networks
is that the utilization of different paths with diverse delays may cause packet reordering among packets
of the same flow. In the case of TCP-like, the reordering exacerbates the problem by bringing more
timeouts and unnecessary retransmissions, which eventually degrades the throughput of connections
considerably. To address this issue, we first propose an Out-of-order Scheduling for In-order Arriving
(OSIA), which exploits the sending time discrepancy to preserve the in-order packet arrival. Then, we
formulate the optimal traffic scheduling as a constrained optimization problem and derive its closed-
form solution by our proposed progressive water-filling solution. We also present an implementation to
enforce the optimal scheduling scheme using cascaded leaky buckets with multiple faucets, which
provides simple guidelines on maximizing the utilization of aggregate bandwidth while decreasing the
probability of triggering 3 dupACKs. Compared with previous work, the proposed scheme has lower
computation complexity and can also provide the possibility for dynamic network adaptability and
finer-grain load balancing. Simulation results show that our scheme significantly alleviates reordering
and enhances transmission performance.

1. Introduction

Recent studies have suggested that concurrent multi-path
transfer (CMT) (Phatak and Goff, 2002; Hsieh and Sivakumar,
2005; Iyengar et al., 2006; Liao et al., 2008) is an effective traffic
engineering technique to improve throughput by aggregation of
bandwidth, especially for the high-bandwidth applications such
as video sharing/download/streaming. Other benefits include
increased service reliability, latency reduction, and fault tolerance
by sending redundant data over different paths, and enhanced
mobility when combining coverage areas of multiple mobile and
wireless access networks. Three key issues in the use of multiple
paths in multi-homed mobile networks are: (1) how to maximize
the aggregate throughput, (2) how to alleviate the reordering
caused by the delay difference between any two paths, and
(3) how to adjust to the variability of the throughput and delay,
especially in wireless networks. In packet-switched networks
such as the Internet, a packet is the smallest unit of data that
can be transmitted over a network. In a multi-path network, a
packet flow can be split over multiple paths between a source and

a destination. Although multi-path communication can bring
many benefits, it is also faced with the problem of "reordering".
That is, packets injected into the network later arrive at the
destination before the packets injected into the network earlier.
Unfortunately, current TCP protocol do not deal with this issue,
leaving it instead to be misinterpreted as packet losses by the
protocol stacks of these networks.

CMT needs schemes that can split traffic across multiple
paths, while relieving the problem of "reordering". Current traffic
scheduling schemes, however, exhibit a tussle between the
splitting granularity and the ability to avoid packet reordering.
Packet-based scheduling quickly assigns the desired load share to
each path. When paths differ in delay, however, a large number of
packets can become out-of-order. TCP confuses this reordering as
a sign of congestion, resulting in degraded performance of the
applications (Laor and Gendel, 2002). Even for some UDP-based
real time applications, such as video streaming or Voice-over-IP
(VoIP), packet reordering may cause apparent loss of data and
aggravate the buffer requirements at the receiver. Flow-level
splitting, on the other hand, pins each flow to a specific path
and thus packet reordering is avoided. But, flows differ widely in
terms of their sizes and rates, and once assigned, a flow persists
on the path throughout its lifetime (Papagiannaki et al., 2004;
Zhang et al., 2002). Consequently, flow-level splitting may assign
inaccurate amounts of traffic to each path or fail to quickly

re-balance the load in the face of changing demands. The inability
to quickly react to traffic spikes may congest links and reduce
network effective throughout.

This paper shows that one can obtain the accuracy and
responsiveness of flow-based splitting and still alleviate packet
reordering. We introduce Out-of-order Scheduling for In-order
Arriving (OSIA), a traffic scheduling mechanism. OSIA exploits a
simple observation as shown in Fig. 1. Consider load balancing
traffic over 3 paths in which path 1 is the slowest, and path 2 is
the fastest. Here it is worth noting that this slow and fast refer to
the measure in terms of delay (s) rather than bandwidth (bits/s).
If the packets are scheduled and transmitted according to their
original orders at the sender, the packets via path 1 will not arrive
in the receiver on time (e.g., packet 2). As a result, the reordering
takes place. To ensure the packets arrive at the intrinsic order, one
can adjust the sending sequence of packets in such a way that
packets at the slower path are transmitted earlier, while packets
at the faster path are transmitted later. For example, in Fig. 1,
packet 2 should be transmitted first via path 1, and then packet 3
is transmitted via path 3, finally the packet 1 is transmitted via
path 2. Thus, the sending time discrepancy can bridge the gap
between the faster and slower path. The faster path makes use of
the packet queuing time to compensate the path propagation
time in order to achieve the consistent arrival time.

Different from the traditional packet scheduling, OSIA disor­
ders the original packet sequence. To be specific, the ready-to-
transmit packets are out of order. During each interval, OSIA
estimates the delays on these paths and partitions the flow into
several chunks one-time, based on the delay difference between
the parallel paths under consideration. Then the probabilistic
scheduling is used to assign packets in each chunk to different
paths and transmit them in parallel. The small size of packets
enables OSIA to split traffic dynamically and accurately, ensuring
that the resources of each path are fully utilized.

This paper makes the following contributions. (1) It introduces
OSIA, showing that it is possible to transmit a TCP-like flow across
multiple paths without causing packet reordering. In this paper,
we take into consideration the characteristics of delay difference
when designing load scheduling scheme. We propose an out-of-
order scheduling scheme, which exploits the sending time dis­
crepancy to preserve the in-order packet arrival. This scheme is
suitable for the cases where the paths are dynamic, which is
updated and executed periodically with the period interval.

(2) It formally analyses the flow splitting problem of OSIA. We
assume that the source flow is regulated by a set of leaky buckets
and uses a mixed strategy consisting of deterministic flow-level
splitting and probabilistic packet-level scheduling to achieve a
finer-grain parallelism while alleviate the out-of-ordering. We
formulate a constrained optimization problem of maximizing total

Fig. 1. Load balancing traffic over three parallel paths in which the path 1 is the
slowest and path 2 is the fastest. If the packets are scheduled and transmitted as
their original orders, the packets via path 1 will arrive later at the receiver.

end-to-end aggregate throughput. We derive a closed-form solu­
tion by our proposed progressive water-filling (PWF) algorithm.

(3) It also presents an implementation to enforce the OSIA
scheme using cascaded leaky buckets with multiple faucets, each
bucket for each chunk and each faucet for each path, which
provides simple guidelines on maximizing utilization of aggregate
bandwidth and helps to guarantee the packets from multiple
paths can arrive at the receiver in-order.

The rest of this paper is organized as follows. For ease of
presentation, we first survey the related works in Section 2. Then,
we discuss the analytical model, solution and process of OSIA in
Section 3. In Section 4, we discuss implementation-related issues.
Simulation results are shown in Section 5, and Section 6 con­
cludes this paper.

2. Related work

Packet reordering (Mogul, 1992; Leung et al., 2007) is a
phenomenon in which packets with higher sequence numbers are
received earlier than those with smaller sequence numbers. It can
be caused by a myriad of reasons. In Leung et al. (2007), five major
causes are listed: packet-level multi-path routing, route fluttering,
inherent parallelism in modern high-speed routers, link-layer
retransmission, and router forwarding lulls. This paper focuses on
alleviating the packet reordering caused by another new reason of
the multi-path heterogeneity when performing CMT.

When packets from a single flow travel on multiple paths with
different RTT, they may arrive reordered at the destination.
Traditional TCP design is based on the assumptions of nearly in-
order packet delivery and error-free transmission channel. Fol­
lowing these assumptions, three or more dupACKs (Allman et al.,
1999) caused by any out-of-order packet events are misinter­
preted as packet losses. As a result, the fast retransmission
algorithm (Jacobson et al., 1992) is activated frequently to
retransmit packets that have not been lost (referred to as false
fast retransmit), which keeps window size unnecessarily small,
and results in undesirable under-utilization of network band­
width. Besides, persistent spurious retransmission can exacerbate
network congestion, lead to classical congestion collapse (Allman
et al., 1999), and reduce the TCP performance. Even for UDP-based
application, this reordering can result in more demanded buffer
space and extra application delays.

In this section, we survey the solutions proposed to date for
packet reordering. We categorize the reordering solutions into three
different classes, namely, (i) the class of approaches for distinguish­
ing the events of packet reordering; (ii) the class of approaches for
adjusting the triggering threshold; and (iii) the class of approaches
for avoiding the occurrence of packet reordering.

The first class is a collection of methods that process the ordering
information of segments and ACKs received, and then infer and
generate more appropriate congestion response when the reorder­
ing events are detected. The TCP source finds out which segment or
ACK has been reordered. It then reacts, say, by recovering previous
congestion responses and/or disabling future congestion responses
for a time period. The Eifel algorithm (Ludwig and Katz, 2000),
DSACK TCP (Floyd et al., 2000), and TCP-DOOR (Wang and Zhang,
2002), belong to this class.

The second class is a group of techniques that avoid or delay
triggering spurious congestion responses by deferring them for a
time period. During the time period, the response will be canceled
whenever it is inferred not to be caused by congestion. The
response will be carried out only when the corresponding timer
expires. The TCP source searches for an appropriate dupACK
threshold to proactively avoid triggering a spurious fast retrans­
mission and fast recovery as well as a retransmission timeout at

the same time. The Leung-Ma Algorithm (Leung and Ma, 2005),
Lee-Park-Choi algorithm (Lee et al., 2002), TCP-DCR (Bhandarkar
and Reddy, 2004), and TCP-PR (Bohacek et al., 2006), belong to
this class.

In contrast to the above two approaches just aiming to decrease
the negative impact caused by packet reordering, the third class of
approaches focuses on reducing the occurrence of packet reordering
essentially. Currently, packet-based scheduling (Leung and Li, 2003)
and packet resequencing (Lane and Nakao, 2010) are the most
commonly used schemes to prevent packet reordering caused by
the inherent multi-path routing. But they require additional techni­
ques to preserve packet order, which has great impact on system
performance (Arthur et al., 2007). Flow-level splitting allocates each
flow to a specific path and avoids packet reordering, however it
cannot assign accurate amount of traffic to each path. Furthermore, a
sub-flow level (flowlet) scheduling has been proposed (Kandula
et al., 2007) to tackle this problem with granularity, but it is not fine
enough to quickly assign the desired load share to each path. In
contrast, Kaspar et al. (2009) address and quantify the impact of
packet reordering due to the multi-path heterogeneity when per­
forming CMT, but their solution does not make full use of the network
resources and cannot be suitable to the dynamic mobile networks.

In one of our earlier papers (Wang et al., 2008), we present a
preliminary fragmentation strategy to avoid unnecessary retrans­
mission timeout events, and focus on a one-time scheduling
subproblem, as opposed to periodic scheduling. Besides, that
strategy is imperfect and simulation is also insufficient. Conse­
quently, it is desirable to design a more refined scheduling
scheme to alleviate the inherent packet reordering caused by
the multi-path heterogeneity when performing CMT, so that the
packets can reach the destination almost in order. In addition, the
traffic scheduling algorithm should have a low computation
complexity and high network adaptability since mobile network
conditions may change quickly.

3. OSIA scheduling

In this section, we first present our OSIA scheduling model to
provide CMT, and formulate this scheduling problem as a constrained
optimization problem of maximizing the aggregate throughput while
contributing to that the packets are received in order with a high
probability. To solve this problem, we then introduce a progressive
water-filling algorithm and give out a two-step scheduling process.

3.1. Transmission and scheduling model

CMT uses the host's multiple-interface feature to simulta­
neously transfer data across multiple end-to-end paths between
the sender and the receiver. These independent network interfaces
can be used effectively to transmit (or receive) packets indepen­
dently, thus multiple paths are allowed to have packets "in flight"
at all times over all interfaces. In most of CMT solutions (Iyengar
et al., 2006; Liao et al., 2008), the traffic scheduling is based on the
association (means the whole connection), and transmit-receive is
performed on a per-path basis. Suppose that there exist three
available paths 1, 2, and 3, which are depicted in Fig. 2, while path
1 is the faster one and path 3 is the slowest one. We use sub-flow i
to indicate the sub-flow transmitted over path i. It is worth noting
that in this model all sending (receiving) times are measured based
on the exit (entrance) of packets from (to) the transport layer.

Based on the above model, if we split the flow into multiple
chunks and schedule them in normal order over multiple paths with
different delays, reordering is bound to occur as long as the path
delay difference exists. Under the precondition of maximizing the
utilization of the transmission resource of each path, the most

Time •

BH1 Sub-flow l | | Sub-flow 2 WS\ Sub-flow 3

Sender •*— Period x

delay difference

Fig. 2. Timeline of concurrent multi-path transfer. The zero point of the axis
represents the start of transmission by the sender. The delay of path i is d{, the
average bandwidth of path i is bt, and the total time of period x is tx seconds.

promising solution to mitigate packet reordering is to adjust the
sending order of packets, which is motivated by two fundamental
observations: (i) packets transmitted via the faster paths will arrive
sooner at the destination; and (ii) packets received simultaneously
from different paths are bound to be transmitted at different times.

