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A B S T R A C T 

One major problem of concurrent multi-path transfer (CMT) scheme in multi-homed mobile networks 
is that the utilization of different paths with diverse delays may cause packet reordering among packets 
of the same flow. In the case of TCP-like, the reordering exacerbates the problem by bringing more 
timeouts and unnecessary retransmissions, which eventually degrades the throughput of connections 
considerably. To address this issue, we first propose an Out-of-order Scheduling for In-order Arriving 
(OSIA), which exploits the sending time discrepancy to preserve the in-order packet arrival. Then, we 
formulate the optimal traffic scheduling as a constrained optimization problem and derive its closed-
form solution by our proposed progressive water-filling solution. We also present an implementation to 
enforce the optimal scheduling scheme using cascaded leaky buckets with multiple faucets, which 
provides simple guidelines on maximizing the utilization of aggregate bandwidth while decreasing the 
probability of triggering 3 dupACKs. Compared with previous work, the proposed scheme has lower 
computation complexity and can also provide the possibility for dynamic network adaptability and 
finer-grain load balancing. Simulation results show that our scheme significantly alleviates reordering 
and enhances transmission performance. 

1. Introduction 

Recent studies have suggested that concurrent multi-path 
transfer (CMT) (Phatak and Goff, 2002; Hsieh and Sivakumar, 
2005; Iyengar et al., 2006; Liao et al., 2008) is an effective traffic 
engineering technique to improve throughput by aggregation of 
bandwidth, especially for the high-bandwidth applications such 
as video sharing/download/streaming. Other benefits include 
increased service reliability, latency reduction, and fault tolerance 
by sending redundant data over different paths, and enhanced 
mobility when combining coverage areas of multiple mobile and 
wireless access networks. Three key issues in the use of multiple 
paths in multi-homed mobile networks are: (1) how to maximize 
the aggregate throughput, (2) how to alleviate the reordering 
caused by the delay difference between any two paths, and 
(3) how to adjust to the variability of the throughput and delay, 
especially in wireless networks. In packet-switched networks 
such as the Internet, a packet is the smallest unit of data that 
can be transmitted over a network. In a multi-path network, a 
packet flow can be split over multiple paths between a source and 

a destination. Although multi-path communication can bring 
many benefits, it is also faced with the problem of "reordering". 
That is, packets injected into the network later arrive at the 
destination before the packets injected into the network earlier. 
Unfortunately, current TCP protocol do not deal with this issue, 
leaving it instead to be misinterpreted as packet losses by the 
protocol stacks of these networks. 

CMT needs schemes that can split traffic across multiple 
paths, while relieving the problem of "reordering". Current traffic 
scheduling schemes, however, exhibit a tussle between the 
splitting granularity and the ability to avoid packet reordering. 
Packet-based scheduling quickly assigns the desired load share to 
each path. When paths differ in delay, however, a large number of 
packets can become out-of-order. TCP confuses this reordering as 
a sign of congestion, resulting in degraded performance of the 
applications (Laor and Gendel, 2002). Even for some UDP-based 
real time applications, such as video streaming or Voice-over-IP 
(VoIP), packet reordering may cause apparent loss of data and 
aggravate the buffer requirements at the receiver. Flow-level 
splitting, on the other hand, pins each flow to a specific path 
and thus packet reordering is avoided. But, flows differ widely in 
terms of their sizes and rates, and once assigned, a flow persists 
on the path throughout its lifetime (Papagiannaki et al., 2004; 
Zhang et al., 2002). Consequently, flow-level splitting may assign 
inaccurate amounts of traffic to each path or fail to quickly 



re-balance the load in the face of changing demands. The inability 
to quickly react to traffic spikes may congest links and reduce 
network effective throughout. 

This paper shows that one can obtain the accuracy and 
responsiveness of flow-based splitting and still alleviate packet 
reordering. We introduce Out-of-order Scheduling for In-order 
Arriving (OSIA), a traffic scheduling mechanism. OSIA exploits a 
simple observation as shown in Fig. 1. Consider load balancing 
traffic over 3 paths in which path 1 is the slowest, and path 2 is 
the fastest. Here it is worth noting that this slow and fast refer to 
the measure in terms of delay (s) rather than bandwidth (bits/s). 
If the packets are scheduled and transmitted according to their 
original orders at the sender, the packets via path 1 will not arrive 
in the receiver on time (e.g., packet 2). As a result, the reordering 
takes place. To ensure the packets arrive at the intrinsic order, one 
can adjust the sending sequence of packets in such a way that 
packets at the slower path are transmitted earlier, while packets 
at the faster path are transmitted later. For example, in Fig. 1, 
packet 2 should be transmitted first via path 1, and then packet 3 
is transmitted via path 3, finally the packet 1 is transmitted via 
path 2. Thus, the sending time discrepancy can bridge the gap 
between the faster and slower path. The faster path makes use of 
the packet queuing time to compensate the path propagation 
time in order to achieve the consistent arrival time. 

Different from the traditional packet scheduling, OSIA disor­
ders the original packet sequence. To be specific, the ready-to-
transmit packets are out of order. During each interval, OSIA 
estimates the delays on these paths and partitions the flow into 
several chunks one-time, based on the delay difference between 
the parallel paths under consideration. Then the probabilistic 
scheduling is used to assign packets in each chunk to different 
paths and transmit them in parallel. The small size of packets 
enables OSIA to split traffic dynamically and accurately, ensuring 
that the resources of each path are fully utilized. 

This paper makes the following contributions. (1) It introduces 
OSIA, showing that it is possible to transmit a TCP-like flow across 
multiple paths without causing packet reordering. In this paper, 
we take into consideration the characteristics of delay difference 
when designing load scheduling scheme. We propose an out-of-
order scheduling scheme, which exploits the sending time dis­
crepancy to preserve the in-order packet arrival. This scheme is 
suitable for the cases where the paths are dynamic, which is 
updated and executed periodically with the period interval. 

(2) It formally analyses the flow splitting problem of OSIA. We 
assume that the source flow is regulated by a set of leaky buckets 
and uses a mixed strategy consisting of deterministic flow-level 
splitting and probabilistic packet-level scheduling to achieve a 
finer-grain parallelism while alleviate the out-of-ordering. We 
formulate a constrained optimization problem of maximizing total 

Fig. 1. Load balancing traffic over three parallel paths in which the path 1 is the 
slowest and path 2 is the fastest. If the packets are scheduled and transmitted as 
their original orders, the packets via path 1 will arrive later at the receiver. 

end-to-end aggregate throughput. We derive a closed-form solu­
tion by our proposed progressive water-filling (PWF) algorithm. 

(3) It also presents an implementation to enforce the OSIA 
scheme using cascaded leaky buckets with multiple faucets, each 
bucket for each chunk and each faucet for each path, which 
provides simple guidelines on maximizing utilization of aggregate 
bandwidth and helps to guarantee the packets from multiple 
paths can arrive at the receiver in-order. 

The rest of this paper is organized as follows. For ease of 
presentation, we first survey the related works in Section 2. Then, 
we discuss the analytical model, solution and process of OSIA in 
Section 3. In Section 4, we discuss implementation-related issues. 
Simulation results are shown in Section 5, and Section 6 con­
cludes this paper. 

2. Related work 

Packet reordering (Mogul, 1992; Leung et al., 2007) is a 
phenomenon in which packets with higher sequence numbers are 
received earlier than those with smaller sequence numbers. It can 
be caused by a myriad of reasons. In Leung et al. (2007), five major 
causes are listed: packet-level multi-path routing, route fluttering, 
inherent parallelism in modern high-speed routers, link-layer 
retransmission, and router forwarding lulls. This paper focuses on 
alleviating the packet reordering caused by another new reason of 
the multi-path heterogeneity when performing CMT. 

When packets from a single flow travel on multiple paths with 
different RTT, they may arrive reordered at the destination. 
Traditional TCP design is based on the assumptions of nearly in-
order packet delivery and error-free transmission channel. Fol­
lowing these assumptions, three or more dupACKs (Allman et al., 
1999) caused by any out-of-order packet events are misinter­
preted as packet losses. As a result, the fast retransmission 
algorithm (Jacobson et al., 1992) is activated frequently to 
retransmit packets that have not been lost (referred to as false 
fast retransmit), which keeps window size unnecessarily small, 
and results in undesirable under-utilization of network band­
width. Besides, persistent spurious retransmission can exacerbate 
network congestion, lead to classical congestion collapse (Allman 
et al., 1999), and reduce the TCP performance. Even for UDP-based 
application, this reordering can result in more demanded buffer 
space and extra application delays. 

In this section, we survey the solutions proposed to date for 
packet reordering. We categorize the reordering solutions into three 
different classes, namely, (i) the class of approaches for distinguish­
ing the events of packet reordering; (ii) the class of approaches for 
adjusting the triggering threshold; and (iii) the class of approaches 
for avoiding the occurrence of packet reordering. 

The first class is a collection of methods that process the ordering 
information of segments and ACKs received, and then infer and 
generate more appropriate congestion response when the reorder­
ing events are detected. The TCP source finds out which segment or 
ACK has been reordered. It then reacts, say, by recovering previous 
congestion responses and/or disabling future congestion responses 
for a time period. The Eifel algorithm (Ludwig and Katz, 2000), 
DSACK TCP (Floyd et al., 2000), and TCP-DOOR (Wang and Zhang, 
2002), belong to this class. 

The second class is a group of techniques that avoid or delay 
triggering spurious congestion responses by deferring them for a 
time period. During the time period, the response will be canceled 
whenever it is inferred not to be caused by congestion. The 
response will be carried out only when the corresponding timer 
expires. The TCP source searches for an appropriate dupACK 
threshold to proactively avoid triggering a spurious fast retrans­
mission and fast recovery as well as a retransmission timeout at 



the same time. The Leung-Ma Algorithm (Leung and Ma, 2005), 
Lee-Park-Choi algorithm (Lee et al., 2002), TCP-DCR (Bhandarkar 
and Reddy, 2004), and TCP-PR (Bohacek et al., 2006), belong to 
this class. 

In contrast to the above two approaches just aiming to decrease 
the negative impact caused by packet reordering, the third class of 
approaches focuses on reducing the occurrence of packet reordering 
essentially. Currently, packet-based scheduling (Leung and Li, 2003) 
and packet resequencing (Lane and Nakao, 2010) are the most 
commonly used schemes to prevent packet reordering caused by 
the inherent multi-path routing. But they require additional techni­
ques to preserve packet order, which has great impact on system 
performance (Arthur et al., 2007). Flow-level splitting allocates each 
flow to a specific path and avoids packet reordering, however it 
cannot assign accurate amount of traffic to each path. Furthermore, a 
sub-flow level (flowlet) scheduling has been proposed (Kandula 
et al., 2007) to tackle this problem with granularity, but it is not fine 
enough to quickly assign the desired load share to each path. In 
contrast, Kaspar et al. (2009) address and quantify the impact of 
packet reordering due to the multi-path heterogeneity when per­
forming CMT, but their solution does not make full use of the network 
resources and cannot be suitable to the dynamic mobile networks. 

In one of our earlier papers (Wang et al., 2008), we present a 
preliminary fragmentation strategy to avoid unnecessary retrans­
mission timeout events, and focus on a one-time scheduling 
subproblem, as opposed to periodic scheduling. Besides, that 
strategy is imperfect and simulation is also insufficient. Conse­
quently, it is desirable to design a more refined scheduling 
scheme to alleviate the inherent packet reordering caused by 
the multi-path heterogeneity when performing CMT, so that the 
packets can reach the destination almost in order. In addition, the 
traffic scheduling algorithm should have a low computation 
complexity and high network adaptability since mobile network 
conditions may change quickly. 

3. OSIA scheduling 

In this section, we first present our OSIA scheduling model to 
provide CMT, and formulate this scheduling problem as a constrained 
optimization problem of maximizing the aggregate throughput while 
contributing to that the packets are received in order with a high 
probability. To solve this problem, we then introduce a progressive 
water-filling algorithm and give out a two-step scheduling process. 

3.1. Transmission and scheduling model 

CMT uses the host's multiple-interface feature to simulta­
neously transfer data across multiple end-to-end paths between 
the sender and the receiver. These independent network interfaces 
can be used effectively to transmit (or receive) packets indepen­
dently, thus multiple paths are allowed to have packets "in flight" 
at all times over all interfaces. In most of CMT solutions (Iyengar 
et al., 2006; Liao et al., 2008), the traffic scheduling is based on the 
association (means the whole connection), and transmit-receive is 
performed on a per-path basis. Suppose that there exist three 
available paths 1, 2, and 3, which are depicted in Fig. 2, while path 
1 is the faster one and path 3 is the slowest one. We use sub-flow i 
to indicate the sub-flow transmitted over path i. It is worth noting 
that in this model all sending (receiving) times are measured based 
on the exit (entrance) of packets from (to) the transport layer. 

Based on the above model, if we split the flow into multiple 
chunks and schedule them in normal order over multiple paths with 
different delays, reordering is bound to occur as long as the path 
delay difference exists. Under the precondition of maximizing the 
utilization of the transmission resource of each path, the most 
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Fig. 2. Timeline of concurrent multi-path transfer. The zero point of the axis 
represents the start of transmission by the sender. The delay of path i is d{, the 
average bandwidth of path i is bt, and the total time of period x is tx seconds. 

promising solution to mitigate packet reordering is to adjust the 
sending order of packets, which is motivated by two fundamental 
observations: (i) packets transmitted via the faster paths will arrive 
sooner at the destination; and (ii) packets received simultaneously 
from different paths are bound to be transmitted at different times. 

On the basis of above observations, instead of scheduling packets 
in-order, we propose an out-of-order scheduling scheme OSIA in which 
the packets injected into the faster path are to be transmitted later 
and the slower path earlier. OSIA exploits the sending time discre­
pancy to remove the path delay difference. We firstly use determi­
nistic flow-level splitting to partition the traffic into several chunks. 
Then the packets of each chunk are assigned to different paths using 
probabilistic packet-level scheduling to achieve a finer-grain paralle­
lism. Finally, the packets assigned to the same path are connected 
together to form a continuous sub-flow. Operating in this manner 
allows us to schedule packets among multiple paths before the actual 
transmission, which ensures that the congestion control of each path 
is not disturbed by the scheduling process. 

As the network is time-varying, the CMT process of a connec­
tion in our model is divided into some variable-size periods, in 
each of which network performance can be relatively constant. 
Scheduling period x lasts tx seconds, which is decided by the 
varying frequency of the path delay. With completion of period x, 
the period x+1 starts with updated transmission policy again. 

3.2. Problem formulation 

For any period x, we model the average available bandwidth 
of each path i as rate bt. The contribution of all links and the 
propagation delay are aggregated into the path delay d,-. The ready 
traffic to be transmitted in [0, tx) via path i is Wi=bitx, which can 
arrive in [d,-, tx+dt\ at the receiver. For most of the applications 
such as video sharing/download/streaming, video data are buf­
fered at the local disk of the sender, which helps to guarantee that 
enough amounts of data can be obtained in advance and applied 
to mass scheduling and transmission. 

For any set of paths SP'j with parameters {bj.dj}, i = \ M, we 
first do the following preprocess. 

(1) Sort and relabel the paths according to their fixed delays d\ in 
non-decreasing order. 

(2) If there are k (k > 1) paths Pj,p;+1,.. . . P ^ , , with the same fixed 
delay, which is accurate to 0.01 s, i.e., d[= d|+1 = • • • = dj+k_-,, 
we can just aggregate these paths into a new path i with d; = d[ 
and bi = b'i + b'i+-[ + ••• +b'i+k_-[ temporarily. 



(3) Relabel the paths, and then we get a new set of paths SPt with 
parameters {d,-, b,}, i = l N, and b\ <b2 < • • • < bjv-

In the following, we first determine the optimal partitioning 
scheme for the paths P,-, i = l N. For each path P,- consisting of k 
paths with same delays, we can then partition its assigned chunk 
into k parts according to each path's average available bandwidth. 

Assume there is no delay between the time when a packet is 
received and the time when the corresponding ACK is sent. From 
the perspective of receiver as shown in Fig. 3, the scheduling 
starts at time 0, we can observe that: (1) during period [0, d^\, no 
packet can be received; (2) during period [d^ d2], only packets 
from path 1 transmitted at [0, d 2 -d i ] period can be received; 
(3) during period [d2, d3], the receiver can receive packets from 
path 1 transmitted at period [d 2 -di , d 3 -d i ] and packets from 
path 2 transmitted at period [0, d 3 -d 2 | ; and (4) during period 
[dh, dh+1] (2 <h<N), the receiver can receive packets from path i 
(1 <i<h), which can be traced back to the sender transmitted at 
period [dh-dh d h + 1 - d , ] . 

The following theorem establishes the essential condition to 
ensure the in-order arrival. 

Theorem 1. The probabilistic scheduling ensures that the packets 
can arrive in order at receiver, if their sending times meet the 
following conditions: if the ith path starts to send packets at time 
0, then the i-lth path starts to send packets at d,-d,_j, the i—2th 
path at di—di_2, and so on, and the 1st path begins at d,- —dj. This 
condition can be represented as follows: 

sri = sri_1-(di-di_1) = sri_2-(di-di_2)= ••• =sr1-(d i-d1) (i) 

where STt denotes the starting time of ith path. 
However, if the packets are scheduled with the above prob­

abilistic scheduling scheme via all N paths uniformly, the overall 
performance will be dragged down by the Nth path, which is the 
slowest one. In this case, a plentiful network bandwidth of faster 
paths is wasted, because the first packet can only be received at 
dN time. Fortunately, for most actual applications, the sender 
always has sufficient number of buffered packets. Thus, we can 
partition the buffered packets into N-1 chunks and send them in 
parallel to utilize the bandwidth of the faster paths. We use a 
probabilistic scheduling to evenly assign the packets of the hth 
chunk to h paths (1 < h < N - l ) . In the mean time, we stipulate 
that the assigned packets to the path i (1 < i < h) be transmitted 
during period [dh—dh dh + 1 -d , ] , which ensures that the packets of 
the hth chunk arrive at the receiver during the period [dh, d h + 1 ] . 
In this way, the packets of all N—\ chunks are more likely to 
arrive in order at the receiver. For the remaining flow, the packet 
can be transmitted on all N paths with a probabilistic scheduling, 
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Fig. 3. Mapping of sending time and receiving time. The method schedules 
packets at the sender to arrive in-order at the receiver. 

in which the Nth path starts to send packets at time 0 and the ith 
path starts to send packets at time dN-di} that is Sr,=(dN-d,). 

Focusing on each path i solely, the packets in the hth chunk 
should be transmitted d h + i - d h later than these in the h + l th 
chunk, which can be represented as follows: 

ST," =ST,h + ' -(dh+i-dh) (2) 

where Slf denotes the starting time of hth chunk through ith path. 

Corollary 1. According to Theorem 1, we can infer a discipline that 
the time when the ith path starts to send packets of the hth chunk is 
the same as the time when the i+lth path starts to send packets of 
the h+lth chunk, that is: 

STt" = ST\ •h+l (3) 

Under the constraints as (l)-(3) of starting time, we can 
formulate an optimization problem of maximizing the aggregate 
throughput through adjusting the amount of data transmitted on 
each path with respect to each chunk. 

For scheduling the hth chunk, the path i can be assigned nih 

packets each of which has the same size s,-. The transmission duration 
of path i is n,hs,/b,.. The size of total transmitted traffic (W) is 

N N 

(4) 

Noting that the fraction of the size of the hth chunk to W is 
fh= Y%=i nihSi/W. For the hth chunk, the ratio of being trans­
mitted along path i is labeled as gih, and glh+g2hH ^ghh = 1-

We can formulate the following linear constraint optimization 
problem for path set SPN on maximizing end-to-end aggregate 
throughput (AT) while preserving packets in-order [denoted as 
AT(SPN, tx)\ as 

Maximize : AT = W/tx (5) 

( S T / ^ S T i V - C d i - d n ) d0 = 0 
s r . h = STh+I STjh = 

subject t o : / l +h + • • 

gVl+S2h + 

h>Q 
, Till > 0 

+ / N = 1 

• • +Shh = 1 
h = 
i = 

= 1,2,. 
= 1,2,. 

(6) 

,N-1 

3.3. Progressive water filling solution 

With the aid of an intuitive "water-filling" model (Mao et al., 
2005), we propose a "Progressive Water-Filling" (PWF) algorithm 
for solving the above optimization problem AT(SPN, tx) directly. 
A multi-path network (N paths) and an amount of packets are 
described in Fig. 4, we model each path i as a bucket with an area 
of cross section b,-. In addition, each bucket i is pre-loaded with 
content b,d,. to a level d,-. Assume each bucket has a finite depth 
I* > dN which is the highest pre-loaded level of the N buckets. The 
most units of fluid held by the N buckets is just the value of W in 
the problem AT(SPN, tx) where tx=L*. 

We try to "fill" all the buckets, until all buckets reach their 
capacity limits. If path i is assigned with a portion p,-, this is 
equivalent to filling p,- of W units of fluid into bucket i. With this 
model, the optimization problem is equivalent to maximizing W, 
the total units of fluid filled into the N buckets. 

In this case, let each bucket have a finite depth as shown in 
Fig. 4. In order to maximize W, the Wpt units of fluid should be 
distributed to the N buckets in such a manner that all the buckets 
have the same rated fluid level !,-. This means 

• • • =LN = L (7) 
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Fig. 4. Progressive water-filling model. Schematic view for problem AT(SPN, V), 
each path i is modeled as a bucket i with an area of cross section bt and pre-loaded 
with content bjdj to a level df. 

Note that the portion of total data W that can be held by bucket 
i is <jj = QZh = i nj/,Sj)/W. Alternatively, (7) can be expressed in 
terms of W and p,-: 

Wq 
i + d , 

Wq2 +d2 
WqN + dN (8) 

hi &2 z bN 

where q,+q2H \-qN = 1. 
Though any two buckets have different heights, the increased 

fluid heights of all participated buckets with respect to the hth 
chunk are equivalent. 
H i h S i _ n 2 i iS2 _ njftS, 

bi 
J / i + i - (9) 

If the common fluid level is I*, the amount of fluid that bucket i 
holds regarding the hth chunk is 

Wrih = b i (d h + i -4 ) l < h < N - l (10) 

Thus, Wean be derived as follows: 

N N 

W = L*J2bi-J2b<d< (11) 

In fact, each bucket corresponds with one path. The faster 
paths are padded with the packets from previous chunks, which is 
equivalent to increasing their queuing times such that the arrival 
time of packet via the faster path is equal to that via the slower 
path. From the perspective of a specific chunk h, their transmis­
sion duration over the participated i paths are the same. Thus, 
the ready packets of the same chunk h can be considered to be 
transmitted over these participated paths with the same delays. 
Thus, the ratio of the hth chunk filled into bucket i, or the 
scheduling probability of path i for the hth chunk, is 

gih 
bi 

(12) 

Reviewing the inherent requirement of this solution, we find 
that I* might not need a preset value, because the preset value is 
hard to satisfy the requirements of a variable network promptly. 
In fact, the process of pre-fetching and splitting is only necessary 
for the JV—1 chunks. If the condition of the network is not 
changed, the next period is not triggered and thus the current 
I* can be large. For the Nth chunk, its packets are transmitted 
continuously until several reordering events occur (i.e., the 
number of 3 dupACKs beyonds 10). 

fk- Y*_ , fci(dN-di) 
l < h < N - l (13) 

In other words, for each chunk, the probability that a packet is 
transmitted along a given path corresponds to the ratio of its 
bandwidth to the total available bandwidth of all involved paths, 
which might be simply validated intuitively. The traditional sche­
duling scheme is always preferential to use the path with a higher 
bandwidth and a lower fixed delay, but it is impossible to order 
the paths consistently in many cases. A brute force optimization 
evaluation of all feasible path combinations would have exponential 
complexity (Tsirigos and Haas, 2004). Using our approach, the 
scheduling scheme can be easily performed with 0(N2) complexity, 
where N is the number of paths available. As a consequence, this 
scheme can achieve a good balance of workload and high system 
throughput. The implementation of traffic scheduling will be dis­
cussed in Section 4. 

