
An Enhanced Binary Particle-Swarm Optimization

(E-BPSO) Algorithm for Service Placement

in Hybrid Cloud Platforms

Wissem ABBES(a)(b), Zied KECHAOU(b), Amir HUSSAIN(c), Abdulrahman M.

QAHTANI(d), Omar AlMUTIRY (e), Habib DHAHRI (e), Adel M. ALIMI(b)(f)

(a) University of Sousse, ISITCom, 4011, Sousse, Tunisia

(b) University of Sfax, National Engineering School of Sfax (ENIS), REGIM-Lab.: REsearch

Groups on Intelligent Machines, BP 1173, 3038, Sfax, Tunisia

(c) School of Computing, Edinburgh Napier University, UK

(d) Department of Computer Science, College of Computers and Information Technology,

Taif University, P.O. Box. 11099, Taif 21944, Saudi Arabia.

(e) College of Applied Computer Science, King Saud University, (Almuzahmiyah Campus),

Riyadh, Saudi Arabia

(f) Department of Electrical and Electronic Engineering Science, Faculty of Engineering and

the Built Environment, University of Johannesburg, South Africa.

Corresponding author: wissem.abbes@enis.usf.tn

Abstract

Nowadays, hybrid cloud platforms stand as an attractive solution for

organizations intending to implement combined private and public

cloud applications, in order to meet their profitability requirements.

However, this can only be achieved through the utilization of available

resources while speeding up execution processes. Accordingly,

deploying new applications entails dedicating some of these processes

to a private cloud solution, while allocating others to the public cloud.

In this context, the present work is set to help minimize relevant costs

and deliver effective choices for an optimal service placement solution

within minimal execution time. Several evolutionary algorithms have

been applied to solve the service placement problem and are used

when dealing with complex solution spaces to provide an optimal

placement and often produce a short execution time.

The standard BPSO algorithm is found to display a significant

disadvantage, namely, of easily trapping into local optima, in addition

to demonstrating a noticeable lack of robustness in dealing with

service placement problems. Hence, to overcome critical shortcomings

associated with the standard BPSO, an Enhanced Binary Particle

Swarm Optimization (E-BPSO) algorithm is proposed, consisting of a

modification of the particle position updating equation, initially

inspired from the continuous PSO.

Our proposed E-BPSO algorithm is shown to outperform state-of-the-

art approaches in terms of both cost and execution time, using a real

benchmark.

Keywords: Placement Optimization, Particle Swarm Optimization, E-BPSO

Algorithm, Hybrid Cloud, Service Based Application.

1. INTRODUCTION

With the advent of cloud computing technologies, a growing
number of content distribution applications have started to veer to
cloud-based services for the sake of maintaining relatively high-level
scalability and effective cost rates. Actually, cloud systems turn out to
be indispensable technological tools, versatile for the persistence of
modern society.

Hence, for a company's applications to be effectively deployed on a
private cloud basis, it is necessary that resources be provided,
managed, and maintained via its proper infrastructure. Noteworthy,
however, is that should a company decide to incorporate other
applications fit for implementation with its proper private cloud
infrastructure, it turns out to be under the constraint of using extra
outside resources or a public cloud. This highlights well that the
private cloud system associated with physical limitations needs to be
entirely accounted for rather effectively. Such a situation appears to
occur mainly when applications tend to opt for further intensification
procedures, entailing additional resources, which private cloud cannot
provide, or when a newly deployed application cannot be exclusively
satisfied through a private Cloud. Hence, acquiring extra resources
available in a public cloud might well help in handling such situations.
Therefore, companies are increasingly appealing to cloud-based

environments to extend the deployment and running range of the
available applications.

Regarding the present work scope, it is primarily focused on
investigating service placement optimization within a hybrid-cloud
context. The cloud platforms, subject of study, involve business
service solutions providing units or components, increasingly used to
implement service-based applications. Once service-based
applications are implemented into a hybrid cloud, selecting the
components that fit public clouds remains an open-ended question.
However, it is worth noting that several parameters need to be
considered when deciding on the appropriate application components
subject to a transfer to the public cloud, mainly privacy, QoS, security,
communication costs, and the hosting costs relocation. Similarly, the
execution time criterion stands as a critical parameter.

The present work's placement problem consists mainly of the NP-
Hard nature of the problem [1], which relates mainly to the non-
availability of optimal algorithms enabling us to solve issues as
promptly and effectively as possible. Several algorithms and models
from the computational intelligence field have been applied to solve
the service placement problem, i.e., Genetic algorithm (GA) [2], Ant
Colony Optimization (ACO) [3], heuristic-based [4], PSO [5].
Heuristics have been implemented to resolve the cloud service
placement problem in which immediate solutions cannot be
determined due to the hugeness of the cloud environment and the high
number of services. Consequently, the present work is conceived to
treat each service component separately, i.e., to be deployed either as
part of the private cloud or within the public cloud context.
Accordingly, the suitable placement service problem is essentially a
binary optimization problem. Hence, the purpose of conducting the
present research is to minimize the public cloud incurred costs while
preserving a minimum execution time. These two criteria constitute
essential factors for a company to persist successfully in a competitive
world. To this end, an Enhanced BPSO algorithm is put forward as an
adequately effective service placement solution, useful for application
within a hybrid cloud context. Accordingly, each particle's respective
position would be equal either to zero (if the service is liable to be
deployed in a private cloud) or to one (if it proves to be applicable
within the public cloud context).

 Thus, the advanced E-BPSO undertakes to substitute the sigmoid
function by our proposed equation to help resolve the problem of
premature convergence and local optima, significantly affecting the
service placement application in hybrid cloud, which makes it highly
distinguishable and relevant to the standard BPSO algorithm.

The remainder of this paper is organized as follows. Section 2
involves a formulation of the Service-Based Application (SBA)
placement problem conceived within a hybrid-cloud context, along
with a graphic illustration of a SBA scheme. Section 3 is devoted to
depicting the major relevant works dealing with cloud data placement
strategy, highlighting the major contribution and achievement
brought about by each work, compared to the present research modest
contribution and reached findings. Concerning Section 4, it englobes a
presentation of our proposed E-BPSO algorithm, envisioned to deal
with the placement strategy issue. The implemented experimental
analysis and evaluation procedures are dealt with in section 5, while
the ultimate section depicts the conclusions and perspective.

2. PROBLEM FORMULATION

2.1. Service placement problem in hybrid cloud

It is worth recalling that the Service-Based Application (SBA) in the
hybrid cloud has been the subject of our previously designed
framework, subject of our already published work referenced as [6],
which we dubbed as a hybrid composition of private and public cloud
structures. SBA is a set of basic services to provide flexibility to
complex environments, widely scattered by dispersed ranges and
arrays of services each environment maintains.

It is natural for any organization that the cloud applications should
be deployed privately, as long as the private cloud can provide the
required resource needs. Yet, an appeal could be made to SBA to be
deployed via public cloud mainly: (first) when the deployed
applications are discovered to require greater resources that private
cloud could not provide; (second) when private cloud proves to
demonstrate insufficiency to satisfy a newly applied deployment
request; or (third) when the utilized applications release resources

indicating that a new deployment procedure must be implemented to
release allocated resources from the public cloud withheld data.