On the basis of above observations, instead of scheduling packets
in-order, we propose an out-of-order scheduling scheme OSIA in which
the packets injected into the faster path are to be transmitted later
and the slower path earlier. OSIA exploits the sending time discre­
pancy to remove the path delay difference. We firstly use determi­
nistic flow-level splitting to partition the traffic into several chunks.
Then the packets of each chunk are assigned to different paths using
probabilistic packet-level scheduling to achieve a finer-grain paralle­
lism. Finally, the packets assigned to the same path are connected
together to form a continuous sub-flow. Operating in this manner
allows us to schedule packets among multiple paths before the actual
transmission, which ensures that the congestion control of each path
is not disturbed by the scheduling process.

As the network is time-varying, the CMT process of a connec­
tion in our model is divided into some variable-size periods, in
each of which network performance can be relatively constant.
Scheduling period x lasts tx seconds, which is decided by the
varying frequency of the path delay. With completion of period x,
the period x+1 starts with updated transmission policy again.

3.2. Problem formulation

For any period x, we model the average available bandwidth
of each path i as rate bt. The contribution of all links and the
propagation delay are aggregated into the path delay d,-. The ready
traffic to be transmitted in [0, tx) via path i is Wi=bitx, which can
arrive in [d,-, tx+dt\ at the receiver. For most of the applications
such as video sharing/download/streaming, video data are buf­
fered at the local disk of the sender, which helps to guarantee that
enough amounts of data can be obtained in advance and applied
to mass scheduling and transmission.

For any set of paths SP'j with parameters {bj.dj}, i = \ M, we
first do the following preprocess.

(1) Sort and relabel the paths according to their fixed delays d\ in
non-decreasing order.

(2) If there are k (k > 1) paths Pj,p;+1,.. . . P ^ , , with the same fixed
delay, which is accurate to 0.01 s, i.e., d[= d|+1 = • • • = dj+k_-,,
we can just aggregate these paths into a new path i with d; = d[
and bi = b'i + b'i+-[+ ••• +b'i+k_-[temporarily.

(3) Relabel the paths, and then we get a new set of paths SPt with
parameters {d,-, b,}, i = l N, and b\ <b2 < • • • < bjv-

In the following, we first determine the optimal partitioning
scheme for the paths P,-, i = l N. For each path P,- consisting of k
paths with same delays, we can then partition its assigned chunk
into k parts according to each path's average available bandwidth.

Assume there is no delay between the time when a packet is
received and the time when the corresponding ACK is sent. From
the perspective of receiver as shown in Fig. 3, the scheduling
starts at time 0, we can observe that: (1) during period [0, d^\, no
packet can be received; (2) during period [d^ d2], only packets
from path 1 transmitted at [0, d 2 -d i] period can be received;
(3) during period [d2, d3], the receiver can receive packets from
path 1 transmitted at period [d 2 -di , d 3 -d i] and packets from
path 2 transmitted at period [0, d 3 -d 2 | ; and (4) during period
[dh, dh+1] (2 <h<N), the receiver can receive packets from path i
(1 <i<h), which can be traced back to the sender transmitted at
period [dh-dh d h + 1 - d ,] .

The following theorem establishes the essential condition to
ensure the in-order arrival.

Theorem 1. The probabilistic scheduling ensures that the packets
can arrive in order at receiver, if their sending times meet the
following conditions: if the ith path starts to send packets at time
0, then the i-lth path starts to send packets at d,-d,_j, the i—2th
path at di—di_2, and so on, and the 1st path begins at d,- —dj. This
condition can be represented as follows:

sri = sri_1-(di-di_1) = sri_2-(di-di_2)= ••• =sr1-(d i-d1) (i)

where STt denotes the starting time of ith path.
However, if the packets are scheduled with the above prob­

abilistic scheduling scheme via all N paths uniformly, the overall
performance will be dragged down by the Nth path, which is the
slowest one. In this case, a plentiful network bandwidth of faster
paths is wasted, because the first packet can only be received at
dN time. Fortunately, for most actual applications, the sender
always has sufficient number of buffered packets. Thus, we can
partition the buffered packets into N-1 chunks and send them in
parallel to utilize the bandwidth of the faster paths. We use a
probabilistic scheduling to evenly assign the packets of the hth
chunk to h paths (1 < h < N - l) . In the mean time, we stipulate
that the assigned packets to the path i (1 < i < h) be transmitted
during period [dh—dh dh + 1 -d ,] , which ensures that the packets of
the hth chunk arrive at the receiver during the period [dh, d h + 1] .
In this way, the packets of all N—\ chunks are more likely to
arrive in order at the receiver. For the remaining flow, the packet
can be transmitted on all N paths with a probabilistic scheduling,

—Time-

Sender

Pathh

Fathi

chunk 2 ^ | chunk h

Receiver

Fig. 3. Mapping of sending time and receiving time. The method schedules
packets at the sender to arrive in-order at the receiver.

in which the Nth path starts to send packets at time 0 and the ith
path starts to send packets at time dN-di} that is Sr,=(dN-d,).

Focusing on each path i solely, the packets in the hth chunk
should be transmitted d h + i - d h later than these in the h + l th
chunk, which can be represented as follows:

ST," =ST,h + ' -(dh+i-dh) (2)

where Slf denotes the starting time of hth chunk through ith path.

Corollary 1. According to Theorem 1, we can infer a discipline that
the time when the ith path starts to send packets of the hth chunk is
the same as the time when the i+lth path starts to send packets of
the h+lth chunk, that is:

STt" = ST\ •h+l (3)

Under the constraints as (l)-(3) of starting time, we can
formulate an optimization problem of maximizing the aggregate
throughput through adjusting the amount of data transmitted on
each path with respect to each chunk.

For scheduling the hth chunk, the path i can be assigned nih

packets each of which has the same size s,-. The transmission duration
of path i is n,hs,/b,.. The size of total transmitted traffic (W) is

N N

(4)

Noting that the fraction of the size of the hth chunk to W is
fh= Y%=i nihSi/W. For the hth chunk, the ratio of being trans­
mitted along path i is labeled as gih, and glh+g2hH ^ghh = 1-

We can formulate the following linear constraint optimization
problem for path set SPN on maximizing end-to-end aggregate
throughput (AT) while preserving packets in-order [denoted as
AT(SPN, tx)\ as

Maximize : AT = W/tx (5)

(S T / ^ S T i V - C d i - d n) d0 = 0
s r . h = STh+I STjh =

subject t o : / l +h + • •

gVl+S2h +

h>Q
, Till > 0

+ / N = 1

• • +Shh = 1
h =
i =

= 1,2,.
= 1,2,.

