Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Frequency-Aware Instance Segmentation for Serial Tissue Sections

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13188))

Included in the following conference series:

Abstract

Serial tissue sections are widely used in imaging large tissue volumes. Navigating to each section is indispensable in the automatic imaging process. Nowadays, the locations of sections are labeled manually or semi-manually. Sections are similar and the border is indiscernible if they stick together, which makes it difficult to locate the sections automatically. In this paper, we present frequency-aware instance segmentation framework (FANet), which can extract shape and size information of sections very well. Firstly, FANet uses discrete cosine transform (DCT) . Secondly, each channel extracts an specific frequency component of themselves. Frequency components from all channels is taken as the multi-frequency description of feature map and finally used to model the channel attention. Additionally, we propose a dataset about the serial sections as benchmark, which contains 2708 images in training set and 1193 images in validation set. Experimental results on the benchmark demonstrate our FANet achieves superior performance compared with the current methods. Our code and dataset will be made public.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100(1), 90–93 (1974)

    Article  MathSciNet  Google Scholar 

  2. Bogner, A., Jouneau, P.H., Thollet, G., Basset, D., Gauthier, C.: A history of scanning electron microscopy developments: Towards “wet-stem’’ imaging. Micron 38(4), 390–401 (2007)

    Article  Google Scholar 

  3. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: real-time instance segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9157–9166 (2019)

    Google Scholar 

  4. Briggman, K.L., Bock, D.D.: Volume electron microscopy for neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22(1), 154–161 (2012)

    Article  Google Scholar 

  5. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  6. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4974–4983 (2019)

    Google Scholar 

  7. Chen, K., et al.: MMDetection: open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  8. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 534–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_32

    Chapter  Google Scholar 

  9. Denk, W., Briggman, K.L., Helmstaedter, M.: Structural neurobiology: missing link to a mechanistic understanding of neural computation. Nat. Rev. Neurosci. 13(5), 351–358 (2012)

    Article  Google Scholar 

  10. Harris, K.M., Perry, E., Bourne, J., Feinberg, M., Ostroff, L., Hurlburt, J.: Uniform serial sectioning for transmission electron microscopy. J. Neurosci. 26(47), 12101–12103 (2006)

    Article  Google Scholar 

  11. Hayworth, K.J., Morgan, J.L., Schalek, R., Berger, D.R., Hildebrand, D.G., Lichtman, J.W.: Imaging atum ultrathin section libraries with wafermapper: a multi-scale approach to em reconstruction of neural circuits. Front. Neural Circ. 8, 68 (2014)

    Google Scholar 

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397 (2017)

    Google Scholar 

  15. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  16. Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6409–6418 (2019)

    Google Scholar 

  17. Joy, D.C.: The theory and practice of high-resolution scanning electron microscopy. Ultramicroscopy 37(1–4), 216–233 (1991)

    Article  Google Scholar 

  18. Kasthuri, N., et al.: Saturated reconstruction of a volume of neocortex. Cell 162(3), 648–661 (2015)

    Article  Google Scholar 

  19. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

    Google Scholar 

  22. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  23. Micheva, K., Smith, S.: Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55(1), 25–36 (2007)

    Article  Google Scholar 

  24. Morgan, J.L., Berger, D.R., Wetzel, A.W., Lichtman, J.W.: The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165(1), 192–206 (2016)

    Article  Google Scholar 

  25. Qin, Z., Zhang, P., Wu, F., Li, X.: Fcanet: frequency channel attention networks. arXiv preprint arXiv:2012.11879 (2020)

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  27. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  28. Shapson-Coe, A., et al.: A connectomic study of a petascale fragment of human cerebral cortex. bioRxiv (2021)

    Google Scholar 

  29. Smith, S.J.: Q&A: array tomography. BMC Biol. 16(1), 1–18 (2018)

    Article  Google Scholar 

  30. Takemura, S.V., et al.: A visual motion detection circuit suggested by drosophila connectomics. Nature 500(7461), 175–181 (2013)

    Article  Google Scholar 

  31. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2020)

    Google Scholar 

  32. Yin, W., et al.: A petascale automated imaging pipeline for mapping neuronal circuits with high-throughput transmission electron microscopy. Nat. Commun. 11(1), 1–12 (2020)

    Article  Google Scholar 

  33. Zhuang, Z., et al.: Discrimination-aware channel pruning for deep neural networks. arXiv preprint arXiv:1810.11809 (2018)

Download references

Acknowledgement

This research was funded by CAS Key Technology Talent Program (No. 292019000126 to X.C.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqing Li or Hua Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, G., Wang, Z., Li, G., Han, H. (2022). Robust Frequency-Aware Instance Segmentation for Serial Tissue Sections. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13188. Springer, Cham. https://doi.org/10.1007/978-3-031-02375-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02375-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02374-3

  • Online ISBN: 978-3-031-02375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics