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Eigenshapes for 3D Object Recognition in Range DataR. J. Campbell and P. J. FlynnDepartment of Electrical EngineeringThe Ohio State UniversityColumbus, OH. 43210-1272fcampbelr,flynng@ee.eng.ohio-state.eduAbstractMuch of the recent research in object recognition hasadopted an appearance-based scheme, wherein objectsto be recognized are represented as a collection of pro-totypes in a multidimensional space spanned by a num-ber of characteristic vectors (eigen-images) obtainedfrom training views. In this paper, we extend theappearance-based recognition scheme to handle range(shape) data. The result of training is a set of `eigen-surfaces' that capture the gross shape of the objects.These techniques are used to form a system that recog-nizes objects under an arbitrary rotational pose trans-formation. The system has been tested on a 20 objectdatabase including free-form objects and a 54 objectdatabase of manufactured parts. Experiments with thesystem point out advantages and also highlight chal-lenges that must be studied in future research.1 IntroductionAppearance-based (or `eigenface') approaches toobject recognition have demonstrated the ability torecognize large numbers of general objects quickly[3],[4],[5]. These methods encode the variations of anobject shape and re
ectance with respect to its poseand the illumination conditions. This technique hasbeen applied successfully in the tasks of face recogni-tion [1], tracking of objects in image sequences [10],illumination planning [11], and object recognition inthe presence of occlusion [12],[6],[7].To our knowledge, no work with the exception ofthe indexing-oriented work of Johnson and Hebert [9]has employed eigendecompositions for a space basedon training images generated only from shape. Theapplication of appearance-based techniques has intu-itive appeal (the absence of lighting artifacts in rangedata o�ers potential robustness) but implementationof the technique revealed some challenges. This paper�This work was supported by the National Science Founda-tion under grants XXX-xxxxxxx and XXX-xxxxxxx.

describes a �rst-generation system for `appearance-based' recognition of 3D objects in range images, em-ploying two object databases. Experiments with thesystem show the potential power of the technique andhighlight areas to be improved in future research.2 Notation and Fundamental Con-ceptsLet Y be a range image with r rows and c columns.Y can be viewed as a vector of length n = r � cby concatenating rows, yielding the n-vector ~T =[y1;1 : : : y1;c y2;1 : : : yr;1 : : : yr;c]T . ~T lies in a vectorspace I with dimension n. We assume that the im-agesY contain range (2 12D) data; that is, the pixel co-ordinates (i; j) and the corresponding measurementsyij represent a set of points in 3D. The vector spaceI � RN contains all possible range images Y.A eigenspace [2] is constructed from a set of mtraining views. Each training view ~Ti is viewed asa column in the training matrix X.The n � n covariance matrix Q = XXT of can,in principle, be decomposed into its eigenvalues andcorresponding eigenvectors f(�i;~ei)ji = 1; : : : ng (inour case the image vectors ~T are not subtracted bythe mean so Q is the scatter matrix). Murakami andKumar [4] observed that the rank ofQ is the minimumof n and m and described a technique to obtain theeigenvectors of Q from the scatter matrix of XT . Ineither case the (�i;~ei) can be obtained, The eigenspaceE corresponding to X is simply the span of the ~ei.The m-dimensional prototype ~gi of a training im-age ~Ti its image under the the linear transformationde�ned by the eigenvectors ~ei:~gi = 0B@ ~eT1...~eTm 1CA ~TiAn m-dimensional prototype (or arbitrary m-



vector) ~g corresponds to a reconstructed image ~T:~T = � ~e1; : : : ;~eM �~gThe eigenvectors ~ei are the principal componentsof the subspace spanned by the training images fTjg,and the corresponding eigenvalues �i measure the vari-ation along that direction in the eigenspace. In mostsituations the bulk of the total variation is capturedin a small number of principal components. For thatreason, as well as a desire for computational e�ciency,it is common to select the k � min(m;n) eigenvectorscorresponding to the k largest eigenvalues to form a k-dimensional eigenspace. This reduced-dimensionalityeigenspace still admits reconstructions from arbitraryk-dimensional prototypes ~g.In a multiple-object recognition context, trainingviews of each object to be recognized must be avail-able. Let ~Tji be the ith training image (out of a totalof mj) of the j'th model. Murase and Nayar [2]. pro-posed the use of two types of eigenspaces for multiple-object recognition.1. The universal eigenspace U is constructed fromfTjig for all i and j.2. The object eigenspaces Oj, one per model, areconstructed from the training images fTjig of thespeci�c model j.Where the universal eigenspace U is used to discrim-inate between objects during recognition and the ob-jects eigenspace Oj is used to determine the pose ofthe object.Appearance-based recognition techniques operateby projecting the input image (of an unidenti�ed ob-ject known to be represented in the system via trainingviews) into the k-dimensional eigenspace and identify-ing the most similar model. This identi�cation is oftenperformed using a nearest-neighbor search, althoughclosest-manifold search techniques have also been de-veloped [2],[3].Trucco and Verri [8] have established the equiva-lence between this approach and squared-error tem-plate matching or correlation maximization. The keyto success in this approach, then, is to employ a train-ing set that captures the expected range of variationsin imaging conditions.The genesis of our project was an observation thatimaging conditions for range sensors relate primarilyto the rotational component of pose; by contrast, light-ing is a major factor in intensity-based techniques.The number of training views (as well as their size)

a�ects speed and memory requirements in the com-putation of eigenspaces and we saw an opportunityto capitalize on the lack of illumination variation bysampling the space of rotational 3D object poses moredensely. Figure 1 shows the �rst eight eigenshape andthe 100th eigenshape calculated from a database of 54objects.

Figure 1: Examples of `eigenshapes'3 View GenerationThe range images Y in this paper where syntheti-cally generated from polyhedral mesh descriptions ob-tained from WSU 1 and rendered using an OpenGLbased custom renderer. A set of rigid rotations wasapplied to the canonical model to obtain coverage ofthe 2D pose space (coverage of rotation about the `op-tical' axis of the range sensor may not be necessary,as discussed below). For testing purposes we scaledthe object to �t within a unit cube prior to rendering.The output of this step, for an input model j, is a setof mj training views fTji ; i = 1 : : :mjg.Most work in appearance-based recognition has as-sumed a one-dimensional pose space, typically allow-ing objects to be rotated on a turntable in the sen-sor's �eld of view. We tessellated the surface of the3D viewsphere to identify view angles with reasonablyeven angular spacing. The vertices (normalized to lieon the unit sphere) of the l-frequency subdivision ofthe icosahedron were used to de�ne viewpoints aroundthe object in its canonical position. Table 1 enumer-ates the number of viewpoints and the angle betweenview directions for a range of values of the subdivi-sion parameter l. The choice of l allows the number ofviewpoints (hence the angular spacing between view-1http://www.eecs.wsu.edu/ flynn/3DDB/Models/



Frequency Num of Viewpoints Angle between1 12 64:3�2 42 � 32:1�3 92 � 21:4�4 162 � 16:1�5 252 � 12:8�6 362 � 10:7�Table 1: Icosahedron Subdivision Parameterspoints) to be tuned by the user. A training image wasobtained for each of these pose coordinates.The rotation of an object to an arbitrary viewpoint(as accomplished above) will �x two degrees of free-dom in its rotational pose. There still is an additionaldegree of freedom left in the rotation of the objectabout the viewpoint (or the `optical axis' of the sen-sor). Rather than generate a set of views for eachviewpoint, we developed a canonicalizing transforma-tion (a planar rotation) to align the major and mi-nor axis of the 2D `footprint' of each view with thecoordinate axes. This produces a canonical trainingimage for that viewpoint. This approach works wellif the object has signi�cant elongation. Since zenithand nadir views of the object will produce mirror im-age footprints, we actually generate two training viewsper viewpoint, one being a mirror image of the other.We will denote the number of viewpoints for a par-ticular experiment as Nvp. The value of l, hence thevalue of Nvp, is �xed on an experiment by exper-iment basis, and is used to generate training viewsfTji : i = 1; : : : ; 2 �Nvpg for each model j.4 Object Recognition and Pose Deter-minationIn appearance-based object recognition the train-ing images Ti are projected into the subspace E alongthe eigenvectors ~ej to produce k-dimensional proto-types ~gi. These coordinates can be used to generatea parametric manifold in the subspace (in our case,the relevant parameters are the two free pose parame-ters), and recognition would be implemented as iden-ti�cation of the closest manifold in the subspace to theprototype ~g� generated by projection of an input im-age T�. In our initial matching procedure, however,we employ nearest-neighbor search to identify the ob-ject (Figure 2).5 Experimental ResultsThe system has been tested on two object databasesof 3D models. The �rst object database (database

Figure 2: System Diagram for PaperA) contains twenty 3D models (Figure 3). Thedatabase contains objects from human bones, mechan-ical parts (designed on a mechanical CAD package), toreverse-engineered 3D models constructed from rangeimagery.2 All models are stored in a polyhedral meshformat approximating the 3D smooth surfaces. Thesecond database (database B) contains 54 mechanicalparts designed using CAD packages (Figure 4).For each database a series of tests was run to deter-mine the dependence of recognition accuracy on thenumber of viewpoints Nvp, the size of the image n,and the dimension of the subspace k. A structuredapproach was used to generate test views. Since thetraining views were generated at the vertices of the2We are grateful to Marc Soucy of Innovmetric Corp. andMarc Levoy of Stanford University for making their modelsavailable.



Figure 3: Some Examples of Objects From DatabaseA

Figure 4: Some Examples of Objects From DatabaseB

subdivided dodecahedron, we felt that viewpoints cho-sen as far as possible from the vertices would provide aworst-case test set. Therefore, test views were chosenfrom viewpoints corresponding to the centers of thetriangular faces in the l-frequency subdivision of theicosahedron.For database A eleven subspaces where generatedfor testing, corresponding to di�erent values of Nvp,l, and n. The results of recognition rate vs. k areshown in Figure 5 for the various eigenspaces de�nedin Table 2.

Figure 5: Recognition Rates for Database ASubSpace Nvp n (image size) Best RateE1 12 1024 (32x32) 75%E2 12 4096 (64x64) 74.5%E3 12 16384 (128x128) 75%E4 12 65536 (256x256) 74.7%E5 42 1024 91%E6 42 4096 92.3%E7 42 16384 92.8%E8 92 1024 97.4%E9 92 4096 97.3%E10 162 1024 99%E11 252 1024 99.7%Table 2: Table of parameters used in generation ofsubspaces for Database AFor database B nine subpsaces where generated,but based on the results obtained from database Awe violated the contition placed by most `appearance-based' methods and allowed n < m. This allowed us tocalculate 92, 162, and 252 viewpoint trials. The resultsof the trials are shown in Figure 6 for the eigenspacesde�ned in Table 3.



Figure 6: Recognition Rates for Database BSubSpace Nvp n (image size) Best RateE1 12 1024 (32x32) 44.8 %E2 12 4096 (64x64) 47.5%E3 12 16384 (128x128) 47.1%E4 42 256 (16x16) 65%E5 42 1024 68.3%E6 42 4096 70%E7 92 246 80%E8 92 1024 81%E9 162 1024 88%E9 252 1024 91%Table 3: Table of parameters used in generation ofsubspaces for Database BFrom the Figures 5,6 the most important param-eters are the number of views Nvp and the dimen-sion of the subspace K. For database A a subspaceE with dimension greater than 13 does not improvethe recognition rate. While the larger database B re-quires more than 20 eigensurfaces before the recog-nition rate approaches its max. A signi�cant resultfound in both Figures 5 and 6, is that the size of theimages n does not signi�cantly change the recognitionrate, even when an 16x16 image template is use therecognition rate only drops a few percent. Apparently,coarse shape matching is all that is needed to distin-guish the objects in these databases.The number of training views does have a dramatice�ect on the recognition rate. For database A, in-creasing the number of training views from 12 to 92increases the recognition rate from 75% to 97%. Fordatabase B, the rate increases from 47% to 80% whenthis change is made. For 252 views the eigenspace cal-culated for databaseA almost obtains perfect recogni-

tion, while database B only obtains a 91% recognitionrate.The larger database of mechanical objects is muchharder to obtain high recognition rates. This is in partdue to some of the objects similarity under certianviewing positions. In cases where a particular view ofan object changes in shape appearance enough from itsneighboring training views the view may be matchedwith another object of similar shape that is close tothe gross shape of the object in that view. Figure 7shows an example where the view to be recognized ~T�from object bigwye is incorrectly identi�ed as anothercylindrical object with handles (part 331c). In theseparticular views of the bigwye and 331c objects, thelarge discrimitory features have dissapeared and theneighboring views of the bigwye object are more dis-simmalar than that of the 331c training view. Thisis due to the change of aspect caused by the appear-ance of the wye feature when the object is rotated 10degrees to the neighboring training views where pro-totypes ~g where generated.
Figure 7: One Case of Mistaken IdentityIn all these experiments, the angular sampling ofthe possible views is coarser than that used in currentappearance-based methods. In Murase and Nayar'sseminal work on 3-D object recognition [2] an angularseparation of 4� was used in the 1D orientation space.They used a coarser sampling of 7:5� in their work onrecognition of a 100 object database[3]. Since our sys-tem samples a 2D pose manifold embedded in 3D, alarger anguar spacing was needed because of memoryand computation requirements. There are undoubt-edly optimizations that can be made to increase thesampling frequency in the 2D pose space; such opti-mizations are the topic of current research.6 Summary and ConclusionsIn this paper we have shown the usefullness of us-ing appearance-based approach to represent, recognizeand determine pose of 2 12D shape data. Althought



this approach only used synthetic data it has shownsome interesting properties in using appearance-basedmethods for range image object recognition underideal conditions.1. Image size does not dramaticly e�ect the abilityto di�erentate between objects in the eigen sub-space.2. A Subspace with dimension k � 20 are su�centto be close to the best recognition rates.3. The smaller the angle between training views thegreater the recognition rate.4. The change of some aspects of an object can causemissclassi�cation during recognition.5. Representation is usefull for discriminating free-form objects as well as manufactured parts.6. Using a simple 2D `footprint' to align each viewwith the coordinate axes is a usefull way to resolvethe third degree of freedom in the pose.The results suggest that best sampling the views ofan object will have to be adaptive if the number ofviews taken for each object is to be minimized. As afocus of future research a density of sampling needs tobe determined that will produce accurate pose results,improve discrimitory power in regions of similarity andhandle critical aspects where large surface changes oc-cur over relativily small changes in view direction.References[1] M. Turk and A. Pentland, \Face Recognition Us-ing Eigenfaces," IEEE Conference on ComputerVision and Pattern Recognition,, pp. 586-591,June 1991.[2] H. Murase and S. K. Nayar, \Visual Learning andRecognition of 3-D Objects from Appearance,"Int'l Jour. of Computer Vision, (14): 5-24, 1995.[3] S. K. Nayar, S. A. Nene, and H. Murase, \Real-Time 100 Object Recognition System," Image Un-derstanding Workshop, 1223-1227, 1996.[4] H. Murakami and V. Kumar, \E�cient Calcula-tion of Primary Images from a Set of Images,"IEEE Trans. Pattern Analysis and Machine Intel-ligence, (4)5: 511-515, 1982.[5] P. N. Belhumeur, J. P. Hespanha and D. J. Krieg-man, \Eigenfaces vs. Fisherfaces: Recognition Us-ing Class Speci�c Linear Projection," IEEE Trans.Pattern Analysis and Machine Intelligence, (19)7:711-720, 1997.
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