3.4. Scheduling process 

The OSIA scheduling scheme is designed as a mixed strategy, 
which consists of two steps: a deterministic splitting step, based 
on flow level striping; followed by a probabilistic assigning step, 
based on packet level scheduling. 

(1) The first step is the key to solving the reordering problem, which 
uses the PWF algorithm to partition the original data flow into 
multiple chunl<s. To ensure in-order delivery, OSIA exploits the 
sending time discrepancy to remove the path delay difference. 
The original flow is systematically partitioned into several 
chunks in this step. An example of three paths is shown 
by Fig. 5. The first two marking points at "actual data" axis 
represent the partitioned borders, whose positions are deter-
ministically decided by the PWF algorithm, thus the first and 
the second chunk can be constructed in advance. However, the 
last marking point cannot be determined beforehand, which 
represents the ending position of the flow to be transmitted in 
the current period. In fact, the third chunk consists of the 
remaining part of the flow to be transmitted in this period. 

(2) The second step assigns thepackets of each chunk to the targetpaths 
in terms of their probabilistic portions in parallel. As for each chunk, 
we refer to a bandwidth-aware probabilistic scheme to schedule 
the packets across multiple paths with different delays. This 
packet-level scheduling scheme achieves a finer-grain paralle­
lism and tries to alleviate the packet reordering. In Fig. 5, the 
mapping of "actual data" axis to "transmitted" axis illustrates 
this assigning process. Figure 5(a)-(c) stand for the assignments 
of chunks 1-3, respectively. Moreover, the corresponding rela­
tion between "transmitted" axis and "received" axis shows that 
the CMT process preserves the in-order arrival of packets at the 
receiver. 

In summary, this mixed scheme can alleviate the inherent 
packet reordering caused by the multi-path heterogeneity when 
performing CMT. It also has a low computation complexity. As the 
TCP RTO estimator is relatively conservative, the CMT using this 
mixed scheduling scheme can also decrease the unnecessary 
timeout retransmission. We have the following theorem. 

Theorem 2. If (14) is satisfied, there is no timeout caused by the 
path delay difference. 

El". 1gin(^-m.) 
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< K Vm, 1 < m < h (14) 
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Fig. 5. An example of scheduling process. The three chunks are transmitted simultaneously over three paths, the marking points at "actual data" axis represent the 
splitting step, and the mapping of "actual data" axis to "transmitted" axis illustrates the assigning step: (a) the first chunk only for path 1, (b) the second chunk for path 
1 and 2, and (c) the third chunk for all 3 paths. 

where gih is the ratio of the hth chunk sent over path i, rt is the RTT of 
a packet transmitted along path i, and K is a constant factor (typically 
K=4) for computing TCP RTO. 

Proof. We present a theoretical proof in Appendix A. 

4. Practical considerations 

In this section, we discuss some important practical considera­
tions and present an implementation to enforce our OSIA for an 
end-to-end application. This implementation uses a set of leaky 
buckets, which are available in most commercial routers. 

4.1. Enforcing OSIA scheduling 

After the deterministic splitting parameters fh, h = \, 2 
JV—1, and probabilistic assigning parameters rih, i=\, 2 h, 
are computed, the next question is how to enforce them on traffic 
flow. The deterministic splitting can be enforced by using a set of 
leaky bucket regulators: one for each chunk. Then, the probabil­
istic assigning can be enforced by using multiple faucet regulators 
for each leaky bucket: one on each path. The OSIA scheduling 
scheme first preprocesses the existing paths as Section 3.2. The 
Collector module at the receiver accepts incoming packets from 
multiple paths, and notifies the sender of packet arrival on the 
corresponding path. In the following, we show the framework of 
cascaded leaky buckets with multiple faucets. 

For an end-to-end application, the sender is responsible for 
partitioning the traffic flow into multiple chunks. Figure 6 illus­
trates the framework of our proposed OSIA. On the sender side, 
the traffic scheduling module is responsible for splitting the flow 
and assigning packets dynamically, i.e., splitting the flow into a 
series of chunks using a set of leaky buckets, and assigning each 
chunk to different paths in terms of their scheduling probabilities 
using their faucets. Multiple leaky buckets are cascaded in a chain 
while a source flow is fed into N leaky buckets (N denotes the 
number of preprocessed paths). When a TCP-like flow is regulated 
by the first leaky bucket with a faucet at the first chunk, usually 
the special portion of traffic is conformed with (12) and (13), i.e., 
Sn = / i =b-i{d2-d-l)/Y!iZ\bi{dN-di). Then, the remaining flow 
is redirected to the second leaky bucket with its ratio computed 
as f2 = b2(d3-d2)/X]fji bi(dN—di), while the probability that a 
packet is assigned to path 1 and 2 is g\i=b\\(b\ +b2) and gii=bi\ 
(bi + b2). respectively. The remaining flow is redirected to the 
3rd,... hth ..., Nth leaky bucket successively, in which the hth 
leaky bucket has h faucets. At the Nth bucket, there is no need for 
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Fig. 6. Cascaded leaky buckets with multiple faucets. Systematic view for problem 
AT(SPN, tx), the buckets are in charge of splitting chunks and their faucets are in 
charge of assigning each chunk. 

splitting the flow and the probabilistic scheduling is used to leak 
the subsequent flow. It is worth noting that there always exist 
tokens for the incoming traffic. Consequently, the above determi­
nistic partitioning scheme does not introduce additional loss or 
delay to the application data. The varying path conditions could 
trigger the updating of the leaky bucket parameters. 

4.2. Path parameter estimation 

The proposed scheme works best when some QoS supports are 
available in the network. For example, with the support of the 
resource reservation protocol (RSVP) (Zhang et al., 1993), a source 
can reserve the required bandwidth along each path, and a router 
or a switch can use the generalized processor sharing (GPS) 
scheduling to guarantee the reserved bandwidth (Zhang, 1997). 
If such QoS provisioning mechanisms are not available, the 
receiver could estimate the path parameters, i.e., bt and dh i=\, 
2 N, for a snapshot of the network and send the estimates 
back to the source, if the path conditions vary at a relatively large 
time scale. 

Estimating path parameters based on end-to-end measure­
ments has been an active research area for years. Many effective 
techniques (Jain and Dovrolis, 2003; Kapoor et al., 2004; Gurewitz 
and Sidi, 2001) can be applied to estimate the path parameters in 
our approach. For example, the SLoPS (Jain and Dovrolis, 2003) 
and CapProbe (Kapoor et al., 2004) can be used to estimate the 
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Fig. 7. Number of 3 dupACKs events triggered by various scheduling with respect to the delay (i.e. D2/D1) and bandwidth (i.e. BW2/BW1) ratio, (a) Round-Robin 
scheduling, (b) CWND-aware scheduling, (c) Flow-level scheduling, (d) OSIA scheduling. 

end-to-end available bandwidth (or bottleneck bandwidth) of a 
path. If the source and the receiver are synchronized, the mini­
mum one-way packet delay measured in the last time window 
would be a good approximation of the fixed delay dt on that path. 
Otherwise, the approach presented in Gurewitz and Sidi (2001) 
can be used to estimate the one-way delay from cyclic-path delay 
measurements. Therefore the OSIA depends upon the assumption 
of the availability of path bandwidth and delay, at least which can 
be obtained. Moreover, this OSIA has a certain tolerance for the 
inaccurate measurement result of bandwidth and delay according 
to Theorem 2. For the sake of convenience, our following simula­
tion experiments are all arranged in controlled environments 
where all metrics can be preset, after all the technology of 
network measurement does not belong to the innovation of 
this paper. 

After obtaining the path parameters, the Stream Control 
Transport Protocol (SCTP) (Stewart, 2007) and its CMT extension 
(Iyengar et al., 2006; Liao et al., 2008) can be used for delivering 
the parameters to the sender via the SACKs of each path. The 
sender then computes the optimal partition and updates the 
parameters of the leaky buckets periodically. Note that path 
conditions could change because of path failure, rerouting, etc. 
Furthermore, the variation of cross traffic load using the same 
paths may cause variations of the estimated path parameters and 
trigger updating of the leaky bucket parameters. If the congestion 
occurs at a relative large time scale, the proposed traffic parti­
tioning scheme can adapt to the congestion as well. 

5. Evaluation and numerical results 

This section presents the simulation model used to evaluate 
the performance of the proposed method and then provides the 
experimental results. 

5.2. Simulation model 

For the purpose of simulation, we implemented the cmpSCTP 
(Liao et al., 2008) protocol to support the CMT in OPNET 10.0.A 
(OPNET simulator, 2005). In our simulation, we use a simple 
topology with two or more parallel paths between sender and 
receiver. A real traffic trace (the "Star Wars" movie) is used as a 
source of FTP foreground traffic. To simulate paths with different 
available bandwidths in the dynamic network, cross-traffic is 
introduced. Our cross-traffic in each path is generated according 
to a Pareto process with an on-off period that takes value in the 
range [10ms, I s ] . The bit error rate on a link dynamically 
changes within the range between 1 x 10~3 to 1 x 10~5 (with 
the average of 2 x 10~5), and all links have the same bit error rate. 
The path Maximum Transmission Unit (MTU) at each path is 
1 Kbytes, and the packet size is 1 kb. 

We compare our proposed OSIA scheduling scheme against 
three different methods in our experiments: (i) traditional Round-
Robin scheduling scheme (Hahne and Gallager, 1986); (ii) CWND-
aware scheduling scheme (Saadawi and Lee, 2004); (iii) flow-level 
scheduling scheme. Clearly, the Round Robin approach suffers 



Fig. 8. Goodput produced by various scheduling with respect to the delay (i.e. D2/D1) and bandwidth (i.e. BW2/BW1) ratio, (a) Round-Robin scheduling, (b) CWND-aware 
scheduling, (c) Flow-level scheduling, (d) OSIA scheduling. 

from the excessive packet reordering and is not recommended in 
practice. The CWND-aware scheduling is based on bandwidth-
delay product, in which the outgoing traffic is divided over the 
multiple paths according to the ratio of their CWNDs (i.e. in each 
point of the time, the possibility of the path i serving the packet is 
CWND;/ YA = i CWND;). The flow-level scheduling stripes the flow 
adaptively based on the path bandwidth. The scheduling periods 
of all schemes are set as 1 s. We use the number of fast 
retransmission events and the term "goodput" as the performance 
metric of evaluating these methods, in which the "goodput" is the 
application level throughput and measures the rate of the packets 
reaching their destination successfully, excluding retransmitted 
packets. 

5.2. Number of 3 dupACKs 

To evaluate the impact of various network parameters on the 
performance of our approach, we consider a simple topology with 
only two parallel paths, and vary the following network para­
meters in the simulations: (i) the delay of the paths; and (ii) the 
bandwidth of the paths. For the sake of simplicity, we assume that 
the average delay and the bandwidth of path 1 are fixed to 50 ms 
and 1 Mbps, respectively. The relative delay and bandwidth of 
path 2 with respect of path 1 are varied in this experiment. 

Figure 7(a) shows the number of 3 dupACKs with the Round-
Robin scheduling, in which multiple paths are served in a Round-
Robin manner with one packet transmitted to one available path in a 

service round. Although round robin data is simple, it causes a lot of 
3 dupACKs events when the paths have different characteristics, 
while the number of 3 dupACKs events is nearly independent of the 
delays of the paths. The number of 3 dupACKs with CWND-aware 
scheduling is illustrated in Fig. 7(b). As can be observed, the 
CWND-aware scheduling can lessen the occurring of 3 dupACKs, 
which exploits the knowledge of the CWND. Finally, comparing the 
simulation results of Fig. 7(c) and (d), we can see that the perfor­
mance of flow-level and OSIA scheme are comparable. Clearly, the 
packet reordering events are considerably prevented by our OSIA 
scheduling scheme, which fully exploits the available resources. 

5.3. Achieved goodput 

We use the above simulation topology and configuration, and 
only change the number of the packets to simulate the scenario 
where the sender transmits 500 packets through two paths. Figure 8 
shows the goodput obtained by different methods for transferring a 
file of size 500 kb. According to Fig. 8(a), the aggregate goodput 
obtained by Round-Robin scheduling scheme (Saadawi and Lee, 
2004) increases much slow, due to a mass number of unnecessary 
fast retransmissions. From Fig. 8(b), CWND-aware scheduling can 
increase the goodput, with the increase of CWND of the auxiliary 
path 2. However, it reduces the end-to-end goodput when the paths 
have different delays. 

Figure 8(c) shows that the poor accuracy of flow splitting in 
the flow-level scheduling can hurt the network goodput. Flow-



Table 1 
Bandwidth/delay settings for multi-path scenario. 

Number of 
paths 

1 

2 

3 

4 

Path 
id 

1 

1 
2 

1 
2 
3 

1 
2 
3 
4 

Bandwidth 
(Mbps) 

4 

3 
1 

2 
1.25 
0.75 

1.25 
1 
1 
0.75 

Propagation 
delay (ms) 

60 

40 
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40 
80 
60 

40 
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80 
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level scheduling cannot divert the ongoing flows away from the 
congested path. This can congest the overloaded path, resulting in a 
high drop rate and a low overall goodput. Our scheme shown in 
Fig. 8(d), on the other hand, reacts quickly and diverts the ongoing 
flows away from the congested path. It is worth noting here 
that our OSIA scheduling scheme succeeds in splitting a TCP-like flow 
among multiple paths with different available bandwidth and delay. 

5.4. Effect of path numbers 

To validate the effect of number of paths on the performance of 
our approach, we run a set of simulations with two nodes 
connected by two, three, four, and five paths. The paths configura­
tion is described in Table 1. In all the considered configurations, the 
overall bandwidth, summing the bandwidths of all paths, is equal 
to 4 Mbps. In the following, each result is an average of multiple 
simulation runs under the same set of parameters. 

Our simulation results, detailed below, show that: OSIA inter­
acts benignly with path delay and bandwidth difference. In 
particular, splitting a TCP-like flow across multiple paths using 
OSIA has no negative impact on the aggregate goodput. On the 
other hand, packet-based splitting reduces the end-to-end good-
put when the multiple paths have different delays, whereas flow-
level scheduling reduces the end-to-end goodput when the net­
work condition is varied. 

Figure 9 shows the effect of reordering on goodput as the 
number of paths increases. According to Fig. 9, the aggregate 
goodput obtained by Round-Robin scheduling scheme is the 
smallest. With the increase of number of paths, the goodput 
gained by CWND-aware and Flow-level scheduling gets reduced, 
due to a mass number of unnecessary fast retransmissions and 
the inefficient congestion adjustment strategies. Moreover, we 
observe that the goodput of OSIA scheduling scheme degrades 
gracefully when the difference of paths increases. 

Two conclusions can be drawn from Fig. 9. First, reordering 
caused by packet-based splitting can hurt the goodput signifi­
cantly. Second, OSIA scheduling scheme can split the same flow 
among multiple paths whose one-way delays are different by as 
much as 80 ms, without hurting the overall goodput. This is 
because it tends to exploit the delay difference of these paths 
and hence, the carefully pre-arranged out-of-order sending 
sequence ends up with an in-order arrival at receiver. 

Our simulation results, detailed below, show that: PWF inter­
acts benignly with path delay and bandwidth difference. In 
particular, splitting a TCP-like flow across multiple paths using 
PWF has no negative impact on the aggregate goodput. On 
the other hand, packet-based splitting reduces the end-to-end 
goodput when the multiple paths have different delays, whereas 

Number of Paths 

Fig. 9. Goodput with the number of paths to validate the different effects 
produced by various scheduling. 

flow-level scheduling reduces the end-to-end goodput when the 
network condition is varied. 

Figure 9 shows the effect of out-of-ordering on goodput as the 
number of paths increases. According to Fig. 9, the aggregate 
goodput obtained by Round-Robin scheduling scheme is the 
smallest. With the increase of number of paths, the goodput 
gained by CWND-aware and Flow-level scheduling gets reduced, 
due to a mass number of unnecessary fast retransmissions 
and the inefficient congestion adjustment strategies. Moreover, 
we observe that the goodput of PWF algorithm degrades grace­
fully when the difference of paths increases. 

Two conclusions can be drawn from Fig. 9. First, out-of-ordering 
caused by packet-based splitting can hurt the goodput signifi­
cantly. Second, PWF algorithm can split the same flow among 
multiple paths whose one-way delays are different by as much as 
80 ms, without hurting the overall goodput. This is because it 
tends to exploit the delay difference of these paths and hence, the 
carefully pre-arranged out-of-order sending sequence ends up with 
an in-order arrival at receiver. 

6. Conclusion and future work 

CMT allows utilizing multiple paths to transmit packet in parallel 
between a source and destination. However, how to schedule 
packets on these paths is an important issue to be solved. Transmit­
ting packets from a single flow on multiple paths with different RTTs 
can lead to out-of-order packet arrival and hence TCP-like perfor­
mance degradation. Our objective is to maximize the aggregate 
throughput while decreasing the probability of packet reordering 
caused by the delay difference. 

This study aims at contributing to the reasonable traffic 
scheduling of CMT in multi-homed mobile networks. An analy­
tical model of OSIA is presented firstly. Then, we present a novel 
approach to alleviate the potential reordering events due to 
inherent delay difference. We also provide a practical implemen­
tation to enforce the optimal scheduling on each path with 
negligible computation overhead. There are several issues, which 
are worthy to be further discussed: (1) the development of an 
integrated solution for other types of reordering; (2) the complete 
mechanism considering more network parameters such as losses, 
bandwidth fluctuations, delay jitters, etc.; (3) the development of 
an improved retransmission timeout estimator for CMT; and 



(4) the investigation about how the performance of our proposed 
scheme scales with network size. 

