Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FocAnnot: Patch-Wise Active Learning for Intensive Cell Image Segmentation

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2020)

Abstract

In the era of deep learning, data annotation becomes an essential but costly work, especially for the biomedical image segmentation task. To tackle this problem, active learning (AL) aims to select and annotate a part of available images for modeling while retaining accurate segmentation. Existing AL methods usually treat an image as a whole during the selection. However, for an intensive cell image that includes similar cell objects, annotating all similar objects would bring duplication of efforts and have little benefit to the segmentation model. In this study, we present a patch-wise active learning method, namely FocAnnot (focal annotation), to avoid such worthless annotation. The main idea is to group different regions of images to discriminate duplicate content, then evaluate novel image patches by a proposed cluster-instance double ranking algorithm. Instead of the whole image, experts only need to annotate specific regions within an image. This reduces the annotation workload. Experiments on the real-world dataset demonstrate that FocAnnot can save about 15% annotation cost to obtain an accurate segmentation model or provide a 2% performance improvement at the same cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Bonnin, A., Borràs, R., Vitrià, J.: A cluster-based strategy for active learning of RGB-D object detectors. In: ICCV Workshops, pp. 1215–1220 (2011)

    Google Scholar 

  3. Chen, B.k., Gong, C., Yang, J.: Importance-aware semantic segmentation for autonomous driving system. In: IJCAI, pp. 1504–1510 (2017)

    Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  5. Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: Scale-aware semantic image segmentation. In: CVPR, pp. 3640–3649 (2016)

    Google Scholar 

  6. Chyzhyk, D., Dacosta-Aguayo, R., Mataró, M., Graña, M.: An active learning approach for stroke lesion segmentation on multimodal MRI data. Neurocomputing 150, 26–36 (2015)

    Article  Google Scholar 

  7. Dou, Q., Chen, H., Jin, Y., Yu, L., Qin, J., Heng, P.-A.: 3D deeply supervised network for automatic liver segmentation from CT volumes. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 149–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_18

    Chapter  Google Scholar 

  8. Dutt Jain, S., Grauman, K.: Active image segmentation propagation. In: CVPR, pp. 2864–2873 (2016)

    Google Scholar 

  9. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV, pp. 2650–2658 (2015)

    Google Scholar 

  10. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: ICML, pp. 1183–1192 (2017)

    Google Scholar 

  11. Hoogi, A., Subramaniam, A., Veerapaneni, R., Rubin, D.L.: Adaptive estimation of active contour parameters using convolutional neural networks and texture analysis. IEEE Trans. Med. Imaging 36(3), 781–791 (2017)

    Article  Google Scholar 

  12. Iglesias, J.E., Konukoglu, E., Montillo, A., Tu, Z., Criminisi, A.: Combining generative and discriminative models for semantic segmentation of CT scans via active learning. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 25–36. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_3

    Chapter  Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  14. Konyushkova, K., Sznitman, R., Fua, P.: Introducing geometry in active learning for image segmentation. In: ICCV, pp. 2974–2982 (2015)

    Google Scholar 

  15. Konyushkova, K., Sznitman, R., Fua, P.: Learning active learning from data. In: NeurIPS, pp. 4228–4238 (2017)

    Google Scholar 

  16. Lin, C.H., Mausam, M., Weld, D.S.: Re-active learning: active learning with relabeling. In: AAAI (2016)

    Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  18. Mahapatra, D., Bozorgtabar, B., Thiran, J.-P., Reyes, M.: Efficient active learning for image classification and segmentation using a sample selection and conditional generative adversarial network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 580–588. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_65

    Chapter  Google Scholar 

  19. Mahapatra, D., Buhmann, J.M.: Visual saliency based active learning for prostate MRI segmentation. In: Zhou, L., Wang, L., Wang, Q., Shi, Y. (eds.) MLMI 2015. LNCS, vol. 9352, pp. 9–16. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24888-2_2

    Chapter  Google Scholar 

  20. Mahapatra, D., et al.: Active learning based segmentation of Crohn’s disease using principles of visual saliency. In: ISBI, pp. 226–229 (2014)

    Google Scholar 

  21. Mansoor, A., et al.: Deep learning guided partitioned shape model for anterior visual pathway segmentation. IEEE Trans. Med. Imaging 35(8), 1856–1865 (2016)

    Article  Google Scholar 

  22. Möller, T., Nillsen, I., Nattkemper, T.W.: Active learning for the classification of species in underwater images from a fixed observatory. In: ICCV (2017)

    Google Scholar 

  23. Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: ICML, p. 79 (2004)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017)

    Article  Google Scholar 

  26. Song, Y., et al.: Accurate cervical cell segmentation from overlapping clumps in pap smear images. IEEE Trans. Med. Imaging 36(1), 288–300 (2017)

    Article  Google Scholar 

  27. Volpi, M., Tuia, D.: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55(2), 881–893 (2017)

    Article  Google Scholar 

  28. Xing, F., Xie, Y., Yang, L.: An automatic learning-based framework for robust nucleus segmentation. IEEE Trans. Med. Imaging 35(2), 550–566 (2016)

    Article  Google Scholar 

  29. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

  30. Yang, Y., Ma, Z., Nie, F., Chang, X., Hauptmann, A.G.: Multi-class active learning by uncertainty sampling with diversity maximization. Int. J. Comput. Vis. 113(2), 113–127 (2015)

    Article  MathSciNet  Google Scholar 

  31. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  32. Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2017)

    Article  Google Scholar 

  33. Yu, L., Yang, X., Chen, H., Qin, J., Heng, P.A.: Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI, pp. 66–72 (2017)

    Google Scholar 

  34. Zhou, Z., Shin, J., Zhang, L., Gurudu, S., Gotway, M., Liang, J.: Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally. In: CVPR, pp. 7340–7349 (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFC1001703, in part by the National Natural Science Foundation of China under Grant 61825205, Grant 61772459, and in part by the National Science and Technology Major Project of China under Grant 50-D36B02-9002-16/19.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuiguang Deng , Jianwei Yin or Honghao Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, B., Deng, S., Yin, J., Zhang, J., Li, Y., Gao, H. (2021). FocAnnot: Patch-Wise Active Learning for Intensive Cell Image Segmentation. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 350. Springer, Cham. https://doi.org/10.1007/978-3-030-67540-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67540-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67539-4

  • Online ISBN: 978-3-030-67540-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics