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Abstract. This paper presents a unified model for two complemen-
tary approaches of code reuse: Traits and Delta-Oriented Programming
(DOP). Traits are used to modularly construct classes, while DOP is a
modular approach to construct Software Product Lines. In this paper,
we identify the common structure of these two approaches, present a core
calculus that combine Traits and DOP in a unified framework, provide
an implementation for the ABS modelling language, and illustrate its
application in an industrial modeling scenario.

1 Introduction

Systematic and successful code reuse in software construction remains a challenge
and constitutes an important research problem in programming language design.
The drive to digitalization, together with the fundamental changes of deployment
platforms in recent years (cloud, multi-core), implies that modern software must
be able to evolve and it must also support variability [33]. The standard reuse
mechanism of mainstream object-oriented languages—class based inheritance—
is insufficient to deal adequately with software evolution and reuse [14, 24] and
provides no support for implementing software variability.

Traits are a mechanism for fine-grained reuse aimed at overcoming the lim-
itations of class-based inheritance (see [9, 14, 25] for discussions and examples).
Traits are sets of methods, defined independently of a class hierarchy, that can
be composed in various ways to build other traits or classes. They were originally
proposed and implemented in a Smaltalk-like, dynamically typed setting [14,
34]. Subsequently, various formulations of traits in a Java-like, statically typed
setting were proposed [3, 6, 22, 26, 28, 29, 36].
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Delta-oriented programming (DOP) [1, Sect. 6.6.1], [31] is a flexible and mod-
ular approach to implement Software Product Lines (SPL) [27]. Its core element
is the delta, an explicit, structured construct for characterizing the difference
between two program variants: DOP realizes SPL by associating deltas with
product features (not necessarily one-to-one), which allows for a flexible and
modular construction of program variants [32]. DOP is an extension of Feature-
Oriented Programming (FOP) [1, Sect. 6.1], [2], a previously proposed approach
to implement SPLs, where deltas are associated one-to-one with product fea-
tures and have limited expressive power: like in DOP they can add and modify
program elements (e.g., classes and attributes3), however, they cannot remove
them. The explicit, flexible link between features and source code as realized in
DOP is key to keep design-oriented and implementation-oriented views in sync.
DOP was implemented on top of Java [21] and in the concurrent modeling
language ABS [10], where it has been successfully used in industry [16, 18].

In this paper, we observe (and justify in Sect. 3.1) that, while deltas are
ideal to realize inter-product reuse, they are unsuitable to achieve intra-product
reuse. It is, therefore, natural to combine deltas and traits into a single lan-
guage that ideally supports flexible inter- as well as flexible intra-product reuse.
Moreover, we also observe (and justify in Sect. 3.2) that most delta and trait op-
erations are nearly identical from an abstract point of view: they add attributes
to an existing declaration, they remove attributes, and they modify existing at-
tributes. It is, therefore, natural to unify the operations provided by deltas and
traits. Such a unification simplifies the language and makes it easier to learn (it
has a smaller number of concepts). Based on these observations, we design (in
Sect. 3.3) a minimal language with a completely uniform integration of traits
and deltas. Moreover, we implement our design in the concurrent modelling lan-
guage ABS [10] and illustrate its application in an industrial modeling scenario.
Indeed, ABS represents an ideal platform for our investigation as it supports
DOP, but it so far lacks a construct for intra-product reuse: evaluations of ABS
against industrial requirements repeatedly identified intra-product reuse mech-
anisms [15, 30] as an important factor to improve usability.

Paper organization. In Sect. 2 we introduce the FABS and FDABS languages
which formalize a minimal fragment of core ABS [20] and its extension with
deltas [10], respectively. In Sect. 3 we introduce the FTDABS language which
formalizes our proposal by adding traits on top of FDABS. We explain and
motivate our design decisions systematically with the help of an instructive ex-
ample. In Sect. 4 we provide a formal semantics in the form of a rule system that
eliminates traits and deltas by “flattening” [26]. In Sect. 5 we present the imple-
mentation of our ABS extension. In Sect. 6 we illustrate how it is applied in an
industrial modeling scenario. In Sect. 7 we discuss related work and conclude.

