Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Two-Stage Evolutionary Algorithm Using Clustering for Multimodal Multi-objective Optimization with Imbalance Convergence and Diversity

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13157))

  • 1669 Accesses

Abstract

This paper proposes a two-stage multimodal multi-objective evolutionary algorithm using clustering, termed as TS_MMOEAC. In the first-stage evolution of TS_MMOEAC, the convergence-penalized density (CPD) based k-means clustering is used to divide population into multiple subpopulations. Subsequently, a local archive mechanism is adopted to maintain diverse local Pareto optimal solutions in decision space. In the second-stage evolution, an identical k-means clustering based on distance among individuals in decision space is applied to form multiple subpopulations. In this case, the convergence performance of local Pareto optimal solutions is accelerated. Meanwhile, equivalent Pareto optimal solutions with the imbalance between convergence and diversity are located by a similar local archive method with a larger clearing radius. Experimental results validate the superior performance of TS_MMOEAC, and the proposed TS_MMOEAC is capable of finding equivalent Pareto optimal solutions with the imbalance between convergence and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGAII. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  2. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  3. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  4. Liang, J., Yue, C.T., Qu, B.Y.: Multimodal multi-objective optimization: a preliminary study. In: Yao, X., Deb, K. (eds.) IEEE Congress on Evolutionary Computation, , vol. 1, pp. 2454–2461. IEEE (2016)

    Google Scholar 

  5. Kim, M., Hiroyasu, T., Miki, M., Watanabe, S.: SPEA2+: improving the performance of the strength pareto evolutionary algorithm 2. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 742–751. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_75

    Chapter  Google Scholar 

  6. Deb, K., Tiwari, S.: Omni-optimizer: a generic evolutionary algorithm for single and multi-objective optimization. Eur. J. Oper. Res. 185(3), 1062–1087 (2008)

    Article  MathSciNet  Google Scholar 

  7. Zhou, A.M., Zhang, Q.F., Jin, Y.C.: Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans. Evol. Comput. 13(5), 1167–1189 (2009)

    Article  Google Scholar 

  8. Tanabe, R., Ishibuchi, H.: A framework to handle multimodal multiobjective optimization in decomposition-based evolutionary algorithms. IEEE Trans. Evol. Comput. 24(4), 720–734 (2020)

    Article  Google Scholar 

  9. Tanabe, R., Ishibuchi, H.: A niching indicator-based multi-modal many-objective optimizer. Swarm Evol. Comput. 49, 134–146 (2019)

    Article  Google Scholar 

  10. Yue, C.T., Qu, B.Y., Liang, J.: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans. Evol. Comput. 22(5), 805–817 (2017)

    Article  Google Scholar 

  11. Li, G., et al.: A SHADE-based multimodal multi-objective evolutionary algorithm with fitness sharing. Appl. Intell. 51(12), 8720–8752 (2021). https://doi.org/10.1007/s10489-021-02299-1

    Article  Google Scholar 

  12. Zhang, W.Z., Li, G.Q., Zhang, W.W., Liang, J., Yen, G.G.: A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization. Swarm Evolut. Comput. 50, 100569 (2019)

    Article  Google Scholar 

  13. Liu, Y., Ishibuchi, H., Nojima, Y., Masuyama, N., Shang, K.: A double-niched evolutionary algorithm and its behavior on polygon-based problems. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 262–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_21

    Chapter  Google Scholar 

  14. Tanabe, R., Ishibuchi, H.: A review of evolutionary multimodal multiobjective optimization. IEEE Trans. Evol. Comput. 24(1), 193–200 (2019)

    Article  Google Scholar 

  15. Liu, H.L., Chen, L., Deb, K., Goodman, E.D.: Investigating the effect of imbalance between convergence and diversity in evolutionary multiobjective algorithms. IEEE Trans. Evol. Comput. 21(3), 408–425 (2017)

    Google Scholar 

  16. Liu, Y.P., Ishibuchi, H., Yen, G.G., Nojima, Y., Masuyama, M.: Handling imbalance between convergence and diversity in the decision space in evolutionary multimodal multiobjective optimization. IEEE Trans. Evol. Comput. 24(3), 551–565 (2020)

    Google Scholar 

  17. Lin, Q.Z., Lin, W., Zhu, Z.X., Gong, M.G., Coello, C.A.C.: Multimodal multi-objective evolutionary optimization with dual clustering in decision and objective spaces. IEEE Trans. Evol. Comput. 25(1), 130–144 (2021)

    Article  Google Scholar 

  18. Wang, W.L., Li, G.L., Wang, Y.L., et al.: Clearing-based multimodal multi-objective evolutionary optimization with layer-to-layer strategy. Swarm Evol. Comput. (2021). https://doi.org/10.1016/j.swevo.2021.100976

    Article  Google Scholar 

  19. Tanabe, R., Ishibuchi, H.: A Decomposition-based evolutionary algorithm for multi-modal multi-objective optimization. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 249–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_20

    Chapter  Google Scholar 

  20. Liu, Y.P., Ishibuchi, H., Nojima, Y., Masuyama, N., Han, Y.Y.: Searching for local Pareto optimal solutions: a case study on Polygon-based problems. In: Zhang, M.J., Tan, K.C. (eds.) 2019 IEEE Congress on Evolutionary Computation (CEC 2019), pp. 896–903. IEEE (2019)

    Google Scholar 

  21. Liu, Y.P., Yen, G.G., Gong, D.W.: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies. IEEE Trans. Evol. Comput. 23(4), 660–674 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61873240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanliang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, G., Wang, W., Wang, Y. (2022). Two-Stage Evolutionary Algorithm Using Clustering for Multimodal Multi-objective Optimization with Imbalance Convergence and Diversity. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science(), vol 13157. Springer, Cham. https://doi.org/10.1007/978-3-030-95391-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95391-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95390-4

  • Online ISBN: 978-3-030-95391-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics