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1. Introduction

Most of the classical literature on multivariate estimation and hypotheses testing for a multivariate
partial linear regression model when the random error limit is normally distributed, but there are cases
in which the random error observations may be dependent but uncorrelated, or the data distribution
belongs to probability distributions it has heavy tails that are heavier than the tails of the normal
distribution. In such a case, the mixed distributions are more appropriate, and one of these distributions
is a matrix-variate generalized modified Bessel distribution. The Matrix-variate generalized modified
Bessel distribution belongs to the family of symmetric heavy-tailed probability distributions and is
considered a continuous probability distribution. In addition, this distribution has special applications
in the market of securities, random signal analysis, quality control, and filtering (Thabane, L., &
Drekic, S. 2003). (Thabane, L., & Drekic, S. 2003) studied the characteristics of the generalized
multivariate modified Bessel distribution of the with its special cases and confirmed that the mixed
probability distributions such as the mixed multivariate normal distribution and the multivariate
student-t distribution as special cases of it, and that the mixed distribution resulted from the
Multivariate normal distribution with a generalized inverse Gaussian distribution as well as its
applications in the Bayesian analysis of the normal multiple linear regression model assuming a
generalized inverse Gaussian distribution as a prior distribution of the variance parameter. (Thabane,
L., & Hag, M. S. 2004) generalized multivariate modified Bessel distribution (symmetric multivariate
generalized hyperbolic distribution) to the matrix-variate generalized modified Bessel distribution and
its special case studies as well as its applications in the Bayesian analysis of the normal multivariate
linear regression model assuming the matrix generalized inverse Gaussian distribution as a prior
distribution of the scale matrix. (Choi, et al. 2009) tested a statistical hypothesis in the Bayesian
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technique of the normal multiple partial regression model and assumed that the parametric part of the
model is a linear multidimensional function while the nonparametric part is an infinite series of
trigonometric functions and deduced upon increasing the sample size that the Bayes factor is under the
null hypothesis of the linear function is consistent, that is, it approaches infinity while it approaches
zero under the alternative hypothesis of the partial linear function.The second section deals with the
description of the multivariate partial linear regression model when the error follows the matrix-variate
generalized modified Bessel distribution. The third section shows some types of kernel functions.
Some methods of selecting the bandwidth parameter were presented in the fourth section. The fifth
section includes the Bayesian estimate of the model parameters when non-informative prior
information is available. The sixth section includes finding the Bayes factor criterion, The predictive
distribution of future observations in the section seventh. While the eight section include a simulation
of generated data from the model. The last section shows the most important conclusions and future
studies.

2. Description of a Multivariate Partial Linear Regression Model

The multivariate partial linear regression model is described according to the following equation:
(Przystalski, M. 2014) (You, J., et al 2013)

Yim =XiBm + 9m(T) + €n 1=12,..,n ,m=12,...k D

Where X; B,, represents the parametric part of the model, and ,, is estimated by one of the parametric
methods, such as the method of least squares, the maximum likelihood, moments, or Bayes ..., and
9m(T;) represents the nonparametric part of the model, which is an unknown smoothing function that
is estimated by one of the nonparametric methods, such as the kernel smoother, nadaraya-watson

smoother, and the Gasser-muller smoother ....., It is possible to write the model defined in equation (1)
in the form of matrices as follows: (AL-Mouel, A. S., & Mohaisen, A. J. 2017)
Y=XB+Wy+e 2)
_yll - Y1k 1 X11 o xlp
y=[: ~ i ,x=[| wo ]
n1 7 Yukd g T xp 7 Amp nxp+1
[Bor  Bok kery(ty —Ti1) -+ kerp(ts —Tis)
..Bpl ﬁpk pHIXK kerh(tl - Tnl) kerh(ts - Tns) nxs
V11 Yik €117 - €1k
y=|i - i Le=|i
LYs1 " Vskdgx €n1 7 Enk nxk
where:

Y: Matrix of response variables of dimension (n x k) and n represents the number of observations and
k represents the number of response variables.

X: A non-random matrix representing the observations of the parametric explanatory variables of
dimension (n x p + 1) and that p represents the number of the parametric explanatory variables.

B: Matrix of model parameters for the parametric part of the dimension (p + 1 x k).

W: The design matrix indicates the kernel weights. It can be taken with other weights such as the

spline, wavelet, and k-nearest neighbor weights. It is of dimension (n x s), and s represents the number
of nonparametric explanatory variables, and kerj,(.) represents the kernel function is as follows:

1 .

ker,(.) = 7 ker(ﬁ)

And that this function is a real, symmetric, and continuous function and that h represents the
bandwidth parameter, they will be mentioned later.
Y : Matrix of parameters of the nonparametric part (additive parameters) of the dimension (s x k).
€: Matrix of random errors of dimension (n % k).

It is possible to rewrite the form defined in Equation (2) as follows: (AL-Mouel, A. S., &

Mohaisen, A. J. 2017)
Yixic = Caxpes+1)Op+s+1)xk T Enxk 3)
Where:C = [X W] , 8=[ 1"
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Assume that the random error matrix of the model has a probability distribution is symmetric heavy
tails represented by the matrix-variate generalized modified Bessel distribution, where the probability
density function can be found using the mixed distributions from the mixed matrix normal distribution
(normal variance mixture) and the generalized inverse Gaussian distribution as follows: (Gallaugher,
M. P.B., & McNicholas, P.D. 2019) (Thabane, L., & Drekic, S. 2003) (Thabane, L., & Hag, M. S.
2004)€|Z~MN, (0,22 ,1,) , Z~GIG(A,,V)

As the probability density function for €|Z is as follows:

1 1 -
f(e|Z)=Te‘ﬁ"(6)T(6)z ' Lo <e< )
(2rz)z |z]2

The probability density function of the random variable Z that follows the generalized inverse Gaussian
distribution is as follows: (Lemonte, A. J., & Cordeiro, G. M. 2011)

G 1
P(Z) = YA 791 exp [_E ((E) + AZ)] 2> 0 (5)

Where: A,v: scale parameters. v: shape parameter.

K, (.): represents the modified Bessel function of the third kind of order v which takes the following
equation: (Gallaugher, M. P.B., & McNicholas, P.D. 2019) (Koudou, A. E., & Ley, C. 2014)

K,(x) = 0.5 fwt”'l exp(—05x(t+t™1))dt x>0 (6)
0

The space of the scale parameters of the distribution is defined according to the following equation:
(Thabane, L., & Drekic, S. 2003)

Y>0 , 120 forv<0
YP>0 , A>0 for v=0 (7
Yp=20 , >0 for v>0
Therefore, the probability distribution of the matrix of random errors (€) and according to the concept
of mixed distributions is as follows:

[oe]

fe = f f(el2) P@2) dz

0

nk

A4 trel ex—1 en

(ﬁ) K@ <\//11/’ <1 * Y )) <1 4 tre’ 62‘1>2 - ®
@)% (2 K,(/7) v

Equation (8) represents the probability density function of the matrix-variate generalized modified
Bessel distribution and is described as follows:

e~MGMB, x(0,%,I, 1,9, v) & vec(e)~MGMB,; (vec(0),ZQI,,1,,v)

Since the matrix Y defined in equation (3) is a linear combination in terms of the matrix ¢ that follows
the matrix-variate generalized modified Bessel distribution, and accordingly, the probability
distribution of the response observations matrix (Y) follows the matrix-variate generalized modified
Bessel distribution. It can be found in the same way as follows: (Thabane, L., & Hag, M. S. 2004)

E(Y|Z) = CO + E(e|Z)
E(Y|Z) =CO

V(Y|2) = V(e|Z)

. (Y|1Z)~MN,,,(C6,Z%,1,)

Therefore, the probability density function of the matrix of (Y) distribution conditional by (Z) (Y|Z)
that follows the mixed matrix normal distribution is as follows:

f(YlZ) = ; e—%tr -co)T(r-co)z~1 (9)
nk n
2rnz)z |Z|2

The probability distribution of (Y) unconditional by (Z) and depending on the concept of mixed
distributions is as follows:

53



Iragi Journal of Statistical Sciences, Vol. 18, No. 2, 2021, Pp (51-64)

ke -
(%)4 KM(JMP<1+W (Y—CG);(Y—CO)E 1))

2

f(Y) = nk n
@n)z |52 K,(VAp)
2v-nk
*(1+t7' (Y—CQ)IP(Y—CQ)Z ) (10)

Express this distribution descriptively as follows:
Y~MGMB, 15(CO 2,1, , 4,9 ,v) & vec(Y)~MGMBH ) (vec(CO),E ®I,, A, ,v)

Where:8: The location matrix with a dimension (p + s + 1 X k). X: The scale matrix with a dimension
(k X k).
2,1, v: shape parameters.

3. Kernel Functions

The kernel functions are used in estimating the regression functions, the spectral functions, and the
probability density functions. These functions can be distinguished through two series, namely, the
optimal kernel functions which reduce the AMISE criterion, and the kernel functions with the least
variance and works to reduce the asymptotic variance, meaning the MISE derivation relative to the
kernel function. (Schucany, W. R., & Sommers, J. 1977). The kernel function has other names,
including (shape, weight, and window function), and the kernel function is a real, symmetric,
continuous, and definite function, and its integral is equal to one. The following table reviews some
types of the kernel function: (Langrene, N. & Warin, X. 2019)

Table (1): Some kernel functions

Kernel Ker(x)
Epanchnikov (3/4)(1—x3?) I(x]<1)
Quartic (15/16)(1 — x?)? I(lx] < 1)
Triweight (35/32)(1 — x*)? I(|x| £ 1)
Triangular a-|xpD I(Jx] < 1)
Gauss (2m)Sexp(—x2%/2) I(|x| < o)
Uniform 0.5 I(Jx] < 1)
Tricube (70/81)(1 — |x]3)? I(|x| £ 1)
Cosine (1/4) cos (g x) I(xl = 1)

4. Some Methods of Selecting the Bandwidth Parameter

The selection of the bandwidth parameter (h) is an essential part of estimating the nonparametric and
semi-parametric regression curve, and that the selection of the bandwidth parameter is more important
than the choice of the kernel function, and there are several names for this parameter, including
(constraint amplitude - bandwidth parameter-smoothing parameter-variance parameter), one of its
characteristics is a non-random, symmetric, and positive parameter, and usually the selection of the
bandwidth parameter is based on the researcher's experience or iterative methods to obtain the best
bandwidth parameter and that this parameter greatly affects the variance and bias, as increasing the
bandwidth parameter leads to a decrease in variance and increase the bias and vice versa, The
researcher must estimate it in a way that balances variance and bias, as well as it represents a function
in terms of sample size so that it meets the following conditions: ( Hardle, W. 1991) (Silverman, B.W.
1986) lim,,,,, h = 0;lim,_,,, nh = o

There are several ways to choose the bandwidth parameter, including:

4.1 Cross Validation Method

This method is considered one of the most used methods for selecting the smoothing parameter if
gradually excludes one value from the response and explanatory variables to determine the parameter
(h) that makes the sum of squares error at its lower end and is sometimes called the (Leave-one-out)
method, The parameter (h) is given by the following formula: (Aydin, D. & Tuzemen, M. 2010)

n
1 _ 2
Vi) == > (= 6711 (n
i=1
Therefore, the bandwidth parameter gives the smallest value for the criterion CV (h) as follows:
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hey = argmin CV (h) (11a)
4.2 Rule of Thumb Method

This method goes back to the world of Deheuvels, which depends on replacing the unknown
smoothing function with the distribution function. It was circulated by Silverman and it is also called
the normal distribution rule. And write its general formula as follows:

1
henump = 6 CV (k) n” 2v+1 (12)
Where (v) denotes the kernel degree and the moments of the odd degree are equal to zero, the kernel
degree (v) represents the first non-zero moment, meaning that the kernel degree must be an even
number, while () indicates the standard deviation of the sample .and CV (k) is constant, as shown in
Table (2) below, and depends on the degree of the kernel. (Silverman, B.W. 1986)

Table (2): The value of CV (k) for some kernel functions and by degree of kernel

Kernel degree

Quiartic

Gaussian

5. Bayesian Estimation of the Parameters of the Multivariate Partial Linear Regression Model
In this section, the parameters of the model defined in equation (3), represented by the location matrix
(6) and the scale matrix (¥) are estimated under the assumption that they are unknown matrices and
that the prior distributions of these parameters are non-informative. The joint prior distribution of (6, X)
is found from Fisher's information by taking the natural logarithm of the two sides of the probability
density function of (Y) conditional by (Z) (Y|Z) and knowing in equation (9) and taking the second
partial derivative relative to (9, Z), the joint prior distribution of (6 ,%|Z) is as follows: (Press, S. J.
2003)

(p+s+1)
P@IZ,Z) =[E]"" 2 (13)
k+1
P(Z|Z) « 2|27 (14)
P(6,%|2) x P(BIZ,2) P(Z|2) (15)
p+s+k+2
P(6,3|2) x |E|” 2 (16)

By merging the joint prior probability distribution defined in equation (16) with the probability
function of (YY) conditional by (Z) defined in equation (9), we obtain the kernel of the joint posterior
probability distribution for (6, X) conditional by the random variable (Z) as follows:

n+p+s+k+2

1 -
P(O,3lY,2) x P(8,51Z) f(Y|8,52) « [Z]7 2z e 2z ¥=cO—cos™ 17y
By adding and subtracting the amount ( C8* ) to the exponential function in equation (17) and which
(6*) represents the maximum likelihood estimator conditional by the random variable Z, it is found by
the partial derivation of the natural logarithm of equation (9) relative to 9:

0 =(CTc)'cTy (18)
And by performing some mathematical operations, we get the following:
_n+k+1  (p+s+1) 1
PMO,IIY,Z) o« 572 |2z exp (— — tr B, z—l)
1 ~ ~

% exp (— 57t (6—6")cTc (6 -8 2-1> (19)
Where:
B,=(Y—co) ' (vy-c) , 8 =(TO)CTY

(p+s+1)

From equation (19) we notice that [|2|‘ 2 exp (— % tr(6-87) cTc(6-8") 2‘1)] it
represents kernel of the matrix normal variance mixture distribution of ( 6 ) and the distribution
~ n+k+1

parameters are(6*,Z X, (CTC)™1), that [|2|‘ 2

-Litr Bzt .
e 2z 73 ] it represents kernel of the inverse

Wishart distribution by parameters(% ,n) of Z.

Therefore, the joint posterior probability distribution of (6 ,%) conditional by the random variable (Z
)(6,Z|Y,Z) is as follows:
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n _nk
PO ,3Y,2) | Bs2 2 2 ( LBy
] ] = exp - T 3
ntkti nk op 27 )
o 5 )
ook
. |ICTCl2 o o tr (6-8%)" cTc (9-87) 5 (20)

(p+s+1)k (p+s+1)
(2rnZ) 2] 2

Where:[‘k(g) . Multivariate Gamma function is calculated as follows: (Nagar, D. K. & Gupta, A. K.
2013)

W= 1_[ rGe+ (1= )/2)
j=1
In order to obtain the joint posterior probability distribution of (6,Z) that is not conditioned by the
random variable Z, we integrate equation (20) relative to (Z) as follows:

PO ,2Y) =pr(9,2|Y,Z) P(Z) dZ

0 k(n+(p+s+1))

8,5 lcreiz (5)

(p+s+1)k n+(p+s+1)+k+1

em)y T E 27 1, (%) K, (/)

P(0,%lY) =

r (Bs+(0-8) crc(o-8)) 3z
¥

* KZv—k(n+(p+s+1)) A‘I)(l +
2

2v—k(n+(p+s+1))
4

r(Bs+(0-8)cTc(o-8))x
¥

To find the posterior marginal probability distribution of the location matrix (8) conditioned by the
random variable (Z), we integrate equation (20) relative to the scale matrix (X) as follows:

| 1+ (21)

P(® |Y,Z)=fp(9,2|y,2) ds
)

n k
AR R WURSCRELED) s - ntlptst)
P@OIY,2) = I |Bs+ (0 -87)c (22)
@) z LG
It is possible to rewrite equation (22) as follow:
|Bs
POIY,Z)=Rk,(p+s+1),r)= (23)

, nt(pts+1)
e+ (0-07)"crc(o-67)B,7Y  *
Where:

n+(p+s+1
nlHetstl,
Rk,(p+s+1),r) =

stk , risdegreeof freedom

P LA n
™) 2z L@
And using property of Box and Tiao. (Box, G. P., & Tiao, G. C. 1973)

|1k + Pix (p+s+1) Q(p+s+1)xk| = |I(p+s+1) +Q (p+s+1)><kPk>< (p+s+1)|
Thus:
R, +s+D.r) B2 IcTclz
y(p+s+1),r 3 2
P(B |Y’Z) = n+(p+s+1) (24)

|I(p+s+1) +(6-8")B,7 (9 - 0) cTC |
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And:
Rk,(p+s+1),r)=R((p+s+1),k1)

n+(p+s+1 n+(pp+s+1
@ty Dprosrn (@ F 5 E Ly

(p+s+1)k n (p+s+1)k n—k+ +s+1
@2 L) @) 2 Ty @ s+

Hence, the posterior marginal probability distribution of the parameter matrix 6 unconditional of the
variable Z is as follows:

