
Global Consistent Shape Correspondence for Efficient and
Effective Active Shape Models

Meng Wang
NYU Multimedia and Visual Computing Lab

Dept. of ECE, NYU Abu Dhabi, UAE
Dept. of CSE, NYU Tandon School of

Engineering, USA

Yi Fang
∗

NYU Multimedia and Visual Computing Lab
Dept. of ECE, NYU Abu Dhabi, UAE
Dept. of ECE, NYU Tandon School of

Engineering, USA

ABSTRACT
Finding the accurate corresponded landmarks from a col-
lection of shape instances plays critical role in constructing
active shape models (ASMs). We have developed a global
consistent shape correspondence paradigm for efficient and
effective active shape models to address challenging issues
in statistical shape modelling. Specifically, in this paper,
we developed techniques to perform a fast multiple shape
matching to identify global consistent shape correspondence
from a set of training shape instances via efficient low-rank
recovery optimization. High quality ASMs can then be con-
structed based on the identified corresponded points. The
entire process is unsupervised without manual annotation as
well as free of selection of anatomically significant point. Ex-
perimental results on mobile hand image data demonstrate
the superior performance of our proposed method over other
state-of-the-art techniques like MDL in constructing active
shape models.

Keywords
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ing

1. INTRODUCTION

1.1 Background
Active shape models (ASMs) are statistical models that

are widely used to quantitatively represent various shape
structures and their possible variations [6]. With the active
shape models, a new shape can be generally reconstructed
via a iterative fitting a process. The ASMs have been widely
used in many computer vision applications such as object
tracking and classification [7, 16].
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However, it is well known that the automatic identifica-
tion of an accurate set of corresponded landmark points
among training shape instances often poses challenges for ex-
isting techniques towards constructing active shape models.
A small correspondence error in identified landmark points
might significantly deteriorate the quality of constructed
ASMs [8]. To address the correspondence challenges, most
previous research firstly obtain the corresponded landmarks
by manual annotation. Although the manually labelled land-
marks can provide a decent set of correspondence points
among shapes, it is a laborious process of manually anno-
tating the shapes. In addition, due to the variety of in-
dividual backgrounds, the labelled landmarks are not al-
ways consistent each time and not be coincident with any
anatomically significant point of a shape structure, result-
ing in an inefficient and ineffective construction of ASMs.
Shape correspondence is therefore a well known challenging
problem, especially for shape instances with large non-rigid
shape variation and corrupted with great noise.

1.2 Related Works
There have been several prior works that were developed

to address the shape correspondence challenge as discussed
above [1, 2, 9, 10, 5, 18, 13]., We will briefly review two rep-
resentative works, the minimum description length (MDL)
method [10, 11] and the spherical harmonics descriptors
method (SPHARM) [5]. One of widely used technique was
developed based on MDL [10, 11] to establish shape corre-
spondence through minimizing the errors measured by the
required bit-length to transmit the constructed new shape
model and all of the training shape models. Despite the
effectiveness of MDL, it suffers the high complexity due
to the nature of shape correspondence error measure and
the local optimal solution if the training shape instances
present a large structural variations and noise, leading to
inconsistent and local shape correspondence among train-
ing instances. In [5], authors identify the shape correspon-
dence using spherical parametrization of shape instances. In
spite of the good performance in 3D shape correspondence,
SPHARM requires expensive computation because of the
conformal mapping transformation.

Recent work has indicated that optimizing the consistency
of a collection of pairwise shape correspondences is able to
give rise to a global consistent shape correspondence [15]
among the population of shape instances. The hidden con-
straint used for joint multiple shape registration is the cycle
consistency, that is, correct correspondences along different
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Figure 1: Pipeline of global consistent shape corre-
spondence for active shape model.

walking paths of a collection of shapes should always be
identical. By enforcing this constraint on multiple shape
correspondence, most of the incorrect correspondences will
be detected and replaced by correct maps along other paths,
and missing maps will be filled up by the help of interme-
diate shapes. In addition, dissimilar shapes can be corre-
sponded through the set of similar shapes between them.
However, this constraint can not be modelled easily as the
number of possible paths are often very large and the num-
ber of consistent cycles could be very small [20]. [15, 14]
propose that the cycle consistency can be modelled as a
positive semi-definite and low-rank optimization process for
the global binary correspondence matrix. However, unfor-
tunately the semi-definite programming (SDP) employed is
not computational efficient when the matrix is large, which
limits the application to a small scale collection of shapes
instances.

