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 This research includes the Bayesian estimation of the parameters of the multivariate partial 

linear regression model when the random error follows the matrix-variate generalized 

modified Bessel distribution and found the statistical test of the model represented by 

finding the Bayes factor criterion, the predictive distribution under assumption that the 

shape parameters are known. The prior distribution about the model parameters is 

represented by non-informative information, as well as the simulate on the generated data 

from the model by a suggested way based on different values of the shape parameters, the 

kernel function used in the generation was a Gaussian kernel function, the bandwidth 

(Smoothing) parameter was according to the rule of thumb. It found that the posterior 

marginal probability distribution of the location matrix θ and the predictive probability 

distribution is a matrix-t distribution with different parameters, the posterior marginal 

probability distribution of the scale matrix Σ is proper distribution but it does not belong to 

the conjugate family, Through the Bayes factor criterion, it was found that the sample that 

was used in the generation process was drawn from a population that does not belong to 

the generalized modified Bessel population. 
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1. Introduction 

Most of the classical literature on multivariate estimation and hypotheses testing for a multivariate 

partial linear regression model when the random error limit is normally distributed, but there are cases 

in which the random error observations may be dependent but uncorrelated, or the data distribution 

belongs to probability distributions it has heavy tails that are heavier than the tails of the normal 

distribution. In such a case, the mixed distributions are more appropriate, and one of these distributions 

is a matrix-variate generalized modified Bessel distribution. The Matrix-variate generalized modified 

Bessel distribution belongs to the family of symmetric heavy-tailed probability distributions and is 

considered a continuous probability distribution. In addition, this distribution has special applications 

in the market of securities, random signal analysis, quality control, and filtering (Thabane, L., & 

Drekic, S. 2003).  (Thabane, L., & Drekic, S. 2003) studied the characteristics of the generalized 

multivariate modified Bessel distribution of the with its special cases and confirmed that the mixed 

probability distributions such as the mixed multivariate normal distribution and the multivariate 

student-t distribution as special cases of it, and that the mixed distribution resulted from the 

Multivariate normal distribution with a generalized inverse Gaussian distribution as well as its 

applications in the Bayesian analysis of the normal multiple linear regression model assuming a 

generalized inverse Gaussian distribution as a prior distribution of the variance parameter. (Thabane, 

L., & Haq, M. S. 2004) generalized multivariate modified Bessel distribution (symmetric multivariate 

generalized hyperbolic distribution) to the matrix-variate generalized modified Bessel distribution and 

its special case studies as well as its applications in the Bayesian analysis of the normal multivariate 

linear regression model assuming the matrix generalized inverse Gaussian distribution as a prior 

distribution of the scale matrix.  (Choi, et al. 2009) tested a statistical hypothesis in the Bayesian 
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technique of the normal multiple partial regression model and assumed that the parametric part of the 

model is a linear multidimensional function while the nonparametric part is an infinite series of 

trigonometric functions and deduced upon increasing the sample size that the Bayes factor is under the 

null hypothesis of the linear function is consistent, that is, it approaches infinity while it approaches 

zero under the alternative hypothesis of the partial linear function.The second section deals with the 

description of the multivariate partial linear regression model when the error follows the matrix-variate 

generalized modified Bessel distribution. The third section shows some types of kernel functions. 

Some methods of selecting the bandwidth parameter were presented in the fourth section. The fifth 

section includes the Bayesian estimate of the model parameters when non-informative prior 

information is available. The sixth section includes finding the Bayes factor criterion, The predictive 

distribution of future observations in the section seventh. While the eight section include a simulation 

of generated data from the model. The last section shows the most important conclusions and future 

studies. 

2. Description of a Multivariate Partial Linear Regression Model 

The multivariate partial linear regression model is described according to the following equation: 

(Przystalski, M. 2014) (You, J., et al 2013) 

      
      (  )                                                             ( ) 

Where   
    represents the parametric part of the model, and    is estimated by one of the parametric 

methods, such as the method of least squares, the maximum likelihood, moments, or Bayes ..., and 

  (  ) represents the nonparametric part of the model, which is an unknown smoothing function that 

is estimated by one of the nonparametric methods, such as the kernel smoother, nadaraya-watson 

smoother, and the Gasser-muller smoother ....., It is possible to write the model defined in equation (1) 

in the form of matrices as follows: (AL-Mouel, A. S., &  Mohaisen, A. J. 2017) 
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where: 
 : Matrix of response variables of dimension (n × k) and n represents the number of observations and 

k represents the number of response variables. 

