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Abstract

Much of the recent research in object recognition has
adopted an appearance-based scheme, wherein objects
to be recognized are represented as a collection of pro-
totypes in a multidimensional space spanned by a num-
ber of characteristic vectors (eigen-images) obtained
from training views. In this paper, we extend the
appearance-based recognition scheme to handle range
(shape) data. The result of training is a set of ‘eigen-
surfaces’ that capture the gross shape of the objects.
These techniques are used to form a system that recog-
nizes objects under an arbitrary rotational pose trans-
formation. The system has been tested on a 20 object
database including free-form objects and a 54 object
database of manufactured parts. Exrperiments with the
system point out advantages and also highlight chal-
lenges that must be studied in future research.

1 Introduction

Appearance-based (or ‘eigenface’) approaches to
object recognition have demonstrated the ability to
recognize large numbers of general objects quickly
[3],[4],[5]. These methods encode the variations of an
object shape and reflectance with respect to its pose
and the illumination conditions. This technique has
been applied successfully in the tasks of face recogni-
tion [1], tracking of objects in image sequences [10],
illumination planning [11], and object recognition in

the presence of occlusion [12],[6],[7].

To our knowledge, no work with the exception of
the indexing-oriented work of Johnson and Hebert [9]
has employed eigendecompositions for a space based
on training images generated only from shape. The
application of appearance-based techniques has intu-
itive appeal (the absence of lighting artifacts in range
data offers potential robustness) but implementation
of the technique revealed some challenges. This paper
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describes a first-generation system for ‘appearance-
based’ recognition of 3D objects in range images, em-
ploying two object databases. Experiments with the
system show the potential power of the technique and
highlight areas to be improved in future research.

2 Notation and Fundamental Con-

cepts

Let Y be a range image with r rows and ¢ columns.
Y can be viewed as a vector of length n = r - ¢
by concatenating rows, yielding the n-vector T =
Y11 -  Y1eY21 - - Yr1 --- Yre)L. T lies in a vector
space Z with dimension n. We assume that the im-
ages Y contain range (Q%D) data; that is, the pixel co-
ordinates (i,j) and the corresponding measurements
yi; represent a set of points in 3D. The vector space
7 C RV contains all possible range images Y.

A eigenspace [2] is constructed from a set of m
training views. Each training view T, is viewed as
a column in the training matrix X.

The n x n covariance matrix Q = XX7T of can,
in principle, be decomposed into its eigenvalues and
corresponding eigenvectors {(\;,€;)]i = 1,...n} (in
our case the image vectors T are not subtracted by
the mean so Q is the scatter matrix). Murakami and
Kumar [4] observed that the rank of Q is the minimum
of n and m and described a technique to obtain the
eigenvectors of Q from the scatter matrix of X7. In
either case the (\;, €;) can be obtained, The eigenspace
£ corresponding to X is simply the span of the &;.

The m-dimensional prototype g; of a training im-
age ’f‘l its image under the the linear transformation
defined by the eigenvectors €;:
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An m-dimensional prototype (or arbitrary m-



vector) g corresponds to a reconstructed image T:

T=(&,.. . 6u)g

The eigenvectors &; are the principal components
of the subspace spanned by the training images {T;},
and the corresponding eigenvalues A; measure the vari-
ation along that direction in the eigenspace. In most
situations the bulk of the total variation is captured
in a small number of principal components. For that
reason, as well as a desire for computational efficiency,
it is common to select the k < min(m,n) eigenvectors
corresponding to the k largest eigenvalues to form a k-
dimensional eigenspace. This reduced-dimensionality
eigenspace still admits reconstructions from arbitrary
k-dimensional prototypes g.

In a multiple-object recognition context, training
views of each object to be recognized must be avail-
able. Let ’f‘f be the ith training image (out of a total
of m;) of the j’th model. Murase and Nayar [2]. pro-
posed the use of two types of eigenspaces for multiple-
object recognition.

1. The universal eigenspace U is constructed from
{T!} for all i and j.

2. The object eigenspaces Oj, one per model, are

constructed from the training images {T?} of the
specific model j.

Where the universal eigenspace U is used to discrim-
inate between objects during recognition and the ob-
jects eigenspace Oj is used to determine the pose of
the object. '

Appearance-based recognition techniques operate
by projecting the input image (of an unidentified ob-
ject known to be represented in the system via training
views) into the k-dimensional eigenspace and identify-
ing the most similar model. This identification is often
performed using a nearest-neighbor search, although
closest-manifold search techniques have also been de-
veloped [2],[3].

Trucco and Verri [8] have established the equiva-
lence between this approach and squared-error tem-
plate matching or correlation maximization. The key
to success in this approach, then, is to employ a train-
ing set that captures the expected range of variations
in imaging conditions.