3 As usual in the OOP literature, with attribute we mean any declaration element,
i.e., a field or a method, in contrast to the usage in the UML community, where
attribute means only field.



P ::= ID CD

ID ::= interface I [extends I] { HD }
CD ::= class C [implements I] { AD }
AD ::= FD | MD

FD ::= I f

HD ::= I m(I x)
MD ::= HD { s return e; }

Fig. 1. FABS syntax

interface IAccount {

Int withdraw(Int amount);

}

class Account() implements IAccount {

Int withdraw(Int amount) {

if (balance-amount >= 0) { balance = balance-amount; }

return balance;

}

}

Fig. 2. Bank account example in FABS

2 FDABS: A Minimal Language for ABS with Deltas

We first present (in Sect. 2.1) FABS, a minimal fragment of core ABS [20], and
then (in Sect. 2.2) recall—as previously shown for ABS in [10]—how deltas add
the possibility to construct SPLs by factoring out the code that is common to
different products in the SPL.

2.1 FABS: Featherweight ABS

The syntax of FABS is given by the grammar in Fig. 1. The non-terminal P rep-
resents programs, ID interface declarations, CD class declarations, AD attribute
declarations, FD field declarations, HD header declarations, MD method decla-
rations, e expressions, and s statements.4 As usual, X denotes a finite sequence
with zero or more occurrences of a syntax element of type X. Our development
is independent of the exact expression and statement syntax, so we leave it un-
specified. Our examples use standard operators and statements whose syntax
and semantics is obvious.

The code snippet in Fig. 2 illustrates the FABS syntax. It is a fragment of
an application that manages bank accounts. Withdrawals that would result in a
negative balance are not carried out.

2.2 FDABS: Adding Deltas to FABS

Delta-Oriented Programming implements SPLs by adding three elements to the
base language: a feature model which encodes the variability available in the SPL;

4 ABS includes other features, like datatypes and concurrency, that we do not include
in FABS as they are orthogonal to the delta and trait composition mechanisms.



L ::= M K ∆ P

∆ ::= delta d {IO CO }
IO ::= adds ID | removes I | modifies I [extends I] { HO }
HO ::= adds HD | removes m

CO ::= adds CD | removes C | modifies C [implements I] { AO }
AO ::= adds FD | removes f | adds MD | removes m | modifies MD

Fig. 3. FDABS syntax: productions to be added to Fig. 1

a set of deltas that implement the variability expressed in the feature model; and
configuration knowledge which links the feature model to the deltas.

The grammar resulting from the addition of DOP to FABS is shown in Fig. 3.
An SPL L consists of a feature modelM, configuration knowledge K, a (possibly
empty) list of deltas ∆, and a (possibly empty or incomplete) base program
P , defined as in Fig. 1. We leave the precise definition of the feature model
and configuration knowledge unspecified, as it is not the focus of this work
and invite the interested reader to look at [10] for a possible syntax for these
elements. Deltas have a name d and a list of operations IO on interfaces and
operations CO on classes. These operations can add or remove interfaces and
classes, or modify their content by adding or removing attributes. Moreover,
these operations can also change the set of interfaces implemented by a class or
extended by an interface by means of an optional implements or extends clause
in the modifies operation, respectively. Finally, it is also possible to modify the
declaration of a method, with the modifies operation: in this operation, the new
code can refer to a call of the original implementation of the method with the
keyword original.

We illustrate this extension of FABS by declaring an SPL over the example
in Fig. 2. We add two variants to the original code: one that enables interest
payment, identified by the feature “Saving” and parameterized by the interest
rate, and one that permits a negative balance, identified by the feature “Over-
draft” and parameterized by the overdraft limit. A visual representation of the
corresponding feature model is shown in Fig. 4.

We exemplify delta operations with delta dOverdraft shown in Fig. 5 which
implements the feature “Overdraft”. The parameter of “Overdraft” is encoded
by the field limit.5 Moreover, dOverdraft adds a setter method for that field,
and it modifies withdraw to take the limit into account.

3 FTDABS: Adding Traits to FDABS

To motivate the design of the FTDABS language, we first demonstrate (in
Sect. 3.1) that deltas cannot be used for intra-product code reuse. Then (in

5 ABS uses parameterized deltas to manage feature parameters, which we do not in-
clude in our language to keep it as simple as possible.



Banking

Saving Overdraft
Int interest Int limit

Fig. 4. Visual representation of the feature model of the bank account example

delta dOverdraft {

modifies Account {

adds Int limit;

adds Unit setLimit(Int value) { limit = value; }

modifies Int withdraw(Int amount) {

if (balance-amount+limit >= 0) { balance = balance-amount; }

return balance;

}

}

}

Fig. 5. The dOverdraft delta in FDABS

Sect. 3.2) we argue—as previously shown in [14]—that traits are a nice fit in-
stead. Finally (in Sect. 3.3), we show how deltas and traits can be used in
collaboration to smoothly integrate intra- as well as inter-product code reuse.

3.1 Motivating Traits

In the previous subsection we used deltas to construct three variants of the
Account class: the base product, one with a feature that allows saving with in-
terest, and one with a feature allowing overdraft. One can also imagine that
a bank wants to have all these variants available at the same time to satisfy
different client needs. The result would be three very similar classes Account,
AccountSaving and AccountOverdraft: in this case, intra-product code reuse would
be highly useful to avoid the duplication of the common parts of the three classes.

Deltas, however, cannot implement intra-product code reuse: by design, they
associate each delta operation to one class, and it is thus impossible to use them
to add the same code to different classes. Instead, traits, discussed in Sect. 3.2,
are a well-known and very flexible approach for factoring out code shared by
several classes. Moreover, in Sect. 3.3, we will illustrate our novel approach for
combing deltas and traits, which exploits traits also for inter-delta code reuse
(i.e, code reuse across different deltas and the base program).

3.2 FTABS: Adding Traits to FABS

Historically, traits and deltas were developed independently from each other
in different communities (traits in the OOP community, deltas in the context
of SPL). Accordingly, they are usually presented in quite different styles with



different notational conventions. Perhaps for these reasons, the surprisingly close
analogies between traits and deltas have so far not been pointed out.

Traits are structurally simpler than deltas, because (i) they are declared in-
dependently of classes and interfaces and (ii) they satisfy the so called flattening
principle [26], which states that each trait declaration just introduces a name for
a set of methods and using a trait in a class declaration is the same as declaring
the associated methods in the body of the class. Traits can be composed using
operators6 (where the first argument is always a trait) such as: (i) disjoint sum
(taking as second argument a trait having method names disjoint with those
of the first argument, resulting in a new trait that is their union); (ii) override
(similar, but the methods in the second argument override those in the first);
(iii) method exclusion (the second argument is a method name that is removed
from the resulting trait); (iv) method alias (which duplicates a given method by
supplying a new name).

The crucial observation is that these composition operators, except method
aliasing, are present in the class-modify operation of deltas as well (where they
have as implicit first argument the set of methods in the modified class): disjoint
sum (with a singleton set of methods as second argument) corresponds to adds,
overriding to modifies (without original),7 method exclusion to removes.

We show in Fig. 6 our extension of FABS with traits. A program with traits
PT is a finite number of trait declarations TD with an FABS program P using
these traits. A trait is declared with the keyword trait, given a name t, and
defined by a trait expression TE. A trait expression defines a set of methods
by either declaring the methods directly, referencing other traits t, or applying
a trait operation TO to a trait expression. The trait operations are the same
as those of deltas, with the exception that adds and modifies manipulate a set
of methods (described by a trait expression TE) instead of a single method.
Moreover, our modifies trait operation is actually an extension of the trait over-
ride operation: each overriding method may contain occurrences of the keyword
original to refer to the implementation of the overridden methods (in the same
way as in deltas). In previous proposals of traits in a Java-like setting (see [3] for
a brief overview) the attributes found in a trait (i.e., fields and methods accessed
with this in method bodies) are listed in a separate declaration as requirements
to classes that will use the trait. Here we adopt the convention from deltas to
let requirements implicitly contain all undefined attributes invoked on this.

