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Abstract 

Nowadays, hybrid cloud platforms stand as an attractive solution for 

organizations intending to implement combined private and public 

cloud applications, in order to meet their profitability requirements. 

However, this can only be achieved through the utilization of available 

resources while speeding up execution processes. Accordingly, 

deploying new applications entails dedicating some of these processes 

to a private cloud solution, while allocating others to the public cloud. 

In this context, the present work is set to help minimize relevant costs 

and deliver effective choices for an optimal service placement solution 

within minimal execution time. Several evolutionary algorithms have 

been applied to solve the service placement problem and are used 

when dealing with complex solution spaces to provide an optimal 

placement and often produce a short execution time. 



The standard BPSO algorithm is found to display a significant 

disadvantage, namely, of easily trapping into local optima, in addition 

to demonstrating a noticeable lack of robustness in dealing with 

service placement problems. Hence, to overcome critical shortcomings 

associated with the standard BPSO, an Enhanced Binary Particle 

Swarm Optimization (E-BPSO) algorithm is proposed, consisting of a 

modification of the particle position updating equation, initially 

inspired from the continuous PSO. 

Our proposed E-BPSO algorithm is shown to outperform state-of-the-

art approaches in terms of both cost and execution time, using a real 

benchmark. 

Keywords: Placement Optimization, Particle Swarm Optimization, E-BPSO 

Algorithm, Hybrid Cloud, Service Based Application.  

1. INTRODUCTION 

With the advent of cloud computing technologies, a growing 
number of content distribution applications have started to veer to 
cloud-based services for the sake of maintaining relatively high-level 
scalability and effective cost rates. Actually, cloud systems turn out to 
be indispensable technological tools, versatile for the persistence of 
modern society. 

Hence, for a company's applications to be effectively deployed on a 
private cloud basis, it is necessary that resources be provided, 
managed, and maintained via its proper infrastructure. Noteworthy, 
however, is that should a company decide to incorporate other 
applications fit for implementation with its proper private cloud 
infrastructure, it turns out to be under the constraint of using extra 
outside resources or a public cloud. This highlights well that the 
private cloud system associated with physical limitations needs to be 
entirely accounted for rather effectively. Such a situation appears to 
occur mainly when applications tend to opt for further intensification 
procedures, entailing additional resources, which private cloud cannot 
provide, or when a newly deployed application cannot be exclusively 
satisfied through a private Cloud. Hence, acquiring extra resources 
available in a public cloud might well help in handling such situations. 
Therefore, companies are increasingly appealing to cloud-based 



environments to extend the deployment and running range of the 
available applications. 

Regarding the present work scope, it is primarily focused on 
investigating service placement optimization within a hybrid-cloud 
context.  The cloud platforms, subject of study, involve business 
service solutions providing units or components, increasingly used to 
implement service-based applications. Once service-based 
applications are implemented into a hybrid cloud, selecting the 
components that fit public clouds remains an open-ended question. 
However, it is worth noting that several parameters need to be 
considered when deciding on the appropriate application components 
subject to a transfer to the public cloud, mainly privacy, QoS, security, 
communication costs, and the hosting costs relocation. Similarly, the 
execution time criterion stands as a critical parameter.  

The present work's placement problem consists mainly of the NP-
Hard nature of the problem [1], which relates mainly to the non-
availability of optimal algorithms enabling us to solve issues as 
promptly and effectively as possible. Several algorithms and models 
from the computational intelligence field have been applied to solve 
the service placement problem, i.e., Genetic algorithm (GA) [2], Ant 
Colony Optimization (ACO) [3], heuristic-based [4], PSO [5]. 
Heuristics have been implemented to resolve the cloud service 
placement problem in which immediate solutions cannot be 
determined due to the hugeness of the cloud environment and the high 
number of services. Consequently, the present work is conceived to 
treat each service component separately, i.e., to be deployed either as 
part of the private cloud or within the public cloud context. 
Accordingly, the suitable placement service problem is essentially a 
binary optimization problem. Hence, the purpose of conducting the 
present research is to minimize the public cloud incurred costs while 
preserving a minimum execution time. These two criteria constitute 
essential factors for a company to persist successfully in a competitive 
world. To this end, an Enhanced BPSO algorithm is put forward as an 
adequately effective service placement solution, useful for application 
within a hybrid cloud context. Accordingly, each particle's respective 
position would be equal either to zero (if the service is liable to be 
deployed in a private cloud) or to one (if it proves to be applicable 
within the public cloud context). 



 Thus, the advanced E-BPSO undertakes to substitute the sigmoid 
function by our proposed equation to help resolve the problem of 
premature convergence and local optima, significantly affecting the 
service placement application in hybrid cloud, which makes it highly 
distinguishable and relevant to the standard BPSO algorithm. 

The remainder of this paper is organized as follows. Section 2 
involves a formulation of the Service-Based Application (SBA) 
placement problem conceived within a hybrid-cloud context, along 
with a graphic illustration of a SBA scheme. Section 3 is devoted to 
depicting the major relevant works dealing with cloud data placement 
strategy, highlighting the major contribution and achievement 
brought about by each work, compared to the present research modest 
contribution and reached findings. Concerning Section 4, it englobes a 
presentation of our proposed E-BPSO algorithm, envisioned to deal 
with the placement strategy issue. The implemented experimental 
analysis and evaluation procedures are dealt with in section 5, while 
the ultimate section depicts the conclusions and perspective. 

2. PROBLEM FORMULATION 

2.1. Service placement problem in hybrid cloud 

It is worth recalling that the Service-Based Application (SBA) in the 
hybrid cloud has been the subject of our previously designed 
framework, subject of our already published work referenced as [6], 
which we dubbed as a hybrid composition of private and public cloud 
structures. SBA is a set of basic services to provide flexibility to 
complex environments, widely scattered by dispersed ranges and 
arrays of services each environment maintains. 

It is natural for any organization that the cloud applications should 
be deployed privately, as long as the private cloud can provide the 
required resource needs. Yet, an appeal could be made to SBA to be 
deployed via public cloud mainly: (first) when the deployed 
applications are discovered to require greater resources that private 
cloud could not provide; (second) when private cloud proves to 
demonstrate insufficiency to satisfy a newly applied deployment 
request; or (third) when the utilized applications release resources 



indicating that a new deployment procedure must be implemented to 
release allocated resources from the public cloud withheld data. 

In this respect, we consider setting up a specifying threshold to 
determine the appropriate case for making a rightful decision to appeal 
to the public cloud. This threshold can be quantified via hosting units, 
hence the notation HQ that designates a hosting quantity. Accordingly, 
the quantity of resources required for executing any selected services 
has to be greater or equal to HQ range, as indicated below. 

At this level, we consider applying the same basic problem-
formulation definition as that used in [7], specifically: 
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Where: (1) stands for the objective function (minimize H (Hosting 
cost) + PC (Public Communication cost) + HC (Hybrid 
Communication cost)); 
(2): designates a constraint equation that represents the sum of 
hosting quantity (HQ) of the public cloud deployed services, which has 
to be greater than or equal to HQ (minimum threshold). HQ is a value 
assigned by a resource request case. The need for the public cloud 
resource can be quantified in terms of the amount of hosting units 
(units of platform resources required). Once a public cloud request is 



triggered, one has to decide on the appropriate application services to 
opt for, to be deployed as part of public cloud-based service. In this 
case, the quantity of required platform resources necessary for 
providing the selected services has to be greater than, or equal to, the 
HQ associated ones; 
(3): is the sum of hosting service costs deployed in the public cloud; 
(4): designates the sum of publicly made communications (established 
between the public cloud deployed services);  
and (5): is the sum of hybrid sustained communications (maintained 
by the public cloud deployed services and those ensured by private 
cloud). 

Table 2 depicts the various abbreviated designations used in the 
problem formulation stage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. The problem formulation abbreviations and relevant designations 

h() is a hosting function that associates a positive number to each service 

representing its hosting quantity of needed resources for its deployment. 

c() 
is a communication function that associates to each edge 

,i je s s E= 

a positive number representing the communication rate established between 

is  and js
. 

l() 
is a location function that for each service associates 0  if it is deployed in 

the private cloud and 1 if it is deployed in the public cloud. 

α is the cost of a resource hosting unit. 

β1 is the cost of a communication unit between the public and the private 

cloud. 

β2 is the cost of a unit of communication as established inside the public cloud. 

H is the sum of hosting costs of services as deployed within the public cloud. 

Indeed, the expression 
( ) ( )i ih s l s 

 (where α is the cost of a resource 

hosting unit, 
( )ih s

 is hosting quantity of service is  and 
( )il s

 takes the 

value 1 if is relates to the public cloud, and 0  otherwise) which is equal to 

the is  hosting cost if this service is maintained within the public cloud. 

PC is the sum of publicly established communications (communications 

between services deployed within the public cloud). Indeed, there is a 

public communication maintained between is  and js
 if they are both 

deployed in the public cloud. 
( ) ( ) 1i jl s l s =

. 

HC stands for the sum of hybrid communications (communications between 

services deployed in the public cloud and those deployed in the private 

cloud). Indeed, there is a hybrid communication between is  and js
 if one 

of them is deployed in the public cloud and the other one is deployed in the 

private cloud, since, either  
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 or 
( ) (1 ( )) 1j il s l s − =
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In addition to minimizing the hosting and communication costs, we 
are also interested in reducing the execution time. In effect, execution 
time represents an important criterion, whereby the decision-taking 
process can be executed promptly, thus, ensuring the company 
significant savings. 



 

2.2. Case study 

In this context, a structured bank account opening process [8] is 
illustrated in the below figuring Business Process Model and Notation 
(BPMN [9]) diagram. 
 

 



 
Figure 1: A sample SBA application modeled following the structured process.



The SBA, depicted in Figure 1, can also be partially modelled in the 

form of a graph, as appearing in Figure 2, where services and gateway 

nodes are represented by graph nodes and inter-service 

connections/transitions by edges. Nodes are identified by the number 

of resource hosting units and characterized by the corresponding 

quantified amount. Edges are characterized by an amount of 

established communication transactions, referring to the amount of 

traffic transferred onto the considered corresponding edge. 

 
Figure 2: An SBA graph corresponding to opening a bank account. 

The SBA graph, as illustrated in Figure 2, appears to enclose distinct 
services. Each service incorporates a hosting quantity, and each edge 
englobes a quantity of communication unit. 

As deployed in a hybrid cloud environment, the SBA is represented 

by a graph, where some services are maintained via public cloud, while 

others are ensured via private cloud, as shown in Figure 3 below. 

 
Figure 3: Bank account opening process as deployed within a hybrid cloud 

architecture. 

 



Accordingly, inter-cloud communication costs depend highly on the 
services’ placement mode (i.e., between private and public clouds). 
Indeed, the cost of intra-cloud maintained communication 
(exclusively within public clouds) appears to differ remarkably from 
the inter-cloud maintained one. It is worth noting, at this level, that 
both communication and hosting costs are not considered within the 
private cloud framework. 

The model applications’ deployment cost, as depicted in Figure 3, 
for α=40, β1=20, β2=10, is determined as follows:  40×(12+45) + 
20×(17.5+10) + 10×5 = 2880. Thus, no communication and hosting 
cost considerations have been accounted for regarding the private 
cloud mode case, as we assume that a company maintains its proper 
private cloud system. Therefore, these costs will not be computed since 
these services, and the relating costs, are generated on a private cloud 
basis. 

3. RELATED WORKS 

The resource placement problem (virtual machines, Web servers, 
software components and data), remarkably persistent in cloud 
environments, has been addressed from different perspectives. More 
specifically, it has been approached through accounting for the 
different cloud model versions available (private, public, hybrid and 
federated Clouds) or by considering the various associated criteria 
(hosting, communication, QoS, etc.) 