1.3 Our method
In this paper, to efficiently find global consistent shape

correspondence for better constructing active shape mod-
els with higher quality without manually annotating the
landmark points, we introduce a fast low-rank matrix re-
covery optimization using the nuclear-norm relaxation for
rank minimization via a fast alternating optimization to ad-
dress the computational limitation of SDP in registering a
large number of shapes of many sampling points from each
shape [20]. There are three major attractive features in our
proposed method:

• Global consistent shape correspondence: our method is
able to find the corresponding landmarks that are glob-
ally consistent among all of training shape instances,

• Unsupervised learning: our method is able to auto-
matically find anatomically significant corresponding
landmarks without manual annotation,

• Efficient modelling: our method is able to quickly find
consistent correspondence from a reasonable size of
shape instances.

The pipeline of our method can be seen in Figure 1. In
the first step the images are preprocessed to extract sam-
ple points on the contour. Second, an initial matching is
performed based on the extracted descriptors of the sample
points. Then the fast multiple matching are performed on
the initial matching result to generate more consistent cor-
respondences. Fourth, ASM is constructed using the well-
corresponded training set. At last, the trained model is used

for analysis or fitting. The pipeline is applicable to different
ASMs, for simplicity we take hand image processing as an
example.

2. METHOD

2.1 Fast Multiple Shape Matching via Low-
rank Recovery Optimization

2.1.1 Preprocessing
The purpose of this step is to extract the contour of the

shape. Skin detection is an efficient way to extract the fore-
ground when it comes to human skin such as hands. The
specific skin color is defined so that the satisfying pixels can
be picked up. The range of human skin can be adjusted ac-
cording to the lighting conditions. The pixels just picked can
be discontinuous and noisy, a morphological operation such
as image close operation (dilate then erode) can be used to
smooth and denoise the extracted foreground (remove iso-
lated pixels, fill small holes). At last, the contour can be
obtained from the extracted foreground with the isocontour
geometry extraction method.

2.1.2 Initial Matching
Shape correspondences are normally calculated using shape

descriptors as a similarity measure. A shape descriptor is a
representation of structure information of the shape. For the
hand image we are considering, shape context [3] descriptor
is an efficient method. Shape context is calculated based on
the context of sampling points, which is a robust and simple
algorithm for finding correspondences between shapes. The
extracted shape context descriptor can be used to calculate
the similarity between points and perform matching task be-
tween contour images. Typical matching methods include
greedy matching, Hungarian assignment, graph matching.
As the number of initially sampled points is often not consis-
tent, greedy matching performs better as we do not require
a one-to-one matching.

2.1.3 Multiple Matching
Similar to fast optimization strategy used in [20, 19] for

multi-view and multi-image matching, we introduce fast al-
ternating minimization to solve the low-ranking matrix re-
covery optimization in order to handle practical problems
with a large scale of shapes. As reported in [20], the fast al-
ternating minimization used in [20] is about 20 times faster
than the one used in [15] for joint registering 20 shapes with
each shape of 500 samples. The computational time for the
method in [15] exponentially increase as the size of shape
descriptors increase. As we discussed before, the cycle con-
sistency is an important constraint used in matching a set
of shapes. It can be defined as:

Xac = XabXbc (1)

where a, b, c are any three shapes from the shape set, Xij ∈
{0, 1}(m×n) is a binary matrix indicating whether a pair of
vertices from two shapes i, j is a match, m,n are the number
of sampled vertices in shape i, j.

The cycle consistency can be more concisely described by
introducing a virtual set of unique vertices in the set of
shapes. The virtual set of vertices can be utilized as in-
termediate vertices by many vertices in the same time. The
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cycle consistency can be refined as:

Xij = AiA
T
j ,Ai ∈ {0, 1}m×k, k ≥ m (2)

where Ai denotes the mapping from shape i to the virtual
set, m is the number of vertices in shape i.
All the Xij matrices can be tiled together into one giant

matrix X.

