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Abstract—Interactions between synchronous machines (SMs) 

and grid forming converters (GFMs) will become increasingly 

relevant as the power system transitions from a conventional 

fossil fueled synchronous based system to a renewable 

generation rich and converter-based system. This paper 

investigates and confirms the possibility of electromechanical 

oscillatory modes between conventional SMs and converter 

connected generation using a GFM control algorithm as well 

as between two GFMs. The study employs small-signal models 

and performs small-signal eigenvalue analysis. Moreover, 

parametric sweeps are performed, to investigate the impact of 

network and GFM control parameters in controlling the 

electromechanical modes. 

Index Terms—Control, dynamics, electromechanical 

oscillations, grid-forming converter, power electronics, power 

systems, small signal stability, virtual synchronous machine. 

I. INTRODUCTION 

The urgency associated with climate action is well 

understood, and the acceleration of the integration of 

renewable energy sources (RESs) within the electricity grid 

is becoming a necessity if global temperature levels are to 

remain within acceptable levels [1]. Power converters are 

required to interface most RESs to the electricity system and 

due to their very different characteristics, can potentially 

introduce stability issues related to the reduction of inertia, 

voltage and frequency regulation, and loss of synchronizing 

torque [2], amongst other challenges. GFMs are one of the 

recommended approaches to facilitate the transition from 

conventional synchronous generation to converter 

interfaced generation (CIG). 

GFM is a term incorporating a grid-tied converter 

controlled with the specific inclusion of voltage and 

frequency regulation [3]. This is different from the grid 

following converters (GFLs) which track the voltage signal 

and inject the specified power. There is a broad range of 

control philosophies under the GFM heading, each with 

several different implementations and benefits. Some of the 

most popular schemes currently within the literature include 

droop control [4], virtual oscillator control (VoC) [5] and 

the classification most similar to the generic GFM used in 

this investigation, the VSM [6]. 

There are several references in the literature, 

investigating the impact of a high penetration of CIG on 

power systems [7], but these are typically looking at grid-

following converters as opposed to GFMs. In addition, there 

are several references describing different GFM approaches 

and implementations. However, there is limited research 

into the impact of these technologies on the stability of the 

power system as a whole. 

Small-signal analysis of GFMs in parallel connected to 

an infinite bus has been investigated in [8]. Additional small 

signal analysis looking at robust stability margins using the  factor has been performed by the same authors in [9]. 

These papers look at synchronverters, a type of swing 

equation based VSM, operating in parallel as well as 

synchronverters in parallel with GFLs. 

A simplified frequency analysis for 100% CIG systems 

has been outlined in [10]. The approach exploits similarities 

between the SM and GFMs by allowing for the aggregation 

of multiple machines. This is possible by considering the 

similarities between the swing equation and the GFM 

control structure, which is different to the one used in this 

study. However, they do not provide a small-signal analysis 

of the electromechanical oscillations themselves. 

A detailed small-signal analysis has been performed in 

[11]. In this study the authors use eigenvalue analysis to 

determine when a system comprised of two machines (all 

combinations of SMs, GFLs and GFMs) become unstable 

with increasing penetrations of the CIG based machine (and 

of the GFL specifically in the GFM-GFL case). It is seen 

from participation factor analysis that there are destabilising 

interactions between the fast voltage control of the 

converters and the relatively slow voltage control of the PSS 

and AVR of the SM. It is also found that as GFL penetration 

increases there reaches a point where there is not enough 

contribution from the SM (or GFM) to slow the frequency 

variations and therefore the phase-locked loop (PLL) of the 

GFL loses synchronism. They also explore the impact of 

transmission line dynamics and the power system operating 

point and expand their study to larger systems: first the 

IEEE-9 bus and then a modified version of the South-East 

Australian network. However, again, electromechanical 

modes involving GFMs are not discussed in detail. 

From the literature, it can be determined that with the 

inclusion of GFMs, further consideration to dynamic 

interactions needs to be given, since new instability 

mechanisms might appear in a complex power system. 

Therefore, considering power systems will most probably 

involve SMs for years to come, the interactions between 
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CIG and SMs should be well understood. Additionally, with 

GFMs being recognised as a potential solution for 

maintaining stability, interactions specifically between SMs 

and GFMs should be studied carefully. 
The fact that GFMs control active power through the 

voltage angle, and have a resultant inherent frequency 
synchronization, suggests the possibility of 
electromechanical interactions between multiple machines 
[10]. Therefore, in this paper an initial investigation into 
interactions between a GFM and an SM as well as between 
two GFMs is performed. To the extent of our knowledge, 
this particular interaction has not been investigated, 
excluding qualitative recognition that this phenomenon is to 
be expected. Moreover, the impact of GFM control gains 
and transmission line lengths on such oscillatory modes and 
interactions between SMs and GFMs is also investigated in 
this paper. It should be noted that the EMT implementation 
of the models in this work allow for easier adaptation for 
future investigations into more complicated or detailed 
systems and components, despite this level of detail not 
being necessary to identify electromechanical modes of 
oscillation. This future adaptability was considered because 
high frequency phenomena have been proven to be 
significant in the stability of systems with substantial levels 
of CIG [8], [11], [12]. This paper is mainly interested in 
investigating electromechanical modes, hence a relatively 
simple (low order) SM model is used. However, a series of 
high frequency oscillatory modes closely associated with 
transmission line dynamics are also identified, one of which 
is found to be of interest in terms of stability limits. This 
investigation, and the SM model used within, is considered 
a preliminary step applied on a smaller system to more 
easily identify and investigate such interactions. A modular 
modelling approach is adopted to allow for easy expansion 
to lager systems and higher order SM model as part of future 
work. 

The remainder of this paper is structured as follows: 
section II describes the modelling of the network 
components and details the layout of the system; section III 
discusses the results and analysis of the performed 
simulations and section IV provides the conclusions. 

II. METHODOLOGY AND MODELLING 

The small signal modelling in this work involves 

identifying the nonlinear state-space models of each 

component and considering how they connect together to 

form a wider network. The differential algebraic equations 

(DAEs) associated with each component are then linearised 

and connected to form a single full network small signal 

model (SSM). This section briefly describes the 

linearisation process and then proceeds to detail the models 

of each component used within this study. 

A. Linearisation Process 

A common approach to study electromechanical (and 

any other relevant) modes associated with a machine or 

interactions between multiple machines is to perform a 

small-signal analysis. To achieve this, the system being 

analysed must be linear, but power systems are known to be 

highly nonlinear and complex. Therefore, it must first be 

linearised around the steady state operating point. First, the 

DAEs of the system are arranged in state-space form as, 

x =Ax+Bu=f(x,u) (1) 

y=Cx+Du=g(x,u) (2) 

where x is the vector of state variables and u and y the 

vectors for the inputs and outputs, respectively. The dot 

above the state vector in (1) suggests differentiation with 

respect to time. A is the state matrix, B is the control matrix, 

C is the output matrix and D is the feedforward matrix. 

The linearisation is then achieved by introducing a small 

disturbance, denoted by the prefix Δ, performing the Taylor 

series expansion and then discarding all terms above first 

order, resulting in small deviation equations of the form, 
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It should be noted that intermediate steps for 

understanding have been omitted but the full procedure can 

be found in [13]. 

B. Component Modelling 

The component models included in this investigation are 

a SM, a GFM, RL branch transmission lines and a static 

constant impedance RL load. 

1) Modelling Convention 

The state-space equations are derived in the dq0 frame 

with each machine operating in its own reference frame 

dependent on its rotor angle, or virtual rotor angle for the 

GFM. The common reference frame can be chosen in one 

of two ways. The first is to determine the ‘centre of inertia’ 

and the second is to simply chose a machine to be the 

reference. The second approach was adopted for this 

investigation because it offers easier implementation with 

no requirement to parameterise the inertia constant and 

damping of the GFM. Additionally, the second approach 

avoids the resultant redundant eigenvalue of the first 

approach [13]. 