Appendix A 

Consider this situation: packets are sent out simultaneously 
via N distinct paths with different RTTs, and packets are not lost in 
transmission. Here, we only consider the scenario where timeout 
happens only if the RTTs of two paths are substantially different, 
without consideration of the timeout caused by the packet 
sequence. If the difference of RTTs between two paths is big and 
the RTT of slow path is larger than the timeout value, unnecessary 
retransmission will become very common and transmission 
efficiency will be greatly degraded. 

In popular versions of TCP (Jacobson et al., 1992), the retrans­
mission timeout (RTO) for the ith packet is set as 

RTOi=Ri+KVi (15) 

where Rt is the current smoothed estimate of RTT, V,- is the current 
smoothed estimate of the deviation in RTT, and K is a constant 
factor (typically K=4), which adjusts the measured averaged 
retransmission timeout with respect to its variance (Phatak and 
Goff, 2002). Rt and V,- are defined by the following recursive 
equations: 

Rt = Cf.Ri_-l+ (l-a)KTT; (16) 

Vi = pVi_-t+a-p)\RTTi-Ri\ (17) 

where RTT,- is the sampled RTT of the ith packet. Eqs. (16) and (17) 
can be acted as a low-pass filter on the sampled RTTs to smooth 
out the variations. 

According to the above discussion, the exact value of RTO 
depends on the sequence of RTT samples. In our multi-path scenario, 
it depends on the sequence of paths chosen to send packets. As an 
approximation, the average RTT and average deviation in RTT will be 
considered to compute RTO. 

Logically, the time needed to receive a packet from an 
arbitrary path is a function of packet size, path bandwidth and 
delay of that path. More specifically, inspired from Demichelis 
and Chimento (2002), we use dt to denote the one-way delay of 
ith path. Based on this delay, the RTT of a packet (with size s,) sent 
along path i (with bandwidth bt) can be computed by 

The average RTT of any chunk h is then 

h 

(19) 

in which r,- is the smoothed estimate RTT for packets sent along 
path i and gih is the portion of traffic sent over path i as (14). 
Similarly, the average deviation in RTT is 

v -. 
h h h 

i=i i=i j=i 

From (15), no timeout will occur if 

rm<f+Kv Vm, l < m < h 

(20) 

(21) 

Considering (19) and (20), the inequality of (21) can be 
restated as 

Ei^igih(rm-rj) 

£?=i&h|£j ,= i«/h(r i-0)| 
< K Vm, 1 < m < h (22) 

Hence, if the TCP implementation is configurable, we can 
appropriately set the value of K to satisfy the above inequality. 
Otherwise, the sender need carefully adjust the value of gih 

(i.e. the ratio of data sent over path i). As the above equation 
implicitly states, the condition for preventing timeout depends 
solely on the difference of paths' delays, rather than on their 
absolute values. 

The timeout event cannot occur in the period of the first chunk 
due to only single path transmission. In the following, we analyze 
the periods of other chunks. 

A3. Period of the second chunk 

Firstly let us consider the period of the second chunk in which 
merely two paths are exploited to carry the traffic, meaning that 
h=2. We assume that r^ <r2. (22) is always satisfied for ri=r2 . 
For m = l, (22) is equivalent to 

g22(n-r2) 
gu \g22(ri-r2)\+g22 \gu(r2-r-i)\ 

<K (23) 

which is always satisfied, because the nominator of that fractions 
should be negative. 

For 771=2 in (22), we have 

-ri) gu(r2-
g\2 \g22(X\-r2)\+g22 \g\2(T2-n)\ 

<K 

2K 

By taking into account r2 —ri > 0, (24) is shortened to 

< g 2 2 < l 

(24) 

(25) 

In standard TCP, the value of K is typically set to 4 (Jacobson 
et al., 1992; Phatak and Goff, 2002). It forces us to set the value of 
g22 greater than 0.125, that is b\ < 7b2- In other words, if only the 
bandwidth over the faster path is less than 7 times of the slower 
path, retransmission timeouts will not occur regardless of the 
delay of two paths. 

(18) A.2. Period of the third chunk 

Secondly let us analyze the period of the third chunk, meaning 
that h=3. Remind that according to our model, we assume that 
T\ <r2<r3, and (21) is always satisfied for r i=r 2 =r 3 . By setting 
771=3, (22) is equivalent to 

gi3(r3-rQ+g23(r3-r2) 
gu\g23^-r2)+g33^-r3)\+g23\gu(r2-r-i)+g33(r2-r3)\+g33\gu(r3-r-i)+g23(r3-r2)\ 

<K (26) 



If (26) holds true, timeout cannot occur in all the paths, since 
r3 is the delay in the slowest path. 

If gi3(r2-ri)+g33(r2-r3) > 0, by taking into account 

1 #13 +g23 +g33 

(27) is shortened to 

T3-(g-liT-l+g2-iT2+giiT3) <2K 

(27) 

(28) 
guigu^ + g23^2 + f o l ' ' 3 - r 1 ) 

which is also the same as the instance of r-i < r2 = r3. 
If gi3(r2-ri)+g33(r2-r3) < 0, similar to above simplification, 

we can reduce (26) to 

1 
2K < g 3 3 < l (29) 

which is also the same with the instance of r^ = r2< r3. 
Considering (13) and (15), the inequality of (14) can be 

restated as 

g 2 3 < ( l - g 3 3 ) 

g l 3 > ( l - g 3 3 ) 

2Kg3 3(r3-r1)+r1-r2 

(r3-r,)(2Kg33-V) 

r3-r2 

2Kg33(r3-r1)+r1-r2 

(30) 

(31) 

Similar to the case of two paths, (29) shows that if the portion 
of traffic over the fastest path is greater than 0.125 in the case of 
the third chunk, and the value of g23. or g13 meets the constrains 
of (30) or (31), then no timeouts will occur. 
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