
Certified PUP: Abuse in Authenticode Code Signing

Platon Kotzias
IMDEA Software Institute &
Universidad Politécnica de

Madrid, Spain
platon.kotzias@imdea.org

Srdjan Matic
Universita degli Studi di Milano

Milan, Italy
srdjan.matic@unimi.it

Richard Rivera
IMDEA Software Institute &
Universidad Politécnica de

Madrid, Spain
richard.rivera@imdea.org

Juan Caballero
IMDEA Software Institute

Madrid, Spain
juan.caballero@imdea.org

ABSTRACT
Code signing is a solution to verify the integrity of software and
its publisher’s identity, but it can be abused by malware and po-
tentially unwanted programs (PUP) to look benign. This work per-
forms a systematic analysis of Windows Authenticode code signing
abuse, evaluating the effectiveness of existing defenses by certifi-
cation authorities. We identify a problematic scenario in Authen-
ticode where timestamped signed malware successfully validates
even after the revocation of their code signing certificate. We pro-
pose hard revocations as a solution. We build an infrastructure
that automatically analyzes potentially malicious executables, se-
lects those signed, clusters them into operations, determines if they
are PUP or malware, and produces a certificate blacklist.

We use our infrastructure to evaluate 356 K samples from 2006-
2015. Our analysis shows that most signed samples are PUP (88%–
95%) and that malware is not commonly signed (5%–12%). We ob-
serve PUP rapidly increasing over time in our corpus. We measure
the effectiveness of CA defenses such as identity checks and revo-
cation, finding that 99.8% of signed PUP and 37% of signed mal-
ware use CA-issued certificates and only 17% of malware certifi-
cates and 15% of PUP certificates have been revoked. We observe
most revocations lack an accurate revocation reason. We analyze
the code signing infrastructure of the 10 largest PUP operations ex-
posing that they heavily use file and certificate polymorphism and
that 7 of them have multiple certificates revoked. Our infrastructure
also generates a certificate blacklist 9x larger than current ones.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

Keywords
Windows Authenticode; Code Signing; PUP; Malware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3832-5/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2810103.2813665.

1. INTRODUCTION
Publishers of malicious software (malware) and potentially un-

wanted programs (PUP) are always looking for ways to make their
code look benign in order to convince the user to install it and avoid
detection. One such way is code signing, where the software is
distributed with a digital signature which, if valid, certifies the in-
tegrity of the software and the identity of the publisher. Signed code
looks more benign and may be assigned higher reputation by secu-
rity products. In Windows, properly signed application code avoids
scary warnings when a user executes it and is assigned higher rep-
utation when downloaded through Internet Explorer [34]. Further-
more, kernel-mode code is required to be signed. Aware of these
benefits attackers are increasingly leveraging signed code for their
goals, e.g., for launching notorious targeted attacks [8, 12, 13].

To sign Windows programs, publishers need to obtain a valid
code signing certificate from a Certification Authority (CA). This
should pose a barrier for malicious software, since it requires pro-
viding the publisher’s identity to the CA and paying a fee ($60–
$500 for 1-year certificates). Furthermore, when malicious soft-
ware is observed in the wild signed with a valid certificate, the CA
that issued the certificate should swiftly revoke it. However, it is
not clear how well defenses such as identity checks and revoca-
tion work. Prior work in 2010 by two AV vendors [37, 41] showed
that signed samples were not uncommon in malware datasets. But,
there has been no systematic study analyzing the extent to which
malware (e.g., bots, trojans) and PUP (e.g., adware, bundles) are
abusing code signing and how well defenses such as identity vali-
dation and revocation work.

In this work we perform a systematic study on abuse of Win-
dows Authenticode [31] code signing. We identify a problematic
interaction between revocation and timestamping in Authenticode,
where timestamped signed executables still validate even if their
code signing certificate is revoked. To address this issue we pro-
pose that CAs perform hard revocations that invalidate all executa-
bles signed by a certificate.

We build an infrastructure that takes as input a large number of
potentially malicious samples, filters out benign samples and those
that are not signed, and thoroughly analyzes signed samples includ-
ing their digital signatures, certificate chains, certificate revocation,
and file timestamping (i.e., third-party certification of the time they
saw some signed code). It also clusters signed samples into oper-
ations and classifies them as PUP or malware. Our infrastructure
automatically builds a blacklist of malicious certificates, which can
be used by CAs to perform revocation, or users can embed it into
the Windows untrusted certificate store to block malicious code.

465

Using our infrastructure we analyze 356 K malware samples dis-
tributed between 2006 and February 2015, of which 142 K (42%)
are signed. This process outputs a blacklist of over 2,170 code
signing certificates, 9x larger than existing blacklists [5].

Our analysis uncovers that most signed samples are PUP (88%–
95%) and that malware is not commonly signed (5%–12%). We
observe PUP rapidly increasing over time in our corpus, reach-
ing 88% of the samples in 2014. We measure the effectiveness of
CA defenses such as identity checks and revocation. We find that
99.8% of signed PUP and 37% of signed malware use CA-issued
certificates indicating that CA identity checks pose some barrier to
malware, but do not affect PUP. Only 17% of malware certificates
and 15% of PUP certificates have been revoked, and the best CA
revokes 43% of the certificates it issues to malware and PUP pub-
lishers. Most CAs do not provide abuse email addresses and do not
accurately report the revocation reason. Only 53% of the revoca-
tions include a revocation reason and those with one often report
key compromise even if it is a malware-abused certificate.

Our clustering of signed samples into operations and the clas-
sification into PUP and malware shows that the largest operations
correspond to PUP, e.g., adware and gray pay-per-install programs
that offer users to install third-party programs. We analyze the
10 largest PUP operations observing that they heavily use poly-
morphism in files and certificates, possibly to bypass AV and CA
checks. Seven of them have multiple certificates revoked, so CAs
seem to consider them malicious. To achieve certificate polymor-
phism, PUP publishers buy certificates from multiple CAs, modify
the Subject information, and use multiple companies and individu-
als. For example, OutBrowse uses 40 different companies across 6
countries to obtain 97 code signing certificates from 5 CAs.

We also leverage the fact that timestamped malware contains a
trusted timestamp close to its creation to evaluate how fast Virus-
Total [15], a large malware repository, collects malware.
Contributions:

• We perform a systematic analysis of Authenticode abuse and
the effectiveness of existing defenses. We identify a prob-
lematic scenario in Authenticode where timestamped signed
malware successfully validates even after their code signing
certificate has been revoked. To address this issue we pro-
pose that CAs perform a hard revocation, which invalidates
any code signed with a certificate after this has been revoked.

• We propose a novel clustering of signed samples into oper-
ations using static features extracted from the Authenticode
data. We also propose two novel techniques to classify sam-
ples as PUP or malware based on the AV detection labels.

• We build an infrastructure that given large amounts of poten-
tially malicious software automatically analyzes signed sam-
ples, clusters them into operations, classifies them as PUP or
malware, and produces a blacklist of malicious certificates.

• We use our infrastructure to analyze 356 K samples. We ob-
serve that PUP is rapidly increasing, most signed samples
are PUP, and malware is not commonly signed. We measure
that 99.8% of signed PUP and 37% of signed malware use
CA-issued certificates and only 17% of malware certificates
and 15% of PUP certificates have been revoked. Most revo-
cations lack an accurate revocation reason. We analyze the
largest PUP operations exposing that they heavily use file and
certificate polymorphism. In addition, most of the largest op-
erations have multiple certificates revoked that indicates that
CAs consider them malicious.

• We leverage timestamped malware to evaluate the speed with
which the VirusTotal online service collects malware.

• We setup a website for our blacklist and analysis results [7].

2. OVERVIEW
Code signing is the process of digitally signing executable code

and scripts. It authenticates the code’s publisher and guarantees the
integrity of the code. Code signing is used with different types of
code in a variety of platforms including Windows executables and
kernel drivers, Java JAR files, Android applications, active code in
Microsoft Office documents, Firefox extensions, Adobe Air appli-
cations, and iOS applications.

The code signing process first computes a hash of the code and
then digitally signs this hash using the publisher’s private key. The
public key of the code’s publisher is authenticated using a X509
code signing certificate that a certification authority (CA) issues to
the publisher after verifying its identity. This code signing certifi-
cate is attached to the signed code. The CA also provides its cer-
tificate chain, anchored at a trusted root CA. This chain is attached
to the signed code or made available online.

In code signing, certificates are distributed with the signed code
(e.g., embedded in the executable file) to geographically distributed
users. When a certificate expires, it is difficult to update all code
installations with a new certificate. In contrast, Web servers can
simply update their HTTPS certificate between sessions. To ad-
dress this issue, some code signing solutions (e.g., Windows Au-
thenticode, Java) introduce an optional timestamping process, that
sends the signed code to a Time Stamping Authority (TSA), which
certifies that it observed the signed code at a specific time.

Usually, when the code signing certificate expires, validation
fails. But, if the signed code is also properly timestamped within
the validity period of the code signing certificate, validation suc-
ceeds despite the code signing certificate having expired.

To timestamp signed code, the TSA embeds a timestamp, digi-
tally (counter)signs both the timestamp and the existing code sig-
nature using its private key, and authenticates its public key by in-
cluding its certificate chain anchored at a trusted root CA. Thus,
code that is timestamped contains two certificate chains: the sign-
ing chain and the timestamping chain.

Figure 1 summarizes the code signing process. A (potentially
malicious) publisher buys a code signing certificate from a CA that
verifies the publisher’s identity before issuing the certificate (¶,·).
The publisher signs its code using the code signing certificate and
a signing tool like Microsoft’s AuthTool (¸,¹). Optionally, the
publisher sends the signed code to the TSA to be timestamped
(º,»). Finally, the publisher distributes the code to the users (¼).

2.1 Microsoft Authenticode
Authenticode is a code signing solution by Microsoft [31]. It was

introduced with Windows 2000, but its specification was not pub-
licly released until March 2008. It uses a Public-Key Cryptography
Standards (PKCS) #7 SignedData structure [27] and X.509 v3 cer-
tificates [21] to bind an Authenticode-signed file to a publisher’s
identity. Authenticode is used to digitally sign portable executable
(PE) files including executables (.exe), dynamically loaded libraries
(.dll), and device drivers (.sys). It can also be used for signing Ac-
tive X controls (.ocx), installation (.msi), or cabinet (.cab) files.
File format. Figure 2 presents the basic format of an Authenticode-
signed PE file. It contains a PKCS #7 SignedData structure (also
called Authenticode signature) at the end of the file, whose start-

466

1

CA

@

TSA

.

.

2

5

6

3

4

7

.

.

.

AuthTool

Figure 1: Code signing process: ¶,· publisher acquires a
code signing certificate providing its personal information;
¸,¹ publisher signs code; º,» (optional) publisher submits
the signed code to be timestamped; ¼ publisher distributes the
signed (and timestamped) code.

PE File Header

Section Table (Headers)

PKCS#7
Authenticode signature

Contentinfo

PE file hash value

Signerinfos

Signerinfo

Signed hash
of contentInfo

Timestamp (optional)

PKCS#9
counter-signature

Certificates

X.509 certificate 1

Signed PE-executable

MS-DOS 2.0 Section

Optional Header

Data Directories

Checksum

Windows-Specific Fields

ptr. to Authenticode sign.

PKCS#7

X.509 certificate M

...
Section 1

Section N

...

Figure 2: Format of a signed PE file. The red text box fields are
not included in the calculation of the digest.

ing offset and size are captured in the Certificate Table
field in the Optional Header. The PKCS #7 structure con-
tains the PE file’s hash, the digital signature of the hash generated
with the publisher’s private key, and the certificates comprising the
signing chain (the root certificate does not need to be included). It
can also optionally include a description of the software publisher,
a URL, and a timestamp. Authenticode only supports MD5 and
SHA1 hashes and prior work has shown how to produce Authenti-
code collisions with MD5 [39].

When calculating the hash of the PE file 3 fields are skipped
(marked in red in Figure 2): the Authenticode signature itself, the
file’s checksum, and the pointer to the Authenticode signature. In
addition, the PE sections are sorted before adding them to the hash.
We call the result Authentihash to distinguish it from the file hash
that includes all bytes in a file and is often used to uniquely identify
a file (e.g., by security vendors). In the past, vulnerabilities have
been disclosed where attackers could embed data in unspecified PE
fields [25] and the Authenticode signature [30] without invalidating
the file’s signature.
Timestamping. Timestamping is optional in Authenticode. In or-
der to timestamp an Authenticode-signed file, a TSA first needs
to obtained the current UTC timestamp. Then, it builds a PKCS #9

counter-signature by digitally signing with its private key the times-
tamp and the hash of the file’s signature in the PKCS #7. Next, it
embeds into the PKCS #7 SignerInfo structure the timestamp
and the counter-signature. If the optional timestamp field already
existed, it is overwritten. Finally, it appends the certificates of the
timestamping chain to the certificates part (the root certifi-
cate of the timestamping chain does not need to be included).
Revocation. Certificates can be revoked, e.g., if the private key
corresponding to the public key in the certificate is compromised,
using certificate revocation lists (CRLs) [21] and the online certifi-
cate status protocol (OCSP) [38].
Validation. Authenticode validation is performed using the Win-
VerifyTrust function, which supports multiple validation policies.
The policy we are interested in is the default one for Windows
(WINTRUST_ACTION_GENERIC_VERIFY_V2). This policy is
documented in the Authenticode specification [31] as follows:

• The signing chain must be built to a trusted root certificate
(in the Windows Certificate Store) following RFC 5280 [21].

• The signing certificate must contain either the extended key
usage (EKU) CODE_SIGNING value, or the entire certifi-
cate chain must contain no EKUs.

• The certificates in the signing chain must not be in the un-
trusted certificates store1.

• Each certificate in the signing chain must be within its valid-
ity period, or the signature must be timestamped.

• Revocation checking is optional, but often used.

• The timestamping chain validation differs in that the TSA
certificate must include a TIMESTAMP_SIGNING EKU
and revocation is turned off by default for this chain.

• By default, timestamping extends the lifetime of the signa-
ture indefinitely, as long as it happened during the validity
period of the signing certificate and before the certificate re-
vocation date (if applicable).

• Timestamped signatures can be prevented from verify-
ing for an indefinite period of time by setting the LIFE-
TIME_SIGNING OID in the code signing certificate or pass-
ing a particular flag to the WinVerifyTrust function.

• The Authenticode signature must verify.

• The Authentihash computed on the executable must equal
the Authentihash value stored in the PKCS #7 structure.

A failure in any of these steps should cause validation to fail.
Unfortunately, the Authenticode validation code is proprietary and
thus it is not clear if it follows all steps in the validation, in which
order those steps are executed, and how it handles cases where the
specification is unclear. Its exact functionality can only be reverse-
engineering through testing or code analysis. We discuss validation
issues in Section 3.
Code signing in Windows. A signed executable can embed an
Authenticode signature (Figure 2) or its hash can be included in
a catalog file, i.e., a collection of file hashes digitally signed by
their publisher [4]. Most non-Microsoft signed executables embed
Authenticode signatures. By default, user-level signed applications
are validated by Windows before they run if the application was
1In Windows XP and 2003 only the signing certificate is checked.

467

Certificate Price Revocation
CA TSA CS HTTPS Mal. Abuse Delay
Certum X $199 $34 - - ≤ 1d
Comodo X $172 $109 X X ≤ 1d
DigiCert X $223 $175 X X ≤ 1d
Disig - $109 $51 X X ≤ 1d
Entrust X $299 $199 X - ≤ 1d
GlobalSign X $299 $249 - - ≤ 3h
GoDaddy/StarField X $170 $63 - - ≤ 7d
StartCom/StartSSL X $60 $60 - - ≤ 12h
SwissSign X $449 $399 - - ≤ 1d
Symantec/GeoTrust X $499 $149 - - ≤ 1d
Symantec/Thawte - $299 $149 - - ≤ 1d
Symantec/Verisign X $499 $399 - - ≤ 1d
TrustWave - $329 $119 X - ≤ 1d
TurkTrust - $138 $112 X - ≤ 1d
Verizon - $349 $349 - - ≤ 12h
WoSign X $466 $949 - X ≤ 1d
yessign - $153 - - - ≤ 1d

Table 1: CAs offering code signing certificates and timestamp-
ing. Prices are for 1-year certificates in US Dollars. Revocation
shows if a malware clause is present in the CPS, an abuse con-
tact is mentioned, and the delay to publish a revocation. A dash
indicates that we were not able to find related information.

downloaded from the network (including network shares) or re-
quires administrator privileges, which triggers User Account Con-
trol (UAC). In addition, Internet Explorer validates the signature
of downloaded files [10]. User interaction varies across situations
and Windows versions, but generally if the Authenticode signature
validates, the window presented to the user to confirm execution
contains the verified publisher information and a warning icon. If
it fails or is unsigned it states the publisher is untrusted and uses a
more threatening icon and textual description. Since Windows 7,
AppLocker allows specifying rules for which users or groups can
run particular applications, which allows to create a rule for run-
ning only signed applications [1].

Device drivers are handled differently depending on the Win-
dows version, whether 32-bit or 64-bit, and if the driver is user-
mode or kernel-mode [33]. For 64-bit Windows since Vista, it’s
mandatory to have both user-mode and kernel-mode drivers signed
in order to load. In addition, for kernel-mode code a special pro-
cess is required where the publisher’s code signing certificate must
have a chain leading to the Microsoft Code Verification Root [6].

2.2 Authenticode Market
We analyzed the CAs that are members of the CA Security Coun-

cil [2] and the CA/Browser [3] forum and that publicly sell Authen-
ticode code signing certificates. Table 1 summarizes if they offer
timestamping services, their certificate prices, and their revocation
policies.

Few CAs offer Authenticode code signing certificates com-
pared to HTTPS certificates, possibly reflecting a smaller market.
There has been significant consolidation, e.g., Symantec acquired
Verisign, GeoTrust, Thwate, and smaller CAs. Unfortunately, we
did not find any public market size and CA market share figures.
Only 11 CAs publicly advertise themselves as TSAs. In all cases
timestamping is offered through HTTP, free of charge, and does not
require authenticating to the service. We evaluate these services in
Section 5.6.

Code signing certificates are pricier than HTTPS certificates
ranging $60–$499 for a 1-year validity period. The exception is
StartSSL which charges per identity verification rather than per cer-
tificate. Code signing certificates can be bought with a 1, 2, or 3-

year validity period, with the latter being offered by only 25% of
the CAs.
Revocation. We examine the revocation sections of the Certifica-
tion Practice Statement (CPS) documents of the CAs in Table 1.
The only entity that can perform revocation is the same CA that
issued the code signing certificate. For all CAs, the customer can
request revocation of its own certificate and the delay to publish
the revocation through CRL or OCSP ranges between 3 hours and
a week (Delay column). Only 6 CAs have a specific clause on
their CPS about revocation being possible if the code signing cer-
tificate is abused to sign malicious code (Mal. column), although
there is typically another clause that reminds how revocation can
happen if the certificate is used in a way “harmful for the image
or the business” of the CA. We were able to find an abuse contact
email address or Web form for only 4 CAs. In other cases third
parties reporting abuse would have to go through generic contact
forms. Researchers that in the past requested CAs to revoke mali-
cious certificates reported none or little response [37, 41]. Overall,
third-party reporting of certificate abuse does not seem a concern
by most CAs. In Section 5.5 we show that only 15% of the mali-
cious certificates we observe are revoked, and the revocation prac-
tices outlined in this paragraph are likely a contributing factor for
this low number.