Since the whole model is implemented in dq0 terms, 

whenever a Park transform would have been required to 

transform signals in the abc-frame to the dq0-frame, there 

is instead a simple vector rotation dependent on the angle 

between the two dq0 frames. The same is true for any 

instance of an inverse Park transform. 

Several different modules within the network contain 

series RL or parallel capacitive components. In the balanced 

dq0 frame, these can be realised with equations: 

idq
 = 1

L
v1dq

− v2dq
  − R

L
+jω idq 

(5) 



 

vdq =
1

C
idq − i2dq

  − jωvdq 
(6) 

where the currents, voltages, resistance, and inductance are 

displayed in figure 1.  Note, the subscript ‘dq’ denotes the 

phasor represented by d and q components as  =  − . The equations for the RL and the C segments can be 

extracted and used separately depending on the 

configuration. For example, the transmission lines are 

implemented as simple RL impedances modelled in 

accordance with (5) but neglecting the capacitive dynamics 

described by (6). 

 

Figure 1.  RLC circuit diagram. 

2) Synchronous Machine 

The SM model comprises the swing equation along with 

an RL impedance but neglects rotor dynamics as in this 

paper we are focusing on identifying oscillatory modes in 

the electromechanical range. The swing equation captures 

the relationship between the SM rotor speed (and hence 

angle) and the difference between the input mechanical and 

output electrical power. This relationship can be written as, 

ω = 1
2H P − P − KΔω − KΔω 

(7) 

δr
 =ωr (8), 

where ωr and δr are the rotor speed and angle, respectively. 

The damping coefficient is termed KD and the inertia 

constant, H. Finally, the mechanical and electrical powers 

are denoted by Pm and Pe, respectively. A speed governor 

has been included which has been simplified to a 

proportional gain, Kgov, acting on a change of rotor speed to 

augment the mechanical input power. 

The electrical part of the SM model consists of the 

resistance and inductance resulting from the armature coils 

in addition to the inductance attributed to the armature 

reaction. The combined impedance is termed the 

synchronous impedance, Zs=Rs+jXs, with Rs being the 

armature resistance and Xs combining the effects of the 

armature leakage inductance and armature reaction.  The 

transformation from the SM dq0-frame to the common dq0-

frame is performed behind the synchronous impedance. 

However, there is a possible alternative whereby the 

transformation is performed at the SM terminals (after the 

synchronous impedance). This synchronous impedance is 

modelled dynamically, in accordance with (5). 

3) Grid Forming Converter 

The power converter section of the GFM is represented 

with an averaged model which neglects switching effects 

and the time delay usually associated with the employment 

of pulse width modulation (PWM). An inverse Park 

transform is used to translate the converter voltage and 

angle from the control scheme directly into the voltage at 

the output of the converter. There is also a harmonic filter 

containing a series RL impedance followed by a parallel 

capacitance at the GFM output terminal. This is of the 

configuration seen in figure 1. and modelled in accordance 

with (5) and (6). 

The control structure of the GFM contains two main 

loops. The first is the power loop which manipulates the 

virtual rotor speed, and hence angle, with a PI controller 

acting on the difference between the reference power Pref 

and the measured (or feedback) power Pfb. This is the same 

principle as the SM swing equation and the two systems can 

be directly compared in their second order dynamic 

responses by looking at the characteristic equation of their 

transfer functions. This allows for the equivalent inertia and 

damping values to be described in terms of the PI controller 

gains,   and . From this it is found that   impacts inertia 

while both   and  impact damping. However, it can be 

noted that there are differences in the steady state response 

since the PI controller acts to bring the output power exactly 

to its reference, that is there is no damping feedback term 

acting on the change of rotor speed as there is in the swing 

equation (although the red droop branch in fig. 2 essentially 

solves this). The second loop is the voltage loop, acting as 

an AVR by maintaining the voltage magnitude at the 

filtering capacitor, Vfb, to the reference value, Vref. 

In the test case with only GFMs, described later, one of 

the machines is also equipped with frequency droop control 

to balance the active power in the system. The block 

diagram for the GFM control structure is displayed in fig. 2. 

Note, the frequency droop branch (displayed in red) is only 

present for one of the machines in the only-GFM test case, 

for better equivalence to the SM-GFM test case. 

 

  
Figure 2.  GFM control scheme block diagram. 

4) Static Load 

The load is modelled as a constant RL impedance. The 

values of the resistance and inductance are calculated with 

Rload=
Vn

2

Pload
  (9) 

Lload=
Vn

2

(ω
0
×Q

load
)

  
(10), 



 

where Vn is the base voltage and ω0 is the base electrical 

frequency. The desired load active and reactive powers are 

denoted by Pload and Q
load

, respectively. 

C. Systems Under Study 

Two networks with the layout in fig. 3 are analysed in 

this work. The ‘swing’ machine being the SM in one test 

case and the droop-augmented GFM in the other. Further 

signals within the machines include icvdq
 which is the 

current through the RL section of the GFM output filter and 

ismdq
 which is simply equivalent to itl1dq in this case. 

Additionally, vcvdq
 is the voltage behind the filter impedance 

in the GFM and Edq is the internal generated voltage of the 

SM. In the GFM-GFM network, all GFM specific 

parameters or signals are given a subscript of ‘1’ if related 

to the left machine or ‘2’ if related to the right. The 

modularity of the networks is achieved through 

development of state space models for each component 

separately (including individual transmission line 

branches). Following this, the interconnection of signals is 

achieved with an additional module pertaining to voltage 

specification and Kirchhoff’s current law for each bus. 

Finally, the initial states required for the SSMs were 

obtained using a power flow analysis with the aid of 

MATPOWER to solve the steady-state equations. 

 
Figure 3.  Final network layout single line diagram. 

The SSMs have been validated by comparing step 

responses with corresponding Simulink models. 

D. Small Signal Analysis  

For both network configurations being tested, small-signal 

analysis utilising eigenvalues is performed. The use of 

eigenvalue analysis [13] offers insight into the oscillatory 

modes that might be excited after a disturbance such as a 

load increase. With this, potential electromechanical modes 

can be identified by calculating the frequency of the modes 

and extracting those in the proximity of up to 3 Hz. 

Typically, with SMs, local modes are in the range of 1 to 3 

Hz and interarea modes are less than 1 Hz [14]. The 

eigenvalues and associated frequency and damping ratio are 

obtained as in [13]. The next step is to calculate the 

participation factor of each state for each mode. This gives 

an idea of which states are the most involved in specific 

oscillatory modes and is especially useful in identifying 

interactions between two machines. The calculation, from 

[14], is 

p
ij
=

ψ
ij
 × ϕ

ij


∑ |n
i=1 ψ

ij
|× ϕ

ij
  (11) 

where ψ and ϕ are the left and right eigenvectors, 

respectively. 

Finally, parametric sweeps are performed to determine 

the impact on the small-signal stability of different network 

elements such as transmission line lengths or GFM controls. 

The parameters associated with each test case are displayed 

in table i. The GFM parameters are common to both 

machines in the only-GFM network with the swing machine 

also having a droop parameter of Kdroop=0.5100 ×106.  

TABLE I.   NETWORK PARAMETERS. 

SM Parameter Value 
GFM 

Parameter 
Value 

H 4 KP 9×10
-9

 

KD+Kgov ≅10 KI 4×10
-8

 

RS 10.58 Ω  KPVC
 0.1 

LS 0.5052 H KIVC
 50 

Pm 50 MW Rf 5.29 Ω 

Vref 230 kV Lf 0.1347 H 

Network 

Parameter 
Value Cf 1 μF 

RTL1=RTL2 35.688 Ω Pref 50 MW 

LTL1=LTL2 0.1272 H Vref 230 kV 

 

III. RESULTS AND ANALYSIS 

A.  SM-GFM Network Eigenvalue Analysis 

 The procedure explained above is performed for the 

network containing the SM and GFM combination. The 

eigenvalues are presented in table ii.  This table also 

includes the frequency of the mode and the corresponding 

damping ratio. Using this information, the 

electromechanical mode is identified as λ9 & λ10. Following 

this, the participation factors representing the contribution 

of each state to each oscillatory mode were calculated and 

those with significant contribution (>10%) were added to 

the table. 