X =

⎛
⎜⎜⎜⎝

X11 X12 · · · X1n

X21 X22 · · · X2n

...
...

. . .
...

Xn1 Xn2 · · · Xnn

⎞
⎟⎟⎟⎠ (3)

where n is the number of 3D shapes. Now X can be de-
noted as X = AAT . From this equation, we can see that X
should be both positive semi-definite (X ≥ 0) and in low-
rank (rank(X) ≤ k). Imposing a constraint on X can avoid
checking cycle-consistency over all the possible paths.

The cycle consistency has been formulated as an optimiza-
tion problem to do matrix recovery. The overall cost func-
tion can be formulated as:

f(X) = −Σn
i=1Σ

n
j=1Sij ·Xij+λ||X||∗ = −S·X+λ||X||∗ (4)

where S is a global affinity matrix, λ||X||∗ is the nuclear
norm of X. The nuclear term is the sum of singular values
in X, which is a relaxation for the rank of X. Here we set
S = M, where M is the matching result from pair-wise cor-
respondence, andM is constructed from many pair-wise cor-
respondences like Equation 3. It is proven that the positive
semi-definite constraint can be fulfilled in the same time if λ
is large enough [21]. The nuclear norm minimization prob-
lem is convex and the proximal method [17] and ADMM [4]
can be used to solve the problem. A fast alternating [21] is
proposed to solve this problem much more faster.

2.2 Active Shape Model
To build the ASM models, well-corresponded examples we

obtained from multiple matching are used as a representative
training set.

2.2.1 Alignment
In most cases among different shapes the position, scale,

and rotation are different, so an alignment is a necessity
to the training set. We make transformations (translation,
scaling, and rotation) to each shape compared to the first
shape such that they become as similar as possible. Then all
the shapes are aligned to the mean shape. The Procrustes
method is used to find the transformation that best aligned
the shapes.

2.2.2 Applying Principal Component Analysis
A set of aligned vectors in the form of Eq 5 is obtained

after shape alignment.

x = [x1, x2, ..., xn, y1, y2, ...yn] (5)

where n is the number of sampled points in the matching,
xi, yi are coordinates of point i. Now a shape can be repre-
sented by a vector in a 2n-dimensional space. As a result,
the training set can be fully characterized by a distribution
of m vectors, where m is the size of the training set. Princi-
pal Components Analysis (PCA) is then used to extract the
directions of independent variation in the cloud of points.
The most significant directions with largest eigenvalues are

(a) (b)

Figure 2: Results of multiple shape matching. First
the corresponding points from the points in the first
shape are plotted, then the points are connected ac-
cording to the connection of corresponding points of
the first shape. (a)Shapes generated from the ini-
tial matching. (b)Shapes generated from the refined
multiple matching.

retained and the shape can be approximated without losing
a lot of information by:

x ≈ x̄+Pb (6)

where P = p1p2...pt is the eigenvectors, b = [b1b2...bt]
is the coefficient. t is chosen so that 98% of the variance
is represented (98% of the total eigenvalues are used). b
is a set of parameters to deform a shape and generate new
plausible shapes.

2.2.3 Generate shapes
Suppose for model that the different parameters bi are in-

dependent, gaussian distributed with zero mean, then 95%
of the distribution of one parameter is covered in the range
[-2SD, 2SD], where SD is the standard deviation of the train-
ing vectors. By constricting b to [−2

√
λi, 2

√
λi], where λi

is the variance of the ith parameter, the shape generated is
similar to the shapes in the training set. t is the number of
modes needed to describe the shape properly.

2.2.4 Adjust ASM to fit a shape in the image
An ASM of the hand consists a mean shape x̄, a parameter

vector b, and eigenvectors. Through certain variations on
the b and transformation, we can generate a plausible shape
that best fit a new input shape.

Plausible points selection. It is important to select
plausible points that both keep the basic shape of the trained
model and keep close to the new shape. For each point in
the mean shape, the candidate points are selected along the
boundary normal within a certain range to keep the basic
shape. After inputting the new shape, candidates points
that are the most similar in gradient textures to the point
in the new shape are selected. The selected plausible points
will form a new target shape.