 : A non-random matrix representing the observations of the parametric explanatory variables of 

dimension (n × p + 1) and that p represents the number of the parametric explanatory variables. 
 : Matrix of model parameters for the parametric part of the dimension (p + 1 × k). 

 : The design matrix indicates the kernel weights. It can be taken with other weights such as the 

spline, wavelet, and k-nearest neighbor weights. It is of dimension (n × s), and s represents the number 

of nonparametric explanatory variables, and     ( ) represents the kernel function is as follows: 
    ( )  

 

 
     (

 

 
) 

    And that this function is a real, symmetric, and continuous function and that h represents the 

bandwidth parameter, they will be mentioned later. 

  : Matrix of parameters of the nonparametric part (additive parameters) of the dimension (s × k). 
 : Matrix of random errors of dimension (n × k). 

      It is possible to rewrite the form defined in Equation (2) as follows: (AL-Mouel, A. S., & 

Mohaisen, A. J. 2017) 

        (     ) (     )                                                                               ( ) 
Where:  [       ]                 [       ]        
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Assume that the random error matrix of the model has a probability distribution is symmetric heavy 

tails represented by the matrix-variate generalized modified Bessel distribution, where the probability 

density function can be found using the mixed distributions from the mixed matrix normal distribution 

(normal variance mixture) and the generalized inverse Gaussian distribution as follows: (Gallaugher, 

M. P.B., & McNicholas, P.D. 2019) (Thabane, L., & Drekic, S. 2003) (Thabane, L., & Haq, M. S. 

2004) |       (         )           (     ) 
As the probability density function for  |  is as follows: 

 ( | )  
 

(    )
  
  | |

 
    

    
 

   
    ( ) ( )   

                                       ( ) 

The probability density function of the random variable Z that follows the generalized inverse Gaussian 

distribution is as follows: (Lemonte, A. J., & Cordeiro, G. M. 2011) 

 ( )  
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         0 

 

 
 .(

 

 
*    /1                                       ( ) 

Where:     : scale parameters.   : shape parameter. 

  ( ): represents the modified Bessel function of the third kind of order   which takes the following 

equation: (Gallaugher, M. P.B., & McNicholas, P.D. 2019) (Koudou, A. E., & Ley, C. 2014) 

  ( )     ∫     
 

 

   (      (     ))                                                  ( ) 

The space of the scale parameters of the distribution is defined according to the following equation: 

(Thabane, L., & Drekic, S. 2003) 

                          
                           

                           
                                                                                      ( ) 

   Therefore, the probability distribution of the matrix of random errors ( ) and according to the concept 

of mixed distributions is as follows: 
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Equation (8) represents the probability density function of the matrix-variate generalized modified 

Bessel distribution and is described as follows: 

         (            )        ( )       (   ( )           ) 
Since the matrix Y defined in equation (3) is a linear combination in terms of the matrix ϵ that follows 

the matrix-variate generalized modified Bessel distribution, and accordingly, the probability 

distribution of the response observations matrix (Y) follows the matrix-variate generalized modified 

Bessel distribution. It can be found in the same way as follows: (Thabane, L., & Haq, M. S. 2004) 

 ( | )      ( | ) 
 ( | )     
 ( | )   ( | ) 
 ( | )      (          ) 
    Therefore, the probability density function of the matrix of (Y) distribution conditional by (Z)  ( | ) 

that follows the mixed matrix normal distribution is as follows: 
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 The probability distribution of (Y) unconditional by (Z) and depending on the concept of mixed 

distributions is as follows: 
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 (  ) 
Express this distribution descriptively as follows: 
      (    )(                   )     (  )      (  )(   (  )              ) 
Where: : The location matrix with a dimension (       ).  : The scale matrix with a dimension 

(   ). 

     : shape parameters. 

3. Kernel Functions 

The kernel functions are used in estimating the regression functions, the spectral functions, and the 

probability density functions. These functions can be distinguished through two series, namely, the 

optimal kernel functions which reduce the AMISE criterion, and the kernel functions with the least 

variance and works to reduce the asymptotic variance, meaning the MISE derivation relative to the 

kernel function. (Schucany, W. R., & Sommers, J. 1977). The kernel function has other names, 

including (shape, weight, and window function), and the kernel function is a real, symmetric, 

continuous, and definite function, and its integral is equal to one. The following table reviews some 

types of the kernel function: (Langrene, N. & Warin, X. 2019) 

Table (1): Some kernel functions  

Ker(x) Kernel 

 (| |   ) (  ⁄ )(    ) Epanchnikov 

 (| |   ) (    ⁄ )(    )  Quartic 

 (| |   ) (    ⁄ )(    )  Triweight 

 (| |   ) (  | |) Triangular 

 (| |   ) (  )        (    )⁄  Gauss 

 (| |   ) 0.5 Uniform 

 (| |   ) (    ⁄ )(  | | )  Tricube 

 (| |   ) (  ⁄ )     (
 

 
  ) Cosine 

4. Some Methods of Selecting the Bandwidth Parameter  

The selection of the bandwidth parameter (h) is an essential part of estimating the nonparametric and 

semi-parametric regression curve, and that the selection of the bandwidth parameter is more important 

than the choice of the kernel function, and there are several names for this parameter, including 

(constraint amplitude - bandwidth parameter-smoothing parameter-variance parameter), one of its 

characteristics is a non-random, symmetric, and positive parameter, and usually the selection of the 

bandwidth parameter is based on the researcher's experience or iterative methods to obtain the best 

bandwidth parameter and that this parameter greatly affects the variance and bias, as increasing the 

bandwidth parameter leads to a decrease in variance and increase the bias and vice versa, The 

researcher must estimate it in a way that balances variance and bias, as well as it represents a function 

in terms of sample size so that it meets the following conditions: ( Hardle, W. 1991) (Silverman, B.W. 

1986)                       
There are several ways to choose the bandwidth parameter, including: 

4.1 Cross Validation Method 

This method is considered one of the most used methods for selecting the smoothing parameter if 

gradually excludes one value from the response and explanatory variables to determine the parameter 

(h) that makes the sum of squares error at its lower end and is sometimes called the (Leave-one-out) 

method, The parameter (h) is given by the following formula: (Aydin, D. & Tuzemen, M. 2010) 

  ( )  
 

 
 ∑(    ̂ 

(  )
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                                                                               (  )

 

   

 

   Therefore, the bandwidth parameter gives the smallest value for the criterion   ( ) as follows: 
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             ( )                                                                                               (   ) 
4.2 Rule of Thumb Method 

This method goes back to the world of Deheuvels, which depends on replacing the unknown 

smoothing function with the distribution function. It was circulated by Silverman and it is also called 

the normal distribution rule. And write its general formula as follows: 

        ̂   ( )    
 

                                                                                            (  ) 
Where (v) denotes the kernel degree and the moments of the odd degree are equal to zero, the kernel 

degree (v) represents the first non-zero moment, meaning that the kernel degree must be an even 

number, while (  ̂) indicates the standard deviation of the sample .and CV (k) is constant, as shown in 

Table (2) below, and depends on the degree of the kernel. (Silverman, B.W. 1986) 

Table (2): The value of CV (k) for some kernel functions and by degree of kernel 

            Kernel degree 

3.84 3.39 2.78 Quartic 

1.08 1.08 1.06 Gaussian 

5. Bayesian Estimation of the Parameters of the Multivariate Partial Linear Regression Model 

In this section, the parameters of the model defined in equation (3), represented by the location matrix 

(θ) and the scale matrix ( ) are estimated under the assumption that they are unknown matrices and 

that the prior distributions of these parameters are non-informative. The joint prior distribution of (   ) 

is found from Fisher's information by taking the natural logarithm of the two sides of the probability 

density function of (Y) conditional by (Z) ( | ) and knowing in equation (9) and taking the second 

partial derivative relative to (   ), the joint prior distribution of (    | ) is as follows: (Press, S. J. 