In this respect, we consider setting up a specifying threshold to
determine the appropriate case for making a rightful decision to appeal
to the public cloud. This threshold can be quantified via hosting units,
hence the notation HQ that designates a hosting quantity. Accordingly,
the quantity of resources required for executing any selected services
has to be greater or equal to HQ range, as indicated below.

At this level, we consider applying the same basic problem-
formulation definition as that used in [7], specifically:

()

_ :

Minimize H PC HC

Subject to

+ +

(1)

1
() ()

:

n

i ii
h s l s HQ

Where

=
 

(2)

1
() ()

n

i ii
H h s l s

=
=  

(3)

2,
() () ()

i j
i je s s E

PC c e l s l s
= 

=   

(4)

11 (. .(,))
() () (1 ())

i j

n

i ji j s t e s s E
HC c e l s l s

= = 
=    −  (5)

Where: (1) stands for the objective function (minimize H (Hosting
cost) + PC (Public Communication cost) + HC (Hybrid
Communication cost));
(2): designates a constraint equation that represents the sum of
hosting quantity (HQ) of the public cloud deployed services, which has
to be greater than or equal to HQ (minimum threshold). HQ is a value
assigned by a resource request case. The need for the public cloud
resource can be quantified in terms of the amount of hosting units
(units of platform resources required). Once a public cloud request is

triggered, one has to decide on the appropriate application services to
opt for, to be deployed as part of public cloud-based service. In this
case, the quantity of required platform resources necessary for
providing the selected services has to be greater than, or equal to, the
HQ associated ones;
(3): is the sum of hosting service costs deployed in the public cloud;
(4): designates the sum of publicly made communications (established
between the public cloud deployed services);
and (5): is the sum of hybrid sustained communications (maintained
by the public cloud deployed services and those ensured by private
cloud).

Table 2 depicts the various abbreviated designations used in the
problem formulation stage.

Table 2. The problem formulation abbreviations and relevant designations

h() is a hosting function that associates a positive number to each service

representing its hosting quantity of needed resources for its deployment.

c()
is a communication function that associates to each edge

,i je s s E= 

a positive number representing the communication rate established between

is and js
.

l()
is a location function that for each service associates 0 if it is deployed in

the private cloud and 1 if it is deployed in the public cloud.

α is the cost of a resource hosting unit.

β1 is the cost of a communication unit between the public and the private

cloud.

β2 is the cost of a unit of communication as established inside the public cloud.

H is the sum of hosting costs of services as deployed within the public cloud.

Indeed, the expression
() ()i ih s l s 

 (where α is the cost of a resource

hosting unit,
()ih s

 is hosting quantity of service is and
()il s

 takes the

value 1 if is relates to the public cloud, and 0 otherwise) which is equal to

the is hosting cost if this service is maintained within the public cloud.

PC is the sum of publicly established communications (communications

between services deployed within the public cloud). Indeed, there is a

public communication maintained between is and js
 if they are both

deployed in the public cloud.
() () 1i jl s l s =

.

HC stands for the sum of hybrid communications (communications between

services deployed in the public cloud and those deployed in the private

cloud). Indeed, there is a hybrid communication between is and js
 if one

of them is deployed in the public cloud and the other one is deployed in the

private cloud, since, either
() (1 ()) 1i jl s l s − =

 or
() (1 ()) 1j il s l s − =

.

In addition to minimizing the hosting and communication costs, we
are also interested in reducing the execution time. In effect, execution
time represents an important criterion, whereby the decision-taking
process can be executed promptly, thus, ensuring the company
significant savings.

2.2. Case study

In this context, a structured bank account opening process [8] is
illustrated in the below figuring Business Process Model and Notation
(BPMN [9]) diagram.

Figure 1: A sample SBA application modeled following the structured process.

The SBA, depicted in Figure 1, can also be partially modelled in the

form of a graph, as appearing in Figure 2, where services and gateway

nodes are represented by graph nodes and inter-service

connections/transitions by edges. Nodes are identified by the number

of resource hosting units and characterized by the corresponding

quantified amount. Edges are characterized by an amount of

established communication transactions, referring to the amount of

traffic transferred onto the considered corresponding edge.

Figure 2: An SBA graph corresponding to opening a bank account.

The SBA graph, as illustrated in Figure 2, appears to enclose distinct
services. Each service incorporates a hosting quantity, and each edge
englobes a quantity of communication unit.

As deployed in a hybrid cloud environment, the SBA is represented

by a graph, where some services are maintained via public cloud, while

others are ensured via private cloud, as shown in Figure 3 below.

Figure 3: Bank account opening process as deployed within a hybrid cloud

architecture.

Accordingly, inter-cloud communication costs depend highly on the
services’ placement mode (i.e., between private and public clouds).
Indeed, the cost of intra-cloud maintained communication
(exclusively within public clouds) appears to differ remarkably from
the inter-cloud maintained one. It is worth noting, at this level, that
both communication and hosting costs are not considered within the
private cloud framework.

The model applications’ deployment cost, as depicted in Figure 3,
for α=40, β1=20, β2=10, is determined as follows: 40×(12+45) +
20×(17.5+10) + 10×5 = 2880. Thus, no communication and hosting
cost considerations have been accounted for regarding the private
cloud mode case, as we assume that a company maintains its proper
private cloud system. Therefore, these costs will not be computed since
these services, and the relating costs, are generated on a private cloud
basis.

3. RELATED WORKS

The resource placement problem (virtual machines, Web servers,
software components and data), remarkably persistent in cloud
environments, has been addressed from different perspectives. More
specifically, it has been approached through accounting for the
different cloud model versions available (private, public, hybrid and
federated Clouds) or by considering the various associated criteria
(hosting, communication, QoS, etc.)

Generally, the type of cloud application most often opted for is
either hybrid or federated, wherein the relevant infrastructure involves
two or more cloud models (public or private) operating independently.
In effect, the two predominant cloud modes turn out to be the hybrid
cloud and the federated cloud. Regarding the present work, the
adopted hybrid cloud definition follows that set by Van den Bossche et
al. [10] and Luong et al. [11]. Accordingly, organizations appeal to
public clouds for the sake of meeting their demand and urgent needs
for computational resources that exceed their private cloud available
capacity. As to federated clouds [12], technology is needed to maintain
a joint combination of disparate public clouds, including those owned
by different organizations. Indeed, it is only through federation
(including the relevant interoperability requirement) can a single

cloud provider take advantage of the aggregated capabilities available
to provide a seemingly infinite computing service utility.

The most recently developed approach, useful for modelling and
computing resource management optimization problems, is the
Service placement approach, oriented to cloud users intending to
optimize their services’ costs and performance. In this respect, the
service placement problem provides several responses to the users’
needs in Service as a Service (SaaS) and Business Process as a Service
(BPaaS). It provides solutions relevant to the optimal allocation of any
complex service onto an available set of (virtualized) resources. The
nature of resources may vary from physical infrastructure to Virtual
Machines (VM) and running software components. Given the fact that
service and business processes are commonly defined as constant
workflows of tasks or activities [13-15], the standard objectives usually
tend to lie in catering for the cost and QoS dimensions, referred to as
service throughput [14] or latency [16-18].

In this regard, a well-determined selection of state-of-the-art works
dealing with the subject of service placement in private/public, and
hybrid/federated clouds, is depicted. Each work should represent a
specific helpful approach for deciding on a specific service package
while accounting for some crucial criteria or parameters considered in
these approaches.

3.1. Service placement in private/public cloud

Huang et al. [20] defined two graph structures: a Service
Dependency Graph (SDG), which reflects the inter-service
communication cost and execution time of each service, and a Service
Concurrency Graph (SCG), which describes possible parallel services.
These graphs allowed interdependent services to be co-deployed on
the same VM, based on the k-cut principle, where k denotes the
number of hosting VM solvers. For Green Monster [17], the focus of
interest is laid on a multi-objective Evolutionary Algorithm (EA) using
a local search to help optimize Renewable Energy consumption (RE),
Cooling Energy consumption (CE) and User-to-Service Distance
(USD). Green Monster achieved results that proved to outperform
static and random placement provided performance. Also, Yao et al.
[18] propose a scheduling algorithm for searching for the optimal
service instance allocation, based on Simulated Annealing (SA) and
(GA). The objective is to minimize computing power and network

latency. Concerning Yusoh and Tang, they document a series of studies
[13], [21], [22] that elaborated on the issue of SaaS component
placement to help in catering predominantly for the problem of service
components mapping to VMs and storage systems. The proposed
solutions include a Cooperative Co-evolutionary Genetic Algorithm
(CCGA) [21] that splits or dislocates populations into groups to
optimize the computation and storage of allocations. In turn, Wada et
al. [14] advanced an optimization framework, dubbed E3, to solve the
SLA-aware Service Composition (SSC) problem. The E3 framework
enables to define a service composition model by putting forward two
heuristic algorithms, labelled E3 Multi-Objectives GA (E3-MOGA) and
Extreme-E3 (X-E3), designed to solve the SSC related problem.
Similar objectives are targeted by SanGA [16], whereby a Self-adaptive
network-aware GA is conceived to deal with the service composition
associated problem. Worth recalling, in this respect, is that reducing
latency and minimizing cost prove to stand as significant optimization
targeted objectives. To this end, Li et al. [15] put forward a higher cloud
computing layer BPaaS.

Additionally, they envisage resolving the service placement problem
frequently persistent within the cloud logistics domain through the
implementation of the PSO. In effect, the optimization process's
overall objective is to enclose a weighted sum of time, price,
availability, and reliability. With respect to Filelis-Papadopoulos et al.
[4], they devised a particular simulation framework for
implementation with virtual Content Distribution Networks (vCDN).
Their framework involves a special optimization scheme, whereby
simulation outputs are used to guide the search for optimal cache
placements. For AntPu [23], a meta-heuristic approach is proposed for
placing VMs to minimize energy consumption and SLA violations in
the cloud datacenter. In [24], the authors adopted a cooperative
learning strategy while considering security as an additional
placement constraint. The authors started by decomposing a
population of computing and storage servers into a set of cooperating
sub-swarms. The idea is to evaluate each sub-swarm and influence the
worst placement plans by the best ones. In this way, the worst
placement plans are improved by learning from the best servers in the
associated sub-swarms. The survival levels determine the choice of the
most secure hosting servers. Multi-population PSO variants have been

used in the context of SaaS placement. The composite particles in [5]
were applied to represent the entire placement scheme, i.e., a set of
hosting virtual machines for a composite SaaS, while sub-swarms in
[25] defined candidate compute/storage servers to host a component
application/data of an involved SaaS. Their goal was to reduce the
SaaS execution time and resource utilization.

3.2. Service placement in hybrid cloud

More recently, a significant number of conducted studies have
attempted to address several aspects of the service placement issue
within the hybrid cloud context. Worth citing among them is the study
conducted by Kaviani et al. [26], who put forward a special framework
useful for enhancing the software service-placement procedure within
a hybrid cloud environment. They aimed to improve latency without
increasing costs. Similarly, Bjorkqvist et al. [27] undertook to analyze
the total performance and cost of running services on hybrid clouds.
Similarly, Charrada and Tata [7] advanced an FBR (Forward Backward
Refinement) algorithm useful for placing service-based applications
across hybrid Clouds. The algorithm is designed to help minimize the
costs generated by deploying cloud-related services. In turn, Abbes et
al. [6] put forward a novel hybrid cloud-related placement
optimization approach that rests heavily on the principle of GA. The
idea of this optimization process lies in minimizing the public cloud
service deployment cost. The experimental results turned out to reveal
well the proposed approach's remarkable outperformance in respect
of the FBR algorithm [7] in terms of cost. In turn, Cerroni et al. [28]
proposed a hybrid cloud placement algorithm, dubbed Business-
Driven Management as a Service Plus (BDMaaS+), constructed over
the genetic Algorithm fundamentals and principles.

Concerning Rahimi et al. [29], they devised a Simulated Annealing
(SA) optimization, useful for implementation with mobile
applications. It takes the form of a set of services modelled for
execution either via user devices or via a cloud framework (whether
local or public). As regards Bittencourt et al. [30,31], they proposed
HCOC (Hybrid Cloud Optimized Cost) resource scheduling
mechanism to solve the problem of resource requirement. The HCOC
enables executing workflows within a specified budget and execution
time frame, using DDVR (Dynamic Deployment Virtual Resource) to
enhance the resource search process (by enabling adequate resource

retrieval based on QoS requirements). As to Bossche et al. [32], they
suggested a selection of scheduling algorithms relying on the Earliest
Deadline First (EDF) principle. Their design was intended to address
the cost optimization problem associated with deadline-constrained
applications while accounting for the data constraints, data locality
and inaccuracies considerations in task runtime estimates. In turn,
Unuvar et al. [33] introduced a hybrid cloud placement algorithm,
constructed on the Biased Importance Sampling (BSA) technique,
which relies heavily on the application structure to allocate multiple
VMs.

3.3. Service placement in federated cloud

This section is devoted to depicting the most recently conducted
works elaborated on investigating the area of the federated cloud
environment. Worth mentioning, in this regard, is the work
undertaken by Altmann et al. [12], whereby a cost model, specifically
designed to fit for application with federated hybrid clouds, was
devised. Their advanced cost minimization algorithm is helpful for
cloud service placement implementation, aiming to minimize
computational service costs. Concerning Breitgand et al. [34], they
suggested addressing the challenge of managing the efficient
provisioning of elastic cloud services through a federated approach.
Their placement algorithm is aimed at maximizing the provider profit
rates while protecting the consumer offered QoS. To this end, a
number of integer programming (IP) formulations were advanced to
deal with the placement of VM workloads within and across multiple
cloud providers jointly collaborating in a federation.

In [2] and [35], the authors attempted to optimize the placement of
software components in federated cloud environments, respectively,
using a traditional GA and a GA based memetic algorithm with integer
vector representation. For Aryal et al. [36], the centralized genetic
algorithm was adopted to address the NP-hard problem associated
with heterogeneous resource allocation within a Mobile Edge
Computing (MEC) system. As to the authors in [36], they considered
applying the optimization principle to achieve an effective VM
placement and resource utilization on fog nodes for the sake of
meeting the application set requirement. Regarding the work of
Espling et al. [19], they formulated the service placement problem into
an integer linear program. From a graph, a set of constraints has been

extracted based on services components. A mathematical model
presents the obtained placement schemes. In the same venue, the
authors in [37] proposed a formal description of the service
deployment problem, focusing on business process models. They took
into account security and availability as the tariffs of cloud providers.
Regarding the characteristics of cloud federation, the authors
considered bandwidth and pricing parameters. A configurable process
model is then employed to produce the placement scheme while
adjusting the federation requirements of the enterprise and the cloud.

3.4. A summary of research works dealing with service placement in the

cloud environment

This section involves a summary depicting a compilation of the
significant approaches advanced to treat the main issues relevant to
maintaining an effective service placement within a Cloud Computing
environment. They are classified into three main categories: private or
public cloud, hybrid and federated cloud, as figured in Table 1 below.

Table 1. A summary of the major service placement related works.

Reference

Cloud type
Optimization

Technique
Objectives Private/

Public
Hybrid Federated

[3] X ACO Resource

[5], [25] X PSO Execution time, SLA
[4] X Meta-heuristic Resource utilization,

performance
[13], [21], 22] X GA Delay, Migration Cost

[14] X GA Throughput, Latency, Cost

[15] X PSO Delay, Cost, Availability,
Reliability

[16] X GA Latency, Cost
[17] X EA, Local

Search
Energy, Latency

[18] X SA, GA Energy, Latency
[20] X k-cut principle Execution time,

Communication cost
[23] X Meta-heuristic Energy, SLA
[24] X PSO Execution time, SLA,

security
[6] X GA Cost
[7] X FBR Cost
[26] X IP Latency, cost

[27] X IP Cost, QoS

[28] X BDMaaS+ Cost, SLA
[29] X SA Cost, Power, Delay

[30],[31] X HCOC Cost

[32] X EDF Cost

[33] X BSA Cost, QoS

[2], [35] X GA Cost

[12] X COMBSPO Cost

[19] X IP Cost
[34] X IP and Greedy

LP Rounding
heuristic

Profit, Performance,
Energy Consumption

[36] X GA Cost

[37] X IP QoS

As indicated in table 1, the cloud environments associated service

placement problem appears to be addressed from different
perspectives, concerning the different types of clouds (private or
public, hybrid or federated), as well as the various techniques and
criteria applied (Response time, Makespan, QoS, etc.) It is, therefore,
clear that all the cited approaches dealing with the service placement
subject, considered in this context, turn out to focus on a particular
aspect or dimension of this issue. However, with regard to our
approach, a clear distinction is established between public-based
communication and private-based one. For this reason, different
approaches [2,28,29,32,33] are being considered for a jointly hybrid

cloud-based architecture to reduce the user's investment. The
objective lies in minimizing costs by allowing users to decide on which
services to opt for. Service access turns out to be transparent while
enhancing scalability, reliability, and reducing costs. Noteworthy,
however, is that in attempting to optimize the service placement costs,
various approaches do not seem to consider communication flow
between the different clouds' parameters as significantly involving
high costs.

Regarding the works [2,34,36], the authors tend to consider
exclusively a single type of communication cost involving a node or
service within the cloud. However, as far as our work is concerned, we
consider distinguishing between two major communication modes:
public communication and hybrid communication. Actually, to the
best of our knowledge, this criterion seems to be accounted for only in
the [7] and [6] elaborated works. Still, both approaches do not appear
to consider the execution time dimension, which stands as a crucial
factor in the company's decision process. Accordingly, our major focus
of interest is primarily on treating the service placement generated
costs (e.g., hosting cost, inter-service communication cost) and the
relevant execution time factor.

4. AN ENHANCED BINARY PARTICLE SWARM

OPTIMIZATION ALGORITHM

This section begins with a thorough depiction of the major
conducted BPSO related works before presenting our advanced
algorithm.

4.1. Literature review

Initially developed to fit for application in a space of continuous
values, the PSO soon began to raise several problematic issues as to
discrete-valued spaces, in which the variable domain is finite. In
attempting to solve such a problem, Kennedy and Eberhart [38]
advanced a discrete binary version of PSO. In their devised model, a
particle would decide on the "yes" or "no", "true" or "false" options, etc.
These binary values might well stand as a representation of a real value
within a binary search space. Hence, each particle turns out to use

binary values to represent its current position and the best solution
position. Like the continuous PSO version, the velocity vector keeps
being updated, while the major difference lies in the particle's
velocities, which are rather defined in terms of probabilities that take
on one or zero. According to this probability, the velocity vector must
be exclusively restricted within the range of [0,1]. Hence, the sigmoid
function figuring in equation (8) turns out to be the fittest for
application for each of its values.

In what follows, we will present the BPSO associated equations.
Updating a particle's velocity is executed using the following
equations:

1 1 1 2 2() ()d d d d d d
i i i iiv w v c r pbest x c r gbest x+ =  +  − +  − (6)

if
 1

d

i HIGHv V+ 
 then

1

d

i HIGHv V+ =

else if
1

d

i LOWv V+  then

1

d

i LOWv V+ =

(7)

where:

LOWV
= designates low velocity.

HIGHV
= denotes high velocity.

As for the particle's position updating process, it applies the

following equations:

1
()

1
d
i

d

i v
Sig v

e−
=

+

(8)

if
3()d

iSig v r then

1 1d

ix + =

else

1 0d

ix + =

(9)

where:

w = designates inertial weight;

d
iv

 = represents velocity for particle i at dimension d;

1c
 = denotes the acceleration constant;

1r = is a random value;

d
ix = represents the position for particle i at dimension d;

d
ipbest = is the best previous position of the ith particle at

dimension d;

2c
 = is acceleration constant;

2r = random value;

dgbest = denotes the best global position of all particles at

dimension d;

3r = is a random value.

However, worth highlighting that the BPSO algorithm is not

without any weaknesses, particularly those relating to local minimum,

premature convergence, and poor convergence performance. To

remedy these pitfalls, several researchers have suggested modifying

the BPSO, which has been subject to intense criticism. In this regard,

Murtza et al. [39] propose an Integer PSO (IPSO). Their parameters

take integer values, with the particles updating for an upcoming

iteration being subject to probabilistic updating with some probability.

As to Miao et al. [40], they put forward a discrete PSO, which stores

reasonable solutions in an external archive to be utilised when

updating the particles' best personal positions. Accordingly, a

probability-based PSO discretisation method was suggested to update

the velocity and the particles' position. In turn, Aygun et al. [41]

advanced a modified binary PSO, whereby the optimal solution is

affected not only by the particle as well as the global best solution but

also by the best solution of the neighbourhood particles in this

iteration. As for Dong and Zhao [42], an improved binary PSO was

proposed, which consists of applying the greedy algorithm to each

particle's position and the redundancy elimination algorithm to

eliminate any redundancy of the particles' positions. In [43], however,

the authors suggested a binary PSO, which they dubbed gPSO, that

rests on simultaneously applying the GA and PSO, implementing the

GA operators to boost the PSO.

Hence, it is clear that each of these works turns out to provide a

suggested modification of the BPSO based on the nature of the

application and its specificity. With respect to our application case,

however, we consider putting forward a special enhancement method

of the standard BPSO by modifying the particle position's updating

equation.

4.2. The proposed E-BPSO equation

Unlike the discrete BPSO method, we consider putting forward a

new algorithm, which we dub E-BPSO (Enhanced Binary PSO), useful

for updating each particle’s velocity within a continuous space

environment. It is worth noting, in this respect, that the BPSO is

sensitive to the saturation of the sigmoid function, which occurs

whenever the values reached by the velocity appear to be too high or

too low. In these cases, the probability of changing the value of the bit

approaches zero, thus limiting the exploration process. Indeed, for

zero speed, the sigmoid function returns a probability of only 0.5,

which means there is a 50% chance that the bit will flip. Therefore,

blocking the speed will delay the apparition of sigmoid function

saturation.

Noteworthy is that the same velocity update equations (6-7) have

been maintained while modifying the particles’ position updating

equations. The basic BPSO [38] makes use of the velocity equation (8)

sigmoid to derive the particle’s position, as indicated by equation (9).

However, concerning our proposed E-BPSO algorithm, a special

equation is implemented to update the particle’s position.

Accordingly, equation (10) is to be incorporated in the E-BPSO to

substitute the BPSO equations (8-9), such as:

if
1 0.5d d

i ix v ++  then

1 1d

ix + =

(10)

else

1 0d

ix + =

The idea of E-BPSO is inspired from the continuous PSO method.

As for the particle’s position, we consider applying the same PSO

particle position update equation (10).

4.3. The E-BPSO algorithm

As we are dealing with a binary environment context (wherein each

position may take either the value 1 or 0), we consider setting the value

0.5 as a threshold, whereby one can decide whether the particle’s

position will take either the value 0 or 1. Regarding our proposed E-

BPSO algorithm, therefore, every particle turns out to enclose a set of

bits (1 or 0). Each bit should involve a particular position precisely fit

for providing a specific service. Accordingly, if the position turns out

to be one, the service will then be hosted in the public cloud, and when

its value proves to be equal to zero, the service will then be reserved to

the private cloud. Accordingly, any population would involve several

particles representing a subset of the entire searching space.

Concerning the investigated problem, therefore, every particle would

be composed of several zeros and ones; thus, a particle might, for

instance, look like 0111001011.

Similarly, the suggested E-BPSO particles are activated within a

multidimensional environment, where each particle bit bears a proper

velocity and position. As highlighted through algorithm 1, the E-BPSO

dimension is defined by the number of bits enclosed in a particle, i.e.,

the number of services involved in the problem. As regards the

stopping condition, we opt for a condition that helps in significantly

reducing the execution time. In fact, the execution process should stop

once the best solution does not mark any improvement following four

successive iterations. And in any case, the execution procedure will

finish in less than 0.01 seconds. The fitness function of E-BPSO is

defined by the equations (1-5). However, the complexity of the

algorithm is 𝑂(𝑛3).

Algorithm 1 presents the advanced E-BPSO algorithm.

Algorithm 1: E-BPSO algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

for each particle I

 for each dimension d

 Initialize position xid randomly

 Initialize velocity vid randomly

 end for

end for

iteration k=1

while maximum time or minimum error criteria are not attained

for each particle i

 Calculate fitness value (F)

 if F> pbestid in history then

 pbestid=F

 end if

end for

Choose the particle having the best fitness value as the gbesti
d

for each particle i

 for each dimension d

 Calculate velocity according to the equation

 Vid(k+1)= w*Vid(k)+ c1*r1*(pbestid-Xid) + c2*r2*(gbestd-Xid)

 if Vid(k+1)>VHIGH then

 Vid(k+1)=VHIGH

 else if Vid(k+1)<VLOW then

 Vid(k+1)=VLOW

 end if

 Update particle position according to the equation

 if Xid(k)+Vid(k)>0.5 then

 Xid(k+1)=1

 else

 Xid(k+1)=0

 end if

 end for

end for

k=k+1

end while

The next stage involves evaluating our E-BPSO algorithm through

establishing a real-benchmark based comparison with other

techniques.

5. EXPERIMENTAL EVALUATION

We used a real IBM-based dataset [44] comprising 560 BPMN to

assess the advanced algorithm performance. All computation times

were achieved via Intel Core i7 CPU 2.4 GHz with RAM 12 Go. A

selection of graphs, incorporating between 11 and 20 nodes, was also

considered, along with ten randomly selected SBA graphs reflecting

the design based service compositions. Some of these graphs are

dense, while others are sparse. The density is expressed by equation

(11).

100 _Density edges possible edges=   (11)

The graph characteristics are displayed on table 3.

Table 3. The selected graph characteristics.

Graphs Nodes Edges Hosting needed Density

G1 20 19 469 10%

G2 17 28 521 20%

G3 18 46 418 30%

G4 11 22 254 40%

G5 16 60 413 50%

G6 14 55 332 60%

G7 13 55 319 70%

G8 19 137 570 80%

G9 15 95 363 90%

G10 12 66 297 100%

The service-based applications are usually depicted in graphs,

figuring in a sparse, dense or full form, wherein density represents an

essential criterion. By means of illustration, and for an effective

assessment of our proposed algorithm, the possible number of edges

in G7 is calculated as (13*12)/2=78, where 55 edges have been selected,

yielding a density range of 55/78=70%.

As Table 3 indicates, the graphs display varying densities, reflecting

the different service nodes’ composition. Ten graphs have been

selected based on the benchmark, revealing different density rates,

ranging from 10% to 100%.

Three of the graphs reflecting our benchmark graphs highlighted

density have been selected, namely:

• g1 is a sparse graph, with a number of edges too close to the

minimal number of edges;

• g10 is a dense graph, where the number of edges is too close to

the maximum number of edges;

• g5 is a graph ranging between sparse and dense that displays a

density range of 50%.

It is also worth noting that each of the displayed results

corresponding values relates to an average of 10 runs.

The settings parameters used are presented in table 4.
Table 4. The setting parameters of E-BPSO

Name of parameters Adopted value

Swarm size [50, 200]

Max iteration 500

Problem dimension [12, 20]

C1 2.0

C2 2.0

W [0,1]

This subsection deals with a comparative study involving the

various techniques applied in our proposed design. The aim is to
highlight the advantages brought about by our advanced E-BPSO
algorithm.

Figure 4: Comparative study involving the E-BPSO, BPSO, GA, FBR and

OS algorithms.

Figure 4 shows the different techniques implemented in our E-BPSO
algorithm compared to the BPSO, GA, FBR, and OS. The E-BPSO turns
out to be an enhanced version of the standard BPSO algorithm,

designed to boost its performance by substituting the sigmoid function
with a new equation (10) within a multidimensional environment. As
for the GA rests on a three-operation design, relying on the selection,
crossing, and mutation processes. Concerning the FBR, it depends on
the forward, backward and refinement procedures. Regarding the OS,
it helps maintain the most optimal solution that involves a CPLEX
reliant method.

5.1. The E-BPSO versus BPSO experiment

Both E-BPSO and BPSO have been implemented on the three selected

graphs: g1, g5 and g10, applying both cost and execution-time

measures, with similar parameters being implemented to both

algorithms.

a: Cost based comparison between E-BPSO and BPSO on g1 b : Execution-time based comparison between E-BSPO and BPSO on g1

c : Cost based comparison between E-BPSO and BPSO on g5 d : Execution-time based comparison between E-BSPO and BPSO on g5

e : Cost based comparison between E-BPSO and BPSO on g10 f : Execution-time based comparison between E-BSPO and BPSO on g10

Figure 5: Comparison between E-BPSO and BPSO on g1, g5 and g10.

Accordingly, one may well note that in all cases, and regardless of
the rate the HQ bears, the E-BPSO appears to achieve an execution
time that is noticeably lower than that achieved by the BPSO. Such
results could explain the BPSO apparent complexity, which exceeds
higher that of the E-BPSO, as highlighted by both algorithms’
equations. Regarding the cost related graphs, one can also notice that,
in most cases, the E-BPSO turns out to exhibit lower cost rates than
the BPSO.

5.2. Experimental results

We have used the CPLEX [45] (an IBM developed optimization
software package that serves to solve the integer programming
problems), to compute the optimal solution (OS). For comparison
purposes, the FBR algorithm, initially developed by [7], was applied as
an approximate service-placement algorithm, along with the GA, as set
up by [6], widely maintained as an effective GA-based placement
optimization algorithm.

We administered more than 2150 experiments, and the reached
findings turn out to demonstrate that our E-BPSO algorithm helps
bring about rather effective results in terms of not only sparse graphs
but also dense graphs. Indeed, the entirety of the E-BPSO algorithm
achieved results appear to outperform remarkably those attained via
the FBR and GA algorithms within the same response time interval.
For illustration purposes, some of the achieved results are displayed
below. Indeed, as Table 5 indicates, we have studied the different

possible scenarios relevant to parameters 𝛼, 𝛽1 and 𝛽2, as delivered by
service providers.

Table 5. Choice of 𝛼, 𝛽1 and 𝛽2

Service provider 𝛼 𝛽1 𝛽2 average cost

sp1 40 20 10 10411

sp2 40 10 20 11350

sp3 20 10 40 11228

sp4 20 40 10 10650

sp5 10 40 20 10962

sp6 10 20 40 11130

 As can be noticed, the minimum cost turns to be provided by choice
of 𝛼 =40, 𝛽1=20 and 𝛽2=10, with respect to all experiments. It seems

logical that the inter-cloud communication cost proves to be more
expensive than the intra-cloud communication cost. Therefore, the
parameter values have been selected as follows:

• 𝛼 =40 designates the hosting units’ coefficient;

• 𝛽1 =20 denotes the hybrid communication coefficient;

• 𝛽2=10 refers to the public communication coefficient.

5.2.1. Cost
Among the ten graphs figuring in Table 3, three are going to be

considered, specifically: a sparse graph (Figure 6), a complete graph
(Figure 8), and a dense graph (Figure 7), in addition to nine different
HQ values (ranging from 10% to 90 % of the considered graphs’
hosting quantity).

 Figure 6: Cost comparison between the E-BPSO, GA, FBR and OS in relation

to graph G1

Figure 6 depicts the cost values generated by the FBR, GA, BPSO
and OS models, relevant to the G1 graph in Table 3, at a density range
of 10%.

As can be noted, the E-BPSO cost values appear to be consistently
lower than the FBR ones, except for the case where HQ is equal to 80%.
The differences in costs recorded between E-BPSO and FBR appear to
decrease with increased HQ and vice versa. For instance, at 10% HQ,

the recorded difference proves to be very high (16%). These results
have their explanation in the sparse graphs displaying a low number
of edges (inter-nodal links), and, consequently, the possible solutions
turn out to be too low, too.

Noteworthy, also, are the GA achieved results, which slightly
outperform those attained by the E-BPSO. This finding can be justified
by the GA emitted execution time, which appears to surpass that
emitted by the E-BPSO.

Figure 7: Cost comparison between the E-BPSO, GA, FBR and OS in relation to

graph G10.

Figure 7 illustrates the cost rates reached on a full graph basis. They
highlight well that the E-BPSO achieved costs are too close to the most
optimal solutions. Similarly, it appears to obtain effective results,
exceeding those achieved by the FBR, concerning all cases. They reveal
a distinct rate of around 50%, concerning the case when the HQ rate is
10%. The GA tends to register cost rates that are too close to those
obtained by the E-BPSO.

In terms of execution-time cost, the E-BPSO achieved results prove
to be rather effective than the FBR attained ones, except for the cases
when the HQ exceeds the threshold of 70%, in which the FBR values
tend to be equal to, or even slightly exceeding, the E-BPSO values. In
practice, however, the HQ should not exceed the threshold of 50%

since any company seeking to minimize costs does not often deploy
more than 50% of its resource requirements.

Figure 8: Cost comparison between the E-BPSO, GA, FBR and OS in relation

to graph G5.

Figure 8 highlights the cost rates attained on a dense graph within
a density range of 50%. It indicates well that the E-BPSO tends to
perform more effectively than the FBR in most HQ variation cases,
except for when HQ is equal to 90%. One could also note that the most
optimum cost rate difference achieved between the E-BPSO and FBR
is 23%, attained at an HQ level of 20%. Noteworthy is that the GA
tends to record cost levels that are somehow too close to, though
sometimes slightly higher than, those scored by the E-BPSO.

Analysis of Figures 6-8 reveals that, regardless of graph type, the E-
BPSO yields more effective results than the FBR, particularly
regarding the dense graphs, where the E-BPSO tends to perform rather
efficiently.

5.2.2. Execution time

This subsection is focused on examining the second important
parameter: execution time, by analyzing the three relevant graphs
associated with figures 9, 10 and 11.

Figure 9: Comparison of execution-time performance between the E-BPSO, GA,

FBR and OS concerning graph G1.

Figure 9 illustrates the G1 graph execution time parameter
regarding the OS, FBR, GA and E-BPSO. As can be noted, the GA is
discovered to be more than twice faster than the OS, while the E-BPSO
and FBR prove to be more than three times faster than the GA. It has
also been revealed that the E-BPSO appears to record an execution
time that is noticeably lower than that scored by the FBR, except when
the HQ is equal to 80%.

Figure 10: Comparison of execution-time performance between the E-BPSO,

GA, FBR and OS concerning graph G10.

Accordingly, it has been discovered that the GA appears to record

an execution-time performance that is highly effective than that scored

by the OS. Inversely, however, both the E-BPSO and FBR tend to score

a noticeably better result than that achieved by the GA. Figure 10 also

reveals that, for any HQ value, the E-BPSO proves to record the most

optimum execution-time level. The execution time difference recorded

between both the FBR and E-BPSO turns out to be of the rate of 36%.

Figure 11: Comparison of execution-time performance between the E-BPSO,

GA, FBR and OS concerning graph G5.

As Figure 11 indicates, the GA, FBR and E-BPSO tend to register an
execution time score that is more than twice as low as that recorded by
the OS, while the E-BPSO and FBR appear to record an execution time
outperforming that achieved by the GA. Figure 11 also shows that the
E-BPSO demonstrates an execution time even lower than that
recorded by FBR for all the HQ values. In effect, the most noticeable
time difference recorded between the FBR and E-BPSO is of the rate
of 24%.

Analysis of Figures 9, 10 and 11 reveals well that, with respect to all
graphs, the E-BPSO proves to record the most effective execution time
score, as compared to the OS, GA and FBR. This improvement can be
justified by the fact that CPLEX pinpointed the most effective solution
in terms of cost efficiency while processing all the possible solutions,
i.e., from a set of options, despite the noticeable time latency it takes
throughout the process. The FBR stands as an iterative algorithm
displaying a fixed number of iterations, which entails a minimum
execution time to be maintained. Regarding the GA, it demonstrates a
more significant time latency in respect of the E-BPSO, owing mainly
to the large size population it encloses, whose genetic operations are
noticeably consuming in terms of time.