Generally, the type of cloud application most often opted for is 
either hybrid or federated, wherein the relevant infrastructure involves 
two or more cloud models (public or private) operating independently. 
In effect, the two predominant cloud modes turn out to be the hybrid 
cloud and the federated cloud. Regarding the present work, the 
adopted hybrid cloud definition follows that set by Van den Bossche et 
al. [10] and Luong et al. [11]. Accordingly, organizations appeal to 
public clouds for the sake of meeting their demand and urgent needs 
for computational resources that exceed their private cloud available 
capacity. As to federated clouds [12], technology is needed to maintain 
a joint combination of disparate public clouds, including those owned 
by different organizations. Indeed, it is only through federation 
(including the relevant interoperability requirement) can a single 



cloud provider take advantage of the aggregated capabilities available 
to provide a seemingly infinite computing service utility. 

The most recently developed approach, useful for modelling and 
computing resource management optimization problems, is the 
Service placement approach, oriented to cloud users intending to 
optimize their services’ costs and performance. In this respect, the 
service placement problem provides several responses to the users’ 
needs in Service as a Service (SaaS) and Business Process as a Service 
(BPaaS). It provides solutions relevant to the optimal allocation of any 
complex service onto an available set of (virtualized) resources. The 
nature of resources may vary from physical infrastructure to Virtual 
Machines (VM) and running software components. Given the fact that 
service and business processes are commonly defined as constant 
workflows of tasks or activities [13-15], the standard objectives usually 
tend to lie in catering for the cost and QoS dimensions, referred to as 
service throughput [14] or latency [16-18].  

In this regard, a well-determined selection of state-of-the-art works 
dealing with the subject of service placement in private/public, and 
hybrid/federated clouds, is depicted. Each work should represent a 
specific helpful approach for deciding on a specific service package 
while accounting for some crucial criteria or parameters considered in 
these approaches. 

3.1. Service placement in private/public cloud 

Huang et al. [20] defined two graph structures: a Service 
Dependency Graph (SDG), which reflects the inter-service 
communication cost and execution time of each service, and a Service 
Concurrency Graph (SCG), which describes possible parallel services. 
These graphs allowed interdependent services to be co-deployed on 
the same VM, based on the k-cut principle, where k denotes the 
number of hosting VM solvers. For Green Monster [17], the focus of 
interest is laid on a multi-objective Evolutionary Algorithm (EA) using 
a local search to help optimize Renewable Energy consumption (RE), 
Cooling Energy consumption (CE) and User-to-Service Distance 
(USD). Green Monster achieved results that proved to outperform 
static and random placement provided performance. Also, Yao et al. 
[18] propose a scheduling algorithm for searching for the optimal 
service instance allocation, based on Simulated Annealing (SA) and 
(GA). The objective is to minimize computing power and network 



latency. Concerning Yusoh and Tang, they document a series of studies 
[13], [21], [22] that elaborated on the issue of SaaS component 
placement to help in catering predominantly for the problem of service 
components mapping to VMs and storage systems. The proposed 
solutions include a Cooperative Co-evolutionary Genetic Algorithm 
(CCGA) [21] that splits or dislocates populations into groups to 
optimize the computation and storage of allocations. In turn, Wada et 
al. [14] advanced an optimization framework, dubbed E3, to solve the 
SLA-aware Service Composition (SSC) problem. The E3 framework 
enables to define a service composition model by putting forward two 
heuristic algorithms, labelled E3 Multi-Objectives GA (E3-MOGA) and 
Extreme-E3 (X-E3), designed to solve the SSC related problem. 
Similar objectives are targeted by SanGA [16], whereby a Self-adaptive 
network-aware GA is conceived to deal with the service composition 
associated problem. Worth recalling, in this respect, is that reducing 
latency and minimizing cost prove to stand as significant optimization 
targeted objectives. To this end, Li et al. [15] put forward a higher cloud 
computing layer BPaaS. 

Additionally, they envisage resolving the service placement problem 
frequently persistent within the cloud logistics domain through the 
implementation of the PSO. In effect, the optimization process's 
overall objective is to enclose a weighted sum of time, price, 
availability, and reliability. With respect to Filelis-Papadopoulos et al. 
[4], they devised a particular simulation framework for 
implementation with virtual Content Distribution Networks (vCDN). 
Their framework involves a special optimization scheme, whereby 
simulation outputs are used to guide the search for optimal cache 
placements. For AntPu [23], a meta-heuristic approach is proposed for 
placing VMs to minimize energy consumption and SLA violations in 
the cloud datacenter. In [24], the authors adopted a cooperative 
learning strategy while considering security as an additional 
placement constraint. The authors started by decomposing a 
population of computing and storage servers into a set of cooperating 
sub-swarms. The idea is to evaluate each sub-swarm and influence the 
worst placement plans by the best ones. In this way, the worst 
placement plans are improved by learning from the best servers in the 
associated sub-swarms. The survival levels determine the choice of the 
most secure hosting servers. Multi-population PSO variants have been 



used in the context of SaaS placement. The composite particles in [5] 
were applied to represent the entire placement scheme, i.e., a set of 
hosting virtual machines for a composite SaaS, while sub-swarms in 
[25] defined candidate compute/storage servers to host a component 
application/data of an involved SaaS. Their goal was to reduce the 
SaaS execution time and resource utilization. 

3.2. Service placement in hybrid cloud 

More recently, a significant number of conducted studies have 
attempted to address several aspects of the service placement issue 
within the hybrid cloud context. Worth citing among them is the study 
conducted by Kaviani et al. [26], who put forward a special framework 
useful for enhancing the software service-placement procedure within 
a hybrid cloud environment. They aimed to improve latency without 
increasing costs. Similarly, Bjorkqvist et al. [27] undertook to analyze 
the total performance and cost of running services on hybrid clouds. 
Similarly, Charrada and Tata [7] advanced an FBR (Forward Backward 
Refinement) algorithm useful for placing service-based applications 
across hybrid Clouds. The algorithm is designed to help minimize the 
costs generated by deploying cloud-related services. In turn, Abbes et 
al. [6] put forward a novel hybrid cloud-related placement 
optimization approach that rests heavily on the principle of GA. The 
idea of this optimization process lies in minimizing the public cloud 
service deployment cost. The experimental results turned out to reveal 
well the proposed approach's remarkable outperformance in respect 
of the FBR algorithm [7] in terms of cost. In turn, Cerroni et al. [28] 
proposed a hybrid cloud placement algorithm, dubbed Business-
Driven Management as a Service Plus (BDMaaS+), constructed over 
the genetic Algorithm fundamentals and principles. 

Concerning Rahimi et al. [29], they devised a Simulated Annealing 
(SA) optimization, useful for implementation with mobile 
applications. It takes the form of a set of services modelled for 
execution either via user devices or via a cloud framework (whether 
local or public). As regards Bittencourt et al. [30,31], they proposed 
HCOC (Hybrid Cloud Optimized Cost) resource scheduling 
mechanism to solve the problem of resource requirement. The HCOC 
enables executing workflows within a specified budget and execution 
time frame, using DDVR (Dynamic Deployment Virtual Resource) to 
enhance the resource search process (by enabling adequate resource 



retrieval based on QoS requirements). As to Bossche et al. [32], they 
suggested a selection of scheduling algorithms relying on the Earliest 
Deadline First (EDF) principle. Their design was intended to address 
the cost optimization problem associated with deadline-constrained 
applications while accounting for the data constraints, data locality 
and inaccuracies considerations in task runtime estimates. In turn, 
Unuvar et al. [33] introduced a hybrid cloud placement algorithm, 
constructed on the Biased Importance Sampling (BSA) technique, 
which relies heavily on the application structure to allocate multiple 
VMs.  

3.3. Service placement in federated cloud 

This section is devoted to depicting the most recently conducted 
works elaborated on investigating the area of the federated cloud 
environment. Worth mentioning, in this regard, is the work 
undertaken by Altmann et al. [12], whereby a cost model, specifically 
designed to fit for application with federated hybrid clouds, was 
devised. Their advanced cost minimization algorithm is helpful for 
cloud service placement implementation, aiming to minimize 
computational service costs. Concerning Breitgand et al. [34], they 
suggested addressing the challenge of managing the efficient 
provisioning of elastic cloud services through a federated approach. 
Their placement algorithm is aimed at maximizing the provider profit 
rates while protecting the consumer offered QoS. To this end, a 
number of integer programming (IP) formulations were advanced to 
deal with the placement of VM workloads within and across multiple 
cloud providers jointly collaborating in a federation. 

In [2] and [35], the authors attempted to optimize the placement of 
software components in federated cloud environments, respectively, 
using a traditional GA and a GA based memetic algorithm with integer 
vector representation. For Aryal et al. [36], the centralized genetic 
algorithm was adopted to address the NP-hard problem associated 
with heterogeneous resource allocation within a Mobile Edge 
Computing (MEC) system. As to the authors in [36], they considered 
applying the optimization principle to achieve an effective VM 
placement and resource utilization on fog nodes for the sake of 
meeting the application set requirement. Regarding the work of 
Espling et al. [19], they formulated the service placement problem into 
an integer linear program. From a graph, a set of constraints has been 



extracted based on services components. A mathematical model 
presents the obtained placement schemes. In the same venue, the 
authors in [37] proposed a formal description of the service 
deployment problem, focusing on business process models. They took 
into account security and availability as the tariffs of cloud providers. 
Regarding the characteristics of cloud federation, the authors 
considered bandwidth and pricing parameters. A configurable process 
model is then employed to produce the placement scheme while 
adjusting the federation requirements of the enterprise and the cloud. 

3.4. A summary of research works dealing with service placement in the 

cloud environment  

This section involves a summary depicting a compilation of the 
significant approaches advanced to treat the main issues relevant to 
maintaining an effective service placement within a Cloud Computing 
environment. They are classified into three main categories: private or 
public cloud, hybrid and federated cloud, as figured in Table 1 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Table 1. A summary of the major service placement related works.  

Reference 

Cloud type 
Optimization 

Technique 
Objectives Private/ 

Public 
Hybrid Federated 

[3] X   ACO Resource 

[5], [25] X   PSO Execution time, SLA 
[4] X   Meta-heuristic Resource utilization, 

performance 
[13], [21], 22] X   GA Delay, Migration Cost 

[14] X   GA Throughput, Latency, Cost 

[15] X   PSO Delay, Cost, Availability, 
Reliability 

[16] X   GA Latency, Cost 
[17] X   EA, Local 

Search 
Energy, Latency 

[18] X   SA, GA Energy, Latency 
[20] X   k-cut principle Execution time, 

Communication cost 
[23] X   Meta-heuristic Energy, SLA 
[24] X   PSO Execution time, SLA, 

security 
[6]  X  GA Cost 
[7]  X  FBR Cost 
[26]  X  IP Latency, cost 

[27]  X  IP Cost, QoS 

[28]  X  BDMaaS+   Cost, SLA 
[29]  X  SA Cost, Power, Delay 

[30],[31]  X  HCOC Cost 

[32]  X  EDF Cost 

[33]  X  BSA Cost, QoS 

[2], [35]   X GA Cost 

[12]   X COMBSPO Cost 

[19]   X IP Cost 
[34]   X IP and Greedy 

LP Rounding 
heuristic   

Profit, Performance, 
Energy Consumption   
 

[36]   X GA Cost 

[37]   X IP QoS 

 
As indicated in table 1, the cloud environments associated service 

placement problem appears to be addressed from different 
perspectives, concerning the different types of clouds (private or 
public, hybrid or federated), as well as the various techniques and 
criteria applied (Response time, Makespan, QoS, etc.) It is, therefore, 
clear that all the cited approaches dealing with the service placement 
subject, considered in this context, turn out to focus on a particular 
aspect or dimension of this issue. However, with regard to our 
approach, a clear distinction is established between public-based 
communication and private-based one. For this reason, different 
approaches [2,28,29,32,33] are being considered for a jointly hybrid 



cloud-based architecture to reduce the user's investment. The 
objective lies in minimizing costs by allowing users to decide on which 
services to opt for. Service access turns out to be transparent while 
enhancing scalability, reliability, and reducing costs. Noteworthy, 
however, is that in attempting to optimize the service placement costs, 
various approaches do not seem to consider communication flow 
between the different clouds' parameters as significantly involving 
high costs. 

Regarding the works [2,34,36], the authors tend to consider 
exclusively a single type of communication cost involving a node or 
service within the cloud. However, as far as our work is concerned, we 
consider distinguishing between two major communication modes: 
public communication and hybrid communication. Actually, to the 
best of our knowledge, this criterion seems to be accounted for only in 
the [7] and [6] elaborated works. Still, both approaches do not appear 
to consider the execution time dimension, which stands as a crucial 
factor in the company's decision process. Accordingly, our major focus 
of interest is primarily on treating the service placement generated 
costs (e.g., hosting cost, inter-service communication cost) and the 
relevant execution time factor.  

4. AN ENHANCED BINARY PARTICLE SWARM 

OPTIMIZATION ALGORITHM 

This section begins with a thorough depiction of the major 
conducted BPSO related works before presenting our advanced 
algorithm. 

4.1. Literature review 

Initially developed to fit for application in a space of continuous 
values, the PSO soon began to raise several problematic issues as to 
discrete-valued spaces, in which the variable domain is finite. In 
attempting to solve such a problem, Kennedy and Eberhart [38] 
advanced a discrete binary version of PSO. In their devised model, a 
particle would decide on the "yes" or "no", "true" or "false" options, etc. 
These binary values might well stand as a representation of a real value 
within a binary search space. Hence, each particle turns out to use 



binary values to represent its current position and the best solution 
position. Like the continuous PSO version, the velocity vector keeps 
being updated, while the major difference lies in the particle's 
velocities, which are rather defined in terms of probabilities that take 
on one or zero. According to this probability, the velocity vector must 
be exclusively restricted within the range of [0,1]. Hence, the sigmoid 
function figuring in equation (8) turns out to be the fittest for 
application for each of its values. 

In what follows, we will present the BPSO associated equations. 
Updating a particle's velocity is executed using the following 
equations: 

1 1 1 2 2( ) ( )d d d d d d
i i i iiv w v c r pbest x c r gbest x+ =  +  − +  −  (6) 
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(7) 

where: 

LOWV
= designates low velocity. 

HIGHV
= denotes high velocity. 

  

As for the particle's position updating process, it applies the 

following equations: 

1
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1 0d

ix + =
 

 

(9) 

 

where: 

w  = designates inertial weight; 

d
iv

 = represents velocity for particle i at dimension d; 

1c
 = denotes the acceleration constant; 

1r   = is a random value; 

d
ix = represents the position for particle i at dimension d; 

d
ipbest = is the best previous position of the ith particle at 

dimension d; 

2c
 = is acceleration constant; 

2r   = random value; 

dgbest  = denotes the best global position of all particles at 

dimension d; 

3r   = is a random value. 

 
However, worth highlighting that the BPSO algorithm is not 

without any weaknesses, particularly those relating to local minimum, 

premature convergence, and poor convergence performance. To 

remedy these pitfalls, several researchers have suggested modifying 

the BPSO, which has been subject to intense criticism. In this regard, 



Murtza et al. [39] propose an Integer PSO (IPSO). Their parameters 

take integer values, with the particles updating for an upcoming 

iteration being subject to probabilistic updating with some probability.  

As to Miao et al. [40], they put forward a discrete PSO, which stores 

reasonable solutions in an external archive to be utilised when 

updating the particles' best personal positions. Accordingly, a 

probability-based PSO discretisation method was suggested to update 

the velocity and the particles' position.  In turn, Aygun et al. [41] 

advanced a modified binary PSO, whereby the optimal solution is 

affected not only by the particle as well as the global best solution but 

also by the best solution of the neighbourhood particles in this 

iteration. As for Dong and Zhao [42], an improved binary PSO was 

proposed, which consists of applying the greedy algorithm to each 

particle's position and the redundancy elimination algorithm to 

eliminate any redundancy of the particles' positions. In [43], however, 

the authors suggested a binary PSO, which they dubbed gPSO, that 

rests on simultaneously applying the GA and PSO, implementing the 

GA operators to boost the PSO. 

Hence, it is clear that each of these works turns out to provide a 

suggested modification of the BPSO based on the nature of the 

application and its specificity. With respect to our application case, 

however, we consider putting forward a special enhancement method 

of the standard BPSO by modifying the particle position's updating 

equation. 

4.2. The proposed E-BPSO equation 

Unlike the discrete BPSO method, we consider putting forward a 

new algorithm, which we dub E-BPSO (Enhanced Binary PSO), useful 

for updating each particle’s velocity within a continuous space 

environment. It is worth noting, in this respect, that the BPSO is 

sensitive to the saturation of the sigmoid function, which occurs 

whenever the values reached by the velocity appear to be too high or 

too low. In these cases, the probability of changing the value of the bit 

approaches zero, thus limiting the exploration process. Indeed, for 

zero speed, the sigmoid function returns a probability of only 0.5, 



which means there is a 50% chance that the bit will flip. Therefore, 

blocking the speed will delay the apparition of sigmoid function 

saturation. 

Noteworthy is that the same velocity update equations (6-7) have 

been maintained while modifying the particles’ position updating 

equations. The basic BPSO [38] makes use of the velocity equation (8) 

sigmoid to derive the particle’s position, as indicated by equation (9). 

However, concerning our proposed E-BPSO algorithm, a special 

equation is implemented to update the particle’s position. 

Accordingly, equation (10) is to be incorporated in the E-BPSO to 

substitute the BPSO equations (8-9), such as: 

if
1 0.5d d

i ix v ++  then  

1 1d

ix + =  

(10) 

else  

1 0d

ix + =  

 

 

The idea of E-BPSO is inspired from the continuous PSO method. 

As for the particle’s position, we consider applying the same PSO 

particle position update equation (10).  