The last production in Fig. 6 overrides the production for attribute decla-
rations in Fig. 1 by extending it with the possibility to import a trait into a
class and thus make use of it. This latter extension is the only change that is
necessary in the syntax of FABS classes for them to use traits.

In Fig. 7 we illustrate traits in FTABS with a new implementation of the
Account class that uses a trait tUpdate that can be shared by classes AccountSaving
and AccountOverdraft. The trait defines an update method which performs an

6 We mention those proposed in the original formulation of traits [14].
7 To the best of our knowledge, the original concept is not present in any formulation

of traits in the literature. It can be encoded in traits with aliasing.



PT ::= TD P
TD ::= trait t = TE

TE ::= { MD } | t | TE TO
TO ::= adds TE | removes m | modifies TE

AD ::= FD | MD | uses TE

Fig. 6. FTABS syntax: productions to be added to Fig. 1—the last production overrides
the production in the last line of Fig. 1 (the differences are highlighted in gray)

trait tUpdate = {

Int update(Int amount) {

// this assignment is in reality a complex database transaction:

balance = balance+amount;

}

}

class Account() implements IAccount {

uses tUpdate

Int withdraw(Int amount) {

if (balance-amount >= 0) update(-amount);

return balance;

}

}
Fig. 7. The tUpdate trait and the refactored Account class in FTABS

unconditional update of the account’s balance. The trait tUpdate is then re-used
by the three different classes to define their withdraw method.

3.3 FTDABS: Combining Traits and Deltas

Our chosen style of declaration for traits makes it extremely simple to combine
traits and deltas without the need to introduce further keywords and with merely
one change in one syntax rule. The key observation is that the production rule
for trait operations TO in Fig. 6 and the one for delta operations on methods in
Fig. 3 (final three slots in rule for AO) are identical, with the small exception
that the adds and modifies trait operations work on a set of methods (described
by a trait expression TE) instead of a single method. Hence, we can unify trait
and delta operations by simply replacing delta operations on methods by trait
operations. We present the full grammar of the resulting language in Fig. 8.

The desired effect of extending attribute operations to include trait opera-
tions is that we can now use traits and trait operations for the declaration of
deltas, thereby supporting also intra- and inter-delta code reuse. It is worth to ob-
serve that trait declarations are not part of the base program, i.e., traits are not
provided by the base language (the language in which each variant is written)—
therefore, deltas are not able to modify trait declarations and uses clauses in
classes. Our design decision is to provide traits as a construct to enabling code



L ::= M K TD ∆ P

P ::= ID CD

ID ::= interface I [extends I] { HD }
CD ::= class C [implements I] { AD }

AD ::= FD | MD | uses TE

FD ::= I f

HD ::= I m(I x)
MD ::= HD { s return e; }

TD ::= trait t = TE

TE ::= { MD } | t | TE TO

TO ::= adds TE | removes m | modifies TE

∆ ::= delta d {IO CO }
IO ::= adds ID | removes I | modifies I [extends I] { HO }
HO ::= adds HD | removes m

CO ::= adds CD | removes C | modifies C [implements I] { AO }
AO ::= adds FD | removes f | TO

Fig. 8. FTDABS syntax (differences to FDABS syntax in Fig. 3 are highlighted)

delta dOverdraft {

modifies Account {

adds Int limit;

adds Unit setLimit(Int value) { limit = value; }

modifies Int withdraw(Int amount) {

if (balance-amount+limit >= 0) update(-amount);

return balance;

}

}

}
Fig. 9. Refactored dOverdraft delta

reuse in FDABS in the base program as well as in deltas. The alternative de-
sign choice of adding deltas to a base language that provides traits [13] is briefly
discussed below in Sect. 7.

We illustrate the capabilities of the FTDABS language with the refactored
dOverdraft delta in Fig. 9. Observe that dOverdraft does not have to add the
trait tUpdate, because it was already used in the base product as shown in Fig 7.
We achieved the maximal possible degree of reuse, because the method header
of withdraw and the changed guard in its body must be repeated in any case.

Banking

Logging

The capability to use traits inside deltas is a powerful tool
to describe cross-cutting feature implementations in a succinct
manner. Assume we want to add a logging feature as illustrated
in the feature diagram on the right (ABS permits multi-feature
diagrams, i.e., orthogonal feature hierarchies). To implement
logging we create a delta that adds a suitable method call to
update. Since the latter is defined as a trait, we can use trait
composition. First we declare a trait tUpdateLog that uses trait tUpdate, adds
a logger and suitably modifies the original update method, see Fig. 10. Please



trait tUpdateLog = tUpdate

adds { Unit log(Int value) { ... } } // logging facility

modifies { Int update(Int amount) {

original(amount);

log(amount);

}

}

delta dLogging {

modifies Account {

removes update

adds tUpdateLog

}

}
Fig. 10. Using traits inside deltas

observe that the original keyword (which, to the best of our knowledge, is not
present in other formulation of traits) can be used in the same manner within
traits as within deltas to refer to the most recent implementation. The delta
that realizes logging now simply removes the old version of the obsolete update

method and adds the new trait. This has to be done for each class, where the
new trait is to be used, but that is intentional: for example, logging might not
be desired to take place in each call of update throughout the whole product.
This is in line with the general design philosophy of ABS-based languages that
code changes should be specified extensionally (in contrast to aspect-oriented
programming, for example) to facilitate code comprehension and analysis.

4 Semantics

We present the formal semantics of the FTDABS language. The artifact base
AB of an SPL consists of its traits, deltas and base program. Given a specific
product to generate, the semantics eliminates from the artifact base all traits
and deltas to produce an FABS program corresponding to the specified product
(in particular, first eliminating all traits produces an FDABS program). For
simplicity, we suppose in our presentation that all the deltas that do not take
part in the generation of the chosen product have already been removed from
the artifact base and that all the remaining deltas have been sorted following the
partial order in the configuration knowledge K. This initial step is standard in
DOP [4] and allows us to focus on the semantics of traits and delta operations.

4.1 Semantics of Traits

We structure the semantics of traits, shown in Fig. 11, into two rule sets. The
first set formalizes the intuitive semantics of trait operations. This semantics
uses the name function which retrieves the name of a method. We extend that
notation and, given a sequence of field and method declarations AD, also use



T:Adds
name(MD) ∩ name(MD

′
) = ∅

{ MD } adds { MD
′ } . { MD MD

′ }

T:Rems
name(MD) = m

{ MD MD } removes m . { MD }

T:Mods
∀1 ≤ i ≤ n, (MDi = I mi(I x) { return ei; }) ∧ (name(MD

′
i) = mi)

{ MD1 . . . MDn MD } modifies { MD
′
1 . . . MD

′
n }

. { MD
′
1[
e1/original(x)] . . . MD

′
n[

en/original(x)] MD }

T:Trait

(trait t = TE AB) . AB[
TE

/t]

T:Class
name(AD) ∩ name(MD) = ∅

class C implements I { AD uses {MD} }
. class C implements I { AD MD }

Fig. 11. Semantics of traits

name(AD) to obtain the names of the fields and methods declared in AD. Rule
(T:Adds) states that the adds operation combines two sets of methods that have
no name in common. Rule (T:Rems) removes a method only if it exists in the
given set of methods. Finally, rule (T:Mods) implements the modification of
a set of methods. It replaces existing methods MDi with new implementations
MD′i. The latter, however, may refer to the most recent implementation with
references to original which our semantics inlines.

The second set of rules enforces the flattening principle (cf. Sect. 3.2). Rule
(T:Trait) eliminates a trait declaration from a program by replacing occur-
rences of its name by its definition. Finally, rule (T:Class) is applicable after
the traits operations inside a class have been eliminated and puts the resulting
set of method declarations inside the body of the class, provided that there is
no name clash.

4.2 Semantics of Deltas

Due to the large number of operations a delta may contain, we split the set
or reduction rules in three parts. The first part, in Fig. 12, presents the sim-
plest elements of the semantics of deltas, which applies in sequence all the
operations contained in a delta. Rule (D:Empty) is applicable when a delta
does not contain any operation to execute: the delta is simply deleted. Rules
(D:Inter)/(D:Class) extract the first interface/class operation from the delta
and apply it to the full artifact base (denoted AB • IO / AB • CO).

In case when the interface operation is the addition of an interface (rule
(D:AddsI)), the specified interface is added to the artifact base AB, provided
that it was not already declared. In case the interface operation is the removal of
an interface I, the interface with that name is extracted from the artifact base
and deleted (rule (D:RemsI)). The addition and removal of classes is similar.

The rules for modifying interfaces and classes are shown in Figs. 13 & 14. The
structure of these rules is similar to the ones for deltas, in the sense that they ap-
ply in order all the operations contained in the modification. Rule (D:I:Empty)



D:Empty
delta d { } AB . AB

D:Inter
AB = (delta d { IO IO CO } AB

′

AB . (delta d { IO CO } AB
′
) • IO

D:Class
AB = (delta d { CO CO } AB

′
)

AB . (delta d { CO } AB
′
) • CO

D:AddsI
name(ID) 6∈ name(AB)

AB • (adds ID) . ID AB

D:RemsI
name(ID) = I

(ID AB) • (removes I) . AB

D:AddsC
name(CD) 6∈ name(AB)

AB • (adds CD) . CD AB

D:RemsC
name(CD) = C

(CD AB) • (removes C) . AB

Fig. 12. Semantics of deltas: top-level

D:I:Empty
(interface I extends I { HD } AB) • (modifies I { })

. interface I extends I { HD } AB

D:I:Adds
name(HD) 6∈ name(HD)

(interface I extends I { HD } AB) • (modifies I { (adds HD) HO })
. (interface I extends I { HD HD } AB) • (modifies I { HO })

D:I:Rems
name(HD) = m

(interface I extends I { HD HD } AB) • (modifies I { (removes m) HO })
. (interface I extends I { HD } AB) • (modifies I { HO })

D:I:Extends
(interface I extends I { HD } AB) • (modifies I extends I

′ { HO })
. (interface I extends I

′ { HD } AB) • (modifies I { HO })

Fig. 13. Semantics of deltas: interface modification

is applicable when no further modification is requested on the given interface, so
that the result is the interface itself. Rule (D:I:Adds) adds the specified method
header to the interface (provided that no header with this name is already present
in the interface). Rule (D:I:Rems) removes an existing method header from the
interface. Finally, rule (D:I:Extends) is applicable when a modification of the
extends clause is requested, in which case that clause is entirely replaced with
the set specified in the modification.

The rules for class modification in Fig. 14 are very similar to the ones
for interfaces, with two exceptions: first, manipulation (adds and removes) of
method headers is replaced by manipulation of fields (rules (D:C:AddsF) and
(D:C:RemsF)); second, class operations also include trait operations to modify
their method set. Rule (D:C:Trait) applies a trait operation contained in a
delta to the given class simply by applying it to its set of methods.



D:C:Empty
(class C implements I { AD } AB) • (modifies C { })

. class C implements I { AD } AB

D:C:AddsF
name(FD) 6∈ name(AD)

(class C implements I { AD } AB) • (modifies C { (adds FD) AO })
. (class C implements I { FD AD } AB) • (modifies C { AO })

D:C:RemsF
name(FD) = f

(class C implements I { FD AD } AB) • (modifies C { (removes f) AO })
. (class C implements I { AD } AB) • (modifies C { AO })

D:C:Trait
(class C implements I { FD MD } AB) • (modifies C { TO AO })

. (class C implements I { FD (adds { MD } TO) } AB) • (modifies C { AO })

D:C:Extends
(class C implements I { AD } AB) • (modifies C implements I

′ { AO })
. (class C implements I

′ { AD } AB) • (modifies C { AO })

Fig. 14. Semantics of deltas: class modification

5 Integration into the ABS Tool Chain

ABS program:
feature model,
base program,
delta modules,

configuration

Parser

Extended AST

Rewriter

Core AST

Semantic Analysis
and Backend

changed

Fig. 15. Structure of the ABS compiler tool chain

We implemented our ap-
proach as a part of
the ABS compiler tool
chain, as illustrated in
Fig. 15. The tool chain is
structured as a pipeline
of three components. The
parser takes as its input
an ABS program com-
posed of a set of ABS
files, and produces an
extended Abstract Syn-
tax Tree (AST) corre-
sponding to that pro-
gram. The rewriter is
the component responsible for generating the variant corresponding to the se-
lected features. This is done by applying in order the various deltas required
by the selected features: the result is a core AST which does not contain any
deltas. The core AST can then be analyzed by different tools developed for the
ABS language [8]. It can also be executed using one of the ABS code generation
backends [7, 19, 35].

The integration of traits and deltas, motivated and discussed in the previ-
ous sections, was implemented in the ABS compiler tool chain by modifying
the parser and the rewriter components. We stress that, unlike in the previous



sections, the implementation is based not merely on FABS, but on the complete
core ABS language [20]. The parser was extended with the new syntax for traits,
and with the new elements in the delta and class syntax (deltas may use trait op-
erations, classes can use traits). The changes in the rewriter mostly concern the
semantics of deltas that now include trait operations. Moreover, the extended
rewriter eliminates traits in classes and deltas (as in Sect. 4.1): the rewriter now
first eliminates all the traits declared in a program, then it applies the activated
deltas to generate a core AST as before.

The trait extension of ABS is designed to be syntactically and semantically
conservative, i.e., it is backward compatible: legacy ABS code produces the same
result as before with the extended parser and rewriter. Moreover, as the rewriter
still generates a core AST, none of the existing analysis tools and code generation
backends for ABS need to be updated. They can correctly analyse and execute
any ABS program with traits.

Our implementation performs some checks on the input program to make sure
that traits and deltas are well-formed. First, it ensures that any call to original

is performed inside a modifies trait operation. Second, it controls the validity of
the removes operation, i.e., an error is raised if “removes m” is performed on a set
of methods or a class that does not contain m. Third, it controls that traits do
not contain circular definitions. The remaining well-formedness checks for traits
and deltas are delegated to the ABS type system. For instance, if a method is
added twice, or if a method is called that is not part of the class after all deltas
and traits have been applied, then standard ABS type checking will detect that
during semantic analysis of the generated core AST.

6 Using Deltas and Traits in an Industrial Case Study

We adapted the FormbaR [16] case study modelling railway operations8 to
use traits. Among other aspects, FormbaR models components and rules of
operation of a railway infrastructure in a precise and comprehensive manner. It
is to date the largest ABS model with currently ca. 2600 LoC. Deltas contribute
830 LoC and are used to model different scenarios for simulation.

Due to the large number of different track elements and model ranges for
these infrastructure elements, deltas are used for variability management [17]:
Deltas are able to describe different types of track components which then can be
added to a scenario. Traits, on the other hand, are used to encapsulate aspects
or behavior of track elements shared by the core railway operations model. The
following trait, for example, encapsulates that a track element transmits no
information to the rear end of a train:

trait NoRear =

{ Info triggerRear(TrainId train, Edge e){ return NoInfo; } }

We use traits in two situations: as ABS does not have class-based inheritance,
we declare at least one trait for each interface that is implemented multiple times

8 The model is available under formbar.raillab.de



trait Sig = {

[Atomic] Unit setSignal(Signal sig){ this.s = sig; }

SignalState getState() { return this.state; }

Unit setState (SignalState nState, Time t){ this.state = nState;}

}

interface TrackElement { ... }

interface MainSignal extends TrackElement { ... }

class MainSignalImpl implements MainSignal {

uses Sig;

...