3. REVOKING TIMESTAMPED CODE
When a code signing certificate is revoked, any executable

signed (but not timestamped) with this certificate no longer vali-
dates in Windows, regardless if the executable was signed before
or after revocation. But, our testing of Windows Authenticode val-
idation reveals that if an executable is both properly signed and
timestamped at time tts (i.e., validates at tts) and then its code
signing certificate is revoked at trev > tts, the executable still val-
idates at any t > trev despite the code signing certificate having
been revoked. This is true as long as the revocation date is larger
than the timestamping date (trev > tts). Executables timestamped
after the revocation (trev ≤ tts) will not validate.

Such handling seems to assume that revocation happens because
the private key corresponding to the certificate’s public key was
compromised. In that case, executables signed before the key com-
promise should be OK and there is no need for them to fail valida-
tion, as long as a timestamp certifies they existed before revocation.
We call this a soft revocation because it only invalidates executables
signed with the certificate after revocation.

However, revocation is also needed when an attacker convinces
a CA to issue him a code signing certificate, which it uses only to
sign malicious code. In this case, if the attacker signs and times-
tamps a large number of malware before starting to distribute them,
revocation happens after the timestamping date of those samples
and thus they still validate after the revocation. What is needed in
this case is a hard revocation that invalidates all executables signed
with that certificate regardless when they were timestamped. With
a hard revocation the CA sends the signal that it believes the cer-
tificate’s owner is using it for malicious purposes and none of his
executables should be trusted, rather than the owner was compro-
mised and earlier signed executables are OK. The CA is responsible
for distinguishing these two cases.

The easiest way to perform a hard revocation is for the CA to set
the revocation date to the certificate’s issue date (trev = ti), even if
the CA discovers the improper use of the certificate at a later time.
This way, any sample signed with that certificate will fail valida-
tion, regardless the timestamping date, because the revocation date
will always be smaller than the timestamping date. Note that the

468

1. File Preprocessing

VT Query PE Parser

Timestamps Hashing

2. Authenticode Processing

PKCS Parser Validation

Revocation
Checks

Chertificate Chain
Reconstruction

3. Classification

Feature
Extraction

Clustering

Feature
Selection

PUP
Classification

Signed
Samples

Files

Certificate
Blacklist

Figure 3: Approach overview.

attacker cannot forge an old timestamp and also that a valid times-
tamp needs to be within the certificate’s validity period.

Setting the revocation date to the certificate’s issue date enables
hard revocations without modifying OCSP and CRLs. A caveat is
that it hides the real date in which the CA realized the certificate
was malicious. Adding this information may require modifications
to revocation protocols and CAs may see a benefit on hiding how
long it takes them to realize they issued a malicious certificate. We
believe that it would be good to use the OCSP/CRL revocation rea-
son to explicitly state that it is a hard revocation. In Section 5 we
show that the information in this field is currently not useful.

One issue is that an attacker could revoke its own certificate af-
ter claiming a key compromise, in order for the CA to perform a
soft revocation that does not invalidate previous code. One way to
address this is to assign reputation to subjects based on prior revo-
cations. In Section 6 we discuss that CAs should share revocation
information.

We have reported to Microsoft this issue and the suggested solu-
tion using hard revocations.

4. APPROACH
Figure 3 summarizes our approach. It takes as input a large num-

ber of unlabeled files from malware datasets (described in Sec-
tion 5.1). It preprocesses the files to discard benign files, parses
the PE files to identify those signed, and processes the Authenti-
code signature (Section 4.1). All information is stored in a central
database. Then, the clustering (Section 4.2) groups the samples
into operations. Finally, the certificate blacklist is output. For each
blacklisted certificate we provide information about the certificate
(i.e., Subject CN, Issuer, Serial Number), a link to VirusTotal with
a sample signed with this certificate, and the certificate itself ex-
ported in DER format that can be directly installed on Windows
untrusted certificates store by following the Windows certificate in-
stallation wizard.

4.1 Sample Processing
Our infrastructure is implemented on Linux using 4,411 lines of

Python and C code. Files are first preprocessed to remove non-PE
files. Then, the PE files are parsed to extract a variety of informa-
tion from the PE header including the file type (EXE, DLL, SYS),
multiples hashes (MD5, SHA1, SHA256, PEHash [40]), publisher
and product information in the optional PE structures, icon, PDB
path, and a number of timestamps. Next, it queries the file hash
to VirusTotal (VT) [15], an online service that examines malware
with a large number of security tools, to retrieve file metadata such
as the number of AV engines that detect the file and the timestamp
of the first time the file was submitted. We keep any sample flagged
by more than 3 AV engines. Samples that contain an Authenticode
signature move on to the next processing phase.

The Authenticode processing parses the PKCS #7 structure to
retrieve the code signature, timestamp, and PKCS #9 timestamping
counter-signature (if present). Then, it extracts the X.509 certifi-
cates from the certificates structure of the PKCS #7 struc-
ture, which contains certificates from both the signing and times-
tamping chains. The certificate chains need to be reconstructed
because oftentimes the certificates are not properly ordered and
certificates from both chains may be mixed. In addition, certifi-
cates can include a URL to the next certificate in the chains (if not
included). If so, the certificate is downloaded. Next, the certifi-
cates are parsed to obtain a wealth of information including among
others, the Subject, Issuer, validity period, PEM and DER hashes,
Extended Key Usage flags, and OCSP and CRL URLs. The valida-
tion component verifies both chains using OpenSSL and queues the
files to be distributed across four Windows VMs for Authenticode
validation. We use the OpenSSL validation to better understand
the error codes returned by Authenticode validation. Next, the re-
vocation component retrieves and processes the CRL and OCSP
information from each certificate in the chain. All information is
stored in a central database.

4.2 Clustering
We cluster the signed samples into operations by grouping exe-

cutables from the same publisher. For computing the sample sim-
ilarity we focus on features that can be extracted statically from
the samples, which enables efficient processing. Since all 142 K
samples to be clustered are signed, most of our features focus on
properties of the publisher’s code signing certificate, with a focus
on identifying different certificates from the same publisher. As
far as we know certificate features have not been previously used
for clustering malware. We also use a previously proposed static
feature to identify polymorphic variants of the same code [40].

We first identify a large set of candidate features and perform
feature selection on the signed samples of the publicly available
Malicia malware dataset [35], for which the majority of files have
family labels. We select the following 6 top boolean features based
on information gain:

• Leaf certificate. Properly signed samples using the same
CA-issued code signing certificate (same certificate hash) are
distributed by the same publisher, i.e., the one owning the
certificate. Publishers typically amortize the cost of a certifi-
cate by signing a large number of samples.

• Leaf certificate public key. Public keys are left unchanged
in many certificate replacements [36]. Thus, two certificates
authenticating the same public key likely belong to the same
publisher.

• Authentihash. Files with the same Authentihash contain the
same code and data. Thus, they correspond to the same pro-

469

Samples Families Precision Recall F-Measure
2,046 7 98.6% 33.2% 49.7%

Table 2: Clustering accuracy on labeled (signed) malware from
Malicia dataset.

gram even if they have a different file hash, e.g., due to dif-
ferent certificate chains.

• Subject common name. Publishers may try to obtain mul-
tiple certificates using the same identity by slightly modify-
ing the company or individual name (e.g., “Company SLU”
and “Company S.L.”). Given two certificates with a non-
empty Subject CN field, this feature computes the normal-
ized edit distance between their Subject CNs. If the distance
is less than 0.11 their publishers are considered the same.
The threshold is chosen using a small subset of manually la-
beled certificates.

• Subject location. Publishers may reuse the same address
in multiple certificates with small changes to fool the CA
(e.g., “Rockscheld Blvd. 83 Dublin” and “Rockchilde 83
Dublin”). Given two certificates whose subject location con-
tains a street attribute, this feature computes the normalized
edit distance between those fields. If less than 0.27 the pub-
lisher is the same, otherwise different. The threshold is cho-
sen using a small subset of manually labeled certificates. If
the street attribute is not available, then the location only has
the city and is not specific enough, thus they are considered
different.

• File metadata. PE executables have an optional data struc-
ture with file metadata. This feature concatenates the fol-
lowing file metadata fields: publisher, description, internal
name, original name, product name, copyright, and trade-
marks. Two files with the same concatenated metadata string
larger than 14 characters are considered to be in the same
family. Shorter metadata strings are not specific enough, thus
they are considered different.

• PEhash. We also use the previously proposed PEhash [40],
which transforms structural information about a PE exe-
cutable into a hash value. If two files have an unknown
packer and the same PEhash they are considered polymor-
phic variants of the same code.

Clustering. We use the following algorithm to cluster files into
operations. The clustering starts with zero clusters and iterates on
the list of samples. For each sample, it checks if it is similar to any
other sample using the 6 features above. Two samples are similar
if any of the above similarity features returns one. If the sample
being examined is similar only to samples in the same cluster, it
is added to that cluster. If similar to samples in multiple clusters,
those clusters are merged and the sample is added to the merged
cluster. If not similar to any other sample, a new singleton cluster
is created for it.
Clustering accuracy. To evaluate the accuracy of our clustering
we use the publicly available Malicia malware dataset [35], which
contains labeled samples. In particular we use the 2,046 samples
in the Malicia dataset that are both signed and have a label. Those
samples belong to 7 families, but the majority (97%) are Zbot. Ta-
ble 2 summarizes the results. The precision is high (98.6%) but
the recall is low (33.2%). The reason for the low recall is that the
Malicia labels capture samples with the same code. However, Zbot

code can be bought or downloaded online, so it is used by many
operations. Our clustering is oriented towards different operations
so Zbot is broken into multiple clusters.
Labeling. Our clustering automatically generates a cluster label
based on the most common feature value in the cluster. For the
largest clusters we manually update the label with any popular tag
used by security vendors for that operation.

4.3 PUP classification
We are interested in differentiating how malware and PUP abuse

Authenticode, but are not aware of any prior techniques to auto-
matically differentiate both classes. The main challenge is that the
behaviors used to determine if a family is potentially unwanted or
malicious may differ across security vendors [9, 16]. To address
this issue we design two techniques that examine the AV detection
labels obtained from VirusTotal, taking into account how multiple
AV engines classify samples as PUP or not. One technique clas-
sifies a whole cluster as PUP or malware, while the other classi-
fies each sample separately. We find the cluster classification to be
more accurate, but it requires the clustering in Section 4.2, which
is only available for signed samples and cannot be applied to un-
signed samples as most features come from the certificates. We use
the sample classification to compare the PUP prevalence among
signed and unsigned samples.

Prior work has shown that AV labels are not a good ground
truth for classifying malware into families due to inconsistent nam-
ing [18, 32]. However, our classification is at a coarser granularity.
We only use the AV labels to determine if a cluster or a sample
corresponds to PUP or not rather than to a specific family, which is
captured by the malware clustering in Section 4.2.

As preparation for both classification techniques we first select
13 case-insensitive keywords that if present in a label indicate
a potentially unwanted program: PUP, PUA, adware, grayware,
riskware, not-a-virus, unwanted, unwnt, toolbar, adload, adknowl-
edge, casino, and casonline. Then, we select the top 11 AV engines
sorted by number of samples in all our datasets whose detection la-
bel includes at least one of the 13 above keywords. Those engines
are: Malwarebytes, K7AntiVirus, Avast, AhnLab-V3, Kaspersky,
K7GW, Ikarus, Fortinet, Antiy-AVL, Agnitum, and ESET-NOD32.

Using the selected keywords and AV engines, the classification
module automatically classifies each cluster or sample as PUP or
malware. Both classifications perform a majority voting on whether
the selected engines consider the cluster or sample as PUP or not.
We detail them next.
Cluster classification. The cluster classification first obtains for
every engine the most common label the engine outputs on sam-
ples in the cluster (engines often output multiple labels for samples
in the same cluster). Then, if the most common label for an engine
contains at least one of the 13 keywords, the PUP counter is in-
creased by one, otherwise the malware counter is increased by one.
After evaluating all 11 engines on the cluster, if the PUP counter
is larger or equal to the malware counter the cluster is considered
PUP, otherwise malware.
Sample classification. The sample classification gets the label of
the selected 11 engines for the sample. It can happen that some
(and even all) of the selected engines do not detect the sample. If
the label for an engine contains at least one of the 13 keywords, the
PUP counter is increased by one, otherwise the malware counter is
increased by one. After evaluating the labels, if the PUP counter
is larger or equal to the malware counter the cluster is considered
PUP, otherwise malware.

470

PE CS chain TS chain
Dataset Date All Malware+PUP PE Signed PUP Chains Leaf PE Timestamped PUP Chains Leaf
CCSS 05/2015 197 191 (97.0%) 172 (90.0%) 6.4% 172 171 92 (53.5%) 6.5% 18 16
VirusShare_149 02/2015 32,184 30,402 (94.5%) 19,082 (62.8%) 97.4% 855 815 7,419 (38.8%) 96.0% 32 24
VirusShare_148 02/2015 64,629 59,684 (92.3%) 45,668 (76.5%) 97.6% 1,077 1,015 15,059 (32.9%) 96.6% 34 24
VirusShare_138 08/2014 53,064 51,500 (97.0%) 46,174 (89.7%) 99.2% 684 656 29,491 (63.9%) 99.1% 28 21
NetCrypt 08/2014 1,052 1,051 (99.9%) 892 (84.9%) 99.5% 28 26 8 (0.9%) 62.5% 3 3
VirusShare_99 09/2013 99,616 96,355 (96.7%) 26,424 (27.4%) 92.5% 1,057 990 7,002 (26.5%) 90.8% 46 33
Malicia 05/2013 11,337 11,333 (99.9%) 2,059 (18.2%) 0% 87 87 2 (0.10%) 0% 1 1
VirusShare_0 06/2012 87,126 86,112 (98.8%) 1,906 (2.2%) 56.2% 466 447 847 (44.43%) 39.5% 23 19
Italian 11/2008 7,726 5,175 (67.0%) 136 (2.6%) 78.0% 42 42 112 (82.3%) 91.0% 7 6

Total 356,931 341,803 (96%) 142,513 (42%) 95% 3,186 2,969 60,032 (42%) 96.1% 76 49

Table 3: Datasets used.

5. EVALUATION
This section describes our datasets and the results of analyzing

them through our infrastructure.

5.1 Datasets
Table 3 details the datasets used. The first two columns show

the name of the dataset and its release date. Our main source of
samples is VirusShare [14] from where we download 5 datasets
between 2012 and February 2015. We also obtain from Italian
collaborators a dataset of unlabeled older samples and collect a
small dataset of samples with encrypted network traffic. We in-
clude the publicly available Malicia dataset [35], which contains
labeled samples that we use to evaluate our clustering. The last
dataset contains samples downloaded from the CCSS Forum cer-
tificate blacklist [5] used for measuring our coverage.

The next two columns summarizes the executables in the dataset.
First, it shows the number of PE executables in the dataset, after
excluding other malicious files (e.g., HTML). Overall, our infras-
tructure processed 356,931 executables. Then, it shows the number
and percentage of malicious and potentially unwanted executables
in the dataset. An executable is malicious or unwanted if more than
3 AV engines flag it in VirusTotal [15]. As expected, the vast ma-
jority (96%) satisfy this condition.

The next group of 4 columns (CS chain) summarizes the signed
executables and their code signing chains. It shows the number of
signed malicious executables, the fraction of signed samples clas-
sified as PUP using the cluster classification, the number of unique
certificate chains in those executables, and the number of distinct
leaf certificates in those chains. Overall, 142,513 samples (42%)
are signed of which 95% are PUP and 5% malware. Those signed
samples contain 3,186 distinct chains. On average, 45 signed sam-
ples share the same certificate chain, which is an indication that
they belong to the same operation. We detail the clustering into op-
erations and PUP classification in Section 5.2. Those 3,186 chains
contain 2,969 unique leaf (i.e., code signing) certificates.

The last group of 4 columns (TS chain) summarizes the times-
tamped executables, and their timestamping chains. It shows the
number and percentage of timestamped malware over all signed
malware, the fraction of those samples classified as PUP, the num-
ber of unique timestamping certificate chains in those executables,
and the number of distinct leaf certificates in those timestamping
chains. Overall, 42% of the signed samples are also timestamped.
Those files contain only 76 distinct chains, with 49 unique leaf cer-
tificates. On average, 790 samples share the same timestamping
chain, a significantly larger reuse compared to code signing chains
indicating that TSA infrastructure is quite stable. Oftentimes, exe-
cutables are signed by one CA and timestamped by a different CA.
Dataset collection. We know that the Malicia dataset was collected
from drive-by downloads, which silently install malware on vic-

Samples Clusters Singletons Largest Mean Median
142,513 2,288 1,432 42,711 62.3 1

Table 4: Clustering results on signed samples.

tim computers. Silent installs are characteristic of malware while
PUP tends to be distributed through bundles or installers. Thus,
the Malicia dataset is biased towards malware. In fact, given the
available labels we know that it contains no PUP (neither signed
or unsigned). Unfortunately, we do not know how datasets other
than Malicia were collected, a common situation with third-party
datasets. In particular we do not know whether the VirusShare
datasets, which are the largest and dominate our corpus, may have
some bias towards PUP or malware due to their collection methods.
We leave as future work replicating the analysis in other datasets to
compensate for any possible collection bias in VirusShare.

5.2 Clustering and PUP Classification
Table 4 summarizes the clustering results on the 142,513 signed

samples. The clustering outputs 2,288 clusters of which 1,432 con-
tain only one sample. The distribution is skewed with the largest
cluster containing 42,711 samples, the average cluster 62.3, but the
median only one due to the large number of singletons. We de-
tail the top operations in Section 5.7. To evaluate the clustering
accuracy we manually analyze the 235 clusters with more than 10
samples, which cover 97% of signed samples. We observe high pre-
cision but lower recall, i.e., some operations are split into multiple
clusters typically one large cluster and one or two small clusters.
This is consistent with the ground truth evaluation in Table 2.
PUP cluster classification. Our PUP cluster classification applied
on the 2,288 clusters of signed samples outputs that 721 clusters are
PUP and 1,567 malware. While a majority of clusters are labeled
as malware, the largest clusters are labeled as PUP and overall the
cluster classification considers 95% of the samples as PUP and 5%
as malware. The median PUP cluster size is 188 samples and for
malware clusters 4.4 samples. Over the top 235 clusters manually
examined, we find 10 where our manual PUP classification differs
from the automatic classification. The largest of these 10 clusters
has 351 samples and altogether they comprise 890 potentially mis-
classified samples, 0.64% of all manually labeled samples.
PUP sample classification. The PUP sample classification is ap-
plied to 341,119 signed and unsigned samples, for which we have
a VT report and they are detected by at least one of the selected
11 AV engines. Of those, 44% are labeled PUP and 56% malware.
This indicates that our corpus is quite balanced on malware and
PUP samples. For signed samples, 88% are labeled PUP and 12%
malware. For unsigned samples, the results are almost opposite:
11% are labeled PUP and 89% malware. These numbers indicate

471

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

2006 2007 2008 2009 2010 2011 2012 2013 2014 20150

collected
signed
signed PUP
signed malware
timestamped

Figure 4: Number of collected, signed, timestamped, signed
PUP, and signed malware samples over time. The cluster clas-
sification is used to label signed PUP and malware samples.

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

2006 2007 2008 2009 2010 2011 2012 2013 2014 20150

collected
PUP
malware

Figure 5: Number of collected, PUP, and malware samples over
time including both signed and unsigned samples. The sample
classification is used to label PUP and malware samples.

that PUP is most often signed, but malware only rarely, an impor-
tant conclusion of our work.

Table 5 summarizes the PUP classification. As expected, the
cluster classification labels as PUP more signed samples (95% ver-
sus 88%) since it considers as PUP samples that may not be individ-
ually labeled as PUP, but belong to a PUP dominated cluster. Our
manual analysis of samples with differing classification observes a
higher accuracy for the cluster classification. When not mentioned
explicitly throughout the evaluation, the PUP classification results
are those of the cluster classification.

5.3 Evolution over Time
We analyze if malware and PUP are increasingly being signed.

To examine the evolution over time, we need to approximate when
samples were created. The majority of dates embedded in executa-
bles (e.g., compilation time) are unauthenticated and can be forged.
The timestamping date is authenticated, but only available in 42%
of the signed samples. Thus, we approximate the creation date of
each sample by the first submission to VirusTotal.

Figure 4 plots for each year between 2006 and 2015 the number
of collected samples (signed and unsigned) in our corpus first seen
by VT on that year, as well as the number of signed samples, signed
PUP, signed malware, and timestamped samples (both malware and
PUP). PUP and malware signed samples are labeled using the clus-
ter classification. The figure shows that signed samples were rare
in our corpus until 2011. Since then, they have steadily risen with
the majority (87%) of all samples collected in 2014 being signed.
This growth is due to the increase of signed PUP, as the number of
signed malware has kept steadily low over time.

Signed Unsigned All samples
Classification PUP Mal. PUP Mal. PUP Mal.
Per Sample 88% 12% 11% 89% 44% 56%
Per Cluster 95% 5% - - - -

Table 5: Summary of PUP classification results.

Validation Result Signed Files PUP Mal.
OK 95,277 (66.8%) 69.2% 21.7%

CERT_E_REVOKED 23,550 (16.5%) 16.9% 9.7%
CERT_E_EXPIRED 19,016 (13.3%) 13.7% 5.4%

TRUST_E_BAD_DIGEST 2,798 (2.0%) <0.1% 38.3%
CERT_E_UNTRUSTEDROOT 1,136 (0.8%) <0.1% 15.9%
TRUST_E_NOSIGNATURE 503 (0.3%) <0.1% 7.0%
CERT_E_CHAINING 170 (0.1%) <0.1% 1.0%
CERT_E_UNTRUSTEDTESTROOT 47 (<0.1%) <0.1% 0.6%
TRUST_E_COUNTER_SIGNER 8 (<0.1%) 0% 0.1%
TRUST_E_NO_SIGNER_CERT 7 (<0.1%) 0% 0.1%
CERT_E_WRONG_USAGE 1 (<0.1%) 0% <0.1%

Total 142,513 (100%) 100% 100%

Table 6: Validation results using the default Windows policy.

The figure also shows the increase of timestamped samples over
time, which starts in 2012 and rises more slowly, achieving 49%
of all collected samples being timestamped in 2014. Note that the
dip in 2010 is due to our corpus, not to less malware and PUP
having been produced that year. In general, malware and PUP have
been growing steadily over the years [29]. The dips in 2015 happen
because only January and February are included.

Figure 5 is similar but it includes both signed and unsigned sam-
ples, labeled using the sample classification. It shows that in our
corpus PUP has been increasing over time and the increase in PUP
highly resembles the signed PUP increase in Figure 4, despite us-
ing different PUP classification metrics. In contrast, malware has
been decreasing in our corpus since 2011. This could indicate that
PUP is replacing malware over time, but could also be due to col-
lection bias on the VirusShare datasets. We leave as future work
examining this trend on other datasets.

5.4 Authenticode Validation
All signed samples are validated using the default Windows Au-

thenticode policy. Table 6 summarizes the validation results. The
majority (67%) of signed samples still validates correctly in Win-
dows. The remaining 33% fail Windows Authenticode validation.
The most common validation error is that a certificate has been
revoked (CERT_E_REVOKED) returned for 16.5% of the signed
samples. The second most common validation error is that a certifi-
cate in the chain has expired (CERT_E_EXPIRED), which affects
13.3% of signed samples.

Note that revoked and expired code signing certificates were
valid when they were issued. Thus, the total number of signed
samples that used a CA-issued certificate is 97%. And, 73% of leaf
certificates used to sign the samples have been issued by CAs. The
other are self-signed or bogus.

The two rightmost columns in Table 6 show the percentage of
Authenticode validation results for PUP and malware respectively.
Only 22% of signed malware still validates, compared to 69% of
PUP. When including revoked and expired certificates we observe
that 99.8% of PUP samples had at some point a valid signature,
compared to 37% of malware. Thus, PUP authors have no trouble
obtaining valid certificates from CAs. For malware authors, iden-
tity checks by CAs seems to present a higher barrier. Still, over one
third of the signed malware had at some point a valid signature.
The fact that less malware samples are revoked compared to PUP

472

Issued Revoked Hard Revocations
CA Total PUP Malware Total PUP Malware Total PUP Malware
Symantec/VeriSign 708 70.5% 29.5% 76 (10.7%) 7.2% 19.1% 23 (30.2%) 44.4% 17.5%
Symantec/Thawte 510 66.0% 34.0% 109 (21.4%) 24.6% 15.0% 4 (3.7%) 2.4% 7.7%
Comodo 406 85.0% 15.0% 60 (14.8%) 15.4% 11.5% 54 (90.0%) 88.7% 100%
GlobalSign 153 80.0% 20.0% 14 (9.1%) 9.8% 6.4% 0 0% 0%
WoSign 120 35.8% 64.2% 10 (8.3%) 7.0% 9.0% 7 (70%) 66.6% 71.4%
GoDaddy/StarField 99 85.0% 15.0% 28 (28.3%) 31.0% 13.3% 6 (21.4%) 23.0% 0%
DigiCert 85 68.2% 31.8% 37 (43.5%) 36.2% 59.2% 9 (24.3%) 14.3% 37.5%
Certum 32 65.6% 34.4% 7 (21.9%) 14.3% 36.4% 0 0% 0%
Symantec 23 87.0% 13.0% 0 0% 0% 0 0% 0%
StartCom/StartSSL 10 60.0% 40.0% 2 (20%) 16.6% 25% 0 0% 0%
Total 2,170 71.0% 29.0% 343 (15.8%) 15.4% 16.7% 103 (30.0%) 32.0% 25.7%

Table 7: Leaf certificates issued and revoked by CAs and used to sign PUP and malware.

samples is due to PUP authors reusing certificates to sign a larger
number of samples than malware authors. Certificate revocations
are similar for both classes and detailed in Section 5.5.

The vast majority of other validation errors are due to malware.
A significant (2.0%) fraction of samples have digital signatures that
cannot be verified (TRUST_E_BAD_DIGEST) because the Authen-
tihash in the PKCS7 structure does not match the file’s Authenti-
hash. This is the most common Authenticode validation result for
malware samples and is often due to malware authors copying cer-
tificate chains from benign executables onto their malware. For
example, the most common Subject CN of these leaf certificates is
for Microsoft Corporation. Copying a benign certificate chain on
a malware sample changes the sample’s file hash and also invali-
dates byte signatures on the certificates themselves, without chang-
ing the malware code. This may help to bypass some AV engines
and explain why we observe multiple malware samples with the
same Authentihash, but different certificate chains.

Another popular validation error among malware is an untrusted
root certificate (CERT_E_UNTRUSTEDROOT) not included in the
default Windows trust store. The majority of these (1,102/1,136)
contain chains with only one self-signed certificate. Another 34
contain fake certificates for valid CAs and the rest are bogus.

There are 503 samples (491 malware) that Windows does not
consider signed (TRUST_E_NOSIGNATURE). These contain mis-
placed Authenticode signatures, which Windows does not identify
but our parsing code does. Another 170 (73 malware) samples
contain chains where the certificates are not in the proper order
(CERT_E_CHAINING), a phenomenon also observed in SSL cer-
tificate chains [22].

There are 47 samples whose chains end with a root
certificate created by Microsoft’s Certificate Creation
Tool2, used by developers to test code under development
(CERT_E_UNTRUSTEDTESTROOT). Eight samples contain an
invalid timestamping chain (TRUST_E_COUNTER_SIGNER).
For seven samples Windows is not able to find the leaf
certificate (TRUST_E_NO_SIGNER_CERT). The final sam-
ple contains a leaf certificate without the code signing flag
(CERT_E_WRONG_USAGE).

5.5 Revocation
In this section we examine the revocation of certificates used to

sign PUP and malware. For this, we use OCSP and CRL revo-
cation checks that our infrastructure performs for each certificate
using OpenSSL. We do not use the CERT_E_REVOKED Authen-
ticode validation error because it does not specify which certificate

2https://msdn.microsoft.com/en-us/library/
bfsktky3.aspx

in the chain was revoked and because other errors may hide the re-
vocation [20]. Of the 2,969 leaf certificates, 83% contain a CRL
URL, 78% both CRL and OCSP URLs, and 17% neither3. Revo-
cation checks are successful for 90% of the certificates with a CRL
or OCSP URL, the remaining 10% fail. The most common errors
are OCSP unauthorized (i.e., CA does not recognize the certificate
typically because it is fake) and an empty CRL list.

Table 7 summarizes the code signing certificates issued by each
CA and used to sign PUP or malware in our corpus, and their re-
vocations. For each CA it shows the number of valid certificates
issued (including those that still validate, have been revoked, and
have expired but were valid otherwise), the number of certificates
revoked, and the number of hard revocations performed by the CA.
It also provides the split of those categories into certificates that
sign PUP and malware respectively.

Overall, 2,170 out of 2,969 leaf certificates were issued by CAs,
the rest are self-signed or bogus. Symantec’s Verisign and Thawte
brands issue most code signing certificates used to sign PUP and
malware. This may be due to Symantec having the largest market
share of the code signing market. Unfortunately, we did not find
any public code signing CA market share figures to compare with.
Of those 2,170 certificates, 71% are used to sign PUP and 29%
malware. All CAs issue more certificates to PUP authors except
WoSign, a Chinese CA. These results indicate that obtaining a CA-
issued code signing certificate may be easier for PUP authors, but
malware authors still often manage to obtain one.

