
A Comparison of Compilation Techniques For Trace Monitors
With Free Variables

Pavel Avgustinov, Julian Tibble, Oege de Moor
Programming Tools Group, University of Oxford

Abstract
A variety of different designs and optimisation strategies for trace
monitoring have been proposed recently. Here, we examine trade-
offs in simplicity of implementation and expressiveness of sup-
ported patterns, briefly discuss the underlying data structures of two
mainstream implementations, and provide a short evaluation of the
effectiveness of memory optimisations.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Experimentation, Languages, Performance

Keywords Program monitoring, runtime verification, program
analysis, aspect-oriented programming

1. Introduction
Trace monitors allow a programmer to write temporal patterns over
the execution trace of a program. These patterns are automatically
used to instrument the program so that, when the program is run,
any match of the pattern triggers extra code to be executed.

Most current research can be seen to follow the paradigm of
monitor-oriented programming, as proposed by Rosu et al. [3] In
recent works — both our own system [1] and others [3–6] — a
consensus has emerged that allowing free variables in the trace
specifications is an indispensable feature for describing properties
of cliques of interacting objects, and indeed it is in such contexts
that trace monitoring is especially superior to other types of runtime
verification (for instance, manual instrumentation).

Most popular implementations of trace monitors are based on
finite state automata. In this work, we concentrate on some design
choices and implementation strategies for such systems, with par-
ticular attention on the tradeoffs between ease of implementation,
performance and completeness.

2. Types of leak-elimination
Trace monitoring systems work by translating the temporal pattern
to an automaton at compile-time and then maintaining runtime
data-structures that relate variable bindings to automaton states.
Since doing that requires keeping references to runtime objects,
it is all too easy to introduce space leaks into the program (that
is, to keep alive objects that would otherwise have been garbage

Copyright is held by the author/owner(s).
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-865-7/07/0010.

1

A,B,C
2A

3

B

B

4
C

C

Figure 1. Monitor automaton for the pattern (AB*|B)C

collected). A variety of strategies has been proposed in the past,
ranging from the simple use of weak references [5] over a data
structure that purges parts of itself when references expire [3] to a
reasonably sophisticated analysis of variables per-state [1].

In this analysis, we look for so-called collectable variables.
Such variables must re-occur on every suffix that could complete
a partially matched trace, and therefore it is sufficient to keep weak
references to them — either they occur again and we can match
against them, or expire and hence can’t occur again. Moreover,
any set of bindings referring to an expired collectable variable is
unsatisfiable, as no suffix that would complete it is possible.

However, this strategy can break down for patterns using alter-
nation. Consider for example the trace pattern A(B|C), where the
symbol A binds variables x and y, B binds x and C binds y. There
is no single variable the expiration of which will guarantee unsat-
isfiability of the associated bindings after an A has been matched;
thus, conventional leak elimination will fail. At the same time, it is
easy to note that if both x and y expire, the match cannot complete.

We have implemented an analysis generalising this idea by
annotating each automaton state with so-called collect-sets, which
are just sets of variables. If all variables in such a set expire, we
can drop all bindings that used to refer to these variables from the
current state. This technique proved very effective on trace patterns
with alternation, allowing us to increase performance up to ten-fold
and reduce memory usage dramatically [2].

3. The effect of restricting variable binding
Restricting how monitor variables are allowed to be bound can
simplify the implementation of a trace monitoring system. To see
why, we will consider the automaton shown in Figure 1, for the
regular expression (AB*|B)C. The symbol A binds x, B binds y,
and C binds x and y.

A trace monitor for this pattern must store partial bindings (that
is, bindings where not all monitor variables are bound to an object),
because any potential match of the pattern begins with A or B, but
neither of these symbols bind the full set of variables. We will see
that this leads to merging and splitting bindings, and the need for
negative bindings.

Table 1 shows the variable bindings associated with each au-
tomaton state after each of the events in the sequence A(x = o1),
B(y = o2), C(x = o1, y = o2).

821



Event 1 2 3 4
A(x = o1) true x = o1 false false
B(y = o2) true x = o1 y = o2 false
C(x = o1, true x = o1 y = o2 x = o1

y = o2) ∧ y 6= o2 ∧x 6= o1 ∧ y = o2

Table 1. Variable bindings for each automaton state.

After the first two events, there are two independent variable
bindings stored: (x = o1) on state 2, and (y = o2) on state 3.
When the third event occurs these constraints are both split, because
there is a non-deterministic choice. For example, for the first of
these bindings, the choice is to take the C transition to state 4
and update the binding to (x = o1 ∧ y = o2), or to reject the
C transition and record the rejection by updating the binding to
(x = o1 ∧ y 6= o2). Inequalities in a variable binding are called
negative bindings. Finally, the two constraints propogated to state
4 are identical, so they are merged.

A design decision made by the designers of JavaMOP [3] was
to restrict the patterns accepted by their system: every word that
matches a JavaMOP pattern must start with a symbol that binds all
the monitor variables. With this restriction, variable bindings are
completely independent — there is no splitting, no merging (at least
if the automaton is determinised first, as otherwise it’s possible to
have bindings on different automaton states at the same time), and
no need for negative bindings. This restriction simplifies the data
structures used by the system, as we shall see in the next section.

4. Data structures for storing monitors
Trace monitors can have extremely large overheads when large
numbers of variable bindings are stored simultaneously, unless
these bindings are indexed. The tracematch system and JavaMOP
both use multi-level trees (implemented using hash-maps) for this
indexing, but they differ in the structure of the trees.

The tracematch system has a tree for each automaton state, and
the leaves of each tree are variable bindings associated with that
state.

In contrast, JavaMOP has a tree for each symbol, and the leaves
of the tree hold (sets of) automaton instances, which can be thought
of as simple counters. Each instance occurs in the appropriate leaf
of all trees, to allow its quick retrieval no matter what symbol
was matched. Since, as mentioned in the previous section, variable
bindings are independent in the JavaMOP system, bindings are up-
dated by looking up the relevant monitor instance and destructively
updating the state variable.

This approach does force the restriction on variable bindings
discussed in Section 3: The first symbol matched must bind all
monitor variables, since it will create the instance and insert it into
all trees; it is this restriction and the associated lack of constraint
splitting and merging that allows the destructive updates mentioned
above.

The draw-back is that there is no way to choose a leak elimi-
nation strategy per-state. Recall that with the alternative approach
of annotating a single monitor instance with constraints, our space
leak elimination determines how to handle each variable while it is
on a given state, and this allows us to do a better job of detecting
invalid constraints in many cases.

5. Performance and Future Work
One might expect that the approach of keeping one monitor in-
stance for each of bindings might be more performant, particularly
due to the absence of merging and splitting constraints, and that
the generality of allowing partial matches carries an intrinsic cost.

0 25000 50000 75000 100000
0

25

50

75

100

125

150

175

200

225

250

tmGC

mopGC

pqlGC

Iterations

M
e
m

o
ry

 [
M

B
]

Figure 2. Memory usage for PQL, JavaMOP and tracematches

However, our comparative experiments with JavaMOP and trace-
matches do not confirm that. In fact, on many examples perfor-
mance is close, while the more advanced per-state leak elimination
strategy allows tracematches to keep a lower memory footprint.

A thorough discussion is beyond the scope of this document,
but consider the memory graph shown in Figure 2, obtained by
implementing the RV concern of safe iteration with different trace
monitoring systems as a trace monitoring benchmark, as introduced
by [1]. The top line is the memory usage of the PQL system [6],
which pays no attention at all to space leaks, and correspondingly
had terrible memory behaviour. The second line shows the footprint
of JavaMOP [3], and clearly their use of weak references allows
them to do significantly better; still, there is a clear upwards trend.
Such a trend is completely absent in the final line, corresponding
to tracematches with advanced per-state leak elimination — the
memory usage stays practically constant throughout.

For reference, the runtimes of this benchmark are as follows:
PQL takes 144s, as it is significantly hampered by many live ob-
jects. JavaMOP took 16.1s (using centralised indexing), and trace-
matches 12.1s. For a more thorough performance evaluation, the
reader is referred to [2]; here, we just want to stress the importance
of leak elimination and point out that the unrestricted generality of
tracematch patterns doesn’t come at a prohibitive cost compared to
the JavaMOP implementation, which is optimised for the special
case described in Section 3.

Still, it is clear that performance gains can be made by exploit-
ing the lack of split and merge operations whenever we are dealing
with fully-bound sets of variables. Indeed, we would like to de-
velop a strategy for generating specialised code that makes use of
this property at any state of the automaton for which it is guar-
anteed. Thus, we wouldn’t sacrifice the generality of patterns by
disallowing those that do not bind all variables upfront, but at the
same time would get the performance benefits whenever possible.

References
[1] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie

Hendren, Sascha Kuzins, Ondřej Lhoták, Oege de Moor, Damien
Sereni, Ganesh Sittampalam, and Julian Tibble. Adding Trace
Matching with Free Variables to AspectJ. In OOPSLA’05, pages
345–364. ACM Press, 2005.

[2] Pavel Avgustinov, Julian Tibble, and Oege de Moor. Making Trace
Monitoring Feasible. In OOPSLA’07. ACM Press, 2007.

[3] Feng Chen and Grigore Roşu. Java-MOP: A monitoring oriented
programming environment for Java. In TACAS ’05. Springer, 2005.

[4] Marcelo d’Amorim and Klaus Havelund. Event-based runtime
verification of java programs. In WODA ’05. ACM Press, 2005.

[5] Simon Goldsmith, Robert O’Callahan, and Alex Aiken. Relational
queries over program traces. In OOPSLA’05, pages 385–402. ACM
Press, 2005.

[6] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding
application errors using PQL: a program query language. In
OOPSLA’05, pages 365–383. ACM Press, 2005.

822