The genesis of our project was an observation that
imaging conditions for range sensors relate primarily
to the rotational component of pose; by contrast, light-
ing is a major factor in intensity-based techniques.
The number of training views (as well as their size)

affects speed and memory requirements in the com-
putation of eigenspaces and we saw an opportunity
to capitalize on the lack of illumination variation by
sampling the space of rotational 3D object poses more
densely. Figure 1 shows the first eight eigenshape and
the 100th eigenshape calculated from a database of 54
objects.

Figure 1: Examples of ‘eigenshapes’

3 View Generation

The range images Y in this paper where syntheti-
cally generated from polyhedral mesh descriptions ob-
tained from WSU ! and rendered using an OpenGL
based custom renderer. A set of rigid rotations was
applied to the canonical model to obtain coverage of
the 2D pose space (coverage of rotation about the ‘op-
tical’ axis of the range sensor may not be necessary,
as discussed below). For testing purposes we scaled
the object to fit within a unit cube prior to rendering.
The output of this step, for an input model j, is a set
of m; training views {T?,i =1...m;}.

Most work in appearance-based recognition has as-
sumed a one-dimensional pose space, typically allow-
ing objects to be rotated on a turntable in the sen-
sor’s field of view. We tessellated the surface of the
3D viewsphere to identify view angles with reasonably
even angular spacing. The vertices (normalized to lie
on the unit sphere) of the I-frequency subdivision of
the icosahedron were used to define viewpoints around
the object in its canonical position. Table 1 enumer-
ates the number of viewpoints and the angle between
view directions for a range of values of the subdivi-
sion parameter [. The choice of | allows the number of
viewpoints (hence the angular spacing between view-

Thttp://www.eecs.wsu.edu/ flynn/3DDB/Models/



Frequency | Num of Viewpoints | Angle between

1 12 64.3°

2 42 ~ 32.1°
3 92 ~ 21.4°
4 162 ~ 16.1°
) 252 ~ 12.8°
6 362 ~ 10.7°

Table 1: Icosahedron Subdivision Parameters

points) to be tuned by the user. A training image was
obtained for each of these pose coordinates.

The rotation of an object to an arbitrary viewpoint
(as accomplished above) will fix two degrees of free-
dom in its rotational pose. There still is an additional
degree of freedom left in the rotation of the object
about the viewpoint (or the ‘optical axis’ of the sen-
sor). Rather than generate a set of views for each
viewpoint, we developed a canonicalizing transforma-
tion (a planar rotation) to align the major and mi-
nor axis of the 2D ‘footprint’ of each view with the
coordinate axes. This produces a canonical training
image for that viewpoint. This approach works well
if the object has significant elongation. Since zenith
and nadir views of the object will produce mirror im-
age footprints, we actually generate two training views
per viewpoint, one being a mirror image of the other.

We will denote the number of viewpoints for a par-
ticular experiment as Nyp. The value of [, hence the
value of Nyp, is fixed on an experiment by exper-
iment basis, and is used to generate training views
{T] :i=1,...,2- Nyp} for each model j.

4 Object Recognition and Pose Deter-
mination

In appearance-based object recognition the train-
ing images T; are projected into the subspace £ along
the eigenvectors €; to produce k-dimensional proto-
types &;. These coordinates can be used to generate
a parametric manifold in the subspace (in our case,
the relevant parameters are the two free pose parame-
ters), and recognition would be implemented as iden-
tification of the closest manifold in the subspace to the
prototype g* generated by projection of an input im-
age T*. In our initial matching procedure, however,
we employ nearest-neighbor search to identify the ob-
ject (Figure 2).

5 Experimental Results

The system has been tested on two object databases
of 3D models. The first object database (database
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Figure 2: System Diagram for Paper

A) contains twenty 3D models (Figure 3). The
database contains objects from human bones, mechan-
ical parts (designed on a mechanical CAD package), to
reverse-engineered 3D models constructed from range
imagery.2 All models are stored in a polyhedral mesh
format approximating the 3D smooth surfaces. The
second database (database B) contains 54 mechanical
parts designed using CAD packages (Figure 4).

For each database a series of tests was run to deter-
mine the dependence of recognition accuracy on the
number of viewpoints Ny, the size of the image n,
and the dimension of the subspace k. A structured
approach was used to generate test views. Since the
training views were generated at the vertices of the

2We are grateful to Marc Soucy of Innovmetric Corp. and
Marc Levoy of Stanford University for making their models
available.



Figure 3: Some Examples of Objects From Database
A
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Figure 4: Some Examples of Objects From Database
B

subdivided dodecahedron, we felt that viewpoints cho-
sen as far as possible from the vertices would provide a
worst-case test set. Therefore, test views were chosen
from viewpoints corresponding to the centers of the
triangular faces in the I-frequency subdivision of the
icosahedron.

For database A eleven subspaces where generated
for testing, corresponding to different values of Nyp,
[, and n. The results of recognition rate vs. k are
shown in Figure 5 for the various eigenspaces defined
in Table 2.