}

Fig. 16. Usage of traits in the railway case study

delta RandomDefect;

modifies class TrackElements.MainSignalImpl {

modifies Unit setState(SignalState nState, Time t) {

if (random(100) > 95) this.s!defect(t);

original(nState, t);

}

}

Fig. 17. Usage of a delta with implicit trait in the railway case study

and use it in the implementing classes. The trait in Fig. 16 is used in three dif-
ferent classes (only one of which is shown) that implement different components
of a signal: the methods declared in the trait encapsulate the inner signal state.
The NoRear trait is used in a different scenario: It does not accompany an inter-
face and, hence, is not used in all classes implementing an interface, but only in
a subset that shares behavior, but is not distinguished by type.

In one variant of the railway SPL it is modeled that a signal shows a defect
with a certain probaility after the main signal is set. The delta in Fig. 17 modifies
only one of the classes where trait Sig is used and merely describes the additional
behavior, while calling the original method afterwards.

Trait # methods in trait # classes where used
Sig 3 3
NoSig 1 5
Block 2 2
NoRear 1 10
NoFront 2 3

Table 1. Usage statistics of traits in the FormbaR model

The case study is
an SPL with 7 fea-
tures, 7 deltas and
9 products. Table 1
gives statistics on the
current usage of traits
in the railway study.
The ABS model uses
five traits with one
to three methods each
(only one of the traits
is currently an extension of another trait and requires trait operations). In the
module with 12 classes describing track elements, where 4 of the traits are used,



the number of LoC shrinks from 262 to 203 (-22%). Using traits appears to be
natural and straightforward for the modeler. It makes the railway model consid-
erably easier to read and to maintain.

7 Related Work and Conclusions

We proposed a combination of traits and deltas in a uniform language frame-
work that stresses the similarities between the composition operators. We have
formalized it by means of the minimal language FTDABS, implemented it in the
full language as part of the ABS tool chain, and illustrated its applicabilty in an
industrial modeling scenario. The resulting language is a conservative extension
(syntactically and semantically) of the ABS language.

The commonality between delta and trait operations had not been formally
worked out and put to use in the literature so far. Relevant papers on deltas and
traits have already been discussed above. In addition we mention some work on
using traits to implement software variability and on adding deltas on top of
trait-based languages.

Bettini et al. [5] propose to use traits to implement software variability. It is
noted in [13] that this way to model variability is less structured that traits, i.e.,
traits are less suitable than deltas for the purpose. Lopez-Herrejon et al. [23]
evaluate five technologies for implementing software variability, including the
“trait” construct of Scala, which is in fact a mixin (see [14] for a detailed
discussion about the differences between trait and mixins).

Damiani et al. [13] address the problem of defining deltas on top of pure
trait-based languages (languages, where class inheritance is replaced by trait
composition). The proposal does not permit using traits for inter-delta code
reuse. Moreover, it does not exploit the commonalities between deltas and traits.
Therefore, it results in a quite complex language, containing a disjoint union of
(the operations provided by) deltas and traits. No formal description of the
semantics and no implementation are provided.

The flattening semantics given in Sect. 4 allows to smoothly integrate traits
into the ABS tool chain (cf. Sect. 5). We plan to improve the integration fur-
ther by a type checking phase that identifies type errors before flattening traits
(building on existing type checking approaches for deltas [4, 12, 11] and traits [5]).

In our proposal traits are not assumed to be part of the base language: they
extend DOP by enabling code reuse in the base program as well as in deltas (see
Sect. 3.3). Our proposal to extend DOP with traits can be straightforwardly
added on top of languages that, like Java, support class-based inheritance: the
flattening principle [26] provides a straightforward semantics for using traits
in combination with class-based inheritance. In future work we would like to
extend DOP for Java along these lines and evaluate, by means of case studies,
its benefits with respect to the current implementation of DOP for Java [21, 37].

Acknowledgments. We thank the anonymous reviewers for comments and
suggestions for improving the presentation.
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