_(p¥s+1) K n+(P+s+1
PO el . Tprorny (- EF 4 D)y
h (pts+1)k n—k+@p+s+1)
n 2 l—‘(p+s+1)( 2 )
r _n+(p+s+1)
#lprsin + (0 -8B (0 —07) cTc| 7 (25)

We notice from equation (25) that the posterior marginal probability distribution of 8 is a matrix-t
distribution of the parameters (8, B; , (CTC)™,r = n — k + 1)and is described as follows:
9~Mt(p+s+1).k (é* B3, (CTC)_lr T') , vec(@)~Mt(p+s+1)k(vec(§*) ,B; ® (CTC)_lﬁ T)

And the estimate Bayes under quadratic loss function of (8) is:

O, =0"=(CTC)'CTy (25a)

This estimator is similar if the error of the model follows the matrix normal and matrix-t distribution.

To find the posterior marginal probability distribution of the scale matrix (X) conditioned by (Z), we
integrate equation (20) relative to the location matrix () as follows:

P(z|v,Z)
n nk
|B3|2 272 1 -
= | P(6,2lY,2) db = — 75— exp(— — tr By X 1) (26)
ne n 27
) 5"z 27 T(3)

Equation (26) represents the inverse Wishart distribution of parameters (?n) of the posterior

marginal probability distribution of (¥) conditional by the random variable (Z). Based on Bayes
theorem we conclude that the posterior marginal probability distribution of the scale matrix (X)
unconditioned by (Z) is proper distribution but doesn’t belong to the conjugate family, as follows:

P(Z|Y) = foop(mY,Z) P(2)dz
0

nk
n A\ 4
|Bsl2 (5 By 31
PEIY) = n+k+1 3n_k (1/;1) K2v-nk \//hp(l‘}'trgT)
=177 27 T (3) KGW)
2v-nk
) (1 +LB32_1> ' @27)
Y

And the estimate Bayes of X under quadratic loss function is:

(Y —¢8?)' (Y - o) K,_, (V2h)

R ﬂ, 0.5
B0 = Ebp QY. 2) = s () (28)

6. Bayesian Hypotheses Testing of a Multivariate Partial Regression Model

The Bayes factor criterion is considered one of the important criteria applied Bayesian hypotheses
testing and is defined as the proportion between two statistical hypotheses. It results from dividing the
posterior probability distribution relative to the null hypothesis (H,) on the posterior probability
distribution relative to the alternative hypothesis (H,).This criterion is expressed mathematically as
follows: (Jefferys, H. 1961)

_ P(YIHo) 29

P(Y|Hy)

To test the model, we know the following statistical hypothesis . (AL-Mouel, A. S., & Mohaisen, A. J.
2017)

Hy:Y=COy+e , 6,=1[8y 70" ,2>0

BF
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Hi:Y=CO+e ,2>0 (30)

Under the above statistical hypothesis and based on equation (29), the Bayes factor criterion is as
follows:
Y|0,,%2,Z) P(X) P(Z)d 2 dZ
pp o do ki f(V16027) PO P(Z) 1)
I, 5 Jy F(¥16,%,2) P(Z) P(0) P(Z)d 6 d 5 dZ

We represent the numerator with the quantity (L,) in equation (31) which represents the probability
function of (Y) conditional by (Z) and the knowledge in equation (9) under the null hypothesis
multiplied by the prior distribution of the scale matrix (X) defined in equation (14) and the generalized
inverse Gaussian distribution defined in equation (5).

Lozf f F(Y16,,%,2) P(Z) P(Z) d = dZ
Z X

nk

2rz)z
The integral of equation (32) relative to the matrix (X) represents the kernel of inverse Wishart
distribution by the parameters (%, n).