5.2.3. Comparative study and discussion

Table 6 illustrates the average percentage improvements brought

about by the E-BPSO, in respect of the entirety of the BPSO, GA, FBR,
and OS algorithms, in terms of cost and execution time efficiency.
These rates refer to the various HQ mean values relevant to each
graph. For instance, the E-BPSO provided cost improvement
percentage, in relevance to the FBR, is of the rate of 12.69 (graph g1).
Note that G1 is a sparse graph, G10 is a dense graph, and G5 is a graph
with 50% density. The percentage improvement value is computed via
equation (12).

Percentage of improvement () /EBPSO X EBPSO= − (12)

where EBPSO is the value obtained by the E-BPSO algorithm and X
is the value obtained by OS, FBR, GA or BPSO algorithms.

Table 6. The E-BPSO provided average improvement percentages in relation

to the examined algorithms.
% of average
improvement

Cost Execution time

Graph OS FBR GA BPSO OS FBR GA BPSO

G10 -2,71 4,87 -0,84 0,17 95 18,59 85,51 48,32

G5 -3,06 7,57 -1,32 0,24 94,9 10,13 10,1 55

G1 -0,86 12,69 -0,39 0,66 96,4 11,41 69,7 51,1

Analysis of the table also reveals that the proposed E-BPSO

algorithm tends to yield rather effective results than the BPSO in terms
of cost and execution time. In relation to the GA and OS, however, the
E-BPSO appears to exhibit slightly less effective results in terms of
cost, within a rate of 2% compared to the GA and a rate of 4%
compared to the OS. Yet, in terms of execution time, the E-BPSO
proves to record far more highly effective results, highlighting its
supremacy over both the OS and GA. This finding can be justified by
the fact that even though the OS helps effectively retrieve the most
optimal solution, it turns out to generate greater execution time
exceeding the rate of 94%. Similarly, the GA also appears to generate
an execution time significantly exceeding that registered by the E-
BPSO.

Finally, the E-BPSO attained results, achieved in terms of execution
time and cost, prove to outperform noticeably those reached via FBR.
Only in some cases where the HQ proves to exceed the rate of 70% did
the obtained values appear to equal the E-BPSO scored ones, wherein
the FBR achieved results appear to be slightly higher. Practically,
however, the HQ rate should not exceed the threshold of 50%, as a
company seeking to minimize costs should not usually deploy more
than 50% of its resource needs.

6. CONCLUSION

This paper presented an enhanced algorithm, dubbed E-BPSO, to
optimize the SBA placement in a hybrid cloud. It has been designed to
reduce the cost of service deployment with a minimal execution time
parameter for an efficient selection of the most optimal service
placement solution. Thus, the advanced E-BPSO helps resolve the
problem of premature convergence and local optima, significantly
affecting the service placement application in the hybrid cloud, making
it highly distinguishable and relevant to the standard BPSO algorithm.

The reached experimental results reveal that the proposed
algorithm E-BPSO appears to display a remarkably effective
performance compared to the OS, FBR and GA algorithms in terms of
both cost and execution time. It is worth noting that if the number of
services is small, the difference between the BPSO and the E-BPSO
turns out to be similar in terms of cost and execution time. But, if the
number of services is large, the difference in execution time becomes
noticeable. However, E-BPSO falls when the number of services is
high, or the HQ is greater than 70%.

Our future work will improve and extend the proposed algorithm to
be applied to a real workflow that considers new constraints and the
dynamic environment.

ACKNOWLEDGMENT

We deeply acknowledge Taif University for Supporting this study
through Taif University Researchers Supporting Project number
(TURSP-2020/327), Taif University, Taif, Saudi Arabia.

The present research, contributing in achieving the highlighted
promising results, has received funding grant from the Ministry of
Higher Education and Scientific Research of Tunisia, under grant
agreement number LR11ES48.

CONFLICT OF INTEREST

We have no Conflict of Interest.

REFERENCES

[1] Sahni, S., 1974. Computationally related problems. In SIAM

Journal on Computing, vol. 3, pp. 262–279.

[2] Foschini, L., Tortonesi., M., 2013. Adaptive and business-driven

service placement in federated Cloud computing environments.

In IFIP/IEEE International Symposium on Integrated Network

Management (IM 2013), IEEE.

[3] Ni, Z.W., Pan, X.F., Wu, Z.J., 2012. An ant colony optimization

for the composite saas placement problem in the cloud. In:

Applied Mechanics and Materials, vol. 130, pp. 3062–3067. Trans

Tech Publ.

[4] Filelis-Papadopoulos, C. K., Endo, P. T., Bendechache, M.,

Svorobej, S., Giannoutakis, K. M., Gravvanis, G. A., Tzovaras, D.,

Byrne, J., Lynn, T., 2020. Towards simulation and optimization

of cache placement on large virtual content distribution networks.

In Journal of Computational Science, Volume 39.

[5] Hajji, M.A., Mezni, H., 2017. A composite particle swarm

optimization approach for the composite saas placement in cloud

environment. Soft. Comput., pp. 1–21.

[6] Abbes, W., Kechaou, Z., Alimi, A. M., 2016. A New Placement

Optimization Approach in Hybrid Cloud Based on Genetic

Algorithm. In IEEE International Conference on e-Business

Engineering (ICEBE), pp. 226-231.

[7] Ben Charrada, F., Tata, S., 2016. An efficient algorithm for the

bursting of service-based applications in hybrid Clouds. In IEEE

Transactions on Services Computing, vol. 9, issue 3, pp. 357–367.

[8] Business Process Incubator, April 2021.

https://www.businessprocessincubator.com/category/type/tem

plates/

[9] O. M. G. (OMG), Business Process Model and Notation™

(BPMN™) Version 2.0, Object Management Group (OMG), Tech.

Rep., jan 2011. http://www.omg.org/spec/BPMN/2.0/

[10] Van den Bossche, R., Vanmechelen, K., Broeckhove, J., 2010.

Cost optimal scheduling in hybrid iaas clouds for deadline

constrained workloads. In Proceedings of the 2010 IEEE 3rd

International Conference on Cloud Computing, ser. CLOUD ’10.

Washington, DC, USA: IEEE Computer Society, pp. 228–235.

[11] Luong, N. C., Wang, P., Niyato, D., Wen, Y., Han, Z., 2017.

Resource Management in Cloud Networking Using Economic

Analysis and Pricing Models: A Survey. In IEEE Communications

Surveys & Tutorials, vol. 19, issue 2, pp. 954–1001.

[12] Altmann, J., Kashef, M. M., 2014. Cost model based service

placement in federated hybrid clouds. In Future Generation

Computer Systems, vol. 41, pp. 79–90.

[13] Yusoh, Z., Tang, M., 2010. A penalty-based genetic algorithm

for the composite SaaS placement problem in the cloud. In 2010

IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.

[14] Wada, H., Suzuki, J., Yamano, Y., Oba, K., 2012. E3: A

multiobjective optimization framework for SLA-aware service

composition. IEEE Transactions on Services Computing, vol. 5,

no. 3, pp. 358–372.

[15] Li, W., Zhong, Y., Wang, X., Cao, Y., 2013. Resource

virtualization and service selection in cloud logistics. Journal of

Network and Computer Applications, vol. 36, no. 6, pp. 1696–

1704.

http://www.omg.org/spec/BPMN/2.0/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739

[16] Klein, A., Ishikawa, F. Honiden, S., 2014. SanGA: A self-

adaptive network-aware approach to service composition. IEEE

Transactions on Services Computing, vol. 7, no. 3, pp. 452–464.

[17] Phan, D. H., Suzuki, J., Carroll, R., Balasubramaniam, S.,

Donnelly, W., Botvich, D., 2012. Evolutionary multiobjective

optimization for green clouds. In Proceedings of the 14th Annual

Conference Companion on Genetic and Evolutionary

Computation, GECCO ’12, (New York, NY, USA), pp. 19–26, ACM.

[18] Yao, F., Yao, Y., Xing, L., Chen, H., Lin, Z., Li, T., 2019. An

intelligent scheduling algorithm for complex manufacturing

system simulation with frequent synchronizations in a cloud

environment. Memetic Computing 11, pp. 357–370.

[19] Espling, D., Larsson, L., Li, W., Tordsson, J., Elmroth, E., 2016.

Modeling and placement of cloud services with internal structure.

IEEE Trans. Cloud Comput. 4(4), pp. 429–439.

[20] Huang, K.-C., Shen, B.-J., 2015. Service deployment strategies

for efficient execution of composite saas applications on cloud

platform. J. Syst. Softw. 107, pp. 127–141.

[21] Yusoh, Z., Tang, M., 2012. A penalty-based grouping genetic

algorithm for multiple composite saas components clustering in

cloud. In 2012 IEEE International Conference on Systems, Man,

and Cybernetics (SMC), pp. 1396–1401.

[22] Yusoh, Z., Tang, M., 2012. Composite SaaS placement and

resource optimization in cloud computing using evolutionary

algorithms. In 2012 IEEE 5th International Conference on Cloud

Computing (CLOUD), pp. 590–597.

[23] Barthwal, V., Rauthan, M.M.S., 2021. AntPu: a meta-heuristic

approach for energy-efficient and SLA aware management of

virtual machines in cloud computing. Memetic Computing 13, pp.

91–110.

[24] Mezni, H., Sellami, M., Kouki, J., 2018. Security-aware saas

placement using swarm intelligence. J. Softw. Evol. Process,

e1932.

[25] Mezni, H., Kouki, J., 2017. A multi-swarm based approach with

cooperative learning strategy for composite saas placement. In:

Proceedings of the Symposium on Applied Computing, pp. 399–

404. ACM.

[26] Kaviani, N., Wohlstadter, E., Lea, R., 2012. Manticore: A

framework for partitioning software services for hybrid cloud. In

Proceedings of the 2012 IEEE 4th International Conference on

Cloud Computing Technology and Science (CloudCom), ser.

CLOUDCOM ’12. Washington, DC, USA: IEEE Computer Society,

pp. 333–340.

[27] Björkqvist, M., Chen, L. Y., Binder, W., 2012. Cost-driven

service provisioning in hybrid clouds. In 2012 Fifth IEEE

International Conference on Service-Oriented Computing and

Applications (SOCA), IEEE.

[28] Cerroni, W., Foschini, L., Grabarnik, G. Ya., Shwartz, L.,

Tortonesi, M., 2018. Service Placement for Hybrid Clouds

Environments based on Realistic Network Measurements. In 14th

International Conference on Network and Service Management

(CNSM), IEEE.

[29] Rahimi, M., Venkatasubramanian, N., Mehrotra, S., Vasilakos,

A., 2012. MAPCloud: Mobile applications on an elastic and

scalable 2-tier cloud architecture. In 2012 IEEE Fifth

International Conference on Utility and Cloud Computing (UCC),

pp. 83–90.

[30] Bittencourt, L. F., Senna, C. R., Madeira, E. R. M., 2010.

Scheduling service workflows for cost optimization in hybrid

clouds. In 2010 International Conference on Network and Service

Management, IEEE.

[31] Bittencourt, L. F., Madeira, E. R. M., 2011. HCOC: a cost

optimization algorithm for workflow scheduling in hybrid clouds.

In Journal of Internet Services and Applications, vol. 3, no. 2, pp.

207-227.

[32] Van den Bossche, R., Vanmechelen, K., Broeckhove, J., 2013.

Online cost-efficient scheduling of deadline-constrained

workloads on hybrid clouds. In Future Generation Computer

Systems, vol. 4, no. 29, pp. 973-985.

[33] Unuvar, M., Steinder, M., Tantawi, A. N., 2014. Hybrid cloud

placement algorithm. In 2014 IEEE 22nd International

Symposium on Modelling, Analysis & Simulation of Computer

and Telecommunication Systems, IEEE.

[34] Breitgand, D., Marashini, A., and Tordsson, J., 2011. Policy-

driven service placement optimization in federated clouds. In

IBM Research Division, Tech. Rep, H-0299.

[35] Grabarnik, G. Y., Shwartz, L., Tortonesi, M., 2014. Business-

driven optimization of component placement for complex

services in federated Clouds. In Network Operations and

Management Symposium (NOMS), IEEE.

[36] Aryal, R. G., Altmann, J., 2018. Dynamic application

deployment in federations of clouds and edge resources using a

multiobjective optimization AI algorithm. In Third International

Conference on Fog and Mobile Edge Computing (FMEC), IEEE.

[37] Rekik, M., Boukadi, K., Assy, N., Gaaloul, W., BenAbdallah, H.,

2016. A linear program for optimal configurable business

processes deployment into cloud federation. In: 2016 IEEE

International Conference on Services Computing (SCC), pp. 34–

41. IEEE.

[38] Kennedy, J., Eberhart, R. C., 1997. A discrete binary version of

the particle swarm algorithm. IEEE International Conference on

Systems, Man, and Cybernetics.

[39] Murtza, S.A., Ahmad A., Qadri, M.Y., Qadri, N.N., Ahmed, J.,

2018. Optimizing energy and throughput for mpsocs: an integer

particle swarm optimization approach. J Comput, Vol 100, pp.

227–244.

[40] Miao, Z., Yong, P., Mei, Y., Quanjun, Y., & Xu, X., 2021. A

discrete PSO-based static load balancing algorithm for

distributed simulations in a cloud environment. Future

Generation Computer Systems, Vol. 115, pp. 497–516.

[41] Aygun, B., Kilic, B. G., Arici, N., Cosar, A., Tuncsiper, B., 2021.

Application of binary PSO for public cloud resources allocation

system of video on demand (VoD) services, Applied Soft

Computing, Vol. 99.

[42] Dong, C., Zhao, L., 2019. Sensor network security defense

strategy based on attack graph and improved binary PSO, Safety

Science, Vol. 117, pp. 81-87.

[43] Ozsoydan, F., B., Baykasoglu, A., 2019. A swarm intelligence-

based algorithm for the set-union knapsack problem, Future

Generation Computer Systems, Volume 93, pp. 560-569.

[44] Fahland, D., Favre, C., Koehler, J., Lohmann, N., Volzer, H.,

Wolf, K., 2011. Analysis on demand: Instantaneous soundness

checking of industrial business process models. In Data and

Knowledge Engineering, vol. 70, issue 5, pp. 448–466.

[45] ILOG SA, ILOG CPLEX 12, User’s Manual, 2021. Available:

https://www.ibm.com/support/pages/node/134239.

https://www.ibm.com/support/pages/node/134239