(6)

,N-1

3.3. Progressive water filling solution

With the aid of an intuitive "water-filling" model (Mao et al.,
2005), we propose a "Progressive Water-Filling" (PWF) algorithm
for solving the above optimization problem AT(SPN, tx) directly.
A multi-path network (N paths) and an amount of packets are
described in Fig. 4, we model each path i as a bucket with an area
of cross section b,-. In addition, each bucket i is pre-loaded with
content b,d,. to a level d,-. Assume each bucket has a finite depth
I* > dN which is the highest pre-loaded level of the N buckets. The
most units of fluid held by the N buckets is just the value of W in
the problem AT(SPN, tx) where tx=L*.

We try to "fill" all the buckets, until all buckets reach their
capacity limits. If path i is assigned with a portion p,-, this is
equivalent to filling p,- of W units of fluid into bucket i. With this
model, the optimization problem is equivalent to maximizing W,
the total units of fluid filled into the N buckets.

In this case, let each bucket have a finite depth as shown in
Fig. 4. In order to maximize W, the Wpt units of fluid should be
distributed to the N buckets in such a manner that all the buckets
have the same rated fluid level !,-. This means

• • • =LN = L (7)

Chunk N

Chunk h

Chunk 2

Chunk l

The fraction of the hth chunk filled into i buckets, is

glN

glh

gi2

B
B"
M

g2N

gab

g2a

n ST

giN

gih

!:!:!:!:%%!:!:!:! ~ T

d2

2!
gNN

w

dN

u u

Fig. 4. Progressive water-filling model. Schematic view for problem AT(SPN, V),
each path i is modeled as a bucket i with an area of cross section bt and pre-loaded
with content bjdj to a level df.

Note that the portion of total data W that can be held by bucket
i is <jj = QZh = i nj/,Sj)/W. Alternatively, (7) can be expressed in
terms of W and p,-:

Wq
i + d ,

Wq2 +d2
WqN + dN (8)

hi &2 z bN

where q,+q2H \-qN = 1.
Though any two buckets have different heights, the increased

fluid heights of all participated buckets with respect to the hth
chunk are equivalent.
H i h S i _ n 2 i iS2 _ njftS,

bi
J / i + i - (9)

If the common fluid level is I*, the amount of fluid that bucket i
holds regarding the hth chunk is

Wrih = b i (d h + i -4) l < h < N - l (10)

Thus, Wean be derived as follows:

N N

W = L*J2bi-J2b<d< (11)

In fact, each bucket corresponds with one path. The faster
paths are padded with the packets from previous chunks, which is
equivalent to increasing their queuing times such that the arrival
time of packet via the faster path is equal to that via the slower
path. From the perspective of a specific chunk h, their transmis­
sion duration over the participated i paths are the same. Thus,
the ready packets of the same chunk h can be considered to be
transmitted over these participated paths with the same delays.
Thus, the ratio of the hth chunk filled into bucket i, or the
scheduling probability of path i for the hth chunk, is

gih
bi

(12)

Reviewing the inherent requirement of this solution, we find
that I* might not need a preset value, because the preset value is
hard to satisfy the requirements of a variable network promptly.
In fact, the process of pre-fetching and splitting is only necessary
for the JV—1 chunks. If the condition of the network is not
changed, the next period is not triggered and thus the current
I* can be large. For the Nth chunk, its packets are transmitted
continuously until several reordering events occur (i.e., the
number of 3 dupACKs beyonds 10).

fk- Y*_ , fci(dN-di)
l < h < N - l (13)

In other words, for each chunk, the probability that a packet is
transmitted along a given path corresponds to the ratio of its
bandwidth to the total available bandwidth of all involved paths,
which might be simply validated intuitively. The traditional sche­
duling scheme is always preferential to use the path with a higher
bandwidth and a lower fixed delay, but it is impossible to order
the paths consistently in many cases. A brute force optimization
evaluation of all feasible path combinations would have exponential
complexity (Tsirigos and Haas, 2004). Using our approach, the
scheduling scheme can be easily performed with 0(N2) complexity,
where N is the number of paths available. As a consequence, this
scheme can achieve a good balance of workload and high system
throughput. The implementation of traffic scheduling will be dis­
cussed in Section 4.

3.4. Scheduling process

The OSIA scheduling scheme is designed as a mixed strategy,
which consists of two steps: a deterministic splitting step, based
on flow level striping; followed by a probabilistic assigning step,
based on packet level scheduling.

(1) The first step is the key to solving the reordering problem, which
uses the PWF algorithm to partition the original data flow into
multiple chunl<s. To ensure in-order delivery, OSIA exploits the
sending time discrepancy to remove the path delay difference.
The original flow is systematically partitioned into several
chunks in this step. An example of three paths is shown
by Fig. 5. The first two marking points at "actual data" axis
represent the partitioned borders, whose positions are deter-
ministically decided by the PWF algorithm, thus the first and
the second chunk can be constructed in advance. However, the
last marking point cannot be determined beforehand, which
represents the ending position of the flow to be transmitted in
the current period. In fact, the third chunk consists of the
remaining part of the flow to be transmitted in this period.

(2) The second step assigns thepackets of each chunk to the targetpaths
in terms of their probabilistic portions in parallel. As for each chunk,
we refer to a bandwidth-aware probabilistic scheme to schedule
the packets across multiple paths with different delays. This
packet-level scheduling scheme achieves a finer-grain paralle­
lism and tries to alleviate the packet reordering. In Fig. 5, the
mapping of "actual data" axis to "transmitted" axis illustrates
this assigning process. Figure 5(a)-(c) stand for the assignments
of chunks 1-3, respectively. Moreover, the corresponding rela­
tion between "transmitted" axis and "received" axis shows that
the CMT process preserves the in-order arrival of packets at the
receiver.

In summary, this mixed scheme can alleviate the inherent
packet reordering caused by the multi-path heterogeneity when
performing CMT. It also has a low computation complexity. As the
TCP RTO estimator is relatively conservative, the CMT using this
mixed scheduling scheme can also decrease the unnecessary
timeout retransmission. We have the following theorem.

Theorem 2. If (14) is satisfied, there is no timeout caused by the
path delay difference.

El". 1gin(^-m.)

E , " _ , & E j , i « * (r " - r j) |

< K Vm, 1 < m < h (14)

Actual Dal Actual Data

Transmitted

Received

J Packet set 12 Packet set i
—Chunk 2 -

Actual Data

Transmitted

Received

Packet set 13 ^ H Packet set 23 I I Packet set 33

•«—Chunk 3 -

Fig. 5. An example of scheduling process. The three chunks are transmitted simultaneously over three paths, the marking points at "actual data" axis represent the
splitting step, and the mapping of "actual data" axis to "transmitted" axis illustrates the assigning step: (a) the first chunk only for path 1, (b) the second chunk for path
1 and 2, and (c) the third chunk for all 3 paths.

where gih is the ratio of the hth chunk sent over path i, rt is the RTT of
a packet transmitted along path i, and K is a constant factor (typically
K=4) for computing TCP RTO.

Proof. We present a theoretical proof in Appendix A.

4. Practical considerations

In this section, we discuss some important practical considera­
tions and present an implementation to enforce our OSIA for an
end-to-end application. This implementation uses a set of leaky
buckets, which are available in most commercial routers.

4.1. Enforcing OSIA scheduling

After the deterministic splitting parameters fh, h = \, 2
JV—1, and probabilistic assigning parameters rih, i=\, 2 h,
are computed, the next question is how to enforce them on traffic
flow. The deterministic splitting can be enforced by using a set of
leaky bucket regulators: one for each chunk. Then, the probabil­
istic assigning can be enforced by using multiple faucet regulators
for each leaky bucket: one on each path. The OSIA scheduling
scheme first preprocesses the existing paths as Section 3.2. The
Collector module at the receiver accepts incoming packets from
multiple paths, and notifies the sender of packet arrival on the
corresponding path. In the following, we show the framework of
cascaded leaky buckets with multiple faucets.

For an end-to-end application, the sender is responsible for
partitioning the traffic flow into multiple chunks. Figure 6 illus­
trates the framework of our proposed OSIA. On the sender side,
the traffic scheduling module is responsible for splitting the flow
and assigning packets dynamically, i.e., splitting the flow into a
series of chunks using a set of leaky buckets, and assigning each
chunk to different paths in terms of their scheduling probabilities
using their faucets. Multiple leaky buckets are cascaded in a chain
while a source flow is fed into N leaky buckets (N denotes the
number of preprocessed paths). When a TCP-like flow is regulated
by the first leaky bucket with a faucet at the first chunk, usually
the special portion of traffic is conformed with (12) and (13), i.e.,
Sn = / i =b-i{d2-d-l)/Y!iZ\bi{dN-di). Then, the remaining flow
is redirected to the second leaky bucket with its ratio computed
as f2 = b2(d3-d2)/X]fji bi(dN—di), while the probability that a
packet is assigned to path 1 and 2 is g\i=b\\(b\ +b2) and gii=bi\
(bi + b2). respectively. The remaining flow is redirected to the
3rd,... hth ..., Nth leaky bucket successively, in which the hth
leaky bucket has h faucets. At the Nth bucket, there is no need for

original flow Sender

4- ~7Z\
Fa th i Path a" Pa thh Path N

Receiver

JL
mmz <//////////,

1
•a

1

Collector

JJ
Partition portion

computing Periodically feedback
Path status
estimating

Fig. 6. Cascaded leaky buckets with multiple faucets. Systematic view for problem
AT(SPN, tx), the buckets are in charge of splitting chunks and their faucets are in
charge of assigning each chunk.

splitting the flow and the probabilistic scheduling is used to leak
the subsequent flow. It is worth noting that there always exist
tokens for the incoming traffic. Consequently, the above determi­
nistic partitioning scheme does not introduce additional loss or
delay to the application data. The varying path conditions could
trigger the updating of the leaky bucket parameters.

4.2. Path parameter estimation

The proposed scheme works best when some QoS supports are
available in the network. For example, with the support of the
resource reservation protocol (RSVP) (Zhang et al., 1993), a source
can reserve the required bandwidth along each path, and a router
or a switch can use the generalized processor sharing (GPS)
scheduling to guarantee the reserved bandwidth (Zhang, 1997).
If such QoS provisioning mechanisms are not available, the
receiver could estimate the path parameters, i.e., bt and dh i=\,
2 N, for a snapshot of the network and send the estimates
back to the source, if the path conditions vary at a relatively large
time scale.

Estimating path parameters based on end-to-end measure­
ments has been an active research area for years. Many effective
techniques (Jain and Dovrolis, 2003; Kapoor et al., 2004; Gurewitz
and Sidi, 2001) can be applied to estimate the path parameters in
our approach. For example, the SLoPS (Jain and Dovrolis, 2003)
and CapProbe (Kapoor et al., 2004) can be used to estimate the

100

<***

Fig. 7. Number of 3 dupACKs events triggered by various scheduling with respect to the delay (i.e. D2/D1) and bandwidth (i.e. BW2/BW1) ratio, (a) Round-Robin
scheduling, (b) CWND-aware scheduling, (c) Flow-level scheduling, (d) OSIA scheduling.

end-to-end available bandwidth (or bottleneck bandwidth) of a
path. If the source and the receiver are synchronized, the mini­
mum one-way packet delay measured in the last time window
would be a good approximation of the fixed delay dt on that path.
Otherwise, the approach presented in Gurewitz and Sidi (2001)
can be used to estimate the one-way delay from cyclic-path delay
measurements. Therefore the OSIA depends upon the assumption
of the availability of path bandwidth and delay, at least which can
be obtained. Moreover, this OSIA has a certain tolerance for the
inaccurate measurement result of bandwidth and delay according
to Theorem 2. For the sake of convenience, our following simula­
tion experiments are all arranged in controlled environments
where all metrics can be preset, after all the technology of
network measurement does not belong to the innovation of
this paper.

After obtaining the path parameters, the Stream Control
Transport Protocol (SCTP) (Stewart, 2007) and its CMT extension
(Iyengar et al., 2006; Liao et al., 2008) can be used for delivering
the parameters to the sender via the SACKs of each path. The
sender then computes the optimal partition and updates the
parameters of the leaky buckets periodically. Note that path
conditions could change because of path failure, rerouting, etc.
Furthermore, the variation of cross traffic load using the same
paths may cause variations of the estimated path parameters and
trigger updating of the leaky bucket parameters. If the congestion
occurs at a relative large time scale, the proposed traffic parti­
tioning scheme can adapt to the congestion as well.

5. Evaluation and numerical results

This section presents the simulation model used to evaluate
the performance of the proposed method and then provides the
experimental results.

5.2. Simulation model

For the purpose of simulation, we implemented the cmpSCTP
(Liao et al., 2008) protocol to support the CMT in OPNET 10.0.A
(OPNET simulator, 2005). In our simulation, we use a simple
topology with two or more parallel paths between sender and
receiver. A real traffic trace (the "Star Wars" movie) is used as a
source of FTP foreground traffic. To simulate paths with different
available bandwidths in the dynamic network, cross-traffic is
introduced. Our cross-traffic in each path is generated according
to a Pareto process with an on-off period that takes value in the
range [10ms, I s] . The bit error rate on a link dynamically
changes within the range between 1 x 10~3 to 1 x 10~5 (with
the average of 2 x 10~5), and all links have the same bit error rate.
The path Maximum Transmission Unit (MTU) at each path is
1 Kbytes, and the packet size is 1 kb.

We compare our proposed OSIA scheduling scheme against
three different methods in our experiments: (i) traditional Round-
Robin scheduling scheme (Hahne and Gallager, 1986); (ii) CWND-
aware scheduling scheme (Saadawi and Lee, 2004); (iii) flow-level
scheduling scheme. Clearly, the Round Robin approach suffers

Fig. 8. Goodput produced by various scheduling with respect to the delay (i.e. D2/D1) and bandwidth (i.e. BW2/BW1) ratio, (a) Round-Robin scheduling, (b) CWND-aware
scheduling, (c) Flow-level scheduling, (d) OSIA scheduling.

from the excessive packet reordering and is not recommended in
practice. The CWND-aware scheduling is based on bandwidth-
delay product, in which the outgoing traffic is divided over the
multiple paths according to the ratio of their CWNDs (i.e. in each
point of the time, the possibility of the path i serving the packet is
CWND;/ YA = i CWND;). The flow-level scheduling stripes the flow
adaptively based on the path bandwidth. The scheduling periods
of all schemes are set as 1 s. We use the number of fast
retransmission events and the term "goodput" as the performance
metric of evaluating these methods, in which the "goodput" is the
application level throughput and measures the rate of the packets
reaching their destination successfully, excluding retransmitted
packets.

5.2. Number of 3 dupACKs

To evaluate the impact of various network parameters on the
performance of our approach, we consider a simple topology with
only two parallel paths, and vary the following network para­
meters in the simulations: (i) the delay of the paths; and (ii) the
bandwidth of the paths. For the sake of simplicity, we assume that
the average delay and the bandwidth of path 1 are fixed to 50 ms
and 1 Mbps, respectively. The relative delay and bandwidth of
path 2 with respect of path 1 are varied in this experiment.

Figure 7(a) shows the number of 3 dupACKs with the Round-
Robin scheduling, in which multiple paths are served in a Round-
Robin manner with one packet transmitted to one available path in a

service round. Although round robin data is simple, it causes a lot of
3 dupACKs events when the paths have different characteristics,
while the number of 3 dupACKs events is nearly independent of the
delays of the paths. The number of 3 dupACKs with CWND-aware
scheduling is illustrated in Fig. 7(b). As can be observed, the
CWND-aware scheduling can lessen the occurring of 3 dupACKs,
which exploits the knowledge of the CWND. Finally, comparing the
simulation results of Fig. 7(c) and (d), we can see that the perfor­
mance of flow-level and OSIA scheme are comparable. Clearly, the
packet reordering events are considerably prevented by our OSIA
scheduling scheme, which fully exploits the available resources.

5.3. Achieved goodput

We use the above simulation topology and configuration, and
only change the number of the packets to simulate the scenario
where the sender transmits 500 packets through two paths. Figure 8
shows the goodput obtained by different methods for transferring a
file of size 500 kb. According to Fig. 8(a), the aggregate goodput
obtained by Round-Robin scheduling scheme (Saadawi and Lee,
2004) increases much slow, due to a mass number of unnecessary
fast retransmissions. From Fig. 8(b), CWND-aware scheduling can
increase the goodput, with the increase of CWND of the auxiliary
path 2. However, it reduces the end-to-end goodput when the paths
have different delays.

Figure 8(c) shows that the poor accuracy of flow splitting in
the flow-level scheduling can hurt the network goodput. Flow-

Table 1
Bandwidth/delay settings for multi-path scenario.

Number of
paths

1

2

3

4

Path
id

1

1
2

1
2
3

1
2
3
4

Bandwidth
(Mbps)

4

3
1

2
1.25
0.75

1.25
1
1
0.75

Propagation
delay (ms)

60

40
80

40
80
60

40
20
100
80

•©•• Round-Robin
- B — CWND-aware
" A - Flow-level

OSIA

£>•
... 0 . •G>. •O

level scheduling cannot divert the ongoing flows away from the
congested path. This can congest the overloaded path, resulting in a
high drop rate and a low overall goodput. Our scheme shown in
Fig. 8(d), on the other hand, reacts quickly and diverts the ongoing
flows away from the congested path. It is worth noting here
that our OSIA scheduling scheme succeeds in splitting a TCP-like flow
among multiple paths with different available bandwidth and delay.

5.4. Effect of path numbers

To validate the effect of number of paths on the performance of
our approach, we run a set of simulations with two nodes
connected by two, three, four, and five paths. The paths configura­
tion is described in Table 1. In all the considered configurations, the
overall bandwidth, summing the bandwidths of all paths, is equal
to 4 Mbps. In the following, each result is an average of multiple
simulation runs under the same set of parameters.

Our simulation results, detailed below, show that: OSIA inter­
acts benignly with path delay and bandwidth difference. In
particular, splitting a TCP-like flow across multiple paths using
OSIA has no negative impact on the aggregate goodput. On the
other hand, packet-based splitting reduces the end-to-end good-
put when the multiple paths have different delays, whereas flow-
level scheduling reduces the end-to-end goodput when the net­
work condition is varied.

Figure 9 shows the effect of reordering on goodput as the
number of paths increases. According to Fig. 9, the aggregate
goodput obtained by Round-Robin scheduling scheme is the
smallest. With the increase of number of paths, the goodput
gained by CWND-aware and Flow-level scheduling gets reduced,
due to a mass number of unnecessary fast retransmissions and
the inefficient congestion adjustment strategies. Moreover, we
observe that the goodput of OSIA scheduling scheme degrades
gracefully when the difference of paths increases.

Two conclusions can be drawn from Fig. 9. First, reordering
caused by packet-based splitting can hurt the goodput signifi­
cantly. Second, OSIA scheduling scheme can split the same flow
among multiple paths whose one-way delays are different by as
much as 80 ms, without hurting the overall goodput. This is
because it tends to exploit the delay difference of these paths
and hence, the carefully pre-arranged out-of-order sending
sequence ends up with an in-order arrival at receiver.

Our simulation results, detailed below, show that: PWF inter­
acts benignly with path delay and bandwidth difference. In
particular, splitting a TCP-like flow across multiple paths using
PWF has no negative impact on the aggregate goodput. On
the other hand, packet-based splitting reduces the end-to-end
goodput when the multiple paths have different delays, whereas

Number of Paths

Fig. 9. Goodput with the number of paths to validate the different effects
produced by various scheduling.

flow-level scheduling reduces the end-to-end goodput when the
network condition is varied.