All revocations are for leaf certificates. Overall, 343 code sign-
ing certificates have been revoked. Thus, CAs revoke less than 16%
of the certificates they issue to PUP and malware authors. The PUP
and malware percentages are computed over the number of certifi-
cates issued to PUP and malware authors, respectively. There is
no significant difference in the percentage of PUP certificates that
gets revoked (15.4%) compared to malware certificates (16.7%).
Five CAs revoke a higher percentage of malware certificates and 4
a higher percentage of PUP certificates. Both results indicate that
CAs revoke similarly certificates used by PUP and malware.

Thawte is the CA with most revoked certificates and DigiCert the
CA revoking the largest fraction of malicious certificates it issued.
No CA revokes more than 43% of their abused certificates. These
numbers indicate that revocation is currently not an effective de-
fense against abused code signing certificates. We further discuss
this at the end of this subsection.

The average time to revoke a certificate is 133 days. Comodo is
the fastest to revoke malicious certificates (21 days) although it only
revokes 15% of them. Verisign is significantly slower (validity > 9

3One leaf certificate contains only OCSP URL.

473

Leaf Certificates
Reason All PUP Malware # CA
Unspecified / NULL 163 (47%) 67.5% 32.5% 7
Key Compromise 137 (40%) 69.3% 30.7% 2
Cessation of Operation 35 (10%) 80.0% 20.0% 3
Superseded 6 (2%) 50.0% 50.0% 2
Affiliation Changed 2 (<1%) 100% 0% 2

Table 8: Summary of revocation reasons.

months) than the other CAs to revoke malware-used code signing
certificates and only revokes 11%.

All revocations are available through OCSP and only a hand-
ful through CRLs. The reason may be that expired certificates are
removed from CRLs to prevent them from growing too large, a
behavior allowed by RFC 2459 [26]. We find some revocations for
GoDaddy/Starfield that appear in CRLs but not through OCSP. This
inconsistency indicates the need to check both revocation methods
for this provider.

The vast majority (96.2%) of revocations happen during a cer-
tificate’s validity period. We only observe 13 certificates revoked
after they have expired. A revocation after expiration has no effect
in Windows validation.
Revocation reason. A revocation may optionally include a revoca-
tion reason [21,38]. Table 8 details the revocation reasons returned
by OCSP or in the CRL. The reason is unspecified or not provided
at all in 47% of revocations. The most common revocation reason
is key compromise used in 40% of revocations by two CAs: Thawte
and VeriSign. The key compromise reason is used not only in cases
where the certificate’s owner may have reported a key compromise
but also when the CAs were likely deceived to issue a certificate to
a malicious publisher. For example, 30% of these certificates were
issued to malware publishers, which are unlikely to report a key
compromise. It seems that CAs do not care about giving precise
revocation reasons and this field is currently not useful.
Hard revocations. We observe some CAs (WoSign, Comodo,
VeriSign, GoDaddy, DigiCert, Thawte) performing some revoca-
tions on the certificate issue date. This could indicate that they are
already performing hard revocations or that they want to hide when
they discovered the certificate’s abuse. We have not found any prior
references on the need or use of hard revocations. Comodo (90%)
and WoSign (70%) have the highest fraction of such revocations.
Unfortunately, they never provide a revocation reason. Our analysis
of these revocations reveals that they are not performed systemati-
cally. For example, WoSign revokes two certificates from the same
operation, with the same Subject CN and one gets a revocation on
the issue date and the other does not.
Summary of findings. Our revocation analysis shows that less
than 16% of CA-issued code signing certificates used by malware
are revoked with no significant difference between certificates used
by malware (17% revoked) and PUP (15%). The lack of revocation
is widespread across CAs: no CA revokes over 43% of the abused
code signing certificates it issued. In addition, CAs do not properly
detail the reason for which a certificate was revoked, which makes it
difficult to separate key compromises from certificates purposefully
obtained to sign malware and PUP. Some CAs perform revocations
on the issue date. They may have realized the need of hard revoca-
tions. But, we have not seen any references to this issue, most CAs
seem unaware, and the ones performing them show inconsistencies
in their use. These findings support that revocation of malicious
code signing certificates is currently ineffective.

4Includes TC TrustCenter GmbH, acquired by Symantec

CA Samples Chains
Symantec/VeriSign4 43,295 (72%) 12
GlobalSign 13,536 (22%) 5
Comodo 1,878 (3%) 8
DigiCert 630 (<1%) 7
GoDaddy/Starfield 316 (<1%) 3
WoSign 174 (<1%) 7
Entrust 42 (<1%) 5
Microsoft 126 (<1%) 21
Certum 20 (<1%) 2
Yessign 3 (<1%) 2
Daemon Tools 2 (<1%) 2
GeoTrust 2 (<1%) 1

Table 9: Timestamping authorities used by malware and PUP:
number of samples and timestamping chains for each TSA.

5.6 Timestamping
We have already shown (Table 3) that 42% of the signed samples

in our corpus are timestamped and that timestamped samples are
on the rise (Section 5.3). In this section we detail the usage of
timestamping by PUP and malware. Table 9 shows the timestamp
authorities (TSA) used by samples in our corpus. For each TSA,
the table presents the number of samples that were timestamped
by this TSA and the number of distinct timestamping certificates
chains for the TSA.

The results show that Symantec/Verisign is the most popular
TSA, used by 72% of the timestamped samples, followed by Glob-
alSign with 22%. Next, we show that TSAs do not perform checks
on executables sent to be timestamped. Thus, the popularity of
Symantec’s and GlobalSign’s TSAs among PUP and malware au-
thors is not due to these providers performing less validation than
other TSAs, but most likely due to a larger market share. Note
that Microsoft and Daemon Tools are not publicly available TSAs,
some authors copied the timestamping chains from other files into
their executables. These samples do not validate.
Lack of timestamping checks. We perform an experiment to test
whether TSAs perform any checks on executables they receive for
timestamping. We select 22 signed samples from our corpus, two
for each Authenticode validation result in Table 6. We use the Win-
dows SignTool [11] to send those samples to the top 7 TSAs in
Table 9. All 7 TSAs successfully timestamped 20 of the 22 sam-
ples. The only two samples that were not timestamped were those
with Authenticode validation error TRUST_E_NO_SIGNATURE
(Section 5.4). Those samples have their signatures in a wrong posi-
tion. We also try timestamping an already timestamped file, which
results in replacement of the old timestamp with a new one. In sum-
mary, we do not observe any restrictions imposed by TSAs on the
executables to be timestamped, other than they should be signed.
TSAs do not check that the executable’s certificate chain validates
and do not attempt to identify malicious or potentially unwanted
software. Given that timestamping is a free service, TSAs may not
have an incentive to invest in checks.
Timestamped and revoked. Timestamping is beneficial for au-
thors since if a sample is timestamped before its code signing cer-
tificate is revoked, then Windows authentication will always suc-
ceed on that sample, regardless of the revocation. In our corpus we
find 911 timestamped samples with a revoked certificate. A total
of 118 revoked code signing certificates are used by these samples.
The low number of samples in this category is due to less than 16%
of abused code signing certificates being revoked. Of those sam-
ples, 655 (72%) are timestamped before their code signing certifi-
cate is revoked. These samples will continue to successfully val-

474

Dates Samples Certificates Certificate Subjects
Name Type Certificates Malware Signed TimeSt. Issued Revoked Hard Rev. Avg. Validity CAs CNs Comp. Ind. CCs Cost
Firseria PUP 05/11 - 09/17 08/11 - 02/15 42,711 42,543 26 0 0 1.7 5 20 15 0 2 $12,734
SoftPulse PUP 02/14 - 01/16 07/14 - 02/15 21,083 1 43 4 0 1.0 6 20 13 0 2 $15,959
InstallRex PUP 03/11 - 07/16 10/11 - 02/15 12,574 0 51 21 20 1.1 3 45 2 43 4 $10,394
Tuguu PUP 05/12 - 06/15 01/13 - 02/15 7,891 3 34 22 10 1.0 6 15 7 0 4 $8,771
OutBrowse PUP 02/13 - 08/17 07/13 - 02/15 5,590 21 97 64 0 1.0 5 44 40 0 6 $27,300
LoadMoney PUP 12/11 - 03/16 08/12 - 02/15 5,285 38 14 9 8 1.2 2 13 12 0 1 $3,554
ClientConnect PUP 02/12 - 12/16 06/14 - 02/15 3,576 3,562 21 0 0 2.0 3 3 3 0 3 $17,760
InstallCore PUP 07/10 - 01/17 01/11 - 02/15 2,972 900 101 3 2 1.2 6 89 75 0 17 $29,595
Zango PUP 05/09 - 01/15 07/10 - 09/13 2,913 25 6 5 5 1.9 1 3 3 0 1 $4,864
Bundlore PUP 07/11 - 07/16 12/12 - 02/15 2,823 0 6 0 0 1.5 2 3 2 0 1 $1,797

Table 10: Top 10 operations. The validity period is in years and the cost in US Dollars.

Days
0 5 10 15 20 25 30 35

#
 T

im
e
s
ta

m
p

e
d

 M
a
lw

a
re

5k

10k

15k

20k

25k

30k
Median: 1.3 days
Mean: 19.8 days
Std: 106.4 days
Max: 3356 days
Min: 0 days

of
samples
with time
difference
> 30 days

Figure 6: Time difference in days between a sample was times-
tamped and it was first observed in VirusTotal. There are 44
samples with a negative time difference of at most -10 minutes
that are not shown in the figure.

idate after revocation. The remaining 28% are timestamped after
revocation, up to 5.6 months after their code signing certificate was
revoked. Thus, some authors keep using their code signing certifi-
cate long after it has been revoked. They still see value in signing
their executables even when the signature does not validate, or did
not realize that the revocation happened.
Timestamping speed. Next, we examine whether timestamping
happens close to the creation time of a sample. For this we compare
the timestamping date with the first time the timestamped sample
was observed by VirusTotal (VT). As expected, the vast majority
of samples are observed by VT after the timestamping date. Out
of 60 K timestamped samples, only 44 are observed by VirusTotal
before they are timestamped, and all those are seen by VT within
10 minutes of the timestamping date. These 44 samples are likely
sent to VT to check if they are detected by AVs before timestamp-
ing them. This indicates that timestamping happens closely after
a sample is signed and before it starts being distributed. Other-
wise, we would expect VT to see a larger number of samples dis-
tributed before timestamping and over a larger time frame. The
consequence of this is that the timestamping date is a highly ac-
curate estimation of the creation time. This is important because
typically we have no reliable indication of when a sample is cre-
ated. In practice, many works use the first-seen-on-the-wild date as
an approximation.