4.3. The E-BPSO algorithm 

As we are dealing with a binary environment context (wherein each 

position may take either the value 1 or 0), we consider setting the value 

0.5 as a threshold, whereby one can decide whether the particle’s 

position will take either the value 0 or 1. Regarding our proposed E-

BPSO algorithm, therefore, every particle turns out to enclose a set of 

bits (1 or 0). Each bit should involve a particular position precisely fit 

for providing a specific service. Accordingly, if the position turns out 

to be one, the service will then be hosted in the public cloud, and when 

its value proves to be equal to zero, the service will then be reserved to 

the private cloud. Accordingly, any population would involve several 

particles representing a subset of the entire searching space. 

Concerning the investigated problem, therefore, every particle would 



be composed of several zeros and ones; thus, a particle might, for 

instance, look like 0111001011. 

Similarly, the suggested E-BPSO particles are activated within a 

multidimensional environment, where each particle bit bears a proper 

velocity and position. As highlighted through algorithm 1, the E-BPSO 

dimension is defined by the number of bits enclosed in a particle, i.e., 

the number of services involved in the problem. As regards the 

stopping condition, we opt for a condition that helps in significantly 

reducing the execution time. In fact, the execution process should stop 

once the best solution does not mark any improvement following four 

successive iterations. And in any case, the execution procedure will 

finish in less than 0.01 seconds. The fitness function of E-BPSO is 

defined by the equations (1-5). However, the complexity of the 

algorithm is 𝑂(𝑛3). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Algorithm 1 presents the advanced E-BPSO algorithm. 

Algorithm 1: E-BPSO algorithm 

1 

2 

3 

4 

5 

6 

7 
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10 
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14 

15 

16 

17 

18 

19 

20 

21 
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23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

for each particle I 

  for each dimension d 

    Initialize position xid randomly  

    Initialize velocity vid randomly  

  end for  

end for  

iteration k=1  

while maximum time or minimum error criteria are not attained 

for each particle i  

  Calculate fitness value (F)  

  if F> pbestid in history then 

    pbestid=F 

  end if 

end for 

Choose the particle having the best fitness value as the gbesti
d 

for each particle i  

  for each dimension d  

    Calculate velocity according to the equation 

    Vid(k+1)= w*Vid(k)+ c1*r1*(pbestid-Xid) + c2*r2*(gbestd-Xid) 

    if Vid(k+1)>VHIGH then 

      Vid(k+1)=VHIGH 

    else if Vid(k+1)<VLOW then 

      Vid(k+1)=VLOW 

    end if 

    Update particle position according to the equation  

    if Xid(k)+Vid(k)>0.5 then 

      Xid(k+1)=1 

    else 

      Xid(k+1)=0 

    end if 

  end for 

end for 

k=k+1 

end while 

  

The next stage involves evaluating our E-BPSO algorithm through 

establishing a real-benchmark based comparison with other 

techniques. 

5. EXPERIMENTAL EVALUATION 

We used a real IBM-based dataset [44] comprising 560 BPMN to 

assess the advanced algorithm performance. All computation times 



were achieved via Intel Core i7 CPU 2.4 GHz with RAM 12 Go. A 

selection of graphs, incorporating between 11 and 20 nodes, was also 

considered, along with ten randomly selected SBA graphs reflecting 

the design based service compositions. Some of these graphs are 

dense, while others are sparse. The density is expressed by equation 

(11). 

100 _Density edges possible edges=    (11) 

 

The graph characteristics are displayed on table 3. 

 
Table 3. The selected graph characteristics. 

Graphs Nodes Edges Hosting needed Density 

G1 20 19 469 10% 

G2 17 28 521 20% 

G3 18 46 418 30% 

G4 11 22 254 40% 

G5 16 60 413 50% 

G6 14 55 332 60% 

G7 13 55 319 70% 

G8 19 137 570 80% 

G9 15 95 363 90% 

G10 12 66 297 100% 

  

The service-based applications are usually depicted in graphs, 

figuring in a sparse, dense or full form, wherein density represents an 

essential criterion. By means of illustration, and for an effective 

assessment of our proposed algorithm, the possible number of edges 

in G7 is calculated as (13*12)/2=78, where 55 edges have been selected, 

yielding a density range of 55/78=70%. 

As Table 3 indicates, the graphs display varying densities, reflecting 

the different service nodes’ composition. Ten graphs have been 

selected based on the benchmark, revealing different density rates, 

ranging from 10% to 100%.  

Three of the graphs reflecting our benchmark graphs highlighted 

density have been selected, namely:  

• g1 is a sparse graph, with a number of edges too close to the 

minimal number of edges;  

• g10 is a dense graph, where the number of edges is too close to 

the maximum number of edges; 



• g5 is a graph ranging between sparse and dense that displays a 

density range of 50%. 

It is also worth noting that each of the displayed results 

corresponding values relates to an average of 10 runs. 

The settings parameters used are presented in table 4. 
Table 4. The setting parameters of E-BPSO 

Name of parameters Adopted value 

Swarm size [50, 200] 

Max iteration   500 

Problem dimension  [12, 20] 

C1 2.0  

C2  2.0 

W [0,1] 

 
This subsection deals with a comparative study involving the 

various techniques applied in our proposed design. The aim is to 
highlight the advantages brought about by our advanced E-BPSO 
algorithm. 

 
Figure 4: Comparative study involving the E-BPSO, BPSO, GA, FBR and 

OS algorithms. 

 
Figure 4 shows the different techniques implemented in our E-BPSO 
algorithm compared to the BPSO, GA, FBR, and OS. The E-BPSO turns 
out to be an enhanced version of the standard BPSO algorithm, 



designed to boost its performance by substituting the sigmoid function 
with a new equation (10) within a multidimensional environment. As 
for the GA rests on a three-operation design, relying on the selection, 
crossing, and mutation processes. Concerning the FBR, it depends on 
the forward, backward and refinement procedures. Regarding the OS, 
it helps maintain the most optimal solution that involves a CPLEX 
reliant method. 

5.1. The E-BPSO versus BPSO experiment 

Both E-BPSO and BPSO have been implemented on the three selected 

graphs: g1, g5 and g10, applying both cost and execution-time 

measures, with similar parameters being implemented to both 

algorithms.



 

 

 

 

 

 
a: Cost based comparison between E-BPSO and BPSO on g1  b : Execution-time based comparison between E-BSPO and BPSO on g1 

 

 

 
c : Cost based comparison between E-BPSO and BPSO on g5  d : Execution-time based comparison between E-BSPO and BPSO on g5 

 

 

 
e : Cost based comparison between E-BPSO and BPSO on g10  f : Execution-time based comparison between E-BSPO and BPSO on g10 

Figure 5: Comparison between E-BPSO and BPSO on g1, g5 and g10. 



 

 

Accordingly, one may well note that in all cases, and regardless of 
the rate the HQ bears, the E-BPSO appears to achieve an execution 
time that is noticeably lower than that achieved by the BPSO. Such 
results could explain the BPSO apparent complexity, which exceeds 
higher that of the E-BPSO, as highlighted by both algorithms’ 
equations. Regarding the cost related graphs, one can also notice that, 
in most cases, the E-BPSO turns out to exhibit lower cost rates than 
the BPSO. 

5.2. Experimental results 

We have used the CPLEX [45] (an IBM developed optimization 
software package that serves to solve the integer programming 
problems), to compute the optimal solution (OS). For comparison 
purposes, the FBR algorithm, initially developed by [7], was applied as 
an approximate service-placement algorithm, along with the GA, as set 
up by [6], widely maintained as an effective GA-based placement 
optimization algorithm. 

We administered more than 2150 experiments, and the reached 
findings turn out to demonstrate that our E-BPSO algorithm helps 
bring about rather effective results in terms of not only sparse graphs 
but also dense graphs. Indeed, the entirety of the E-BPSO algorithm 
achieved results appear to outperform remarkably those attained via 
the FBR and GA algorithms within the same response time interval. 
For illustration purposes, some of the achieved results are displayed 
below. Indeed, as Table 5 indicates, we have studied the different 

possible scenarios relevant to parameters 𝛼, 𝛽1 and 𝛽2, as delivered by 
service providers. 

Table 5. Choice of 𝛼, 𝛽1 and 𝛽2 

Service provider 𝛼 𝛽1 𝛽2 average cost 

sp1 40 20 10 10411 

sp2 40 10 20 11350 

sp3 20 10 40 11228 

sp4 20 40 10 10650 

sp5 10 40 20 10962 

sp6 10 20 40 11130 

 
 As can be noticed, the minimum cost turns to be provided by choice 
of 𝛼 =40, 𝛽1=20 and 𝛽2=10, with respect to all experiments. It seems 



 

 

logical that the inter-cloud communication cost proves to be more 
expensive than the intra-cloud communication cost. Therefore, the 
parameter values have been selected as follows: 

• 𝛼 =40 designates the hosting units’ coefficient; 

• 𝛽1 =20 denotes the hybrid communication coefficient; 

• 𝛽2=10 refers to the public communication coefficient. 

5.2.1. Cost 
Among the ten graphs figuring in Table 3, three are going to be 

considered, specifically: a sparse graph (Figure 6), a complete graph 
(Figure 8), and a dense graph (Figure 7), in addition to nine different 
HQ values (ranging from 10% to 90 % of the considered graphs’ 
hosting quantity). 

 

 
 Figure 6:  Cost comparison between the E-BPSO, GA, FBR and OS in relation 

to graph G1 

 

Figure 6 depicts the cost values generated by the FBR, GA, BPSO 
and OS models, relevant to the G1 graph in Table 3, at a density range 
of 10%. 

As can be noted, the E-BPSO cost values appear to be consistently 
lower than the FBR ones, except for the case where HQ is equal to 80%. 
The differences in costs recorded between E-BPSO and FBR appear to 
decrease with increased HQ and vice versa. For instance, at 10% HQ, 



 

 

the recorded difference proves to be very high (16%). These results 
have their explanation in the sparse graphs displaying a low number 
of edges (inter-nodal links), and, consequently, the possible solutions 
turn out to be too low, too.  

Noteworthy, also, are the GA achieved results, which slightly 
outperform those attained by the E-BPSO. This finding can be justified 
by the GA emitted execution time, which appears to surpass that 
emitted by the E-BPSO. 

Figure 7: Cost comparison between the E-BPSO, GA, FBR and OS in relation to 

graph G10. 

 

Figure 7 illustrates the cost rates reached on a full graph basis. They 
highlight well that the E-BPSO achieved costs are too close to the most 
optimal solutions. Similarly, it appears to obtain effective results, 
exceeding those achieved by the FBR, concerning all cases. They reveal 
a distinct rate of around 50%, concerning the case when the HQ rate is 
10%. The GA tends to register cost rates that are too close to those 
obtained by the E-BPSO. 

In terms of execution-time cost, the E-BPSO achieved results prove 
to be rather effective than the FBR attained ones, except for the cases 
when the HQ exceeds the threshold of 70%, in which the FBR values 
tend to be equal to, or even slightly exceeding, the E-BPSO values. In 
practice, however, the HQ should not exceed the threshold of 50% 



 

 

since any company seeking to minimize costs does not often deploy 
more than 50% of its resource requirements. 

Figure 8:  Cost comparison between the E-BPSO, GA, FBR and OS in relation 

to graph G5. 

Figure 8 highlights the cost rates attained on a dense graph within 
a density range of 50%. It indicates well that the E-BPSO tends to 
perform more effectively than the FBR in most HQ variation cases, 
except for when HQ is equal to 90%. One could also note that the most 
optimum cost rate difference achieved between the E-BPSO and FBR 
is 23%, attained at an HQ level of 20%. Noteworthy is that the GA 
tends to record cost levels that are somehow too close to, though 
sometimes slightly higher than, those scored by the E-BPSO. 

Analysis of Figures 6-8 reveals that, regardless of graph type, the E-
BPSO yields more effective results than the FBR, particularly 
regarding the dense graphs, where the E-BPSO tends to perform rather 
efficiently. 

5.2.2. Execution time 

This subsection is focused on examining the second important 
parameter: execution time, by analyzing the three relevant graphs 
associated with figures 9, 10 and 11. 



 

 

Figure 9: Comparison of execution-time performance between the E-BPSO, GA, 

FBR and OS concerning graph G1. 

Figure 9 illustrates the G1 graph execution time parameter 
regarding the OS, FBR, GA and E-BPSO. As can be noted, the GA is 
discovered to be more than twice faster than the OS, while the E-BPSO 
and FBR prove to be more than three times faster than the GA. It has 
also been revealed that the E-BPSO appears to record an execution 
time that is noticeably lower than that scored by the FBR, except when 
the HQ is equal to 80%. 

 



 

 

 
Figure 10: Comparison of execution-time performance between the E-BPSO, 

GA, FBR and OS concerning graph G10. 

 

Accordingly, it has been discovered that the GA appears to record 

an execution-time performance that is highly effective than that scored 

by the OS. Inversely, however, both the E-BPSO and FBR tend to score 

a noticeably better result than that achieved by the GA. Figure 10 also 

reveals that, for any HQ value, the E-BPSO proves to record the most 

optimum execution-time level. The execution time difference recorded 

between both the FBR and E-BPSO turns out to be of the rate of 36%. 

 

 



 

 

 
Figure 11: Comparison of execution-time performance between the E-BPSO, 

GA, FBR and OS concerning graph G5. 

  

As Figure 11 indicates, the GA, FBR and E-BPSO tend to register an 
execution time score that is more than twice as low as that recorded by 
the OS, while the E-BPSO and FBR appear to record an execution time 
outperforming that achieved by the GA. Figure 11 also shows that the 
E-BPSO demonstrates an execution time even lower than that 
recorded by FBR for all the HQ values. In effect, the most noticeable 
time difference recorded between the FBR and E-BPSO is of the rate 
of 24%. 

Analysis of Figures 9, 10 and 11 reveals well that, with respect to all 
graphs, the E-BPSO proves to record the most effective execution time 
score, as compared to the OS, GA and FBR. This improvement can be 
justified by the fact that CPLEX pinpointed the most effective solution 
in terms of cost efficiency while processing all the possible solutions, 
i.e., from a set of options, despite the noticeable time latency it takes 
throughout the process. The FBR stands as an iterative algorithm 
displaying a fixed number of iterations, which entails a minimum 
execution time to be maintained. Regarding the GA, it demonstrates a 
more significant time latency in respect of the E-BPSO, owing mainly 
to the large size population it encloses, whose genetic operations are 
noticeably consuming in terms of time. 



 

 

5.2.3. Comparative study and discussion 

 
Table 6 illustrates the average percentage improvements brought 

about by the E-BPSO, in respect of the entirety of the BPSO, GA, FBR, 
and OS algorithms, in terms of cost and execution time efficiency. 
These rates refer to the various HQ mean values relevant to each 
graph. For instance, the E-BPSO provided cost improvement 
percentage, in relevance to the FBR, is of the rate of 12.69 (graph g1). 
Note that G1 is a sparse graph, G10 is a dense graph, and G5 is a graph 
with 50% density. The percentage improvement value is computed via 
equation (12). 

 
Percentage of improvement ( ) /EBPSO X EBPSO= −  (12) 

where EBPSO is the value obtained by the E-BPSO algorithm and X 
is the value obtained by OS, FBR, GA or BPSO algorithms. 

 
Table 6. The E-BPSO provided average improvement percentages in relation 

to the examined algorithms. 
% of average 
improvement 

Cost Execution time 

Graph OS FBR GA BPSO OS FBR GA BPSO 

G10 -2,71 4,87 -0,84 0,17 95 18,59 85,51 48,32 

G5 -3,06 7,57 -1,32 0,24 94,9 10,13 10,1 55 

G1 -0,86 12,69 -0,39 0,66 96,4 11,41 69,7 51,1 

 
Analysis of the table also reveals that the proposed E-BPSO 

algorithm tends to yield rather effective results than the BPSO in terms 
of cost and execution time. In relation to the GA and OS, however, the 
E-BPSO appears to exhibit slightly less effective results in terms of 
cost, within a rate of 2% compared to the GA and a rate of 4% 
compared to the OS. Yet, in terms of execution time, the E-BPSO 
proves to record far more highly effective results, highlighting its 
supremacy over both the OS and GA. This finding can be justified by 
the fact that even though the OS helps effectively retrieve the most 
optimal solution, it turns out to generate greater execution time 
exceeding the rate of 94%. Similarly, the GA also appears to generate 
an execution time significantly exceeding that registered by the E-
BPSO. 



 

 

Finally, the E-BPSO attained results, achieved in terms of execution 
time and cost, prove to outperform noticeably those reached via FBR. 
Only in some cases where the HQ proves to exceed the rate of 70% did 
the obtained values appear to equal the E-BPSO scored ones, wherein 
the FBR achieved results appear to be slightly higher. Practically, 
however, the HQ rate should not exceed the threshold of 50%, as a 
company seeking to minimize costs should not usually deploy more 
than 50% of its resource needs. 

6. CONCLUSION 

This paper presented an enhanced algorithm, dubbed E-BPSO, to 
optimize the SBA placement in a hybrid cloud. It has been designed to 
reduce the cost of service deployment with a minimal execution time 
parameter for an efficient selection of the most optimal service 
placement solution. Thus, the advanced E-BPSO helps resolve the 
problem of premature convergence and local optima, significantly 
affecting the service placement application in the hybrid cloud, making 
it highly distinguishable and relevant to the standard BPSO algorithm. 

The reached experimental results reveal that the proposed 
algorithm E-BPSO appears to display a remarkably effective 
performance compared to the OS, FBR and GA algorithms in terms of 
both cost and execution time. It is worth noting that if the number of 
services is small, the difference between the BPSO and the E-BPSO 
turns out to be similar in terms of cost and execution time. But, if the 
number of services is large, the difference in execution time becomes 
noticeable. However, E-BPSO falls when the number of services is 
high, or the HQ is greater than 70%. 

Our future work will improve and extend the proposed algorithm to 
be applied to a real workflow that considers new constraints and the 
dynamic environment.   
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