Figure 9 shows the effect of out-of-ordering on goodput as the
number of paths increases. According to Fig. 9, the aggregate
goodput obtained by Round-Robin scheduling scheme is the
smallest. With the increase of number of paths, the goodput
gained by CWND-aware and Flow-level scheduling gets reduced,
due to a mass number of unnecessary fast retransmissions
and the inefficient congestion adjustment strategies. Moreover,
we observe that the goodput of PWF algorithm degrades grace­
fully when the difference of paths increases.

Two conclusions can be drawn from Fig. 9. First, out-of-ordering
caused by packet-based splitting can hurt the goodput signifi­
cantly. Second, PWF algorithm can split the same flow among
multiple paths whose one-way delays are different by as much as
80 ms, without hurting the overall goodput. This is because it
tends to exploit the delay difference of these paths and hence, the
carefully pre-arranged out-of-order sending sequence ends up with
an in-order arrival at receiver.

6. Conclusion and future work

CMT allows utilizing multiple paths to transmit packet in parallel
between a source and destination. However, how to schedule
packets on these paths is an important issue to be solved. Transmit­
ting packets from a single flow on multiple paths with different RTTs
can lead to out-of-order packet arrival and hence TCP-like perfor­
mance degradation. Our objective is to maximize the aggregate
throughput while decreasing the probability of packet reordering
caused by the delay difference.

This study aims at contributing to the reasonable traffic
scheduling of CMT in multi-homed mobile networks. An analy­
tical model of OSIA is presented firstly. Then, we present a novel
approach to alleviate the potential reordering events due to
inherent delay difference. We also provide a practical implemen­
tation to enforce the optimal scheduling on each path with
negligible computation overhead. There are several issues, which
are worthy to be further discussed: (1) the development of an
integrated solution for other types of reordering; (2) the complete
mechanism considering more network parameters such as losses,
bandwidth fluctuations, delay jitters, etc.; (3) the development of
an improved retransmission timeout estimator for CMT; and

(4) the investigation about how the performance of our proposed
scheme scales with network size.

Appendix A

Consider this situation: packets are sent out simultaneously
via N distinct paths with different RTTs, and packets are not lost in
transmission. Here, we only consider the scenario where timeout
happens only if the RTTs of two paths are substantially different,
without consideration of the timeout caused by the packet
sequence. If the difference of RTTs between two paths is big and
the RTT of slow path is larger than the timeout value, unnecessary
retransmission will become very common and transmission
efficiency will be greatly degraded.

In popular versions of TCP (Jacobson et al., 1992), the retrans­
mission timeout (RTO) for the ith packet is set as

RTOi=Ri+KVi (15)

where Rt is the current smoothed estimate of RTT, V,- is the current
smoothed estimate of the deviation in RTT, and K is a constant
factor (typically K=4), which adjusts the measured averaged
retransmission timeout with respect to its variance (Phatak and
Goff, 2002). Rt and V,- are defined by the following recursive
equations:

Rt = Cf.Ri_-l+ (l-a)KTT; (16)

Vi = pVi_-t+a-p)\RTTi-Ri\ (17)

where RTT,- is the sampled RTT of the ith packet. Eqs. (16) and (17)
can be acted as a low-pass filter on the sampled RTTs to smooth
out the variations.

According to the above discussion, the exact value of RTO
depends on the sequence of RTT samples. In our multi-path scenario,
it depends on the sequence of paths chosen to send packets. As an
approximation, the average RTT and average deviation in RTT will be
considered to compute RTO.

Logically, the time needed to receive a packet from an
arbitrary path is a function of packet size, path bandwidth and
delay of that path. More specifically, inspired from Demichelis
and Chimento (2002), we use dt to denote the one-way delay of
ith path. Based on this delay, the RTT of a packet (with size s,) sent
along path i (with bandwidth bt) can be computed by

The average RTT of any chunk h is then

h

(19)

in which r,- is the smoothed estimate RTT for packets sent along
path i and gih is the portion of traffic sent over path i as (14).
Similarly, the average deviation in RTT is

v -.
h h h

i=i i=i j=i

From (15), no timeout will occur if

rm<f+Kv Vm, l < m < h

(20)

(21)

Considering (19) and (20), the inequality of (21) can be
restated as

Ei^igih(rm-rj)

£?=i&h|£j ,= i«/h(r i-0)|
< K Vm, 1 < m < h (22)

Hence, if the TCP implementation is configurable, we can
appropriately set the value of K to satisfy the above inequality.
Otherwise, the sender need carefully adjust the value of gih

(i.e. the ratio of data sent over path i). As the above equation
implicitly states, the condition for preventing timeout depends
solely on the difference of paths' delays, rather than on their
absolute values.

The timeout event cannot occur in the period of the first chunk
due to only single path transmission. In the following, we analyze
the periods of other chunks.

A3. Period of the second chunk

Firstly let us consider the period of the second chunk in which
merely two paths are exploited to carry the traffic, meaning that
h=2. We assume that r^ <r2. (22) is always satisfied for ri=r2 .
For m = l, (22) is equivalent to

g22(n-r2)
gu \g22(ri-r2)\+g22 \gu(r2-r-i)\

<K (23)

which is always satisfied, because the nominator of that fractions
should be negative.

For 771=2 in (22), we have

-ri) gu(r2-
g\2 \g22(X\-r2)\+g22 \g\2(T2-n)\

<K

2K

By taking into account r2 —ri > 0, (24) is shortened to

< g 2 2 < l

(24)

(25)

In standard TCP, the value of K is typically set to 4 (Jacobson
et al., 1992; Phatak and Goff, 2002). It forces us to set the value of
g22 greater than 0.125, that is b\ < 7b2- In other words, if only the
bandwidth over the faster path is less than 7 times of the slower
path, retransmission timeouts will not occur regardless of the
delay of two paths.

(18) A.2. Period of the third chunk

Secondly let us analyze the period of the third chunk, meaning
that h=3. Remind that according to our model, we assume that
T\ <r2<r3, and (21) is always satisfied for r i=r 2 =r 3 . By setting
771=3, (22) is equivalent to

gi3(r3-rQ+g23(r3-r2)
gu\g23^-r2)+g33^-r3)\+g23\gu(r2-r-i)+g33(r2-r3)\+g33\gu(r3-r-i)+g23(r3-r2)\

<K (26)

If (26) holds true, timeout cannot occur in all the paths, since
r3 is the delay in the slowest path.