2003) 

 ( |    )  | |  
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                                                                                             (  ) 
 ( | )  | |  

   
                                                                                                          (  ) 

 (    | )   ( |    )   ( | )                                                                                (  ) 
 (    | )  | |  

       
                                                                                            (  ) 

By merging the joint prior probability distribution defined in equation (16) with the probability 

function of (Y) conditional by (Z  ( defined in equation (9), we obtain the kernel of the joint posterior 

probability distribution for (    ) conditional by the random variable (Z  ( as follows: 
 (    |    )    (    | )  ( |     )    | |  

         
      

 
   

    (    ) (    )   
        (  ) 

By adding and subtracting the amount (   ̂  ) to the exponential function in equation (17) and which 

( ̂ ) represents the maximum likelihood estimator conditional by the random variable Z, it is found by 

the partial derivation of the natural logarithm of equation (9) relative to  :  
 ̂  (   )                                                                                                             (  ) 

And by performing some mathematical operations, we get the following: 
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    From equation (19) we notice that [ | |  
(     )
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    (   ̂ )    )]  it 

represents kernel of the matrix normal variance mixture distribution of (   ) and the distribution 

parameters are( ̂       (   )   ), that [| |  
     

     
 

   
            

] it represents kernel of the inverse 

Wishart distribution by parameters(
   

 
   )        . 

   Therefore, the joint posterior probability distribution of (    ) conditional by the random variable (Z 

)(    |    ) is as follows: 
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Where:  (
 

 
) : Multivariate Gamma function is calculated as follows: (Nagar, D. K. & Gupta, A. K. 

2013) 
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     In order to obtain the joint posterior probability distribution of (    ) that is not conditioned by the 

random variable Z, we integrate equation (20) relative to (Z) as follows: 
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   To find the posterior marginal probability distribution of the location matrix (θ) conditioned by the 

random variable (Z), we integrate equation (20) relative to the scale matrix ( ) as follows: 
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It is possible to rewrite equation (22) as follow: 
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And using property of Box and Tiao. (Box, G. P., & Tiao, G. C. 1973) 
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And: 
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    Hence, the posterior marginal probability distribution of the parameter matrix θ unconditional of the 

variable   is as follows: 
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We notice from equation (25) that the posterior marginal probability distribution of θ is a matrix-t 

distribution of the parameters ( ̂       ( 
  )          )and is described as follows: 

    (     )  ( ̂
       ( 

  )    )      ( )   (     ) (   ( ̂ )       (   )    ) 

And the estimate Bayes under quadratic loss function of ( ) is: 

 ̂   ̂  (    )                                                                                              (   ) 
This estimator is similar if the error of the model follows the matrix normal and matrix-t distribution. 

 To find the posterior marginal probability distribution of the scale matrix (Σ) conditioned by (Z), we 

integrate equation (20) relative to the location matrix ( ) as follows: 
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    Equation (26) represents the inverse Wishart distribution of parameters (
   

 
  ) of the posterior 

marginal probability distribution of (Σ) conditional by the random variable (Z). Based on Bayes 

theorem we conclude that the posterior marginal probability distribution of the scale matrix (Σ) 

unconditioned by (Z) is proper distribution but doesn’t belong to the conjugate family, as follows: 
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And the estimate Bayes of Σ under quadratic loss function is: 
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6. Bayesian Hypotheses Testing of a Multivariate Partial Regression Model 

  The Bayes factor criterion is considered one of the important criteria applied Bayesian hypotheses 

testing and is defined as the proportion between two statistical hypotheses. It results from dividing the 

posterior probability distribution relative to the null hypothesis (  ) on the posterior probability 

distribution relative to the alternative hypothesis (  ).This criterion is expressed mathematically as 

follows: (Jefferys, H. 1961) 

   
 ( |  )

 ( |  )
                                                                                                               (  ) 

   To test the model, we know the following statistical hypothesis: (AL-Mouel, A. S., & Mohaisen, A. J. 

2017) 

                    [         ]
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                                                                                                               (  ) 
  Under the above statistical hypothesis and based on equation (29), the Bayes factor criterion is as 

follows: 

   
∫ ∫   ( |      )  ( )  ( )       

  

∫ ∫ ∫  ( |     )  ( )  ( )  ( )           
   

                                  (  ) 

 We represent the numerator with the quantity (  ) in equation (31) which represents the probability 

function of (Y) conditional by (Z) and the knowledge in equation (9) under the null hypothesis 

multiplied by the prior distribution of the scale matrix (Σ) defined in equation (14) and the generalized 

inverse Gaussian distribution defined in equation (5). 
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  In the same procedure we find the denominator of the equation (13)  
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     By adding and subtracting(   ̂ ) to the exponential function in equation (35) and which (  ̂  ) 

represents the maximum likelihood estimator which was previously defined in equation (18) and by 

performing some mathematical operations, we get the following: 
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The last exponential function of equation (36) represents the kernel of the matrix normal distribution 

conditioned by the variable (Z) relative to ( ) by the parameters ( ̂ ,(   )     ) and therefore:    
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The integral in equation (38) represents the kernel of inverse Wishart distribution by the parameters 

(
  

 
   (     )). 