Average Recognition Rate For Smooth Object Database
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Figure 5: Recognition Rates for Database A

| SubSpace | Nyp | n (image size) | Best Rate |

51 12 1024 (32x32) | 75%

&9 12 4096 (64x64) | 74.5%

&3 12 | 16384 (128x128) | 75%

&y 12 | 65536 (256x256) | 74.7%

&y 42 1024 | 91%

& 42 4096 | 92.3%

&y 42 16384 | 92.8%

&g 92 1024 | 97.4%

&g 92 4096 | 97.3%

£10 162 1024 | 99%

511 252 1024 | 99.7%

Table 2: Table of parameters used in generation of
subspaces for Database A

For database B nine subpsaces where generated,
but based on the results obtained from database A
we violated the contition placed by most ‘appearance-
based’ methods and allowed n < m. This allowed us to
calculate 92, 162, and 252 viewpoint trials. The results
of the trials are shown in Figure 6 for the eigenspaces
defined in Table 3.
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Figure 6: Recognition Rates for Database B

| SubSpace | Nvyp | n (image size) | Best Rate |
& 12 1024 (32x32) | 44.8 %
&y 12 1096 (64x64) | 47.5%
&s 12 16384 (128x128) | 47.1%
£y 12 256 (16x16) | 65%
g5 42 1024 | 68.3%
Z6 12 4096 | 70%
&7 92 246 | 80%
88 92 1024 | 81%
&g 162 1024 | 88%
59 252 1024 | 91%

Table 3: Table of parameters used in generation of
subspaces for Database B

From the Figures 5,6 the most important param-
eters are the number of views Nyp and the dimen-
sion of the subspace K. For database A a subspace
& with dimension greater than 13 does not improve
the recognition rate. While the larger database B re-
quires more than 20 eigensurfaces before the recog-
nition rate approaches its max. A significant result
found in both Figures 5 and 6, is that the size of the
images n does not significantly change the recognition
rate, even when an 16x16 image template is use the
recognition rate only drops a few percent. Apparently,
coarse shape matching is all that is needed to distin-
guish the objects in these databases.

The number of training views does have a dramatic
effect on the recognition rate. For database A, in-
creasing the number of training views from 12 to 92
increases the recognition rate from 75% to 97%. For
database B, the rate increases from 47% to 80% when
this change is made. For 252 views the eigenspace cal-
culated for database A almost obtains perfect recogni-

tion, while database B only obtains a 91% recognition
rate.

The larger database of mechanical objects is much
harder to obtain high recognition rates. This is in part
due to some of the objects similarity under certian
viewing positions. In cases where a particular view of
an object changes in shape appearance enough from its
neighboring training views the view may be matched
with another object of similar shape that is close to
the gross shape of the object in that view. Figure 7
shows an example where the view to be recognized T*
from object bigwye is incorrectly identified as another
cylindrical object with handles (part 331c). In these
particular views of the bigwye and 331c¢ objects, the
large discrimitory features have dissapeared and the
neighboring views of the bigwye object are more dis-
simmalar than that of the 331c training view. This
is due to the change of aspect caused by the appear-
ance of the wye feature when the object is rotated 10
degrees to the neighboring training views where pro-
totypes g€ where generated.

bigwye.wep !E 331cwep 1Hi[=] E3

Figure 7: One Case of Mistaken Identity

In all these experiments, the angular sampling of
the possible views is coarser than that used in current
appearance-based methods. In Murase and Nayar’s
seminal work on 3-D object recognition [2] an angular
separation of 4° was used in the 1D orientation space.
They used a coarser sampling of 7.5° in their work on
recognition of a 100 object database[3]. Since our sys-
tem samples a 2D pose manifold embedded in 3D, a
larger anguar spacing was needed because of memory
and computation requirements. There are undoubt-
edly optimizations that can be made to increase the
sampling frequency in the 2D pose space; such opti-
mizations are the topic of current research.

6 Summary and Conclusions

In this paper we have shown the usefullness of us-
ing appearance-based approach to represent, recognize
and determine pose of 2%D shape data. Althought



this approach only used synthetic data it has shown
some interesting properties in using appearance-based
methods for range image object recognition under
ideal conditions.

1. Image size does not dramaticly effect the ability
to differentate between objects in the eigen sub-
space.

2. A Subspace with dimension k& = 20 are sufficent
to be close to the best recognition rates.

3. The smaller the angle between training views the
greater the recognition rate.

4. The change of some aspects of an object can cause
missclassification during recognition.

5. Representation is usefull for discriminating free-
form objects as well as manufactured parts.

6. Using a simple 2D ‘footprint’ to align each view
with the coordinate axes is a usefull way to resolve
the third degree of freedom in the pose.

The results suggest that best sampling the views of
an object will have to be adaptive if the number of
views taken for each object is to be minimized. As a
focus of future research a density of sampling needs to
be determined that will produce accurate pose results,
improve discrimitory power in regions of similarity and
handle critical aspects where large surface changes oc-
cur over relativily small changes in view direction.
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