
ar
X

iv
:0

90
9.

55
24

v2
 [

st
at

.A
P]

 2
0

Se
p

20
11

Distributed detection/localization of change-points in

high-dimensional network traffic data∗

Alexandre Lung-Yut-Fong, Céline Lévy-Leduc, Olivier Cappé

22/02/2011

Abstract

We propose a novel approach for distributed statistical detection of change-points in high-

volume network traffic. We consider more specifically the task of detecting and identifying

the targets of Distributed Denial of Service (DDoS) attacks. The proposed algorithm, called

DTopRank, performs distributed network anomaly detection by aggregating the partial infor-

mation gathered in a set of network monitors. In order to address massive data while limiting

the communication overhead within the network, the approach combines record filtering at

the monitor level and a nonparametric rank test for doubly censored time series at the central

decision site. The performance of the DTopRank algorithm is illustrated both on synthetic data

as well as from a traffic trace provided by a major Internet service provider.

1 Introduction

Detecting malevolent behaviors has become a prevalent concern for the security of network in-
frastructures, as exemplified by the, now common, attacks against major web services providers.

In this contribution, we consider more specifically the case of DDoS (Distributed Denial of Ser-

vice) type of attacks where many different sources transmit data over the network to a few
targets so as to flood resources and, eventually, cause disruptions in service.

Several methods for dealing with DDoS attacks have been proposed. They can be arranged
into two categories: signature-based approaches and statistical methods. The former operate by

comparing the observed patterns of network traffic with known attack templates. Obviously, this

methodology only applies for detecting anomalies that have already been encountered and char-
acterized. The second type of approaches relies on the statistical analysis of network patterns

and can thus potentially detect any type of network anomalies. The basic statistical modelling
for this task is to assume that network anomalies lead to abrupt changes in some network char-

acteristics. Hence, most statistical methods for detection of network anomalies are cast in the

framework of statistical change-point detection, which is a familiar topic in statistics, see, e.g.,
Basseville and Nikiforov (1993); Brodsky and Darkhovsky (1993); Csörgő and Horváth (1997),

and references therein.
Two different approaches to change-point detection are usually distinguished: the detection

can be retrospective and hence with a fixed delay (batch approach) or online, with a minimal

average delay (sequential approach). In the field of network security, a widely used change-
point detection technique is the cumulated sum (CUSUM) algorithm described in Basseville and

Nikiforov (1993) which is a sequential approach. It has, for instance, been used by Wang et al.
(2002) and by Siris and Papagalou (2006) for detecting DoS attacks of the TCP (Transmission

∗the original publication is available at www.springerlink.com or http://dx.doi.org/10.1007/s11222-011-9240-5

1

http://arxiv.org/abs/0909.5524v2
www.springerlink.com
http://dx.doi.org/10.1007/s11222-011-9240-5

Control Protocol) SYN flooding type. This attack consists in exploiting the TCP three-way hand-

shake mechanism and its limitation in maintaining half-open connections. More precisely, when
a server receives a SYN packet, it returns a SYN/ACK packet to the client. Until the SYN/ACK

packet is acknowledged by the client, the connection remains half-opened for a period of at

most the TCP connection timeout. A backlog queue is built up in the system memory of the
server to maintain all half-open connections, this leading to a saturation of the server. In Siris

and Papagalou (2006), the authors use the CUSUM algorithm to detect a change-point in the
time series corresponding to the aggregation of the SYN packets received by all the requested

destination IP addresses. With such an approach, it is only possible to set off an alarm when

a massive change occurs in the aggregated series; it is moreover impossible to identify the
attacked IP addresses.

Given the nature of a TCP/SYN flooding attack, the attacked IP addresses may be identified
by applying multiple change-point detection tests, considering each of the time series formed by

counting the number of TCP/SYN packets received by individual IP addresses. This idea is used

in Tartakovsky et al. (2006) where a multichannel detection procedure, which is a refined version
of the previously described algorithm, is proposed: it makes it possible to detect changes which

occur in a channel and which could be obscured by the normal traffic in the other channels if

global statistics were used.
When analyzing wide-area-network traffic, however, it is not possible anymore to consider

individually all the possible target addresses for computational reasons. For instance, the data
used for the evaluation of the proposed method (see Section 3) contain several thousands of

distinct IP addresses in each one-minute time slot. In order to detect anomalies in such massive

data within a reasonable time span, it is impossible to analyze the time series of all the IP
addresses receiving TCP/SYN packets. That is why dimension reduction techniques have to

be used. Three main approaches have been proposed. The first one uses Principal Component
Analysis (PCA) techniques, see Lakhina et al. (2004). The second one uses random aggregation

(or sketches), see Krishnamurthy et al. (2003) and the third one is based on record filtering, see

Lévy-Leduc and Roueff (2009). Localization of the anomalies is possible with the second and
third approaches but not with the first one. By localization, we mean finding the attacked IP

addresses.
In the approaches mentioned above, all the data are sent to a central analysis site, called

the collector in the sequel, in which a decision is made concerning the presence of an anomaly.

These methods are called centralized approaches. A limitation of these methods is that they
are not adapted to large networks with massive data since, in this case, the communication

overhead within the network becomes significant. The approach that we propose in this paper
consists in processing the data within the network (in local monitors) in order to send to the

collector only the most relevant data. These methods are called, in the sequel, decentralized

or distributed approaches. In Huang et al. (2007), a method to decentralize the approach of
Lakhina et al. (2004) is considered but, as previously explained, with such a method localizing

the network anomaly is impossible.

The main contribution of this paper is an efficient way of decentralizing the TopRank algo-
rithm introduced in Lévy-Leduc and Roueff (2009). The proposed algorithm, termed DTopRank

(for Distributed TopRank), uses the TopRank algorithm locally in each monitor and only sends the
most relevant data to the collector. The data sent by the different local monitors are then aggre-

gated in a specific way that necessitates the development of a novel nonparametric rank test for

doubly censored data that generalizes the proposal of Gombay and Liu (2000). The DTopRank
algorithms makes it possible to achieve a performance that is on a par with the fully centralized

TopRank algorithm while minimizing the data that needs to be send from the monitors to the
collector.

The paper is organized as follows. In Section 2, we describe the DTopRank method and

determine the limit in distribution of the proposed test statistic under the null hypothesis that

2

there is no network anomaly. The performance of the proposed algorithm (implemented in C

language) is then assessed both using a real traffic trace provided by a major Internet Service
Provider (Section 3) as well as on synthetic data (Section 4). In both cases, DTopRank is compared

both to the centralized TopRank algorithm and to a simpler baseline decentralized algorithm

based on the use of the Bonferroni correction.

2 Description of the methods

The raw data that is analyzed consists of flow-level summaries of the communications on the

network. These include, for each data flow, the source and destination IP addresses, the start
and end time of the communication as well as the number of exchanged packets. All of this

information is contained in the standard Netflow format.
Depending on the type of anomaly to be detected, one needs to consider specific aspects of

the network traffic. In the case of the TCP/SYN flooding, the quantity of interest is the number

of TCP/SYN packets received by each destination IP address per unit of time. We denote by

(Ni(t))t≥1 the discrete time series formed by counting the number of TCP/SYN packets received

by the destination IP address i in the t-th sub-interval of size ∆ seconds, where ∆ is the sampling
period.

The centralized TopRank algorithm analyzes these global packets counts. In our case however,

we consider a monitoring system with a set of local monitors M1, . . . , MK, which collect and
analyze the locally observed time series. As as consequence of decentralized processing, the

packets sent to a given destination IP address are not observed at all monitors, although some

overlap may exist, depending on the routing matrix and the location of the monitors. We thus
denote by Nk

i (t) the number of TCP/SYN packets transiting to the destination IP address i in

the sub-interval indexed by t, as observed by the k-th monitor. In the proposed batch approach,
detection is performed from the data observed during an observation window of duration P×∆

seconds. The goal is to detect change-points in the aggregated time series (Ni(t))t≥1 using only

the local time series
(

Nk
i (t)

)

t≥1
for each k ∈ {1, . . . , K} and a quantity of data transmitted to

the collector that is as small as possible.

2.1 The DTopRank method

The DTopRank algorithm operates at two distinct levels: the local processing step within the
local monitors M1, . . . , MK and the aggregation and global change-point detection step within

the collector.

2.1.1 Local processing

The local processing of DTopRank consists of the four steps described below, which are applied

in each of the K monitors. The first three steps are similar to the TopRank algorithm applied

to the local series of counts
(

Nk
i (t)

)

1≤t≤P
. The second and third steps are however modified

by introducing a lower censoring value for each analyzed series so as to make possible global

aggregation at the collector level. In this section, the superscript k, corresponding to the monitor
index, is dropped to alleviate the notations.

1. Record filtering: For each time index t ∈ {1, . . . , P}, the indices of the M largest counts

Ni(t) are recorded and labeled as i1(t), . . . , iM(t) to ensure that Ni1(t)(t) ≥ Ni2(t)(t) ≥ · · · ≥
NiM(t)(t). In the sequel, TM(t) denotes the set {i1(t), . . . , iM(t)}. We stress that, in order to
perform the following steps, we only need to store the variables {Ni(t), i ∈ TM(t), t = 1, . . . , P}.

3

2. Creation of censored time series: For each index i selected in the previous step (i ∈
⋃P

t=1 TM(t)), the censored time series is built. This time series is censored since i does not
necessarily belong to the set TM(t) for all indices t in the observation window, in which case, its

value Ni(t) is not available and is censored using the upper bound NiM(t)(t) = mini∈TM(t) Ni(t).
More formally, the censored time series (Xi(t), δi(t))1≤t≤P are defined, for each t ∈ {1, ..., P}, by

(Xi(t), δi(t)) =

{

(Ni(t), 1), if i ∈ TM(t)
(min

j∈TM(t)
Nj(t), 0), otherwise.

The value of δi(t) indicates whether the corresponding value Xi(t) has been censored or not.
Observe that, by definition, δi(t) = 1 implies that Xi(t) = Ni(t) and δi(t) = 0 implies that

Xi(t) ≥ Ni(t). We also define the upper and lower bounds of Xi(t) by Xi(t) = Xi(t) and
Xi(t) = Xi(t)δi(t), respectively.

In order to process a fixed number S of time series instead of all those in
⋃P

t=1 TM(t) (at most

M× P), we only build the time series corresponding to the index i in the list i1(1), . . . , i1(P), i2(1),
. . . , i2(P), i3(1), . . . where the indices ik(t) are defined in the previous step.

3. Change-point detection test: In Lévy-Leduc and Roueff (2009), the nonparametric test

proposed by Gombay and Liu (2000) is used for detecting change-points in censored data. Here,

this test is extended in order to detect change-points in doubly censored time series so that
the same procedure can be applied both in the local monitors and within the collector. This

test, described hereafter, is applied to each time series created in the previous stage and the
corresponding p-value is computed, a small value suggesting a potential anomaly.