Accordingly: 
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  To find the Bayes factor criterion, we divide equation (34) on the equation (40) as follows: 
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7. Predictive Distribution of a Multivariate Partial Linear Regression Model 

    The predictive distribution represents the probability density function for future observations    that 

is conditioned by a set of current observations Y, so we have future observations ( ) for all response 

variables, which represent the matrix (  ). Depending on future observations, the multivariate partial 

linear regression model is as follows: (Thabane, L., & Haq, M. S. 2004) 

                                                                                                                          (  ) 

Where: 

  : The matrix of future observations ( ) has a dimension (   ×  ). 
  : Matrix with dimension (   × (  +   + 1)). 
  :  The parameter matrix with dimension ((p + s + 1) × k). 

  : The matrix of future random errors with dimension (    ). 

Since the error matrix (  ) follows the matrix–variate generalized modified Bessel distribution with the 

parameters (       
      ), we know that (   )is a linear combination in terms of the future error 

matrix, therefore (  ) follows the matrix–variate generalized modified Bessel distribution by the 

parameters (         
      )  

  Using the Bayes theory, the predictive distribution of the future matrix     is defined by the following 

formula: 

 (  | )  ∫ ∫  (  |   )
  

  (   | )                                                           (  ) 
   Due to the difficulty of finding a predictive distribution from equation (43), we use the concept of 

mixed distributions, that is, probability distribution conditioned by the random variable (Z). 

 (  | )  ∫ ∫ ∫  (  |     )
  

  (   |   )  ( )         
 

                  (   ) 

  We know that the probability density function (  ) conditional by (Z) is described as follows: 

(  |     )       (           
 ) 

  Therefore, the probability density function for the conditional (   )is as follows: 
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(      )   

                                (  )        

The joint posterior probability distribution of (   ) conditional by (Z) and previously defined in 

equation (20) will be combined with the conditional probability density function (  ) defined in 

equation (44). We obtain the predictive distribution of (   )conditional by the random variable (Z) as 

follows:  
 (  |   )

 ∫ ∫| |  
     (     )    

     
 

   
            

 

  

  
  

 
   

    2(      )
 
(      )   (   ̂ )

 
    (   ̂ )3    

            (  ) 

Assume that: 



Iraqi Journal of Statistical Sciences, Vol. 18, No. 2, 2021, Pp (51-64) 

60 

 

      (      )
 
(      )    (   ̂ )

 

    (   ̂ ) 
     By adding and subtracting (   ̂

 ) to the parentheses of the first term of       and that ( ̂ ) 

represents the maximum likelihood estimator conditional by the random variable (Z) which was 

previously defined in equation (18) and by performing some mathematical operations, we get the 

following: 
      (      ̂
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Accordingly: 
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    The result of integration relative to ( ) is .
(   )

(     ) 
 

|  |
 
 

/ and this expression will cancel out with the 

constant of proportionality, and therefore: 
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 +(      ̂ )+     

 

                (  ) 

   The integral result of the above equation relative to the matrix Σ is the reciprocal of the constant of 

inverse Wishart distribution by the parameters(
     

 
     ). 

 

Where: 
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And using property of Box and Tiao. (Box, G. P., & Tiao, G. C. 1973) 

|                |  |    
             

| 
   By performing the same steps as when finding the posterior marginal probability distribution of   

conditional by (Z), the kernel of predictive distribution of (   )conditional by (Z) is as follows: 

 (  |   )  |    
 (      ̂

 )   
  (      ̂

 )
 
*   

     
    

 +|
  

    

 
       (  ) 

   Equation (48) represents the kernel of a matrix-t distribution by degree of freedom (     ) and 

the parameters(   ̂
        *   

     
    

 +
  

*. 

The predictive distribution of (  ) that is not conditioned by (Z) is as follows: 
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Where: 
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   (    ̂ )
 
(    ̂ )          ̂  (    )       

 

Accordingly, the Bayesian prediction is as follows: 

 (  | )     ̂
                                                                                                               (  ) 

8. The Experimental Sample 

     In this section, we discuss the simulation of the mechanism reached in the theoretical side to data 

generated by a suggested method from a multivariate partial linear regression model when random 

error follows the matrix-variate generalized modified Bessel distribution. 

8.1) The Suggested Method for Generating Data 

      It is difficult to generate random observation from the multivariate partial linear regression model 

when the random error follows the matrix-variate generalized modified Bessel distribution. Therefore, 

it is resorted to generate these data through mixed distributions, as the matrix normal variance-mean 

mixture distribution and the generalized inverse Gaussian distribution previously mentioned were used. 

    While, random data were generated from the distribution of the multivariate standard normal ℤ, and 

since ℤ  ( | )   (   )     and (ϵ) represents the matrix of random errors of the model from which 

the observations are to be generated and through the concept of mixed distributions and as follow: 

 |  ℤ  (   )                                                                                                            (  ) 

  ∫ | 

 

    ( )     

  ℤ        

     
 

(√  )

  (√  ) (
 
 

)

 
 

                                                                                 (  ) 

Equation (52) represents the matrix of random errors, which follows the matrix-variate generalized 

modified Bessel distribution. The following algorithm shows the suggested method for generating 

random observation from a matrix-variate generalized modified Bessel distribution: 

Step1: Assume we have the number of observations (n = 100), the number of response variables (k = 

2). 

Step2: Generate random numbers from the multivariate standard normal distribution with (n) 

observations, let the multivariate standard normal random matrix be ℤ. 

Step3: Put  |  ℤ  (   )   , ℤ represents step (2).  

Step4: Find the generated data (ϵ) which represent the random error observations generated from the 

matrix-variate generalized modified Bessel distribution taking into account the assumed values of the 

shape parameters(      ) defined in table (3). 

Step5: For the purpose of generating data from the multivariate partial linear regression model, we 

generate the data of the two explanatory variables (p, s = 2) for the parametric and non-parametric part 

(     ) and (     ) through the following equation: 

       ̅    

Where     represents the standard uniform distribution,    
̅̅ ̅represents the arithmetic mean and they are 

usually assumed values, the non-parametric part W represents the kernel weights by represents the 

Gaussian kernel function and depending on the rule of thumb to choose the bandwidth parameter, the 

non-parametric variables (     ) is a standard normal variable.  

Step6: Randomly assumed values are given for  ( )  and (Σ) and for shape parameters they are given 

random values based on the state of the studied distribution (      )    and as in table (3) below. 

Table (3): Approved default values for all parameters 

Σ
   

  
(     )  

        

*
    
  

+ *
                      
                       

+
 

 
2.5 

0.5 
5 3 

3.5 7 2 
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Step7: Substituting step (4) and observations of the two explanatory variables for the parametric part, 

the Gaussian kernel weights matrix for the non-parametric part defined in step (5), the assumed values 

of the parameters defined in step (6), we obtain (4) models based on the combination between the 

assumed values of the response matrix (Y). 

8.2) Estimation of Model Parameters 

The location matrix ( ) and the scale matrix ( ) were estimated in a Bayes technique when non-

informative prior information was available and under the quadratic loss function. The comparison for 

the estimates was made using the MSE and depending on all the combinations between the default 

values shown in table (3) by using a program Matlab-R2016a. 

Table (4): MSE for the estimator of location matrix (θ) and scale matrix (Σ). 

Rank 

Gaussian kernel function 

        ̂     
 
  

Models 

(     ) 

Σ   Σ    

1 3 0.0014 0.0686 first(         ) 

3 4 0.0131 0.0739 second(         ) 

2 1 0.0065 0.0510 Third (         ) 

4 2 0.0255 0.0557 fourth (         ) 

We notice from table (4) that the best estimator for ( ) and (Σ) it was at the third and first model 

respectively, this estimate is as follows: 

 ̂
 

 *
                                          
                                           

+
 

    ;       ̂
 

 *
            
            

+  

The following figure shows the generated and estimated response variables matrix for third model that 

are chosen according to the lowest MSE for  ( ). 