If gi3(r2-ri)+g33(r2-r3) > 0, by taking into account

1 #13 +g23 +g33

(27) is shortened to

T3-(g-liT-l+g2-iT2+giiT3) <2K

(27)

(28)
guigu^ + g23^2 + f o l ' ' 3 - r 1)

which is also the same as the instance of r-i < r2 = r3.
If gi3(r2-ri)+g33(r2-r3) < 0, similar to above simplification,

we can reduce (26) to

1
2K < g 3 3 < l (29)

which is also the same with the instance of r^ = r2< r3.
Considering (13) and (15), the inequality of (14) can be

restated as

g 2 3 < (l - g 3 3)

g l 3 > (l - g 3 3)

2Kg3 3(r3-r1)+r1-r2

(r3-r,)(2Kg33-V)

r3-r2

2Kg33(r3-r1)+r1-r2

(30)

(31)

Similar to the case of two paths, (29) shows that if the portion
of traffic over the fastest path is greater than 0.125 in the case of
the third chunk, and the value of g23. or g13 meets the constrains
of (30) or (31), then no timeouts will occur.

References

Allman G, Paxson V, Stevens W. TCP congestion control. IETF RFC 2581 1999.
Arthur C, Lehane A, Harle D. Keeping order: determining the effect of TCP packet

reordering. In: Proceedings of the international conference on networking and
services, 2007. p. 116-116.

Bhandarkar S, Reddy A. TCP-DCR: making TCP robust to non-congestion events. In:
Proceedings of the networking, 2004. p. 712-4.

Bohacek S, Hespanha J, Lee J, Lim C, Obraczka K. A new TCP for persistent packet
reordering. IEEE/ACM Transactions on Networking 2006;14(2):369-82.

Demichelis C, Chimento P. IP packet delay variation metric for IP performance
metrics (IPPM). IETF RFC 2002;3393.

Floyd S, Mahdavi J, Mathis M, Podolsky M. An extension to the selective acknowl­
edgement (SACK) option for TCP. IETF RFC 2000;2883.

Gurewitz O, Sidi M. Estimating one-way delays from cyclic-path delay measure­
ments. In: Proceedings of the IEEE INFOCOM, 2001. p. 1038-44.

Hahne E, Gallager R. Round robin scheduling for fair flow control in data
communications networks. In: Proceedings of the IEEE ICC, 1986. p. 4.3.1-5.

Hsieh H, Sivakumar R. A transport layer approach for achieving aggregate
bandwidths on multi-homed mobile hosts. ACM/Springer Wireless Networks
2005;l l (l -2):99-114.

Iyengar J, Amer P, Stewart R. Concurrent multipath transfer using SCTP multi-
homing over independent end-to-end paths. IEEE/ACM Transactions on
Networking 2006;14(5):951-64.

Jacobson V, Braden R, Borman D. TCP extensions for high performance. IETF RFC
1992;13(23).

Jain M, Dovrolis C. End-to-end available bandwidth: measurement methodology,
dynamics, and relation with TCP throughput. IEEE/ACM Transactions on
Networking 2003;ll(4):537-49.

Kandula S, Katabi D, Sinha S, Berger A. Dynamic load balancing without packet
reordering. ACM SGICOMM Computer Communication Review 2007;37(2):
51-62.

Kapoor R Chen L, Lao L, Gerla M, Sanadidi M. Capprobe: a simple and accurate capacity
estimation technique. In: Proceedings of the ACM SIGCOMM, 2004. p. 67-78.

Kaspar D, Evensen K, Hansen A, Engelstad P, Halvorsen P, Griwodz C. An analysis of
the heterogeneity and IP packet reordering over multiple wireless networks.
In: Proceedings of the IEEE symposium on computers and communications,
2009. p. 637-42.

Lane J, Nakao A. On best-effort packet reordering for mitigating the effects of out-
of-order delivery on unmodified TCP. IEICE Transactions on Communications
2010;E93-B(5):1095-103.

Laor M, Gendel L. The effect of packet reordering in a backbone link on application
throughput. IEEE Network 2002;16(5):28-36.

Lee Y, Park I, Choi Y. Improving TCP performance in multipath packet forwarding
networks. Journal of Communication and Networks 2002;4(2):148-57.

Leung K, Li V. Flow assignment and packet scheduling for multipath routing.
Journal of Communications and Networks 2003;5(3):230-9.

Leung K, Li V, Yang D. An overview of packet reordering in transmission control
protocol (TCP): problems, solutions, and challenges. IEEE Transactions on
Parallel and Distributed Systems 2007;18(4):522-35.

Leung K Ma C. Enhancing TCP performance to persistent packet reordering.
Journal of Communication and Networks 2005;7(3):385-93.

Liao J, Wang J, Zhu X. A multi-path mechanism for reliable VoIP transmission over
wireless networks. Computer Networks 2008;52(13):2450-60.

Ludwig R, Katz R. The Eifel algorithm: making TCP robust against spurious
retransmissions. ACM SIGCOMM Computer Communication Review 2000;
30(l):30-6.

Mao S, Panwar S, Hou Y. On optimal traffic partitioning for multipath transport. In:
Proceedings of the IEEE INFOCOM, 2005. p. 2325-36.

Mogul J. Observing TCP dynamics in real networks. In: Proceedings of the ACM
SIGCOMM, 1992. p. 305-17.

OPNET simulator, 2005. Online available via <http:/www.opnet.com>.
Papagiannaki K, Taft N, Diot C. Impact of flow dynamics on traffic engineering

design principles. In: Proceedings of the IEEE INFOCOM, 2004. p. 2295-306.
Phatak D, Goff T. A novel mechanism for data streaming across multiple IP links for

improving throughput and reliability in mobile environments. In: Proceedings
of the IEEE INFOCOM, 2002. p. 773-81.

Saadawi T, Lee M. LS-SCTP: a bandwidth aggregation technique for stream control
transmission protocol. Computer Communications 2004;27(10):1012-24.

Stewart R. Stream control transmission protocol. IETF RFC 2007;4960.
Tsirigos A, Haas Z. Analysis of multipath routing—Part I: the effect on the packet

delivery ratio. IEEE Transactions on Wireless Communication 2004;3(1):
138-46.

Wang F, Zhang Y. Improving TCP performance over mobile Ad-Hoc networks with
out-of-order detection and response. In: Proceedings of the ACM MOBIHOC,
2002. p. 217-25.

Wang J, Liao J, Zhu X. On preventing unnecessary fast retransmission with
optimal fragmentation strategy. In: Proceedings of the IEEE ICC, 2008.
p. 85-9.

Zhang L, Deering S, Estrin D, Shenker S, Zappala D. RSVP: a new resource
reservation protocol. IEEE Network 1993;7(5):8-18.

Zhang Y, Breslau L, Paxson V, Shenker S. On the characteristics and origins of
internet flow rates. In: Proceedings of the ACM SIGCOMM, 2002. p. 309-22.

Zhang Z. End-to-end support for statistical quality-of-service guarantees in multi­
media networks. PhD dissertation, Department of Computer Science, Univer­
sity of Massachusetts, Amherst, 1997.

http://www.opnet.com