Let us now further describe the statistical test that we perform. This procedure aims at

testing from the observations previously built (Xi(t), Xi(t))1≤t≤P if a change occurred in this
time series for a given i. More precisely, if we drop the subscript i for convenience in the

description of the test, the tested hypotheses are:

(H0): “(X(t), X(t))1≤t≤P are independent and identically distributed. ”
(H1): “There exists some r such that

(

(X(1), X(1)), . . . , (X(r), X(r))
)

and
(

(X(r + 1), X(r + 1)), . . . , (X(P), X(P))
)

have a different distribution. ”
To define the proposed test statistic, define, for each s, t in {1, . . . , P},

h(s, t) = 1(X(s) > X(t))− 1(X(s) < X(t)) ,

where 1(E) = 1 in the event E and 0 in its complementary set, and

Ys =
Us

√

∑
P
t=1 U2

t

, with Us =
P

∑
t=1

h(s, t) . (1)

The test statistic is then given by

WP = max
1≤t≤P

|
t

∑
s=1

Ys| .

The following theorem, which is proved in appendix, provides, under mild assumptions, the

limiting distribution of WP, as P tends to infinity, under the null hypothesis and thus provides
a way of computing the p-values of the test.

Theorem 1 Let (X, X) be a R
2-valued random vector such that

P(F(X−) + G(X) = 1) < 1 , (2)

4

where F is the c.d.f. of X, G the c.d.f. of X and F(x−) denotes the left limit of F at point x. Let

(X(t), X(t))1≤t≤P be i.i.d. random vectors having the same distribution as (X, X), then, as P tends to
infinity,

sup
0≤u≤1

|
⌊Pu⌋
∑
s=1

Ys| d−→ B⋆ := sup
0≤u≤1

|B(u)| , (3)

where {B(u) , 0 ≤ u ≤ 1} denotes the Brownian Bridge and
d−→ refers to convergence in distribution.

Theorem 1 of this paper thus extends Theorem 1 of Gombay and Liu (2000), where only
one-sided censoring was considered and continuity of the random variables was assumed.

Remark 1 Theorem 1 provides a way of controlling the asymptotic false-alarm rate, for large enough

observation sizes. The only requirement is (2), which is a minimal condition. In particular, if the random
variables X and X both have a continuous c.d.f., (2) holds whenever P(X = X) > 0, that is, when the

probability of not being censored is positive. Indeed, P(F(X) +G(X) = 1) = P({F(X) +G(X) = 1}∩
{X = X}) + P({F(X) + G(X) = 1} ∩ {X 6= X}) = P({2F(X) = 1} ∩ {X = X}) + P({F(X) +
G(X) = 1} ∩ {X 6= X}). Observe that the first probability is smaller than P(2F(X) = 1). Using

that F is continuous, F(X) has a uniform distribution on [0, 1] and thus P(2F(X) = 1) = 0. Thus,
P(F(X) + G(X) = 1) ≤ P(X 6= X) = 1 − P(X = X). In practice, the p-values deduced from

Theorem 1 are reliable whenever the observation size P is large enough and some non-censored values

have indeed been observed.

Remark 2 The i.i.d. assumption in Theorem 1 may seem surprising in light of the ubiquity of long-range

dependence phenomenons in aggregated network traffic measurements; see for instance Park et al. (2005)

and references therein. However, the assumption here applies to single Origin-Destination flows which,
most often, do not exhibit strong autocorrelations; see Susitaival et al. (2006) for further discussion of this

issue.

Remark 3 In practice, the computation of the quantities (∑t
s=1 Ys)1≤t≤P can be done in O(P) operations

only using the alternate form of Us in term of the empirical cumulative distribution functions of X(t)
and X(t) (see Eq. (7) in appendix).

Based on (3), we take for the change-point detection test the following p-value: Pval(WP),
where for all positive b (see, for instance, Billingsley, 1968, p. 85),

Pval(b) = P(B⋆
> b) = 2

∞

∑
j=1

(−1)j−1e−2j2b2
.

4. Selection of the data to be transmitted to the collector: We select in each monitor Mk

the d censored time series having the smallest p-values and send them to the collector. Thus,

the collector receives at most d × K censored time series, instead of ∑
K
k=1 Dk, where Dk is the

number of destination IP addresses seen by the kth monitor, if a centralized approach was used.

2.1.2 Aggregation and change-point detection test in the collector

Within the collector, the lower and upper bounds of the aggregated time series (Zi(t), Zi(t))1≤t≤P

associated to the IP address i are then built as follows:

Zi(t) = ∑
k∈K

X
(k)
i (t) and Zi(t) = ∑

k∈K
X
(k)
i (t) , (4)

where (X
(k)
i (t), t = 1, . . . , P) and (X

(k)
i (t), t = 1, . . . , P) are the time series associated to the IP

address i computed by the monitor Mk, and K is the set of monitors which have transmitted

5

series pertaining to the IP address i. Then, the test described in step 3 of the local processing

is applied to the time series (Zi(t), t = 1, . . . , P) and (Zi(t), t = 1, . . . , P). An IP address i
is thus claimed to be attacked at a given false alarm rate α ∈ (0, 1), if Pval(WP) < α, and the

change-point time is estimated with r̂ = arg max1≤t≤P | ∑
t
s=1 Ys|.

As noted in Remark 1 above, Theorem 1 may be safely applied to the aggregated time series
(Zi(t), Zi(t)) as long as they are not fully censored. By definition, the aggregated series is more

censored than the individual series (X
(k)
i (t), X

(k)
i (t)) detected at monitor level. On the other

hand, for a given address i, only the series that are among the d series having the smallest
p-values at the monitor level are aggregated at the collector level. Hence, the collector usually

aggregates strictly less than K series and only aggregates potentially significant series. In the
experimental conditions described in Sections 3 and 4 below (d ranging from one to five, P = 60

and M = 10), the average number of uncensored values in the aggregated series is 18.7 (out of

60) and the average rate of completely censored time series is equal to 0.62%. The parameter that
has the largest influence on these values is the depth M of the record filtering buffer: increasing

M reduces censoring (for M = 20, the proportion of uncensored data in the aggregated series

raises up to 31.2 out of 60 and the average rate of completely censored time series is equal to
0.017%), on the other hand, the required memory and computation time for the record filtering

step are both increasing with M. Hence, M = 10 represents a good tradeoff – see also Section 4
for further discussion.

2.2 The BTopRank method

In the sequel, the DTopRank algorithm is compared with a simpler approach using, instead of

the aggregation step, a simple Bonferroni correction of the p-values determined in each monitor.
More precisely, in BTopRank an IP address is claimed to be attacked at the level α ∈ (0, 1) within

the collector if at least one local monitor has computed a p-value smaller than α/K, namely if
K(inf1≤k≤K Pvalk) < α, Pvalk being the p-value computed in the monitor k.

3 Application to real data

This section summarizes the results obtained by the DTopRank and BTopRank algorithms applied
to an actual Internet traffic trace provided by a major Internet service provider.

3.1 Description of the data

We consider the data used in Section 4 of Lévy-Leduc and Roueff (2009), which corresponds

to a recording of 118 minutes of ADSL (Asymmetric Digital Subscriber Line) and Peer-to-Peer
(P2P) traffic to which some TCP/SYN flooding type attacks have been added. As this data

set does not contain full routing information, it has been artificially distributed over a set of
virtual monitors as follows: the data is shared among K = 15 monitors by assigning each source

destination pair (source IP address, destination IP address) to a randomly chosen monitor; a

single monitor thus records all the flows between two particular IP addresses. The experiments
reported below are based on 50 independent replication of this process. Finally, the existing

anomalies have been down-sampled (by randomly dropping packets involved in the attacks) to
12.5 and 25 packets/s, respectively, to explore more difficult detection scenarios.

Figure 1-(a) displays the total number of TCP/SYN packets received during each second by

the different requested IP addresses. The number of TCP/SYN packets received by the four
attacked destination IP addresses are displayed in (d) (12.5 packets/s case). As we can see from

this figure, the first attack occurs at around 2000 seconds, the second at around 4000 seconds,
the third at around 6000 seconds and the last one at around 6500 seconds. These attacks produce

6

0 1000 2000 3000 4000 5000 6000 70000

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000 70000

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 70000

50

100

150

200

250

(a) - Global traffic (b) - Traffic in monitor 1 (c) - Traffic in monitor 2

0 1000 2000 3000 4000 5000 6000 70000

10

20

30

40

50

0 1000 2000 3000 4000 5000 6000 70000

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000 70000

2

4

6

8

10

12

(d) - Attacks (e) - Attacks in monitor 1 (f) - Attacks in monitor 2

Figure 1: Number of TCP/SYN packets globally exchanged (top) and received by the 4 attacked IP addresses (bottom)
in the original data (a,d) and within two particular monitors (b, c, e, f). Note that the scale of the bottom figures is
divided by 20 with respect to the top ones.

33 ground-truth anomalies – abrupt increase or decrease of the signal. Figures 1-(b), (c) display
the number of TCP/SYN packets globally exchanged within two different monitors whereas (e),

(f) focus on the traffic received by the attacked IP addresses within these two monitors.
The attacked IP addresses (bottom part of Figure 1) are completely hidden in the global

TCP/SYN traffic (top part of Figure 1) and thus very difficult to detect. Note also that 1006000

destination IP addresses are present in this data set, with an average of 15000 destination IP
addresses in each of the 118 one-minute observation windows. Hence, real time processing of

the data would not be possible, even at the monitor level, without a dimension reduction step
such as record filtering.

3.2 Performance of the methods

In what follows, the DTopRank algorithm is used with the same parameters as those adopted in

Lévy-Leduc and Roueff (2009) for the TopRank algorithm, with one-minute windows divided in
P = 60 subintervals of ∆ = 1 s, with M = 10 and S = 60. The parameter d was set to d = 1,

due to the limited number of attacks expected in each one minute window. In setting P and ∆

the main concern is the overall observation duration ∆ × P which should be sufficient to allow

for meaningful statistical decisions while ensuring an acceptable detection delay and that the

extracted series can still be considered as stationary in the absence of change. Note that the
computational cost of the procedure also scales proportionally to P. The influence of the other

parameters (d, M and S) is discussed at the end of Section 4.2.
Figure 2 and 3 show the benefits of the aggregation stage within the collector of the DTopRank

algorithm with respect to the use of the simple Bonferroni correction in the BTopRank algorithm.

Figures 2-(a),(b) and (c) display the time series (X(t), t = 1, . . . , P) and (X(t), t = 1, . . . , P)
associated to an attacked IP address in three different monitors as well as the corresponding

p-values. Figure 2-(d) displays the aggregated time series (Z(t), t = 1, . . . , P) and (Z(t), t =

7

1, . . . , P), as defined in (4), as well as the associated p-value. Note that the aggregated time

series corresponds to the aggregation of 11 time series created by 11 different monitors where
the attacked IP address has been detected. The p-value of the aggregated time series is much

smaller than the ones determined at the local monitors, which enables the detection of an attack

which would be difficult to detect within the local monitors.

1

2

3

(a) 2.04e-02

1

2

3

(b) 5.72e-04

1

2

3

(c) 1.34e-02

0 10 20 30 40 50 600

5

15

(d) 5.65e-06

Figure 2: (a), (b), (c): times series (X
(k)
i (t), t = 1, . . . , 60) and (X

(k)
i (t), t = 1, . . . , 60) displayed with (’x’) and (’o’)

respectively, for 3 different values of k, (d): (Zi(t), t = 1, . . . , 60) and (Zi(t), t = 1, . . . , 60) displayed with (’x’) and (’o’)
respectively.

Figure 3 displays on the x and y-axes the quantities PvalDTop and PvalBTop, respectively. For a

given IP address, PvalDTop corresponds to the p-value computed with the DTopRank and PvalBTop

is obtained by applying the Bonferroni correction to the p-values transmitted by the monitors.

The DTopRank provides smaller p-values than the Bonferroni approach for IP addresses that

were really attacked and p-values of the same order as inf1≤k≤K Pvalk for the other IP addresses.

10−1210−1110−1010−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

PvalDTop

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

P
va

l B
T

o
p

Figure 3: (PvalDTop, PvalBTop) displayed with (’.’) except for the ground-truth attacked IP addresses which are
displayed with (’•’).

The DTopRank and BTopRank algorithms are further compared in Figure 4 which displays
the ROC curves obtained using these two methods with 50 Monte-Carlo replications in two

different cases. The bottom plot deals with attacks having an intensity of 12.5 SYN/s. In the
other situation, the attacks are the same except that their intensity is 25 SYN/s. For comparison

8

purpose, the ROC curve associated to the non distributed TopRank algorithm is also displayed

in both situations. Figure 4 shows that for the 25 SYN/s-attacks, the three methods give similar
results. However, in the most difficult case of the 12.5 SYN/s-attacks, the DTopRank algorithm

outperforms the BTopRank algorithm.

Thus, DTopRank performs very similarly to the centralized algorithm, especially in the range
of interest where the false alarm rate is about 1e-4 (recall that there are about 15000 different

IP addresses in each one minute window). The quantity of data exchanged within the network
is however much reduced as the centralized algorithm needs to obtain information about, on

average, 34000 flows per minute whereas the DTopRank algorithm only need to transmit the d

upper and lower censored time series from the monitors to the collector. For d = 1 and K = 15,
this amounts to 1800 scalars that need to be transmitted the collector, versus 34000 × 5 (start

and end time stamps, source and destination IP, number of SYN packets for each flow) for the
centralized algorithm, resulting in a reduction of almost two orders of magnitude of the data

that needs to be transmitted over the network.

0.0 0.2 0.4 0.6 0.8 1.0
Average rate of false alarm ×10−3

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ra
te

of
de

te
ct

io
n

DTopRank
BTopRank
TopRank

0.0 0.2 0.4 0.6 0.8 1.0
Average rate of false alarm ×10−3

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ra
te

of
de

te
ct

io
n

DTopRank
BTopRank
TopRank

Figure 4: ROC curves for the DTopRank, BTopRank and TopRank algorithms for attacks having intensities of 25 SYN/s
(top) and 12.5 SYN/s (bottom).

4 Application to synthetic data

In this section, we provide results obtained on simulated data with two specific goals in mind.

First, the the traffic trace used in Section 3 contains generated attacks but is not fully labeled.
Hence, it could be the case that non-labeled anomalies are already present in the background

ADSL and P2P traffic contributing to a slight overestimation of false alarms (see Lévy-Leduc
and Roueff, 2009). Second, the random decentralization approach used in Section 3 does not

necessarily correspond to a realistic network topology. In this section, we thus consider syn-

thetic high-dimensional data corresponding to an idealized minute of traffic containing a single
anomaly, as measured by 15 monitors randomly positioned on a plausible network topology.

4.1 Description of the data

A network topology is generated in which synthesized traffic between hosts located in the
nodes of that network is injected. We first generate an Erdős-Rényi random graph (Erdős and

Rényi (1959)) with 15 nodes and a probability of edge creation of 0.15. The generated graph is

displayed in Figure 5. It is similar in terms of number of nodes or nodes degrees to the Abilene
network, which has been widely considered in the context of network anomaly detection, see

Lakhina et al. (2004) and Huang et al. (2007). This graph has been generated once and is
used for all replications of the Monte-Carlo simulations that will follow. For each Monte-Carlo

9

replication, a node of the graph is randomly assigned to each of the D = 1000 IP addresses and

K = 15 monitors are also randomly positioned on 15 of the 24 edges of the graph, see Figure 5.

Figure 5: Generated graph: nodes are displayed with circled numbers and monitors with colored

boxes.

Using the shortest path Dijkstra (1959) algorithm, the routes between each node of the net-

work are computed, that is the lists of edges of the graph that form the path between the nodes.
These routes are used to determine which monitors will see the traffic between two hosts. Note

that in our procedure, we have deliberately not considered network links capacity, that would
otherwise imply some more sophisticated dynamic routing algorithms, which is beyond the

scope of this contribution.

The traffic injected in this network is generated as follows. For a given Source-Destination
IP address pair (i, j), we follow Lévy-Leduc and Roueff (2009) and model the SYN packet traffic

using a Poisson point process with a given intensity θi,j, expressed as the number of SYN pack-
ets received by j per sub-interval of the observation window. In Network applications, different

Source-Destinations pairs exchange a very different amount of traffic. Hence we shall use dif-

ferent intensities for each pair of hosts. To take into account this diversity, we propose using the
realizations of a Pareto distribution for the parameters of the different intensities so that a lot

of machines receive a small number of SYN packets while a few receive a lot. Note that Nucci
et al. (2005) similarly use a heavy-tailed distribution to generate network traffic.

We first randomly generate a sequence (µk)1≤k≤N of intensities with the Pareto distribution

having the following density: γα/(1 + γx)1+α, when x > 0, with α = 2.5 and γ = 0.72, which
roughly corresponds to what we observed in the (centralized) real traffic traces used in Section

4. The parameters µk are assumed to be sorted as follows: µ1 ≥ · · · ≥ µN .
Here, (Xi,j(t))1≤t≤P correspond to the number of SYN packets sent by i and received by j

in each of the P sub-intervals of the observation window, where i, j are in {1, . . . , D}. Among

these N time series, Na of them correspond to the traffic received by the attacked destination IP
address j0, which is assigned to a fixed location, in node 7, at the “edge” of the network (see

Figure 5). This traffic, which is sent by source IP addresses i belonging to a randomly chosen

subset Ia of {1, . . . , D}, is generated as follows:

∀i ∈ Ia, (Xi,j0(t))1≤t≤τ
iid∼ Poisson(θi,j0) ,

and
∀i ∈ Ia, (Xi,j0(t))τ<t≤P

iid∼ Poisson(ηθi,j0) ,

10

where η is a positive number which modulates the change intensity, τ is the change-point instant

and (θi,j0)i∈Ia are chosen in (µk)40Na≤k≤41Na
. (θi,j0)i∈Ia are thus chosen around 0.6 (0.4-quantile

of the Pareto distribution with parameters α and γ, whose mean is about 0.93). Hence, the

attack to be detected consists of a multiplicative increase in intensity of Na attacker sources,

whose intensity is otherwise in the bulk of the distribution of the intensity (close to the 0.4-
quantile). The remaining background traffic is generated as:

∀i ∈ {1, . . . , D}, j 6= j0, (Xi,j(t))1≤t≤P
iid∼ Poisson(θi,j) ,

where (θi,j)i∈{1,...,D},j 6=j0
are chosen randomly in the remaining values of µk: (µk)k/∈[40Na;41Na].

In the experiments below, N = 10100, Na = 100, P = 60, τ = 30 and we consider differ-

ent values for the parameter η (1.2, 1.5) in order to modulate the detection difficulty. Results
presented in Figures 6 to 7 correspond to the case where d = 1 and the influence of d on the per-

formance is discussed in the final paragraph of Section 4.2. With these settings, the DDoS-type

attacks against j0 are generated by a large number Na of source hosts coming from all routing
nodes in in the network. Hence, these attacks can be locally (within a monitor) very difficult to

distinguish from the background traffic, as can be seen in Figure 6: It displays for each monitor,

when η = 1.5, an example of the time series formed by the number of packets received by the
first (“×”) and 10th (“•”) most solicited destination IP address at each sub-interval as well as

the time series of the attacked address j0 (“⊲”). The monitors that have not detected any traffic
directed to j0 were omitted. In (d), (e) and (i), j0 is detected by the monitor, but the number

of packets is never high enough to be selected by the record filtering step and to appear in

{TM(t), t = 1, . . . , 60}. Hence in these monitors, no change detection test is performed for j0.
In the other six figures, all steps of the TopRank algorithm are carried out since the number of

packets sent to j0 is high enough. A special case is shown in (a), which displays the time series
in the monitor located on the edge between nodes 10 and 7, see Figure 5, which is the link where

all the traffic directed to the attacked IP address j0 appears.

4.2 Performance of the methods

The two methods described in Section 2 are compared by computing their false alarm and
detection rates when tested on 1000 Monte-Carlo replications of the synthetic data described in

Section 4.1. The left plot of Figure 7 displays the corresponding ROC curves for different values
of η (1.2 and 1.5); the solid and dashed lines show the results of the DTopRank and BTopRank

algorithms, respectively.

For larger values of η (1.5), both methods perform very well, with a few missed attacks for a
low false alarm rate. DTopRank yields slightly better results than the other method. For η = 1.2

for which attacks are more difficult to detect, the detection performance is naturally lower for
both algorithms; the toll is however heavier on BTopRank than on DTopRank.

We observed that the detection performance was improved for Monte Carlo runs in which a

monitor is assigned to the 7–10 edge of Figure 5. Indeed in this case, at least a monitor has access
to all the traffic sent to the attacked IP address sitting at node j0 = 7. The right plot of Figure

7 corresponds to the case where this configuration is avoided in the Monte Carlo simulation,

which gives some idea of the significance of the phenomenon. For a given monitor topology,
the detection performance is thus better for target addresses located at the edge of the network,

behind a monitor. In the opposite case however, the detection performance is still appreciable
due to the aggregation, at the collector level, of the information sent by the monitors.

We now consider the influence of the parameter d on the performance of DTopRank. Figure 8

displays the ROC curves associated to the DTopRank algorithm for different values of d (d=1, 5,
10) and a varying number of attacks per observation window. From this figure, one can first

observe from the leftmost plot that using d = 1 for the DTopRank algorithm is optimal when
there is at most one attack per window but is comparatively less advantageous as the number

11

0 10 20 30 40 50 60
20

40

60

80

100

120

140
1st
10th
attacked IP

0 10 20 30 40 50 60
10

20

30

40

50

60

70

80

90

100
1st
10th
attacked IP

0 10 20 30 40 50 60
0

20

40

60

80

100
1st
10th
attacked IP

(a) (b) (c)

0 10 20 30 40 50 60
0

10

20

30

40

50

60
1st
10th
attacked IP

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40
1st
10th
attacked IP

0 10 20 30 40 50 60
5

10

15

20

25

30

35

40

45

50
1st
10th
attacked IP

(d) (e) (f)

0 10 20 30 40 50 60
0

20

40

60

80

100
1st
10th
attacked IP

0 10 20 30 40 50 60
5

10

15

20

25

30

35

40

45

50
1st
10th
attacked IP

0 10 20 30 40 50 60
0

5

10

15

20

25

30
1st
10th
attacked IP

(g) (h) (i)

Figure 6: Time series formed in 9 monitors by the number of packets received by the first (“×”)

and 10th (“•”) most solicited destination IP address at each sub-interval, as well as the time
series of the attacked address j0 (“⊲”).

0.0 0.2 0.4 0.6 0.8 1.0
Average rate of false alarm ×10−3

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ra
te

of
de

te
ct

io
n

0.0 0.2 0.4 0.6 0.8 1.0
Average rate of false alarm ×10−3

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ra
te

of
de

te
ct

io
n

Figure 7: Left: ROC curves for DTopRank (solid lines) and BTopRank (dashed lines), for η = 1.2
(“•”), 1.5 (“N”). Right: similar simulation when forbidding the 10-7 edge from the monitors.

of attacks per window increases. Indeed, the collector then receives the time series associated

to, at most, one IP address per monitor, yielding low detection rates. Increasing the value of
d thus improves the performance of the DTopRank algorithm when several attacks occur in the

same window. However, the rightmost plot of Figure 8 reveals a form of plateauing and d = 5

12

appears to provide the best tradeoff, even in cases where the actual number of attacks to be

detected per window is larger than 5. This behavior can be explained by the observation that
the traffic directed towards a particular attacked IP address is not always visible by all local

monitors.

0.0 0.2 0.4 0.6 0.8 1.0
Average rate of false alarm ×10−3

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ra
te

of
de

te
ct

io
n

Number of attacks: 1

Values of d

1

5

10

0.0 0.2 0.4 0.6 0.8 1.0
Average rate of false alarm ×10−3

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ra
te

of
de

te
ct

io
n

Number of attacks: 5

Values of d

1

5

10

0.0 0.2 0.4 0.6 0.8 1.0
Average rate of false alarm ×10−3

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ra
te

of
de

te
ct

io
n

Number of attacks: 10

Values of d

1

5

10

Figure 8: ROC curves for the DTopRank algorithm when the number of attacks per observation

window is 1, 5, 10 (from left to right) and when d equals to 1 (“•”), 5 (“�”), 10 (“H”).

We have also investigated how the parameters M and S (see Section 2.1.1) affect the perfor-

mance of the DTopRank algorithm. Figure 9 shows the impact of M while keeping S constant
to the value of 60; both the number of attacks per observation window and the parameter d

were set to 5. Similar experiments, whose results are not reported here, have also shown that

changing S to values of 30 or 120 does not affect at all the ROC curves. From Figure 9, one can
observe that larger values of M consistently yield improved results, which is related to a lower

censorship. Recall however that both the computational cost and the memory footprint within
each monitor are proportional to M. Hence, the choice of M results from a tradeoff between per-

formance and memory or CPU-consumption. The absence of influence of S may be explained

by the fact that only d values are sent to the central collector by the monitor. It suffices that S be
much larger than d and of the order of P so as to record all the “heavy hitters” that correspond

to the largest Ni(t), for all t ∈ {1, . . . , P}.

0.0 0.2 0.4 0.6 0.8 1.0
Average rate of false alarm ×10−3

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ra
te

of
de

te
ct

io
n

5

10

20

Figure 9: ROC curves for the DTopRank algorithm when the parameter M takes the values of 5

(“•”), 10 (“�”) or 20 (“H”).

5 Conclusion

In this paper, we proposed a distributed method for detecting and localizing DDoS attacks in
Internet traffic. With this approach, a local processing based on a record filtering technique fol-

13

lowed by a nonparametric rank test is performed within the local monitors. Only the censored

time series of IP addresses corresponding to the smallest p-values are transmitted and aggre-
gated in the collector. The central decision, at the collector level, is based on a non-parametric

change-point test for two way censored data. The processing carried out both in the monitors

and in the central collector is sufficiently simple to make real-time implementations possible.
The proposed algorithm has been shown to reveal attacks which are not locally detectable. In-

deed, the statistical performance of the DTopRank algorithm is close to that achieved by the fully
centralized detector but with a greatly reduced communication overhead. An additional inter-

esting feature of the proposed aggregation and detection mechanism is the fact that it operates

similarly at the monitor and collector level. Hence, the test could also be applied hierarchically,
with tree structured monitors, so as to produce decisions corresponding to groups of monitors

of different granularity in the network.

A Appendix

A.1 Proof of Theorem 1

The following proof is based on (Billingsley, 1968, Theorem 24.2), which asserts that if ξ1, . . . , ξn

are exchangeable random variables (each permutation of the set of variables has the same joint

distribution) and satisfy, as n → ∞,

n

∑
i=1

ξi
p−→ 0,

n

∑
i=1

ξ2
i

p−→ 1, max
1≤i≤n

|ξi|
p−→ 0 , (5)

then {∑
⌊nt⌋
i=1 ξi , 0 ≤ t ≤ 1} d−→ {B(t) , 0 ≤ t ≤ 1}, as n → ∞, where B is a Brownian bridge.

We apply this theorem to the random variables Y1, . . . , YP, defined in (1), which are exchange-
able since (X(i), X(i))1≤i≤P are i.i.d random vectors. Let us now check the three conditions in

(5). By the anti-symmetry of the kernel h,

P

∑
i=1

Ui =
P

∑
i=1

P

∑
j=1

h(i, j) = 0 ,

which gives the first condition of the theorem. The second one follows from the definition of Yi:

p

∑
i=1

Y2
i =

1

∑
p
j=1 U2

j

p

∑
i=1

U2
i = 1 .