We can use the timestamping date to evaluate how fast malware
repositories collect samples, something that we are not aware has
been measured earlier. Figure 6 shows the time difference in days
between a sample was timestamped and it was first observed in
VT. Overall, it takes VT a median of 1.3 days to observe a sample,
but the distribution is long-tailed. The red bar on the right of

the figure shows that 8% of the timestamped samples are seen
by VT over a month after they are created. This happens more
often with older samples created while VT did not have as good
coverage as it does now. In the worst case, some samples are seen
by VT more than 6 years after they were created. Thus, using the
first-seen-on-the-wild date as an approximation of creation time
for a sample works for the majority of recent samples, but can
introduce large errors with a small percentage (<8%). Using the
timestamping date is a more accurate estimation that does not rely
on the distribution channel. While only 42% of our samples are
timestamped, we have shown that timestamping is growing.

5.7 Largest Operations
In this section we use the clustering results to analyze the code

signing infrastructure of the largest operations in our corpus. When
sorting the clusters in Table 4 by number of signed samples they
contain, the top 21 clusters correspond to PUP operations. The first
malware cluster at rank 22 corresponds to Zbot. However, aggre-
gating all Zbot clusters would rank Zbot as 11th largest operation.
When we sort clusters by the number of CA-issued leaf certificates
the first malware cluster has rank 22 and uses 7 certificates.

Table 10 summarizes the top 10 operations, all PUP, in decreas-
ing order of signed samples. The left half of the table shows, for
each operation, the operation name, whether it corresponds to PUP
or malware, the number of signed and timestamped samples, the
number of certificates issued and revoked, and the average validity
period in years of all certificates issued to the operation. The right
half of the table details the subjects of the certificates issued to the
operation, the number of CAs that issued those certificates, and the
estimated certificate cost for the operation in US dollars.
File polymorphism. The 10 PUP operations in Table 10 distribute
75% of the signed samples in our corpus. The top operation (Firse-
ria) distributes 30% of the signed samples alone, and the top 3 more
than half. Thus, large PUP operations heavily use file polymor-
phism. For example, SoftPulse produces at least 21 K signed sam-
ples in 7 months, an average of 97 new signed samples per day.
Such polymorphism is likely used to avoid AV detection and is a
behavior often associated with malware.

Two of the top 10 families (Firseria and ClientConnect) times-
tamp the vast majority of their signed samples. Thus, some PUP
authors have already realized the benefits of timestamping. The
rest have no timestamped samples, or only a handful likely due to
tests or third-party timestamping (like we did in Section 5.6).
Certificates. These 10 operations use from 6 code signing certifi-
cates (Zango, Bundlore) up to 84 certificates (OutBrowse). On av-
erage, they sign 445 samples with the same code signing certificate,
amortizing the certificate cost over many samples. The average life-
time of their certificates ranges from one year for 3 operations to

475

Mar'11 Sep'11 Mar'12 Sep'12 Mar'13 Aug'13 Feb'14 Aug'14 Feb'15 Aug'15

Certum
Thawte
Comodo

Figure 7: CA-issued certificates used by the InstallRex operation over time. Each line corresponds to a different certificate and its
length marks the period between the certificate issuing date and its expiration or revocation (denoted by a cross) date. A single cross
in one line indicates a hard revocation, i.e., a revocation on the certificate issuing date.

two years for 2 operations. Three of the operations favor 2-year
certificates (validity larger than 1.5) and 6 favor 1-year certificates
(validity less than 1.5). The longer the validity period the larger the
investment loss if a certificate gets revoked.
Certificate revocations. Seven of the 10 families have multiple
certificates revoked. It seems unreasonable that an entity would
have 3–61 key compromises, so those revocations are likely due to
malicious behavior. This indicates that CAs consider those 7 PUP
operations malicious. For operations with revoked certificates, re-
vocation does not work great since at most 66% of their certificates
(OutBrowse) are revoked.

Interestingly, the two operations that timestamp their files do not
have revocations and the 3 operations with zero revocations (Firse-
ria, ClientConnect, and Bundlore) favor 2-year certificates. Their
lack of revocations seems to give them enough confidence to com-
mit to larger investments. Additionally, buying longer-lived certifi-
cates makes them look more benign, further contributing to the lack
of revocations.
Certificate polymorphism. Eight of the 10 operations use over 10
code signing certificates and 9 buy certificates from multiple CAs.
The right part of Table 10 examines who requested the code sign-
ing certificates (i.e., the certificate Subject field). First, it shows
the number of distinct Subject CN fields in the certificates, then
the grouping of those into unique companies or individuals that
requested the certificates, and finally the number of countries for
those subjects. These 10 operations use 399 certificates with 255
distinct Subject CNs. On average, 1.6 certificates have the same
Subject CN. After grouping similar Subject CNs, (e.g., “Tuguu SL”
and “Tuguu S.L.U.”) those 399 certificates correspond to 172 cor-
porations and 43 individuals. All individual certificates are used by
the InstallRex operation. The other operations use corporations to
buy the certificates. Five of the operations use more than 10 corpo-
rations. For some operations (e.g., Tuguu) we are able to check the
company information on public business registers showing that the
same person is behind multiple companies used by the operation.
For each operation, the corporations and individuals are concen-
trated in a few countries, most often the United States and Israel.

These results show that PUP operations heavily rely on certifi-
cate polymorphism through the use of multiple CAs, small modi-
fications of Subject CNs, and buying the certificates through mul-
tiple corporations or individuals. Such certificate polymorphism
is likely used to bypass CA identity validation and revocation, in-
creasing the resilience of their certificate infrastructure. For ex-
ample, Comodo revokes a LoadMoney certificate issued for LLC

Monitor but the family possess another one from Thawte issued for
Monitor LLC, which due to the lack of CA synchronization is not
revoked. Overall, operations have adapted to obtain new certifi-
cates when their current ones are revoked. We show an example
for the InstallRex operation at the end of this subsection.
Cost. We estimate the cost of the certificate infrastructure for these
operations by adding the cost of all certificates issued to the opera-
tion using the per CA and per validity period certificate costs in our
market analysis. Certificate prices may have changed over the years
and we may only have an incomplete view of the certificates used.
Still, we believe this estimate provides a good relative ranking. The
investment on code signing certificates by these operations varies
from $1,797 (Bundlore) to $29,595 (InstallCore) with an average
of $13,272.
InstallRex. Figure 7 shows the certificates of the InstallRex op-
eration over time. Each line corresponds to a certificate’s validity
period. Crosses mark revocation dates. A single cross in a line in-
dicates the CA performed a revocation on the issue date. InstallRex
uses 51 certificates from 3 CAs. From March 2011 until April 2013
they bought 14 personal certificates from Comodo using different
identities and one personal and another for a company (“Web Pick
- Internet Holdings Ltd”) from Thawte. Starting on June 2013 they
acquired 22 personal certificates from Comodo and another from
Thawte for the same company and different capitalization (“WEB
PICK - INTERNET HOLDINGS LTD”). This time Comodo re-
alized and issued revocations on the expiration dates for all their
certificates, but Thawte did not revoke theirs. A few months later
they start acquiring personal certificates from Certum. The first one
is revoked after some months, but a month later they succeed to buy
11 different certificates from Certum, which have not been revoked.
This example illustrates how PUP operations exploit the lack of CA
synchronization and multiple identities to survive revocations.

5.8 Blacklist Coverage
The certificate blacklist output by our infrastructure contains

2,170 CA-issued code signing certificates. In comparison, the
CCSS blacklist [5] contained on May 2015 entries for 228 code
signing certificates. Of those, only 197 provided a VirusTotal link
to a malware sample signed with that certificate. We analyzed those
197 samples. Three of them were not considered malicious using
our rule, another 19 are not really signed (according to both our in-
frastructure and VT), and 3 share certificate. Overall, our blacklist
contains 9x more certificates. We further discuss blacklist coverage
in Section 6.

476

6. DISCUSSION
Hard revocation deployment. Hard revocations can be used with-
out any changes to the Authenticode implementation in Windows.
However, Microsoft could support its deployment by communicat-
ing to CAs both type of revocations and the recommended handling
of key compromises and certificate abuse. One straightforward way
to achieve this would be updating the 2008 Authenticode specifica-
tion [31]. CAs can already use hard revocations, but it is important
that they provide abuse email addresses to receive third-party noti-
fications of abuse.
PUP maliciousness. PUP has been understudied in the research
literature. Important questions such as the (lack of) behaviors that
make a program PUP rather than malware remain open. This makes
it possible for malware to disguise as PUP. We do not attempt to de-
fine what constitutes PUP, but rather rely on AV labels for that de-
termination. However, our work is an important first step towards
understanding PUP. We observe that PUP may be quickly growing
and that it is typically signed. We also observe many PUP oper-
ations with suspicious behaviors such as high file and certificate
polymorphism that could also be associated with malware.
Identity checks. CAs should implement checks to avoid identities
to be reused with slight modifications. They should also provide
correct revocation reasons to enable distinguishing revocations due
to key compromise and abuse, which is important to build pub-
lisher reputation. Log-based PKI solutions [28] where CAs submit
all their issued certificates to a central repository would help iden-
tifying identity reuse across CAs.
Blacklists. Certificate blacklists would not be needed if revocation
worked properly. However, they are an important stopgap solution
and may help pushing CAs to improve revocation. We have shown
that automatic approaches can build blacklists with an order of
magnitude larger coverage than existing ones. To achieve larger
coverage it is important that AV vendors and malware repositories
contribute signed malware or their certificates to existing blacklists.

7. RELATED WORK
Code signing. Code signing is a key component of binary integrity
solutions. DigSig [17] presents a Linux kernel module that val-
idates digital signatures of programs before execution. Wurster
and van Oorschot [43] protect executables from malicious modi-
fications using self-signed certificates, where the OS kernel allows
modifications only if the current and the new version of the file
are signed with the same private key. Wu and Yap [42] leverage
code signing in their binary integrity model. Application whitelist-
ing relies on code signing to obtain publisher identity [23]. Recent
work has examined the challenges of transparent key updates and
certificate renewals in Android applications [19].
Attacks on Authenticode. Prior work has shown the possibility of
injecting code and data into Authenticode signed executables with-
out invalidating the signature [25, 30] and that executables signed
using MD5 are vulnerable to collisions [39].
Authenticode measurements. Most similar to our work are mea-
surements of signed malware by two AV vendors in 2010 [37, 41].
Those works focus on 2008-2010, while our analysis covers an 8-
year span (2006-2015). Our span covers the significant increase
in malware code signing after 2010. Our analysis covers many as-
pects not addressed in those studies such as timestamping. Our
infrastructure clusters samples into operations and classifies each
of them as PUP or malware, enabling the analysis of specific oper-

ations. We also analyze the revocation of timestamped executables
and show the need for hard revocations.
HTTPS certificates. Prior work analyzes the HTTPS certificate
ecosystem revealing many bad practices [22] and flaws in the cer-
tificate validation process [20, 24]. Our work shows that Authenti-
code validation is as complex or more compared to SSL/TLS vali-
dation (e.g., includes timestamping) and since it’s proprietary there
is a need for further external evaluation of its security.

8. CONCLUSION
We have performed a systematic analysis of Windows Authen-

ticode code signing abuse and the effectiveness of CA defenses.
We have identified a problematic scenario in Authenticode where
timestamped signed malware successfully validates even after the
revocation of their code signing certificate. We have proposed hard
revocations as a solution. We have built an infrastructure that auto-
matically analyzes potentially malicious samples, filters out benign
and unsigned samples, clusters the remaining into operations, clas-
sifies them as PUP or malware. At last, it produces a blacklist of
malicious certificates.

We have evaluated our infrastructure on 356 K samples and ob-
serve that PUP is rapidly increasing in our corpus, that most PUP
is signed, and that signed malware is not prevalent. CA identity
checks pose some barrier to malware (37% signed malware use
a CA-issued certificate) but do not affect PUP (99.8%). Revoca-
tion is also limited as only 17% of malware certificates and 15% of
PUP certificates in our corpus have been revoked. We analyze the
largest PUP operations showing that they heavily use file and cer-
tificate polymorphism. They buy certificates from multiple CAs,
apply small modifications to certificate subjects to reuse identities,
and use multiple companies and individuals to buy the certificates.
We have also used timestamped malware to evaluate the speed with
which the VirusTotal online service collects malware.

9. ACKNOWLEDGMENTS
We are grateful to VirusTotal and VirusShare for making their

data publicly available. We thank Thorsten Holz and the anony-
mous reviewers for their insightful comments and feedback.

This research was partially supported by the Regional Govern-
ment of Madrid through the N-GREENS Software-CM project
S2013/ICE-2731 and by the Spanish Government through the
StrongSoft Grant TIN2012-39391-C04-01. All opinions, findings
and conclusions, or recommendations expressed herein are those of
the authors and do not necessarily reflect the views of the sponsors.

10. REFERENCES
[1] Allowing only signed application to run.

https://technet.microsoft.com/en-
us/library/dd723683\%28v=ws.10\%29.aspx.

[2] Ca security council. https://casecurity.org/.
[3] Ca/browser forum. https://cabforum.org/.
[4] Catalog files and digital signatures.

https://msdn.microsoft.com/en-
us/library/windows/hardware/ff537872\
%28v=vs.85\%29.aspx.

[5] Ccss forum: Common computing security standards.
http://www.ccssforum.org/.

[6] Cross-certificates for kernel mode code signing.
https://msdn.microsoft.com/en-
us/library/windows/hardware/dn170454\
%28v=vs.85\%29.aspx.

477

[7] Malsign Project. http://www.malsign.org/.
[8] Malware Analysis Report - W64/Regin, Stage 1.

https://www.f-secure.com/documents/
996508/1030745/w64_regin_stage_1.pdf.

[9] Malwarebytes PUP Reconsideration Information.
https://www.malwarebytes.org/pup/.

[10] Practical windows code and driver signing.
http://www.davidegrayson.com/signing/.

[11] Signtool. https://msdn.microsoft.com/en-
us/library/windows/desktop/aa387764\
%28v=vs.85\%29.aspx.

[12] Stuxnet Under the Microscope.
http://www.eset.com/us/resources/white-
papers/Stuxnet_Under_the_Microscope.pdf.

[13] Unveiling Careto - The Masked APT.
http://kasperskycontenthub.com/wp-
content/uploads/sites/43/vlpdfs/
unveilingthemask_v1.0.pdf.

[14] Virusshare.com repository. http://virusshare.com/.
[15] Virustotal- free online virus, malware and url scanner.

http://www.virustotal.com/.
[16] Malwarebytes PUP Reconsideration Information, April

2014.
http://blogs.technet.com/b/mmpc/archive/
2014/04/03/adware-a-new-approach.aspx.

[17] A. Apvrille, D. Gordon, S. Hallyn, M. Pourzandi, and V. Roy.
Digsig: Runtime authentication of binaries at kernel level. In
USENIX Conference on System Administration, 2004.

[18] M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Jahanian,
and J. Nazario. Automated Classification and Analysis of
Internet Malware. In RAID, September 2007.

[19] D. Barrera, D. McCarney, J. Clark, and P. van Oorschot.
Baton: Certificate Agility for Android’s Decentralized
Signing Infrastructure. In ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec), 2014.

[20] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov.
Using Frankencerts for Automated Adversarial Testing of
Certificate Validation in SSL/TLS Implementations. In IEEE
Symposium on Security & Privacy, 2014.

[21] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley,
and W. Polk. Internet x.509 public key infrastructure
certificate and certificate revocation list (crl) profile. RFC
5280 (Proposed Standard), 2008. Updated by RFC 6818.

[22] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman.
Analysis of the HTTPS Certificate Ecosystem. In ACM
Internet Measurement Conference, 2013.

[23] C. Gates, N. Li, J. Chen, and R. Proctor. CodeShield:
Towards Personalized Application Whitelisting. In Annual
Computer Security Applications Conference, 2012.

[24] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov. The most dangerous code in the world:
validating SSL certificates in non-browser software. In ACM
conference on Computer and Communications Security,
2012.

[25] I. Glucksmann. Injecting custom payload into signed
Windows executables. In REcon, 2012.

[26] R. Housley, W. Ford, W. Polk, and D. Solo. Rfc 2459:
Internet x. 509 public key infrastructure certificate and crl
profile. 1999.

[27] B. Kaliski. Pkcs7: Cryptographic message syntax version
1.5. RFC 2315 (Proposed Standard), 1998.

[28] T. H.-J. Kim, L.-S. Huang, A. Perring, C. Jackson, and
V. Gligor. Accountable key infrastructure (aki): A proposal
for a public-key validation infrastructure. In International
Conference on World Wide Web, 2013.

[29] M. Labs. Threat Report, November 2014.
http://www.mcafee.com/us/resources/
reports/rp-quarterly-threat-q3-2014.pdf.

[30] E. Law. Caveats for Authenticode Code Signing, September
2014. http://blogs.msdn.com/b/ieinternals/
archive/2014/09/04/personalizing-
installers-using-unauthenticated-data-
inside-authenticode-signed-binaries.aspx.

[31] Microsoft. Windows authenticode portable executable
signature format, Mar. 21 2008.
http://download.microsoft.com/download/
9/c/5/9c5b2167-8017-4bae-9fde-
d599bac8184a/Authenticode_PE.docx.

[32] A. Mohaisen and O. Alrawi. AV-Meter: An Evaluation of
Antivirus Scans and Labels. In Detection of Intrusions and
Malware, and Vulnerability Assessment, July 2014.

[33] MSDN. Driver Signing Policy.
https://msdn.microsoft.com/en-us/
library/windows/hardware/ff548231.aspx.

[34] MSDN. “Stranger Danger” - Introducing SmartScreen
Application Reputation.
http://blogs.msdn.com/b/ie/archive/2010/
10/13/stranger-danger-introducing-
smartscreen-application-reputation.aspx.

[35] A. Nappa, M. Z. Rafique, and J. Caballero. The MALICIA
Dataset: Identification and Analysis of Drive-by Download
Operations. International Journal of Information Security,
14(1):15–33, February 2015.

[36] Netcraft. Keys left unchanged in many Heartbleed
replacement certificates!, April 2014.
http://news.netcraft.com/archives/2014/
05/09/keys-left-unchanged-in-many-
heartbleed-replacement-certificates.html.

[37] J. Niemala. It’s signed, therefore it’s clean, right?, May 2010.
Presentation at the CARO 2010 Workshop.

[38] S. Santesson, M. Myers, R. Ankney, A. Malpani,
S. Galperin, and C. Adams. X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP.
RFC 6960 (Proposed Standard), June 2013.

[39] D. Stevens. Playing with authenticode and md5 collisions,
2009. http://blog.didierstevens.com/2009/
01/17/playing-with-authenticode-and-md5-
collisions/.

[40] G. Wicherski. pehash: A novel approach to fast malware
clustering. In 2nd USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET), 2009.

[41] M. Wood. Want my autograph? The use and abuse of digital
signatures by malware. In Virus Bulletin Conference, 2010.

[42] Y. Wu and R. H. C. Yap. Towards a Binary Integrity System
for Windows. In ACM Symposium on Information, Computer
and Communications Security, 2011.

[43] G. Wurster and P. C. van Oorschot. Self-signed Executables:
Restricting Replacement of Program Binaries by Malware.
In USENIX Workshop on Hot Topics in Security, 2007.

478