P(Z +k+1 1 _
LO — J- ( ) f |E|_n > e—ﬁt‘r (Y—CGO)T(Y—Ceo)E 1d 3 dZ (32)
A z

Accordingly:
nk

P(2) )7 T (3)

Ly = 2. 4z (33)
nk 5
erzyz |2
n

l" —

Lop=—— 2 ) (34)

nk n
(m)z |B?
In the same procedure we find the denominator of the equation (31)

L1:f f ff(y|9,z,Z)P(z)P(9)P(Z)dedzdz

Ly —f P(Z) J J 5| ez e gg gy 47 (35)
Z (2m Z) 2
By adding and subtracting( C8*) to the exponential function in equation (35) and which ( 8* )

represents the maximum likelihood estimator which was previously defined in equation (18) and by
performing some mathematical operations, we get the following:

tr (v=c8*) (vy-c6*)z~1
N ey e J, et e g anaz o)
Z @mz)yz °* Iz =2 o
The last exponential function of equation (36) represents the kernel of the matrix normal distribution
conditioned by the variable (Z) relative to (6) by the parameters (8*,(CTC)~! Z) and therefore:

P(Z) e—%t?" (Y—Cg*)T(Y—Cg*)Z_l (271' Z)i(p*-s;l)k
L= f f @ e dE dZ (37)
. (2rnZ)z |Z| |CTC| 1z 2

1)

=27t (=60 (=cO 45 47 (38)

(p+s
P(Z) 2rn Z)
Ly :f nk
z (2rZ)z |CTC|
The integral in equation (38) represents the kernel of inverse Wishart distribution by the parameters
(%,n —(p+s+1)).
Accordingly:

J‘ | | n-— (p+s+1)+k+1
pX
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P(Z) r,k<n—(p-2|-s+1))

Ly = J- k(n—(p+s+1)) n— (p+S+1) dz 39)
Z (m) 2 ICTCIZIle
n—(p+s+1)
[ —2
Ly = k(n—(p+s+1)) n— (p+5+1) (40)
() z ICTCIZIle
To find the Bayes factor criterion, we divide equation (34) on the equation (40) as follows:
n—(p+s+1)
n(3) lcreiz B,
BF = (41)

rstie 2 +s+1
)z 1By (PR )

7. Predictive Distribution of a Multivariate Partial Linear Regression Model

The predictive distribution represents the probability density function for future observations Y; that
is conditioned by a set of current observations Y, so we have future observations (f) for all response
variables, which represent the matrix (Y;). Depending on future observations, the multivariate partial
linear regression model is as follows: (Thabane, L., & Haq, M. S. 2004)

Where:

Y;: The matrix of future observations (f) has a dimension (n; x k).

Cy: Matrix with dimension (n; x (p + s + 1)).

0: The parameter matrix with dimension ((p + s + 1) x k).

€7+ The matrix of future random errors with dimension (n X k).

Since the error matrix (e;) follows the matrix—variate generalized modified Bessel distribution with the
parameters (0, %L, ALY, v), we know that (Yf )is a linear combination in terms of the future error
matrix, therefore (Y, follows the matrix-variate generalized modified Bessel distribution by the
parameters (Cfe, 1L, p 1L, v).

Using the Bayes theory, the predictive distribution of the future matrix Y; is defined by the following
formula:

f(Yf|Y)=L fgf(yf|e,z) P(6,%|Y)d6 d= (43)

Due to the difficulty of finding a predictive distribution from equation (43), we use the concept of
mixed distributions, that is, probability distribution conditioned by the random variable (2).

f(%]y) = f f f f(¥|6,2,2) P(6,21Y,Z) P(Z) do dx dzZ (43a)
Z z 6
We know that the probability density function (Y) conditional by (Z) is described as follows:
(%16,%,2)~MN,, i (Cfe V23, I, )
Therefore, the probability density function for the conditional (Yf )is as follows:

F(410.%,2) = —— ez tr (V7=C;0) (vs—cs0)z? (44)
(2mz) 2 |5] 2

The joint posterior probability distribution of (8,%) conditional by (Z) and previously defined in

equation (20) will be combined with the conditional probability density function (Y;) defined in

equation (44). We obtain the predictive distribution of (Y )conditional by the random variable (Z) as

follows:
f(%|v.z)

T
nptmi@estDAkHL . _itr{(y —c;0) (vs-c )+ (6-8") cTc (9—@*)}2—1
ocfflzl —— ezZtrB3Z e 2Z f=*f f=r

do dx

Assume that:
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~ T ~
Bui = (Y = G6) (Y, = ¢;6) + (6-6) cTC (6-6")
By adding and subtracting (Cfé*) to the parentheses of the first term of B,,; and that (8*)
represents the maximum likelihood estimator conditional by the random variable (Z) which was

previously defined in equation (18) and by performing some mathematical operations, we get the
following:

By = (% = G07)" [, + G 7G| (5 = GO") + (86" +9,) 1 (6 - 0" + 2)
As:

¢ =CC+CTC

¢, = ¢1_1CfT(Yf - Cfé*)

Accordingly:

Flrz) g g [ (g8 i e (v p0)] 2
x

f - EFE gt (078 02) s (-89 2 g s
0

(p+s+1)k
The result of integration relative to (8) is <(2"Z)—kz) and this expression will cancel out with the
lp1]2
constant of proportionality, and therefore:
nr+n+k+1l _ tr _~anT 1. T Y 1
f(v|r,2) ocf|z|‘72 e 27 [ Bs+(vs—cr8") [Inf+cf¢1 crT|(vp-cro?)] = s (46)
z

The integral result of the above equation relative to the matrix X is the reciprocal of the constant of
inverse Wishart distribution by the parameters(%, ng + n).

Where:
Bz = By + (Y — Cp0")" [In, + Crp 7 C7| (¥ — €0

Tlf+Tl
-5

f(%lr.z) « | B+ (¥ — ¢67) [Inf + Cf¢1_1CfT] (Y = :6)
FO1Y,2) o |1 + (% = 607)" I,

_npin
+ o G| (1Gr07) BT (47)
And using property of Box and Tiao. (Box, G. P., & Tiao, G. C. 1973)
| + Pesny Qugsci| = [Ty + @rpsccPrxn |
By performing the same steps as when finding the posterior marginal probability distribution of 6
conditional by (Z), the kernel of predictive distribution of (Y; )conditional by (Z) is as follows:

nf+n
N * - A\T - T2
FOGIY,2) o |1, + (% = G07) B (0 = G07) [, + G 7' 7 @8
Equation (48) represents the kernel of a matrix-t distribution by degree of freedom (n — k + 1) and
~ -1
the parameterS(CfB*, B;, [Inf + Cf¢1_1CfT] )

The predictive distribution of (Yy) that is not conditioned by (2) is as follows:
k
_r _ 3 n+n
| By|™ 2 |1nf +Cry 1CfT| T, (Tf>
Ye|Y) =
r(7]v) npk n+n;—k
@, (5
nf+n

Lup + (G = C0°) B (Y = G07) [, + G G770 (49)

*

Where:
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By=(v-c6") (v-c6?) , & =(C"0)C"y
Accordingly, the Bayesian prediction is as follows:

E(Y;|Y) = C/6° (50)
8. The Experimental Sample

In this section, we discuss the simulation of the mechanism reached in the theoretical side to data
generated by a suggested method from a multivariate partial linear regression model when random
error follows the matrix-variate generalized modified Bessel distribution.
8.1) The Suggested Method for Generating Data

It is difficult to generate random observation from the multivariate partial linear regression model

when the random error follows the matrix-variate generalized modified Bessel distribution. Therefore,
it is resorted to generate these data through mixed distributions, as the matrix normal variance-mean
mixture distribution and the generalized inverse Gaussian distribution previously mentioned were used.

While, random data were generated from the distribution of the multivariate standard normal Z, and
since Z = (€]|Z) * (ZZ )™ and (e) represents the matrix of random errors of the model from which
the observations are to be generated and through the concept of mixed distributions and as follow:

€|lZ=17x(Z2)°5 D
= fe|Z P(2) dZ
Kzvia (\/2)
€=17x 20.5 * 2 T (52)

A\%
Kv(\/ /1‘([)) (w)
Equation (52) represents the matrix of random errors, which follows the matrix-variate generalized

modified Bessel distribution. The following algorithm shows the suggested method for generating
random observation from a matrix-variate generalized modified Bessel distribution:

Stepl: Assume we have the number of observations (n = 100), the number of response variables (k =

2).

Step2: Generate random numbers from the multivariate standard normal distribution with (n)

observations, let the multivariate standard normal random matrix be Z.

Step3: Put €|Z = Z * (Z £)°5, Z represents step (2).

Step4: Find the generated data (¢) which represent the random error observations generated from the

matrix-variate generalized modified Bessel distribution taking into account the assumed values of the

shape parameters( A 1/),1/) defined in table (3).

Step5: For the purpose of generating data from the multivariate partial linear regression model, we

generate the data of the two explanatory variables (p, s = 2) for the parametric and non-parametric part

(X4, X,) and (t, t,) through the following equation:

X =2Xuy

Where u; represents the standard uniform distribution, X; represents the arithmetic mean and they are

usually assumed values, the non-parametric part W represents the kernel weights by represents the

Gaussian kernel function and depending on the rule of thumb to choose the bandwidth parameter, the

non-parametric variables (t;, t;) is a standard normal variable.

Step6: Randomly assumed values are given for (6) and (X) and for shape parameters they are given

random values based on the state of the studied distribution (4,1,v ) > 0 and as in table (3) below.
Table (3): Approved default values for all parameters

DI---
5y
1.5 3 2.5 1 34
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Step7: Substituting step (4) and observations of the two explanatory variables for the parametric part,
the Gaussian kernel weights matrix for the non-parametric part defined in step (5), the assumed values
of the parameters defined in step (6), we obtain (4) models based on the combination between the
assumed values of the response matrix (Y).

8.2) Estimation of Model Parameters

The location matrix (6) and the scale matrix (X) were estimated in a Bayes technique when non-
informative prior information was available and under the quadratic loss function. The comparison for
the estimates was made using the MSE and depending on all the combinations between the default
values shown in table (3) by using a program Matlab-R2016a.

Table (4): MSE for the estimator of location matrix (6) and scale matrix (Z).

Models Gaussian kernel function
@ y,v) h=1.066 n"5 Rank
(7} z ] z
first(5,0.5,2.5) 0.0686 0.0014 3 1
second(5, 0.5, 3.5) 0.0739 0.0131 4 3
Third (7,0.5,2.5) 0.0510 0.0065 1 2
fourth (7,0.5,3.5) 0.0557 0.0255 2 4

We notice from table (4) that the best estimator for (6) and (X) it was at the third and first model
respectively, this estimate is as follows:

P =[1.8864 14106 4.8197 2.9095 4.4682]T .y = 1.4743 1.9521]
1.3652 3.0134 2.3788 1.0046 3.8588 ’ B 1.9521 3.0067

B
The following figure shows the generated and estimated response variables matrix for third model that
are chosen according to the lowest MSE for (6).

Figure (1): generated and estimated observations of the third model

8.3) Bayesian hypotheses testing

After estimating the parameters of the multivariate partial linear regression model, we usually test the
statistical hypotheses, and this section includes a test about the validity of the limitations imposed on
the model using the Bayes factor criterion (B.F.) and compares it with the values that definite by the
Jeffreys (Jeffreys, H. 1961), as follows:

Table (5): Bayes factor criterion (B.F.) based on non-informative prior information and for the
Gaussian kernel function

P, v .F. e decision
A B.F The decisi
,0.5,2. . x 10~ trongly favors H;
5,0.5,2.5 8.0394 x 10~%° S l H
,0.5,2. .5478 x 10~ trongly favors H;
7,0.5,2.5 3.5478 x 10788 S l
,0.5,3. . x 10~ trongly favors H,
5,0.5,3.5 1.8421 x 107%° S l H
(7,0.5,3.5) 8.8190 x 107%° Strongly favors H;

We notice from tables (5) that the values of the Bayes factor criterion are less than one, and this means
that the alternative hypothesis is accepted, that is, the sample was drawn from a population that does
not belong to a generalized modified Bessel population.

9. Conclusions and Future Works
A multivariate partial regression model is used when the error follows the matrix —variate generalized

modified Bessel distribution as an alternative to the model in which the error follows the matrix normal
distribution to find the Bayesian estimations of the model parameters. It found that the posterior

marginal probability distribution of the location matrix 6 follows the matrix-t distribution by the
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parameters (8*,B;,(CTC)™%,r =n —k + 1) defined in equation (25). The posterior probability
distribution of the scale matrix (X) is proper distribution defined in equation (27) as well as finding the
predictive probability distribution of the matrix of future observations which follows the matrix-t

~ -1
distribution by the parameters (C;6",Bs, [Inf + Cf¢>1‘1CfT] ,7 =n —k + 1) defined according to

equation (49), Steadfastly the parameters (v, v) as the value of the parameter (1) increases, we get the
smaller value of the criterion MSE for the matrix estimator 6, and with its decrease, we get the best
Bayesian estimator for ¥ through the criterion MSE. Through the Bayes factor criterion, it was found
that the sample that was used in the generation process was drawn from a population that does not
belong to the generalized modified Bessel population. The two researchers recommend conducting an
application side to implement what was reached in the research, depending on the kernel functions and
bandwidth parameter defined in Sections (3) and (4) respectively and under different loss functions.
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