 
Figure (1): generated and estimated observations of the third model 

 

8.3) Bayesian hypotheses testing 

After estimating the parameters of the multivariate partial linear regression model, we usually test the 

statistical hypotheses, and this section includes a test about the validity of the limitations imposed on 

the model using the Bayes factor criterion (B.F.) and compares it with the values that definite by the 

Jeffreys (Jeffreys, H. 1961), as follows: 

Table (5): Bayes factor criterion (B.F.) based on non-informative prior information and for the 

Gaussian kernel function 

The decision B.F. (     ) 
                                (         ) 
                                (         ) 
                                (         ) 
                                (         ) 

We notice from tables (5) that the values of the Bayes factor criterion are less than one, and this means 

that the alternative hypothesis is accepted, that is, the sample was drawn from a population that does 

not belong to a generalized modified Bessel population. 

9. Conclusions and Future Works 

A multivariate partial regression model is used when the error follows the matrix –variate generalized 

modified Bessel distribution as an alternative to the model in which the error follows the matrix normal 

distribution to find the Bayesian estimations of the model parameters. It found that the posterior 

marginal probability distribution of the location matrix   follows the matrix-t distribution by the 
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parameters ( ̂       ( 
  )          ) defined in equation (25). The posterior probability 

distribution of the scale matrix (Σ) is proper distribution defined in equation (27) as well as finding the 

predictive probability distribution of the matrix of future observations which follows the matrix-t 

distribution by the parameters (   ̂
       *   

     
    

 +
  

        ) defined according to 

equation (49), Steadfastly the parameters ( ,  ) as the value of the parameter ( ) increases, we get the 

smaller value of the criterion MSE for the matrix estimator θ, and with its decrease, we get the best 

Bayesian estimator for Σ through the criterion MSE. Through the Bayes factor criterion, it was found 

that the sample that was used in the generation process was drawn from a population that does not 

belong to the generalized modified Bessel population. The two researchers recommend conducting an 

application side to implement what was reached in the research, depending on the kernel functions and 

bandwidth parameter defined in Sections (3) and (4) respectively and under different loss functions. 
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 الانحدار الخطي الجزئي متعدد المتغيرات غير الطبيعي الاستدلال البيزي لانموذج

 صالح عماد حازم عبودي            سرمد عبدالخالق 

 مدتخلصال
لمعممات انمهذج الانحجار الخطي الجدئي متعجد المتغيخات عنجما يتهزع الخطأ العذهائي تهزيع  تم في هحا البحث التقجيخ البيدي  

مرفهفة بدل المحهر المعمم وايجاد المختبخ الاحرائي للانمهذج والمتمثل بايجاد معيار عامل بيد والتهزيع التنبؤي بافتخاض أن تكهن 
 ع الدابق لمعممات الانمهذج بمعمهمات قميمة.معممات الذكل معمهمة. تمثمت المعمهمات حهل التهزي

في  وقج تمت محاكاة البيانات المهلجة من الانمهذج بطخيقة مقتخحة اعتماداً عمى قيم مختمفة لمعممات الذكل، وان دالة النهاة المدتخجمة
)قاعجة التهزيع الطبيعي(. واستنتج الباحثان )التمهيج( كانت وفقاً لقاعجة الابهام  التهليج كانت دالة نهاة طبيعية، وان معممة عخض الحدمة

( ولكن بمعممات مختمفة وأن Matrix-tوتهزيع التنبؤ البيدي هه تهزيع )  أن التهزيع الاحتمالي الهامذي اللاحق لمرفهفة المهقع 
لفة ومن خلال معيار عامل هه تهزيع مناسب ولكن لاينتمي الى العائمة المتآ Σالتهزيع الاحتمالي الهامذي اللاحق لمرفهفة القياس 

 بيد تبين بان العينة التي استخجمت في عممية التهليج سحبت من مجتمع لاينتمي الى مجتمع بدل المحهر المعمم.
انمهذج الانحجار الخطي الجدئي متعجد المتغيخات، تهزيع مرفهفة بدل المحهر المعمم، دوال المب، معممة عخض الكلمات المفتاحية: 

 بيد. الحدمة، اسمهب


