Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A regularized bridge sampler for sparsely sampled diffusions

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Sparsely sampled diffusion processes, in this paper interpreted as data sampled sparsely in time relative to the time constant, is a challenging statistical problem. Most approximations of the transition kernel are derived under the assumption that data is frequently sampled and these approximations are often severely biased for sparsely sampled data. Monte Carlo methods can be used for this problem as the transition density can be estimated with arbitrary accuracy regardless of the sampling frequency, but this is computationally expensive or even prohibited unless effective variance reduction is applied.

The state of art variance reduction technique for diffusion processes is the Durham-Gallant (modified) bridge sampler. Their importance sampler is derived using a linearized, Gaussian approximation of the dynamics, and have proved successful for frequently sampled data. However, the approximation is often not valid for sparsely sampled data.

We present a flexible, alternative derivation of the modified bridge sampler for multivariate, discretely observed diffusion models and modify it by taking uncertainty into account. The resulting sampler can be viewed as a combination of the basic sampler and the Durham-Gallant sampler, using the sampler that is most appropriate for the given problem, while still being computationally efficient. Our sampler is providing effective variance reduction for frequently and sparsely sampled data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aït-Sahalia, Y.: Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70, 223–262 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Aït-Sahalia, Y.: Closed-form likelihood expansions for multivariate diffusions. Ann. Stat. 36(2), 906–937 (2008)

    Article  MATH  Google Scholar 

  • Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P.: Modeling and forecasting realized volatility. Econometrica 71, 579–625 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Bengtsson, T., Snyder, C., Nychka, D.: Towards a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. 108(D24) (2003)

  • Beskos, A., Papaspiliopoulos, O., Roberts, G.O., Fearnhead, P.: Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes. J. R. Stat. Soc. B 68(3), 333–382 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Beskos, A., Papaspiliopoulos, O., Roberts, G.O.: Monte Carlo maximum likelihood estimation for discretely observed diffusion processes. Ann. Stat. 37(1) (2009)

  • Durham, G.B., Gallant, A.R.: Numerical techniques for maximum likelihood estimation of continuous time processes. J. Bus. Econ. Stat. 20(3), 297–316 (2002)

    Article  MathSciNet  Google Scholar 

  • Elerian, O., Chib, S., Shephard, N.: Likelihood inference for discretely observed non-linear diffusions. Econometrica 69, 959–993 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Eraker, B.: MCMC analysis of diffusion models with application to finance. J. Bus. Econ. Stat. 19(2), 177–191 (2001)

    Article  MathSciNet  Google Scholar 

  • Fearnhead, P.: Computational methods for complex stochastic systems: a review of some alternatives to MCMC. Stat. Comput. 18(2), 151–171 (2008)

    Article  MathSciNet  Google Scholar 

  • Geweke, J.: Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57(6), 1317–1339 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Glasserman, P.: Monte Carlo Methods in Financial Engineering. Stochastic Modelling and Applied Probability, vol. 53. Springer, Berlin (2003)

    Google Scholar 

  • Golightly, A., Wilkinson, D.J.: Bayesian sequential inference for nonlinear multivariate diffusions. Stat. Comput. 16(4), 323–338 (2006)

    Article  MathSciNet  Google Scholar 

  • Golightly, A., Wilkinson, D.J.: Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput. Stat. Data Anal. 52(3), 1674–1693 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  • Hurn, A.S., Jeisman, J.I., Lindsay, K.A.: Seeing the wood for the trees: a critical evaluation of methods to estimate the parameters of stochastic differential equations. J. Financ. Econom. 5(3), 390 (2007)

    Article  Google Scholar 

  • Jonsdottir, H., Madsen, H., Palsson, O.P.: Parameter estimation in stochastic rainfall-runoff models. J. Hydrol. 326(1–4), 379–393 (2006). ISSN 0022-1694

    Article  Google Scholar 

  • Koopman, S.J., Shephard, N., Creal, D.: Testing the assumptions behind importance sampling. J. Econom. 149(1), 2–11 (2009)

    Article  MathSciNet  Google Scholar 

  • Lindström, E.: Estimating parameters in diffusion processes using an approximate maximum likelihood approach. Ann. Oper. Res. 151, 269–288 (2007). doi:10.1007/s10479-006-0126-4

    Article  MathSciNet  MATH  Google Scholar 

  • Lindström, E.: Implications of Parameter Uncertainty on Option Prices. Advances in Decision Sciences, vol. 2010 (2010). ISSN 2090-3359

    Google Scholar 

  • Lo, A.W.: Maximum likelihood estimation of generalized Itô processes with discretely sampled data. Econom. Theory 4(2), 231–247 (1988)

    Article  Google Scholar 

  • Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  • Madsen, H., Holst, J.: Estimation of continuous-time models for the heat dynamics of a building. Energy Build. 22(1), 67–79 (1995). ISSN 0378-7788

    Article  Google Scholar 

  • Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 5th edn. Springer, Berlin (2000)

    Google Scholar 

  • Pedersen, A.R.: Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli 1(3), 257–279 (1995a)

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen, A.R.: A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Stat. 22, 55–71 (1995b)

    MATH  Google Scholar 

  • Philipsen, K.R., Christiansen, L.E., Hasman, H., Madsen, H.: Modelling conjugation with stochastic differential equations. J. Theor. Biol. 263(1), 134–142 (2010). ISSN 0022-5193

    Article  Google Scholar 

  • Phillips, P.C.B., Yu, J.: A two-stage realized volatility approach to estimation of diffusion processes with discrete data. J. Econom. 150(2), 139–150 (2009). ISSN 0304-4076

    Article  MathSciNet  Google Scholar 

  • Stramer, O., Yan, J.: On simulated likelihood of discretely observed diffusion processes and comparison to closed-form approximation. J. Comput. Graph. Stat. 16(3), 672–691 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Lindström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindström, E. A regularized bridge sampler for sparsely sampled diffusions. Stat Comput 22, 615–623 (2012). https://doi.org/10.1007/s11222-011-9255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-011-9255-y

Keywords