TABLE II.   SM-GFM-LOAD SYSTEM EIGENVALUES. 

Eigenvalues Value Frequency 
Damping 

Ratio 

Contributing 

States 

λ1 & λ2 
-9.56 ·10

3
 

±j8.42·10
4
 

13.396 kHz 11.28 % ismdq
, itl2dq

 

λ3 & λ4  -77.07±j3843 612 Hz 2.01 % vzdq
, icvdq

 

λ5 & λ6  -52.38±j3043 484 Hz 1.72 % vzdq
, icvdq

 

λ7 & λ8 
−216.15 

±j722.71 
115 Hz 28.65 % 

icvdq
, ismdq

, 

itl2dq
 

λ9 & λ10 
-1.5661 

±j10.57 
1.68 Hz 14.65 % ωr, δGFM 

 

The most significant states in contributing to the 

electromechanical mode are ωr and δGFM. This clearly 

suggests an interaction between the SM and GFM, 



 

confirming the expected behaviour. This information is 

useful in considering future control of power systems.  

Techniques previously used to address interactions between 

SMs will likely need to be considered as GFM-coupled 

RESs are integrated. 

High frequency oscillatory modes are also present, the 

most interesting being λ3 to λ6 which are seen to have very 

low damping. Despite the low damping ratio associated 

with some of these modes, they are damped very quickly in 

time. The damping ratio represents attenuation of the mode 

per cycle and with high frequency, the oscillation does not 

last long in time. Through parametric sweeps (excess to 

those in the scope of this paper), the eigenvalues of λ3 to λ6 

were affected by the GFM voltage loop controls as well as 

the transmission line lengths, as expected from the 

contributing states which includes a small participation 

from the voltage loop integrator state, Vint, of 0.19 % for λ3 

& λ4 and 0.27 % for λ5 & λ6. 

The very fast oscillatory mode of 13.396 kHz was only 

found to be affected by the transmission line length and not 

by any of the GFM control gains. Also, the remaining mode 

of 115 Hz is discussed later with the KP parametric sweep. 

B. GFM-GFM Network Eigenvalue Analysis 

In a similar manner, the eigenvalues and corresponding 

attributes for the GFM-GFM network are presented in table 

III. The electromechanical mode is this time identified to be 

λ13 & λ14. Again, the participation factors are calculated and 

contributing states of each mode are shown in table iii. The 

states with the highest contribution to the electromechanical 

modes are found to be Pint1
, Pint2

, and δVSM2
. These states 

are associated with the active power loops of the GFMs and 

suggest an electromechanical interaction. High frequency 

modes are also present in this network with analysis being 

TABLE III.  GFM-GFM-LOAD SYSTEM EIGENVALUES. 

 

equivalent to those in the SM-GFM network but with the 

addition of two oscillatory modes denoted in this network 

by λ7 to λ10. These are found to have similar characteristics 

to λ3 to λ6 for both networks. 

C. Parametric Sweeps 

To further the contribution of this work, parametric sweeps 

were performed for several different network and control 

parameters to determine their impact on the oscillatory 

modes.   

The eigenvalues of interest are displayed with non-essential 

modes being omitted. The first investigation increased the 

lengths of the transmission lines. The resistance and 

reactance per kilometer of both lines are chosen by 

calculating the required rated current and selecting from the 

relevant table of cable sizes [15]. Fig. 4a displays the result 

of varying the TL1 and TL2 lengths from 40 to 120 km 

simultaneously. The next two investigations are performed 

Eigenvalues Value Frequency 
Damping 

Ratio 
Contributing 

States 

λ1 & λ2 
-9.51·10

3
 

±j8.36·10
4
 

13.303 

kHz 
11.31 % itl1dq

, itl2dq
 

λ3 & λ4  -73.7±j4271 680 Hz 1.73 % vz1dq
,vz2dq

 

λ5 & λ6  -75±j3636 579 Hz 2.06 % vz1dq
,vz2dq

 

λ7 & λ8 -12.46±j3065 488 Hz 0.41 % 
vz1d

, icv1d
 

vz2d
, icv2d

 

λ9 & λ10 -14.52±j2514 400 Hz 0.58 % 
vz1q

, icv1q
 

vz2q
, icv2q

 

λ11 & λ12 -155.1±j316.5 50.4 Hz 44 % itl1dq
, itl2dq

 

λ13 & λ14 -2.8±j3.7 0.589 Hz 60.4 % 
Pint1

, 
Pint2

,δVSM2
 

 
 

Figure 4. Eigenvalues of interest for parametric sweep of the SM-GFM-load network for (a) TL1 & TL2, (b) KP, (c) zoomed KP, (d) KI and of the 

GFM-GFM-load network for (e) KP1, (f) KI1 and (g) Kdroop. 

(a) 

(e) 

(g) (f) 

(b) 

(d) 

(c) 



 

for the GFM power loop PI controller gains. The plots for 

the proportional gain, KP, and integral gain, KI, are 

displayed in fig. 4b to 4c and fig. 4d, respectively. KP was 

swept from 0 to 1 ×10-6 and KI was swept from 1 ×10-12 to 

1 ×10-5. The same sweeps are performed in the GFM-GFM 

case and similar trends are observed; therefore, these have 

not been presented here. Additionally, the PI gains of the 

power loop for the droop-augmented-GFM were swept with 

the same range as in the other GFM. These sweeps are 

displayed in fig. 4e and fig. 4f. Finally, the impact of the 

frequency droop gain, Kdroop, is investigated. This 

parametric sweep is displayed in fig. 4g and ranges from 0 

to 10(100 ×106). 

1) SM-GFM Network Parametric Sweep Results 

When analysing fig. 4a, it is seen that with an increasing 

length, the damping ratio of the electromechanical mode 

decreases from 16.84 % to 12.88 %. In this test case the 

mode remains stable but in a different system, the impact of 

transmission line length might be more critical.  

Altering the controller gains shows significant impact on 

the electromechanical mode in fig. 4c and fig. 4d. The gain 

KI is seen to cause small-signal instability of the 

electromechanical mode as it is increased whereas KP can 

fully damp the interaction, however the oscillation at 

115 Hz, seemingly related to network current dynamics, is 

brought towards the unstable region, as seen in fig. 4b. 

2) GFM-GFM Network Parametric Sweep Results 

The increase of the proportional and integral gains, KP1
 

and KI1
, are seen to fully damp the electromechanical 

interaction and this time no adverse effect is found on any 

higher frequency modes. The droop gain sweep in fig. 4g 

provides evidence of another highly impactful control 

parameter associated with the GFM, allowing for higher 

controllability of the electromechanical mode dynamics. 

Like the transmission line length sweep, it is seen that the 

electromechanical mode is brought towards the unstable 

region, potentially causing instability if this mode was 

initially closer to the y-axis. 

IV. CONCLUSIONS 

This paper presents a preliminary investigation into 

interactions between SMs and GFMs with a focus on 

electromechanical modes. This is achieved with modular 

small-signal modelling, followed by eigenvalue analysis. 

The states corresponding to the electromechanical mode in 

the SM-GFM system were found to be those associated with 

the power loop of the GFM and the swing equation of the 

SM, thereby confirming the presence of electromechanical 

interactions, similarly between two GFMs. Finally, a series 

of parametric sweeps are performed, offering an insight into 

the impact and flexibility that the GFM control provides for 

manipulating the electromechanical mode. 

Small-signal instability is found to occur from high 

values of   as the electromechanical mode traverses into 

the unstable region. In the case of , this mode can be fully 

damped but doing so will bring a higher frequency 

oscillation towards instability. Additionally, for the GFM-

GFM network, it was found that the PI control gains of the 

droop-augmented GFM provided the potential to fully 

damp the electromechanical interaction with no significant 

effect on any higher frequency oscillations. However, 

increasing the frequency droop gain brought the 

electromechanical mode closer to the unstable region, 

similar to increasing the transmission line lengths. 
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