To check the third condition, denote by FP (resp. GP) the empirical c.d.f. of X(1), . . . , X(P) (resp.

X(1), . . . , X(P)):

FP(t) = P−1
P

∑
i=1

1(X(i) ≤ t) and GP(t) = P−1
P

∑
i=1

1(X(i) ≤ t) . (6)

Note that

1

P
Ui =

1

P

P

∑
j=1

1(X(i) > X(j))− 1(X(i) < X(j))

= FP(X(i)−)− {1 − GP(X(i))} = FP(X(i)−)− GP(X(i)) , (7)

14

where GP(·) = 1 − GP(·). Then, using the Glivenko-Cantelli Theorem (van der Vaart, 1998,

Theorem 19.1), we get, as P tends to infinity, that

1

P

P

∑
j=1

(

1

P
Uj

)2

=
1

P

P

∑
j=1

FP(X(i)−)2 − 2

P

P

∑
j=1

FP(X(i)−)Gp(X(i)) +
1

P

P

∑
j=1

Gp(X(i))2

=
1

P

P

∑
j=1

F(X(i)−)2 − 2

P

P

∑
j=1

F(X(i)−)G(X(i)) +
1

P

P

∑
j=1

G(X(i))2 + op(1) .

By the law of large numbers and our assumption in (2), we obtain, as P tends to infinity, that

1

P

P

∑
j=1

(

1

P
Uj

)2
p−→ E[{F(X−)− G(X)}2] > 0 . (8)

Using (7), P−1|Ui| ≤ 2, i = 1, . . . , P, and thus

|Yi| =
|Ui|

√

∑
P
j=1 U2

j

=
1√
P

P−1|Ui|
√

P−1 ∑
P
j=1(P−1Uj)2

≤ 1√
P

2
√

P−1 ∑
P
j=1(P−1Uj)2

, i = 1, . . . , P .

By (8), Yi satisfies the third condition of (5), which completes the proof.

References

Basseville, M. and Nikiforov, I. V. (1993). Detection of Abrupt Changes: Theory and Applications. Prentice-Hall.

Billingsley, P. (1968). Convergence of probability measures. Wiley, New York.

Brodsky, B. E. and Darkhovsky, B. S. (1993). Nonparametric Methods in Change-Point Problems. Kluwer

Academic Publisher.

Csörgő, M. and Horváth, L. (1997). Limit theorems in change-point analysis. Wiley, New-York.

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1):269–271.

Erdős, P. and Rényi, A. (1959). On random graphs. I. Publ. Math. Debrecen, 6:290–297.

Gombay, E. and Liu, S. (2000). A nonparametric test for change in randomly censored data. The Canadian

Journal of Statistics, 28(1):113–121.

Huang, L., Nguyen, X., Garofalakis, M., Jordan, M. I., Joseph, A., and Taft, N. (2007). In-network pca and

anomaly detection. In Schölkopf, B., Platt, J., and Hoffman, T., editors, Advances in Neural Information

Processing Systems 19, pages 617–624. MIT Press, Cambridge, MA.

Krishnamurthy, B., Sen, S., Zhang, Y., and Chen, Y. (2003). Sketch-based change detection: methods,

evaluation, and applications. In IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet

measurement, pages 234–247, New York, NY, USA. ACM.

Lakhina, A., Crovella, M., and Diot, C. (2004). Diagnosing network-wide traffic anomalies. In SIGCOMM

’04: Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer

communications, pages 219–230, New York, NY, USA. ACM.

15

Lévy-Leduc, C. and Roueff, F. (2009). Detection and localization of change-points in high-dimensional

network traffic data. Annals of Applied Statistics, 3(2):637–662.

Nucci, A., Sridharan, A., and Taft, N. (2005). The problem of synthetically generating IP traffic matrices:

initial recommendations. ACM SIGCOMM Computer Communication Review, 35(3):19–32.

Park, C., Hernandez-Campos, F., Marron, J., and Smith, F. D. (2005). Long-range dependence in a changing

internet traffic mix. Computer Networks, 48(3):401 – 422.

Siris, V. A. and Papagalou, F. (2006). Application of anomaly detection algorithms for detecting syn

flooding attacks. Computer Communications, 29(9):1433 – 1442. ICON 2004 - 12th IEEE International

Conference on Network 2004.

Susitaival, R., Juva, I., Peuhkuri, M., and Aalto, S. (2006). Characteristics of origin-destination pair traffic

in funet. Telecommunication Systems, 33:67–88.

Tartakovsky, A., Rozovskii, B., Blazek, R., and Kim, H. (2006). Detection of intrusion in information systems

by sequential change-point methods. Statistical Methodology, 3(3):252–340.

van der Vaart, A. W. (1998). Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic

Mathematics. Cambridge University Press, Cambridge.

Wang, H., Zhang, D., and Shin, K. G. (2002). Detecting syn flooding attacks. INFOCOM 2002. Twenty-First

Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE, 3:1530–1539.

16

	1 Introduction
	2 Description of the methods
	2.1 The DTopRank method
	2.1.1 Local processing
	2.1.2 Aggregation and change-point detection test in the collector

	2.2 The BTopRank method

	3 Application to real data
	3.1 Description of the data
	3.2 Performance of the methods

	4 Application to synthetic data
	4.1 Description of the data
	4.2 Performance of the methods

	5 Conclusion
	A Appendix
	A.1 Proof of Theorem 1