Adjust the model parameters to best fit selected
points. Given a new set of points x, we can translate,
rotate, scale and deform our model in order that it best fits
x. This can be done by applying a transformation to find the
best alignment, and compute some new shape parameters
b to find the best deformation. Given the mean shape x
and the set of new points s, the shape parameters can be
obtained.

These two processes will be executed alternatively until
there are no big updates on transformation and b.
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Figure 3: Quantitative evaluation of ASMs using
compactness.

Table 1: Quantitative evaluation of ASMs using AIC
Method AIC value
MDL 12.54

Shape Context 12.32
Our method 11.10

3. EXPERIMENT

3.1 Dataset and Settings
A set of experiments are performed to evaluate our method.

The hand image data is selected from mobile hand images
database (MOHI) [12]. MOHI is a database of hands cre-
ated using mobile phones, which has modest qualities. 110
images are used to perform the multiple matching and active
shape model training. The running time for 110 shapes with
200 samples per shape is about one hour, which is signifi-
cantly (about 20 times) faster than other SDP-based matrix
recovery method. For experiment purpose, equal number of
points (200 points per shape) are sampled from the edge. In
multiple matching, λ is set to 50.

3.2 Results
First a shape matching experiment is conducted before

and after multiple matching to test the performance of mul-
tiple matching. As in Figure 2, the shapes are generated us-
ing the corresponding points to the first shape. The shapes
in Figure 2(a) are generated using the correspondence of
initial matching, which are problematic due to incorrect
correspondences. We show matching result after multiple
matching in Figure 2 (b), the shapes generated have much
improved quality as the correspondence errors are largely
decreased. As can be seen from the matching result, the
multiple matching is effective in improving the correspon-
dences.

We use two measures as evaluation criteria to evaluate our
method quantitatively: compactness and Akaike’s Informa-
tion Criterion (AIC). Compactness suggests the cumulative
variance of the input vector. A good model is normally
trained from data with as little variance as possible. Com-
pactness is defined as:

compact(M) = ΣM
m=1λm (7)

where λm is the mth largest eigenvalue. AIC is an evaluation
criterion for evaluating and selecting models, which can also
be used to evaluate the ASMs. We are using the form of Eq
8.

AIC = −log(
n

R
) + 2

k

n
(8)
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Figure 4: Comparisons of generated plausible
shapes. (a)Shape context. (b)Our method of re-
fined multiple matching. Shapes generated of first
two modes varying from -3SD to 3SD are displayed.

where n is the size of the training set, R is the construction
residual reconstructing using the first k principal directions.
We set k to be 3 for all the methods. Smaller value of AIC
indicates higher quality of the model. Quantitative results
are shown in Table 1 and Figure 3. As we can see in Table 1,
our method gives the best ASM among the three methods as
indicated by the smallest AIC value. As we can see in Figure
3, our method gives a better performance as indicated by
lower curve. The results quantitatively validate the superior
performance of our proposed method over other techniques
in constructing ASM.

To test the performance of the trained ASM, we also con-
duct an experiment on the plausible shapes generated from
ASM. In Figure 4, plausible shapes generated are compared
for ASMs based on correspondences before and after mul-
tiple matching. As indicated by Figure 4 (a) and (b), our
method show great improvement in terms of the quality of
generated plausible shapes. Shapes in (a) are inconsistent
and many points of them does not lie on edge of hands.
Shapes in (b) are more similar to hands contour edges in
plausible variations from the mean shape. The global mul-
tiple shape matching has greatly improved the quality of
ASM.

4. CONCLUSION
In this paper, we developed techniques to perform a fast

multiple shape matching to identify global consistent shape
correspondence from a set of training shape instances via ef-
ficient low-rank recovery optimization. High quality ASMs
can then be constructed based on the identified corresponded
points. The entire process is unsupervised without manual
annotation as well as free of selection of anatomically sig-
nificant point. Both quantitative and qualitative evaluation
results on mobile hand image data demonstrate the superior
performance of our proposed method in constructing active
shape models.
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